On the minimal positive standardizer of a parabolic subgroup of an Artin-Tits group

María Cumplido ${ }^{1,2}$

Received: 20 December 2017 / Accepted: 15 August 2018 / Published online: 22 September 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract

The minimal standardizer of a curve system on a punctured disk is the minimal positive braid that transforms it into a system formed only by round curves. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin-Tits groups of spherical type and we show that, to compute the minimal standardizer of a parabolic subgroup, it suffices to compute the $p n$-normal form of a particular central element.

Keywords Braid groups • Curve complex • Artin groups • Parabolic subgroups • Garside theory

Mathematics Subject Classification 20F36 • 57M60

1 Introduction

Let D be the disk in \mathbb{C} with diameter the real segment $[0, n+1]$ and let $D_{n}=$ $D \backslash\{1, \ldots, n\}$ be the n-punctured disk. The n-strand braid group, B_{n}, can be identified with the mapping class group of D_{n} relative to its boundary $\partial D_{n} . B_{n}$ acts on the right on the set of isotopy classes of simple closed curves in the interior of D_{n}. The result of the action of a braid α on the isotopy class \mathcal{C} of a curve C will be denoted by \mathcal{C}^{α} and it is represented by the image of the curve C under any automorphism of D_{n} representing α. We say that a curve is non-degenerate if it is not homotopic to a puncture, to a point or to the boundary of D_{n}, in other words, if it encloses more than one and less than n punctures. A curve system is a collection of isotopy classes of disjoint non-degenerate simple closed curves that are pairwise non-isotopic.

[^0]Curve systems are very important as they allow to use geometric tools to study braids. From Nielsen-Thurston theory [20], every braid can be decomposed along a curve system, so that each component becomes either periodic or pseudo-Anosov. The simplest possible scenario appears when the curve is standard:

Definition 1 A simple closed curve in D_{n} is called standard if it is isotopic to a circle centered at the real axis. A curve system containing only isotopy classes of standard curves is called standard.

Every curve system can be transformed into a standard one by the action of a braid, as we shall see. Let B_{n}^{+}be the submonoid of B_{n} of positive braids, generated by $\sigma_{1}, \ldots, \sigma_{n-1}[1]$. We can define a partial order \preccurlyeq on B_{n}, called prefix order, as follows: for $\alpha, \beta \in B_{n}, \alpha \preccurlyeq \beta$ if there is $\gamma \in B_{n}^{+}$such that $\alpha \gamma=\beta$. This partial order endows B_{n} with a lattice structure, i.e., for each pair $\alpha, \beta \in B_{n}$, their $\operatorname{gcd} \alpha \wedge \beta$ and their lcm $\alpha \vee \beta$ with respect to \preccurlyeq exist and are unique. Symmetrically, we can define the suffix order \succcurlyeq as follows: for $\alpha, \beta \in B_{n}, \beta \succcurlyeq \alpha$ if there is $\gamma \in B_{n}^{+}$such that $\gamma \alpha=\beta$. We will focus on B_{n} as a lattice with respect to \preccurlyeq, and we remark that B_{n}^{+}is a sublattice of B_{n}. In 2008, Lee and Lee proved the following:

Theorem 1 [17, Theorem 4.2] Given a curve system \mathcal{S} in D_{n}, its set of standardizers

$$
\operatorname{St}(\mathcal{S})=\left\{\alpha \in B_{n}^{+} \mid \mathcal{S}^{\alpha} \text { is standard }\right\}
$$

is a sublattice of B_{n}^{+}. Therefore, $\operatorname{St}(\mathcal{S})$ contains a unique $\preccurlyeq-m i n i m a l ~ e l e m e n t . ~$

The first aim of this paper is to give a direct algorithm to compute the \preccurlyeq-minimal element of $\operatorname{St}(\mathcal{S})$, for a curve system \mathcal{S}. The algorithm, explained in Sect. 4, is inspired by Dynnikov and Wiest's algorithm to compute a braid given its curve diagram [10] and the modifications made in [4].

The second aim of the paper is to solve the analogous problem for Artin-Tits groups of spherical type.

Definition 2 Let Σ be a finite set of generators and $M=\left(m_{s, t}\right)_{s, t \in \Sigma}$ a symmetric matrix with $m_{s, s}=1$ and $m_{s, t} \in\{2, \ldots, \infty\}$ for $s \neq t$. The Artin-Tits system associated to M is (A, Σ), where A is a group (called Artin-Tits group) with the following presentation

$$
A=\langle\Sigma \mid \underbrace{s t s \ldots}_{m_{s, t} \text { elements }}=\underbrace{t s t \ldots}_{m_{s, t} \text { elements }} \forall s, t \in \Sigma, s \neq t, m_{s, t} \neq \infty\rangle .
$$

For instance, B_{n} has the following presentation [1]

$$
B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1} \left\lvert\, \begin{array}{ll}
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}, & |i-j|>1 \\
\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j}, & |i-j|=1
\end{array}\right.\right\rangle .
$$

The Coxeter group W associated to (A, Σ) can be obtained by adding the relations $s^{2}=1$:

$$
W=\langle\Sigma \mid s^{2}=1 \forall i \in \Sigma ; \underbrace{s t s \ldots}_{m_{s, t} \text { elements }}=\underbrace{t s t \ldots}_{m_{s, t} \text { elements }} \forall s, t \in \Sigma, s \neq t, m_{s, t} \neq \infty\rangle .
$$

If W is finite, the corresponding Artin-Tits group is said to have spherical type. We will just consider Artin-Tits groups of spherical type, assuming that a spherical-type Artin-Tits system is fixed. If A cannot be decomposed as direct product of nontrivial Artin-Tits groups, we say that A is irreducible. Irreducible Artin-Tits groups of spherical type are completely classified [6].

Let A be an Artin-Tits group of spherical type. A standard parabolic subgroup, A_{X}, is the subgroup generated by some $X \subseteq \Sigma$. A subgroup P is called parabolic if it is conjugate to a standard parabolic subgroup, that is, $P=\alpha^{-1} A_{Y} \alpha$ for some standard parabolic subgroup A_{Y} and some $\alpha \in A$. Notice that we may have $P=\alpha^{-1} A_{Y} \alpha=$ $\beta^{-1} A_{Z} \beta$ for distinct $Y, Z \subset \Sigma$ and distinct $\alpha, \beta \in A$. We will write $P=(Y, \alpha)$ to express that A_{Y} and α are known data defining the parabolic subgroup P.

There is a natural way to associate a parabolic subgroup of B_{n} to a curve system. Suppose that $A=B_{n}$ and let A_{X} be the standard parabolic subgroup generated by $\left\{\sigma_{i}, \sigma_{i+1}, \ldots, \sigma_{j}\right\} \subseteq\left\{\sigma_{1}, \ldots, \sigma_{n-1}\right\}$. Let \mathcal{C} be the isotopy class of the circle enclosing the punctures $i, \ldots, j+1$ in D_{n}. Then A_{X} fixes \mathcal{C} and we will say that that A_{X} is the parabolic subgroup associated to \mathcal{C}. Suppose that there is some curve system \mathcal{C}^{\prime}, such that $\mathcal{C}^{\prime}=\mathcal{C}^{\alpha}$ for some $\alpha \in B_{n}$. Then $\alpha^{-1} A_{X} \alpha$ fixes it and we say that $\alpha^{-1} A_{X} \alpha$ is its associated parabolic subgroup. The parabolic subgroup associated to a system of non-nested curves is the direct product of the subgroups associated to each curve. Notice that this is a well-defined subgroup of B_{n}, as the involved subgroups commute. Therefore, we can talk about parabolic subgroups instead talking about curves. Most of the results for curves on D_{n} that can be translated in terms of parabolic subgroups can also be extended to every Artin-Tits group of spherical type. That is why parabolic subgroups play a similar role, in Artin-Tits groups, to the one played by systems of curves in B_{n}.

Our second purpose in this paper is to give a fast and simple algorithm to compute the minimal positive element that conjugates a given parabolic subgroup to a standard parabolic subgroup. The central Garside element of a standard parabolic subgroup A_{X} will be denoted by c_{X} and is to be defined in the next section.

Having a generic parabolic subgroup, $P=(X, \alpha)$, the central Garside element will be denoted by c_{P}. We also define the minimal standardizer of the parabolic subgroup $P=(X, \alpha)$ to be the minimal positive element that conjugates P to a standard parabolic subgroup. The existence and uniqueness of this element will be shown in this paper. Keep in mind that the pn-normal form of an element is a particular decomposition of the form $a b^{-1}$, where a and b are positive and have no common suffix. The main result of this paper is the following:
Theorem 3 Let $P=(X, \alpha)$ be a parabolic subgroup. If $c_{P}=a b^{-1}$ is in pn-normal form, then b is the minimal standardizer of P.

Thus, the algorithm will take a parabolic subgroup $P=(X, \alpha)$ and will just compute the normal form of its central Garside element c_{P}, obtaining immediately the minimal standardizer of P.

The paper will be structured in the following way: in Sect. 2 some results and concepts about Garside theory will be recalled. In Sects. 3 and 4, the algorithm for braids will be explained. In Sect. 5, the algorithm for Artin-Tits groups will be described and, finally, in Sect. 6 we will bound the complexity of both procedures.

2 Preliminaries about Garside theory

Let us briefly recall some concepts from Garside theory (for a general reference, see [9]). A group G is called a Garside group with Garside structure (G, \mathcal{P}, Δ) if it admits a submonoid \mathcal{P} of positive elements such that $\mathcal{P} \cap \mathcal{P}^{-1}=\{1\}$ and a special element $\Delta \in \mathcal{P}$, called Garside element, with the following properties:

- There is a partial order in G, \preccurlyeq, defined by $a \preccurlyeq b \Leftrightarrow a^{-1} b \in \mathcal{P}$ such that for all $a, b \in G$ there exist a unique $\operatorname{gcd} a \wedge b$ and a unique $\operatorname{lcm} a \vee b$ with respect to \preccurlyeq. This order is called prefix order and it is invariant under left-multiplication.
- The set of simple elements $[1, \Delta]=\{a \in G \mid 1 \preccurlyeq a \preccurlyeq \Delta\}$ generates G.
- $\Delta^{-1} \mathcal{P} \Delta=\mathcal{P}$.
- \mathcal{P} is atomic: if we define the set of atoms as the set of elements $a \in \mathcal{P}$ such that there are no non-trivial elements $b, c \in \mathcal{P}$ such that $a=b c$, then for every $x \in \mathcal{P}$ there is an upper bound on the number of atoms in a decomposition of the form $x=a_{1} a_{2} \cdots a_{n}$, where each a_{i} is an atom.
The conjugate by Δ of an element x will be denoted $\tau(x)=x^{\Delta}=\Delta^{-1} x \Delta$.
In a Garside group, the monoid \mathcal{P} also induces a partial order invariant under right multiplication, the suffix order \succcurlyeq. This order is defined by $a \succcurlyeq b \Leftrightarrow a b^{-1} \in \mathcal{P}$, and for all $a, b \in G$ there exist a unique $\operatorname{gcd}\left(a \wedge^{\dagger} b\right)$ and a unique lcm $\left(a \vee^{\dagger} b\right)$ with respect to \succcurlyeq. We say that a Garside group has finite type if $[1, \Delta]$ is finite. It is well known that Artin-Tits groups of spherical type admit a Garside structure of finite type [2,9]. Moreover:

Definition 3 We define the right complement of a simple element a as $\partial(a)=a^{-1} \Delta$ and the left complement as $\partial^{-1}(a)=\Delta a^{-1}$.

Remark 1 Observe that $\partial^{2}=\tau$ and that, if a is simple, then $\partial(a)$ is also simple, i.e., $1 \preccurlyeq \partial(a) \preccurlyeq \Delta$. Both claims follow from $\partial(a) \tau(a)=\partial(a) \Delta^{-1} a \Delta=\Delta$ since $\partial(a)$ and $\tau(a)$ are positive.

Definition 4 Given two simple elements a, b, the product $a \cdot b$ is said to be in left (resp. right) normal form if $a b \wedge \Delta=a$ (resp. $a b \wedge^{\wedge} \Delta=b$). The latter is equivalent to $\partial(a) \wedge b=1$ (resp. $a \wedge^{\dagger} \partial^{-1}(b)=1$).

We say that $x=\Delta^{k} x_{1} \ldots x_{r}$ is in left normal form if $k \in \mathbb{Z}, x_{i} \notin\{1, \Delta\}$ is a simple element for $i=1, \ldots, r$, and $x_{i} x_{i+1}$ is in left normal form for $0<i<r$.

Analogously, $x=x_{1} \ldots x_{r} \Delta^{k}$ is in right normal form if $k \in \mathbb{Z}, x_{i} \notin\{1, \Delta\}$ is a simple element for $i=1, \ldots, r$, and $x_{i} x_{i+1}$ is in right normal form for $0<i<r$.

It is well known that the normal form of an element is unique [9, Corollary 7.5]. Moreover, the numbers r and k do not depend on the normal form (left or right). We define the infimum, the canonical length and the supremum of x, respectively, as $\inf (x)=k, \ell(x)=r$ and $\sup (x)=k+r$.

Let a and b be two simple elements such that $a \cdot b$ is in left normal form. One can write its inverse as $b^{-1} a^{-1}=\Delta^{-2} \partial^{-3}(b) \partial^{-1}(a)$. This is in left normal form because $\partial^{-1}(b) \partial(a)$ is in normal form by definition and $\tau=\partial^{2}$ preserves \preccurlyeq. More generally (see [11]), if $x=\Delta^{k} x_{1} \ldots x_{r}$ is in left normal form, then the left normal form of x^{-1} is

$$
x^{-1}=\Delta^{-(k+r)} \partial^{-2(k+r-1)-1}\left(x_{r}\right) \partial^{-2(k+r-2)-1}\left(x_{r-1}\right) \ldots \partial^{-2 k-1}\left(x_{1}\right)
$$

For a right normal form, $x=x_{1} \ldots x_{r} \Delta^{k}$, the right normal form of x^{-1} is:

$$
x^{-1}=\partial^{2 k+1}\left(x_{r}\right) \partial^{2(k+1)+1}\left(x_{r-1}\right) \ldots \partial^{2(k+r-1)+1}\left(x_{1}\right) \Delta^{-(k+r)}
$$

Definition 5 [5, Theorem 2.6] Let $a, b \in \mathcal{P}$, then $x=a^{-1} b$ is said to be in $n p$-normal form if $a \wedge b=1$. Similarly, we say that $x=a b^{-1}$ is in $p n$-normal form if $a \wedge^{\dagger} b=1$.

Definition 6 Let $\Delta^{k} x_{1} \ldots x_{r}$ with $r>0$ be the left normal form of x. We define the initial and the final factor, respectively, as $\iota(x)=\tau^{-k}\left(x_{1}\right)$ and $\varphi(x)=x_{r}$. We will say that x is rigid if $\varphi(x) \cdot l(x)$ is in left normal form or if $r=0$.

Definition 7 ([11], [15, Definition 8]) Let $\Delta^{k} x_{1} \ldots x_{r}$ with $r>0$ be the left normal form of x. The cycling of x is defined as

$$
\boldsymbol{c}(x)=x^{\iota(x)}=\Delta^{k} x_{2} \ldots x_{r} l(x)
$$

The decycling of x is $\boldsymbol{d}(x)=x^{\left(\varphi(x)^{-1}\right)}=\varphi(x) \Delta^{k} x_{1} \ldots x_{r-1}$. We also define the preferred prefix of x as

$$
\mathfrak{p}(x)=\iota(x) \wedge \iota\left(x^{-1}\right) .
$$

The cyclic sliding of x is defined as the conjugate of x by its preferred prefix:

$$
\mathfrak{s}(x)=x^{\mathfrak{p}(x)}=\mathfrak{p}(x)^{-1} x \mathfrak{p}(x)
$$

Let G be a Garside group. For $x \in G, \inf _{s}(x)$ and $\sup _{s}(x)$ denote, respectively, the maximal infimum and the minimal supremum in the conjugacy class x^{G}.

- The super summit set $[11,19]$ of x is

$$
\begin{aligned}
\operatorname{SSS}(x) & =\left\{y \in x^{G} \mid \ell \text { is minimal in } x^{G}\right\} \\
& =\left\{y \in x^{G} \mid \inf (y)=\inf _{s}(y) \text { and } \sup (y)=\sup _{s}(y)\right\}
\end{aligned}
$$

Fig. 1 The braid $\sigma_{1} \sigma_{2}^{-1}$ and how it acts on a curve in D_{3}

- The ultra-summit set of x [13, Definition 1.17] is

$$
U S S(x)=\left\{y \in S S S(x) \mid c^{m}(y)=y \text { for some } m \geq 1\right\}
$$

- The set of sliding circuits of x [15, Definition 9] is

$$
S C(x)=\left\{y \in x^{G} \mid \mathfrak{s}^{m}(y)=y \text { for some } m \geq 1\right\}
$$

These sets are finite if the set of simple elements is finite and their computation is very useful to solve the conjugacy problem in Garside groups. They satisfy the following inclusions:

$$
S S S(x) \supseteq U S S(x) \supseteq S C(x)
$$

2.1 The braid group, B_{n}

A braid with n strands can be seen as a collection of n disjoint paths in a cylinder, defined up to isotopy, joining n points at the top with n points at the bottom, running monotonically in the vertical direction.

Each generator σ_{i} represents a crossing between the strands in positions i and $i+1$ with a fixed orientation. The generator σ_{i}^{-1} represents the crossing of the same strands with the opposite orientation. When considering a braid as a mapping class of D_{n}, these crossings are identified with the swap of two punctures in D_{n} (See Fig. 1).

Remark 2 The standard Garside structure of the braid group B_{n} is $\left(B_{n}, B_{n}^{+}, \Delta_{n}\right)$ where

$$
\Delta_{n}=\sigma_{1} \vee \cdots \vee \sigma_{n-1}=\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-1}\right)\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n-2}\right) \ldots\left(\sigma_{1} \sigma_{2}\right) \sigma_{1}
$$

The simple elements in this case are also called permutation braids [11], because the set of simple braids is in one-to-one correspondence with the set of permutations of n elements. Later we will use the following result:

Fig. $2 W(C)=0 \frown 6 \smile 4 \frown$ $2 \smile 1 \frown 4 \smile 5 \frown 1 \smile$

Lemma 1 [11, Lemma 2.4] Let s be a simple braid. Strands j and $j+1$ cross in s if and only if $\sigma_{j} \preccurlyeq s$.

3 Detecting bending points

In order to describe a non-degenerate closed curve C in D_{n}, we will use a notation introduced in [12]. Recall that D_{n} has diameter [$0, n+1$] and that the punctures of D_{n} are placed at $1,2, \ldots, n \in \mathbb{R}$. Choose a point on C lying on the real axis and choose an orientation for C. We will obtain a word $W(C)$ representing C, on the alphabet $\{\smile, \frown, 0,1, \ldots, n\}$, by running along the curve, starting and finishing at the chosen point. We write down a symbol \smile for each arc on the lower half-plane, a symbol \frown for each arc on the upper half-plane, and a number m for each intersection of C with the real segment $(m, m+1)$. An example is provided in Fig. 2.

For an isotopy class of curves $\mathcal{C}, W(\mathcal{C})$ is the word associated to a reduced representative $C^{\text {red }}$, i.e., a curve in \mathcal{C} which has minimal intersection with the real axis. $C^{r e d}$ is unique up to isotopy of D_{n} fixing the real diameter setwise [12], and $W(\mathcal{C})$ is unique up to cyclic permutation and reversing.

Remark 3 Notice that if a curve C does not have minimal intersection with the real axis, then $W(C)$ contains a subword, up to reversal and cyclic permutation, of the form $p \smile p \frown$ or $p \frown p \smile$. Hence, the curve can be isotoped by "pushing" this arc in order not to intersect the real axis. This is equivalent to removing the subword mentioned before from $W(C)$. In fact, we will obtain $W(\mathcal{C})$ by removing all subwords of this kind from $W(C)$. The process of removing $p \smile p \frown$ (resp. $p \frown p \smile$) from $W(C)$ is called relaxation of the $\operatorname{arc} p \smile p($ resp. $p \frown p)$.

Definition 8 Let C be a non-degenerate simple closed curve. We say that there is a bending point (resp. reversed bending point) of C at j if we can find in $W(\mathcal{C})$, up to cyclic permutation and reversing, a subword of the form $i \frown j \smile k$ (resp. $i \smile j \frown k)$ for some $0 \leq i<j<k \leq n$ (Fig. 3).

We say that a curve system has a bending point at j if one of its curves has a bending point at j.

Fig. 3 A bending point at j in a curve C

Fig. 4 Triangulation used to define Dynnikov coordinates

The algorithm we give in Sect. 4 takes a curve system \mathcal{S} and "untangles" it in the shortest (positive) way. That is, it gives the shortest positive braid α such that \mathcal{S}^{α} is standard, i.e., the minimal element in $\operatorname{St}(\mathcal{S})$. Bending points are the key ingredient of the algorithm. We will show that if a curve system \mathcal{S} has a bending point at j, then σ_{j} is a prefix of the minimal element in $\operatorname{St}(\mathcal{S})$. This will allow to untangle \mathcal{S} by looking for bending points and applying the corresponding σ_{j} to the curve until no bending point is found. The aim of this section is to describe a suitable input for this algorithm and to show the following result.

Proposition 1 A curve system is standard if and only if its reduced representative has no bending points.

3.1 Dynnikov coordinates

We have just described a non-degenerate simple closed curve in D_{n} by means of the word $W(C)$. There is a different and usually much shorter way to determine a curve system \mathcal{S} in D_{n} : its Dynnikov coordinates [8, Chapter 12]. The method to establish the coordinates of C is as follows. Take a triangulation of D_{n} as in Fig. 4 and let x_{i} be the number of times the curve system \mathcal{S} intersects the edge e_{i}. The Dynnikov coordinates of the curve system are given by the tuple ($x_{0}, x_{1}, \ldots, x_{3 n-4}$). There exists a reduced version of these coordinates, namely $\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$, where

Fig. 5 The Dynnikov coordinates and reduced Dynnikov coordinates of C are, respectively, $\left(x_{0}, \ldots, x_{8}\right)=$ (1, 2, 4, 2, 6, 9, 3, 12, 6); $\left(a_{0}, b_{0}, a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}\right)=$ $(0,-1,1,-2,3,-3,0,6)$

$$
a_{i}=\frac{x_{3 i-1}-x_{3 i}}{2}, \quad b_{i}=\frac{x_{3 i-2}-x_{3 i+1}}{2}, \quad \forall i=1, \ldots, n-2
$$

and $a_{0}=a_{n-1}=0, b_{0}=-x_{0}$ and $b_{n-1}=x_{3 n-4}$. See an example in Fig. 5.
Furthermore, there are formulae determining how these coordinates change when applying $\sigma_{j}^{ \pm 1}$, to the corresponding curve, for $0<j<n$.

Proposition 2 [7, Proposition 8.5.4] For $c=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$, we have

$$
c^{\sigma_{k}^{-1}}=\left(a_{0}^{\prime}, b_{0}^{\prime}, \ldots, a_{n-1}^{\prime}, b_{n-1}^{\prime}\right)
$$

with $a_{j}^{\prime}=a_{j}, b_{j}^{\prime}=b_{j}$ for $j \notin\{k-1, k\}$, and

$$
\begin{aligned}
a_{k-1}^{\prime} & =a_{k-1}+\left(\delta^{+}+b_{k-1}\right)^{+}, \\
a_{k}^{\prime} & =a_{k}-\left(\delta^{+}-b_{k}\right)^{+} \\
b_{k-1}^{\prime} & =b_{k-1}-\left(-\delta^{\prime}\right)^{+}+\delta^{+} \\
b_{k}^{\prime} & =b_{k}+\left(-\delta^{\prime}\right)^{+}-\delta^{+}
\end{aligned}
$$

where $\delta=a_{k}-a_{k-1}, \delta^{\prime}=a_{k}^{\prime}-a_{k-1}^{\prime}$ and $x^{+}=\max (0, x)$.
We also have

$$
c^{\sigma_{k}}=c^{\lambda \sigma_{k}^{-1} \lambda}
$$

with $\left(a_{1}, b_{1}, \ldots, a_{n-1}, b_{n-1}\right)^{\lambda}=\left(-a_{1}, b_{1}, \ldots,-a_{n-1}, b_{n-1}\right)$.
Remark 4 Notice that the use of σ_{k}^{-1} in the first equation above is due to the orientation of the strands crossings that we are taking for our braids (see Fig. 1), which is the opposite of the orientation used in [7].

Let us see how to detect a bending point of a curve system \mathcal{S} with these coordinates. First of all, notice that there cannot be a bending point at 0 or at n. It is easy to check that there is a bending point at 1 if and only if $x_{2}<x_{3}$ (Fig. 6a). Actually, if R is the number of subwords of type $0 \frown 1 \smile k$ for some $1<k \leq n$, then $x_{3}=x_{2}+2 R$. Symmetrically, there is a bending point at $n-1$ if and only if $x_{3 n-6}<x_{3 n-7}$.

Fig. 6 Detecting bending points with Dynnikov coordinates. a A bending point at 1. b A bending point at i

A bending point at i, for $1<i<n-1$, is detected by comparing the coordinates a_{i-1} and a_{i} (Fig. 6b). Notice that arcs not intersecting $e_{3 i-2}$ affect neither a_{i-1} nor a_{i}, and arcs not intersecting the real line do not affect the difference $a_{i-1}-a_{i}$. Hence, there is a bending point of \mathcal{S} at i if and only if $a_{i-1}-a_{i}>0$. Using a similar argument we can prove that there is a reversed bending point of \mathcal{S} at i if and only if $a_{i-1}-a_{i}<0$. Moreover, each bending point (resp. reversed bending point) at i increases (resp. decreases) by 1 the difference $a_{i-1}-a_{i}$. We have just shown the following result:

Lemma 2 (Bending point with Dynnikov coordinates) Let \mathcal{S} be a curve system on D_{n} with reduced Dynnikov coordinates $\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$. For $j=1, \ldots, n-1$ there are exactly $R \geq 0$ bending points (resp. reversed bending points) of \mathcal{S} at j if and only if $a_{j-1}-a_{j}=R$ (resp. $a_{j-1}-a_{j}=-R$).

Lemma 3 Let \mathcal{S} be a curve system as above. Then \mathcal{S} is symmetric with respect to the real axis if and only if $a_{i}=0$, for $0<i<n$.

Proof Just notice that a symmetry with respect to the real axis does not affect b coordinates and changes the sign of every a_{i}, for $0<i<n$.

Lemma 4 A curve system is standard if and only if it is symmetric with respect to the real axis.

Proof For every $m=0, \ldots, n$, we can order the finite number of elements in $\mathcal{S} \cap$ $(m, m+1)$ from left to right, as real numbers. Given an arc $a \frown b$ in $W(\mathcal{S})$, suppose that it joins the i-th element in $\mathcal{S} \cap(a, a+1)$ with the j-th element in $\mathcal{S} \cap(b, b+1)$. The symmetry with respect to the real axis preserves the order of the intersections with the real line, hence the image $a \smile b$ of the above upper arc will also join the i-th element in $\mathcal{S} \cap(a, a+1)$ with the j-th element in $\mathcal{S} \cap(b, b+1)$. This implies that both arcs $a \frown b$ and $a \smile b$ form a single standard curve $a \frown b \smile$. As this can be done for every upper arc in \mathcal{S}, it follows that \mathcal{S} is standard.

Fig. 7 A simple example of how to find the minimal standardizer of a curve

Proof of Proposition 1 If the curve system is standard, then it clearly has no bending points. Conversely, if it has no bending points, by Lemma 2 the sequence a_{0}, \ldots, a_{n-1} is non-decreasing, starting and ending at 0 , so it is constant. By Lemmas 3 and 4 , the curve system is standard.

4 Standardizing a curve system

We will now describe an algorithm which takes a curve system \mathcal{S}, given in reduced Dynnikov coordinates, and finds the minimal element in $\operatorname{St}(\mathcal{S})$. The algorithm will do the following: Start with $\beta=1$. Check whether the curve has a bending point at j. If so, multiply β by σ_{j} and restart the process with $\mathcal{S}^{\sigma_{j}}$. A simple example is provided in Fig. 7. The formal way is described in Algorithm 1.

```
Algorithm 1: Standardizing a curve system
    Input : The reduced coordinates ( \(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\) ) of a curve system \(\mathcal{S}\) on \(D_{n}\).
    Output: The \(\preccurlyeq-\) minimal element of \(\operatorname{St}(\mathcal{S})\).
    \(c=\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)\);
    \(\beta=1 ;\)
    \(j=1\);
    while \(j<n\) do
        if \(c\left[a_{j}\right]<c\left[a_{j-1}\right]\) then
            \(c=c^{\sigma_{j}}\); (use Proposition 2)
            \(\beta=\beta \cdot \sigma_{j} ;\)
            \(j=1 ;\)
        else
            \(j=j+1 ;\)
    return \(\beta\);
```

The minimality of the output is guaranteed by the following theorem, which shows that σ_{j} is a prefix of the minimal standardizer in $\operatorname{St}(\mathcal{S})$, provided \mathcal{S} has a bending point at j.

Theorem 2 Let \mathcal{S} be a curve system with a bending point at j. Then σ_{j} is a prefix of α, for every positive braid α such that \mathcal{S}^{α} is standard.

To prove the theorem, we will need a result from [3].
Definition 9 We will say that a simple braid s is compatible with a bending point at j if the strands j and $j+1$ of s do not cross in s. That is, if $\sigma_{j} \npreceq s$ (by Lemma 1).

Lemma 5 [3, Lemma 8] Let s_{1} and s_{2} be two simple braids such that $s_{1} \cdot s_{2}$ is in left normal form. Let C be a curve with a bending point at j compatible with s_{1}. Then, there exists some bending point of $C^{s_{1}}$ compatible with s_{2}.

Remark 5 The previous lemma holds also for a curve system, with the same proof.
Proof of Theorem 2 Suppose that $\alpha \in B_{n}^{+}$is such that \mathcal{S}^{α} is standard and $\sigma_{j} \nprec \alpha$. Let $s_{1} \ldots s_{r}$ be the left normal form of α. Notice that there is no Δ^{p} in the normal form. Otherwise, σ_{j} would be a prefix of α, because it is a prefix of Δ. By Lemma 1 , the strands j and $j+1$ of s_{1} do not cross because σ_{j} is not a prefix of α. Thus, s_{1} is compatible with a bending point at j and by Lemma $5, \mathcal{S}^{S_{1}}$ has a bending point compatible with s_{2}. By induction, $\mathcal{S}^{s_{1} \ldots s_{m}}$ has a bending point compatible with s_{m+1}, for $m=2, \ldots, r$, where s_{r+1} is chosen to be such that $s_{r} \cdot s_{r+1}$ is in left normal form. Hence, \mathcal{S}^{α} has a bending point, i.e., it is not standard, which is a contradiction.

In Algorithm 1, we can find the detailed procedure to compute the minimal element in $\operatorname{St}(\mathcal{S})$. Notice that, at every step, either the resulting curve has a bending point, providing a new letter of the minimal element in $\operatorname{St}(\mathcal{S})$, or it is standard and we are done. The process stops as B_{n}^{+}has homogeneous relations (actually, atomicity suffices to show that the process stops), so all positive representatives of the minimal element have the same length, which is precisely the number of bending points found during the process.

Notice that Theorem 2 guarantees that the output of Algorithm 1 is a prefix of every standardizer of S. This provides an alternative proof of the existence and uniqueness of a minimal element in $\operatorname{St}(\mathcal{S})$.

5 Standardizing a parabolic subgroup

Now we will give an algorithm to find the minimal standardizer of a parabolic subgroup $P=(X, \alpha)$ of an Artin-Tits group A of spherical type. The existence and uniqueness of this element will be shown by construction.

Proposition 3 [21] A parabolic subgroup A_{X} of an Artin-Tits group of spherical type is an Artin-Tits group of spherical type whose Artin-Tits system is $\left(A_{X}, X\right)$.

Proposition 4 [2, Lemma 5.1, Theorem 7.1] Let $\left(A_{\Sigma}, \Sigma\right)$ be an Artin-Tits system where A_{Σ} is of spherical type. Then, a Garside element for A_{Σ} is:

$$
\Delta_{\Sigma}=\bigvee_{s \in \Sigma} s=\bigvee_{s \in \Sigma}^{\dagger} s
$$

and the submonoid of positive elements is the monoid generated by Σ. Moreover, if A_{Σ} is irreducible, then $\left(\Delta_{\Sigma}\right)^{e}$ generates the center of A_{Σ}, for some $e \in\{1,2\}$.

Definition 10 Let A_{X} be an Artin-Tits group of spherical type. We define its central Garside element as $c_{X}=\left(\Delta_{X}\right)^{e}$, where e is the minimal positive integer such that $\left(\Delta_{X}\right)^{e} \in Z\left(A_{X}\right)$. We also define $c_{X, \alpha}:=\alpha c_{X} \alpha^{-1}$.

Proposition 5 [16, Proposition 2.1] Let $X, Y \subseteq \Sigma$ and $g \in A$. The following conditions are equivalent,

1. $g^{-1} A_{X} g \subseteq A_{Y}$;
2. $g^{-1} c_{X} g \in A_{Y}$;
3. $g=x y$ where $y \in A_{Y}$ and x conjugates X to a subset of Y.

The above proposition is a generalization of [18, Theorem 5.2] and implies, as we will see, that conjugating standard parabolic subgroups is equivalent to conjugating their central Garside elements. This will lead us to the definition of the central Garside element for a non-standard parabolic subgroup as given in Proposition 7. In order to prove the following results, we need to define an object that generalizes to Artin-Tits groups of spherical type of some operations used in braid theory:

Definition 11 Let $X \subset \Sigma, t \in \Sigma$. We define

$$
r_{X, t}=\Delta_{X \cup\{t\}} \Delta_{X}^{-1}
$$

Remark 6 In the case $t \notin X$, this definition is equivalent to the definition of positive elementary ribbon [16, Definition 0.4]. Notice that if $t \in X, r_{x, t}=1$. Otherwise, notice that $\Delta_{X \cup\{t\}}$ is simple, and that a simple element cannot be written as a word with two consecutive repeated letters [2, Lemma 5.4]. As Δ_{X} can start with any letter of X, it follows that if $t \notin X$, the only possible final letter of $r_{X, t}$ is t. In particular $r_{X, t} \succcurlyeq t$.

Proposition 6 There is a unique $Y \subset X \cup\{t\}$ such that $r_{X, t} X=Y r_{X, t}$.
Proof Given $Z \subset \Sigma$, conjugation by Δ_{Z} permutes the elements of Z. Let us denote by Y the image of X under the permutation of $X \cup\{t\}$ induced by the conjugation by $\Delta_{X \cup\{t\}}$. Then

$$
r_{X, t} X r_{X, t}^{-1}=\Delta_{X \cup\{t\}} \Delta_{X}^{-1} X \Delta_{X} \Delta_{X \cup\{t\}}^{-1}=\Delta_{X \cup\{t\}} X \Delta_{X \cup\{t\}}^{-1}=Y
$$

Artin-Tits groups of spherical type can be represented by Coxeter graphs. Recall that such a group, A, is defined by a symmetric matrix $M=\left(m_{i, j}\right)_{i, j \in \Sigma}$ and the finite set of generators Σ. The Coxeter graph associated to A is denoted Γ_{A}. The set of vertices of Γ_{A} is Σ, and there is an edge joining two vertices $s, t \in \Sigma$ if $m_{s, t} \geq 3$. The edge will be labeled with $m_{s, t}$ if $m_{s, t} \geq 4$. We say that the group A is indecomposable if Γ_{A} is connected and decomposable otherwise. If A is decomposable, then there exists a non-trivial partition $\Sigma=X_{1} \sqcup \cdots \sqcup X_{k}$ such that A is isomorphic to $A_{X_{1}} \times \cdots \times A_{X_{k}}$, where each $A_{X_{j}}$ is indecomposable (each X_{j} is just the set of vertices of a connected component of Γ_{X}). Each $A_{X_{j}}$ is called an indecomposable component of A.

Lemma 6 Let $X, Y \subset \Sigma$ and let $X=X_{1} \sqcup \cdots \sqcup X_{n}$ and $Y=Y_{1} \sqcup \cdots \sqcup Y_{m}$ be the partitions of X and Y, respectively, inducing the indecomposable components of A_{X} and A_{Y}. Then, for every $g \in A$, the following conditions are equivalent:

1. $g^{-1} A_{X} g=A_{Y}$.
2. $m=n$ and $g=x y$, where $y \in A_{Y}$ and the parts of Y can be reordered so that we have $x^{-1} X_{i} x=Y_{i}$ for $i=1, \ldots, n$.
3. $m=n$ and $g=x y$, where $y \in A_{Y}$ and the parts of Y can be reordered so that we have $x^{-1} A_{X_{i}} x=A_{Y_{i}}$ for $i=1, \ldots, n$.

Proof Suppose that $g^{-1} A_{X} g=A_{Y}$. By Proposition 5, we can decompose $g=x y$ where $y \in A_{Y}$ and x conjugates the set X to a subset of the set Y. Since conjugation by y induces an automorphism of A_{Y}, it follows that x conjugates A_{X} isomorphically onto A_{Y}, so it conjugates X to the whole set Y. Since the connected components of Γ_{X} (resp. Γ_{Y}) are determined by the commutation relations among the letters of X (resp. Y), it follows that conjugation by x sends indecomposable components of X onto indecomposable components of Y. Hence $m=n$ and $x^{-1} X_{i} x=Y_{i}$ for $i=1, \ldots, n$ (reordering the indecomposable components of Y in a suitable way), as we wanted to show. Thus, statement 1 implies statement 2.

Statement 2 implies 3 trivially and finally the third statement implies the first one as $A_{X}=A_{X_{1}} \times \cdots \times A_{X_{n}}$ and $A_{Y}=A_{Y_{1}} \times \cdots \times A_{Y_{n}}$.

Lemma 7 Let $X, Y \subseteq \Sigma, g \in A$. Then,

$$
g^{-1} A_{X} g=A_{Y} \Longleftrightarrow g^{-1} c_{X} g=c_{Y}
$$

Proof Suppose that $g^{-1} c_{X} g=c_{Y}$. Then, by Proposition 5, we have $g^{-1} A_{X} g \subseteq A_{Y}$ and also $g A_{Y} g^{-1} \subseteq A_{X}$. As conjugation by g is an isomorphism of A, the last inclusion is equivalent to $A_{Y} \subseteq g^{-1} A_{X} g$. Thus, $g^{-1} A_{X} g=A_{Y}$, as desired.

Conversely, suppose that $g^{-1} A_{X} g=A_{Y}$. By using Lemma 6, we can decompose $g=x y$ where $y \in A_{Y}$ and x is such that $x^{-1} A_{X_{i}} x=A_{Y_{i}}$, where $A_{X_{i}}$ and $A_{Y_{i}}$ are the indecomposable components of A_{X} and A_{Y} for $i=1, \ldots, n$. As the conjugation by x defines an isomorphism between $A_{X_{i}}$ and $A_{Y_{i}}$, we have that $x^{-1} Z\left(A_{X_{i}}\right) x=Z\left(A_{Y_{i}}\right)$. Hence, we have $x^{-1} c_{X_{i}} x=\Delta_{Y_{i}}^{k}$ for some $k_{i} \in \mathbb{Z}$, because the center of irreducible Artin-Tits groups of spherical type is cyclic (Proposition 4). Let $c_{X_{i}}=\Delta_{X_{i}}^{\epsilon_{i}}$ and $c_{Y_{i}}=\Delta_{Y_{i}}^{\zeta_{i}}$. As $A_{X_{i}}$ and $A_{Y_{i}}$ are isomorphic, $\epsilon_{i}=\zeta_{i}$. Also notice that in an Artin-Tits
group of spherical type the relations are homogeneous and so $k_{i}=\epsilon_{i}=\zeta_{i}$, having $x^{-1} c_{X_{i}} x=c_{Y_{i}}$. Let

$$
\epsilon=\max \left\{\epsilon_{i} \mid c_{X_{i}}=\Delta_{X_{i}}^{\epsilon_{i}}\right\}=\max \left\{\zeta_{i} \mid c_{Y_{i}}=\Delta_{Y_{i}}^{\zeta_{i}}\right\}
$$

and denote $d_{X_{i}}=\Delta_{X_{i}}^{\epsilon}$ and $d_{Y_{i}}=\Delta_{Y_{i}}^{\epsilon}$ for $i=1, \ldots, n$. Notice that $d_{X_{i}}$ is equal to either $c_{X_{i}}$ or $\left(c_{X_{i}}\right)^{2}$, and the same happens for each $d_{Y_{i}}$, hence $x^{-1} d_{X_{i}} x=d_{Y_{i}}$ for $i=1, \ldots, n$. Then, as $c_{X}=\prod_{i=1}^{n} d_{X_{i}}$ and $c_{Y}=\prod_{i=1}^{n} d_{Y_{i}}$, it follows that $x^{-1} c_{X} x=c_{Y}$. Therefore, $g^{-1} c_{X} g=y^{-1}\left(x^{-1} c_{X} x\right) y=y^{-1} c_{Y} y=c_{Y}$.

Lemma 8 Let $P=(X, \alpha)$ be a parabolic subgroup and A_{Y} be a standard parabolic subgroup of an Artin-Tits group A of spherical type. Then we have

$$
g^{-1} P g=A_{Y} \Longleftrightarrow g^{-1} c_{X, \alpha} g=c_{Y}
$$

Proof If $P=(X, \alpha)$, it follows that $g^{-1} P g=A_{Y}$ if and only if $g^{-1} \alpha A_{X} \alpha^{-1} g=A_{Y}$. By Lemma 7, this is equivalent to $g^{-1} \alpha c_{X} \alpha^{-1} g=c_{Y}$, i.e., $g^{-1} c_{X, \alpha} g=c_{Y}$.

Proposition 7 Let $P=(X, \alpha)=(Y, \beta)$ be a parabolic subgroup of an Artin-Tits group of spherical type. Then $c_{X, \alpha}=c_{Y, \beta}$ and we can define $c_{P}:=c_{X, \alpha}$ to be the central Garside element of P.

Proof Suppose that g is a standardizer of P such that $g^{-1} P g=A_{Z}$. By using Lemma 8, we have that $c_{Z}=g^{-1} c_{X, \alpha} g=g^{-1} c_{Y, \beta} g$. Thus, $c_{X, \alpha}=c_{Y, \beta}$.

By Lemma 8, a positive standardizer of a parabolic subgroup $P=(X, \alpha)$ is a positive element conjugating c_{P} to some c_{Y}. Let

$$
C_{A_{\Sigma}}^{+}\left(c_{P}\right)=\left\{s \in \mathcal{P} \mid s=u^{-1} c_{P} u, u \in A_{\Sigma}\right\}
$$

be the set of positive elements conjugate to c_{P} (which coincides with the positive elements conjugate to c_{X}). The strategy to find the minimal standardizer of P will be to compute the minimal conjugator from c_{P} to $C_{A_{\Sigma}}^{+}\left(c_{P}\right)$. That is, the shortest positive element u such that $u^{-1} c_{X, \alpha} u \in \mathcal{P}$.

Proposition 8 If $x=a b^{-1}$ is in pn-normal form and x is conjugate to a positive element, then b is a prefix of every positive element conjugating x to $C_{A_{\Sigma}}^{+}(x)$.

Proof Suppose that ρ is a positive element such that $\rho^{-1} x \rho$ is positive. Then $1 \preccurlyeq$ $\rho^{-1} x \rho$. Multiplying from the left by $x^{-1} \rho$ we obtain $x^{-1} \rho \preccurlyeq \rho$ and, since ρ is positive, $x^{-1} \preccurlyeq x^{-1} \rho \preccurlyeq \rho$. Hence $x^{-1} \preccurlyeq \rho$ or, in other words $b a^{-1} \preccurlyeq \rho$. On the other hand, by the definition of $p n$-normal form, we have $a \wedge^{\dagger} b=1$, which is equivalent to $a^{-1} \vee b^{-1}=1$ [14, Lemma 1.3]. Multiplying from the left by b, we obtain $b a^{-1} \vee 1=b$.

Finally, notice that $b a^{-1} \preccurlyeq \rho$ and also $1 \preccurlyeq \rho$. Hence $b=b a^{-1} \vee 1 \preccurlyeq \rho$. Since b is a prefix of ρ for every positive ρ conjugating x to a positive element, the result follows.

Lemma 9 Let A_{X} be a standard parabolic subgroup and $t \in \Sigma$ and $\alpha \in A_{\Sigma}^{+}$. If $\alpha \Delta_{X}^{k} \succcurlyeq t$, then $\alpha \succcurlyeq r_{X, t}$, for every $k>0$.

Proof Since the result is obvious for $t \in X\left(r_{X, t}=1\right)$, suppose $t \notin X$. Trivially, $\alpha \Delta_{X}^{k} \succcurlyeq \Delta_{X}$. As $\alpha \Delta_{X}^{k} \succcurlyeq t$, we have that $\alpha \Delta_{X}^{k} \succcurlyeq \Delta_{X} \vee^{\dagger} t$. By definition, $\Delta_{X} \vee^{\uparrow}$ $t=\Delta_{X \cup\{t\}}=r_{X, t} \Delta_{X}$. Thus, $\alpha \Delta_{X}^{k} \succcurlyeq r_{X, t} \Delta_{X}$ and then $\alpha \Delta^{k-1} \succcurlyeq r_{X, t}$, because \succcurlyeq is invariant under right multiplication. As $r_{X, t} \succcurlyeq t$ (see Remark 6), the result follows by induction.

Theorem 3 Let $P=(X, \alpha)$ be a parabolic subgroup. If $c_{P}=a b^{-1}$ is in pn-normal form, then b is the \preccurlyeq-minimal standardizer of P.

Proof We know from Proposition 8 that b is a prefix of any positive element conjugating c_{P} to a positive element, which guarantees its \preccurlyeq-minimality. We also know from Lemma 8 that any standardizer of P must conjugate c_{P} to a positive element, namely to the central Garside element of some standard parabolic subgroup. So we only have to prove that b itself conjugates c_{P} to the central Garside element of some standard parabolic subgroup. We assume α to be positive, because there is always some $k \in \mathbb{N}$ such that $\Delta^{2 k} \alpha$ is positive and, as Δ^{2} lies in the center of $A, P=(X, \alpha)=\left(X, \Delta^{2 k} \alpha\right)$.

The $p n$-normal form of $c_{P}=\alpha c_{X} \alpha^{-1}$ is obtained by canceling the greatest common suffix of αc_{X} and α. Suppose that $t \in \Sigma$ is such that $\alpha \succcurlyeq t$ and $\alpha c_{X} \succcurlyeq t$.

If $t \notin X$, then $r_{X, t} \neq 1$ and by Lemma 9 we have that $\alpha \succcurlyeq r_{X, t}$, i.e., $\alpha=\alpha_{1} r_{X, t}$ for some $\alpha_{1} \in A_{\Sigma}$. Hence,

$$
\alpha c_{X} \alpha^{-1}=\alpha_{1} r_{X, t} c_{X} r_{X, t}^{-1} \alpha_{1}^{-1}=\alpha_{1} c_{X_{1}} \alpha_{1}^{-1}
$$

for some $X_{1} \subset \Sigma$. In this case, we reduce the length of the conjugator (by the length of $r_{X, t}$). If $t \in X, t$ commutes with c_{X}, which means that

$$
\alpha c_{X} \alpha^{-1}=\alpha_{1} t c_{X} t^{-1} \alpha_{1}^{-1}=\alpha_{1} c_{X_{1}} \alpha_{1}^{-1}
$$

where α_{1} is one letter shorter than α and $X_{1}=X$.
We can repeat the same procedure for $\alpha_{i} c_{X_{i}} \alpha_{i}^{-1}$, where $X_{i} \subset \Sigma, t_{i} \in \Sigma$ such that $\alpha_{i} \succcurlyeq t_{i}$ and $\alpha_{i} c_{X_{i}} \succcurlyeq t_{i}$. As the length of the conjugator decreases at each step, the procedure must stop, having as a result the $p n$-normal form of c_{P}, which will have the form:

$$
c_{P}=\left(\alpha_{k} c_{X_{k}}\right) \alpha_{k}^{-1}, \quad \text { for } k \in \mathbb{N}, \quad X_{k} \subset \Sigma
$$

Then, $\alpha_{k}=b$ clearly conjugates c_{P} to $c_{X_{k}}$, which is the central Garside element of a standard parabolic subgroup, so b is the \preccurlyeq-minimal standardizer of P.

We end this section with a result concerning the conjugacy classes of elements of the form c_{P}. As all the elements of the form $c_{Z}, Z \subseteq \Sigma$, are rigid (Definition 6), using the next theorem we can prove that the set of sliding circuits of c_{P} is equal to its set of positive conjugates.

Theorem 4 [15, Theorem 1] Let G be a Garside group of finite type. If $x \in G$ is conjugate to a rigid element, then $S C(x)$ is the set of rigid conjugates of x.

Corollary 1 Let $P=(X, \alpha)$ be a parabolic subgroup of an Artin-Tits group of spherical type. Then

$$
\begin{aligned}
C_{A_{\Sigma}}^{+}\left(c_{P}\right) & =\operatorname{SSS}\left(c_{P}\right)=\operatorname{USS}\left(c_{P}\right)=\operatorname{SC}\left(c_{P}\right) \\
& =\left\{c_{Y} \mid Y \subseteq \Sigma, c_{Y} \text { conjugate to } c_{X}\right\} .
\end{aligned}
$$

Proof By Theorem 4, it suffices to prove that $C_{A_{\Sigma}}^{+}\left(c_{P}\right)$ is composed only of rigid elements of the form c_{Z}. Let $P^{\prime}=(X, \beta)$ and suppose that $c_{P^{\prime}} \in C_{A_{\Sigma}}^{+}\left(c_{P}\right)$. As $c_{P^{\prime}}$ is positive, if $a b^{-1}$ is the pn-normal form of $c_{P^{\prime}}$, then $b=1$. By Theorem 3, 1 is the minimal standardizer of P^{\prime}, which implies that P^{\prime} is standard. Hence, all positive conjugates of $c_{P^{\prime}}$ are equal to c_{Y} for some Y, therefore they are rigid.

Corollary 2 Let $P=(X, \alpha)$ be a parabolic subgroup of an Artin-Tits group of spherical type. Then the set of positive standardizers of P,

$$
\operatorname{St}(P)=\left\{\alpha \in A_{\Sigma}^{+} \mid c_{P}^{\alpha}=c_{Y}, \text { for some } Y \subseteq \Sigma\right\},
$$

is a sublattice of A_{Σ}^{+}.
Proof Let s_{1} and s_{2} be two positive standardizers of P and let $\alpha:=s_{1} \wedge s_{2}$ and $\beta:=s_{1} \vee s_{2}$. By Corollary 1 and, for example, [15, Proposition 7, Corollary 7], we have that $c_{P}^{\alpha}=c_{Y}$ and $c_{P}^{\beta}=c_{Z}$ for some $Y, Z \subseteq \Sigma$. Hence $\alpha, \beta \in \operatorname{St}(P)$, as we wanted to show.

6 Complexity

In this section, we will describe the computational complexity of the algorithms which compute minimal standardizers of curves and parabolic subgroups. Let us start with Algorithm 1, which computes the minimal standardizer of a curve system.

The complexity of Algorithm 1 will depend on the length of the output, which is the number of steps of the algorithm. To bound this length, we will compute a positive braid which belongs to $\operatorname{St}(\mathcal{S})$. This will bound the length of the minimal standardizer of \mathcal{S}.

The usual way to describe the length (or the complexity) of a curve system consists in counting the number of intersections with the real axis, i.e., $\ell(\mathcal{S})=\#(\mathcal{S} \cap \mathbb{R})$. For integers $0 \leq i<j<k \leq n$, we define the following braid (see Fig. 8):

$$
s(i, j, k)=\left(\sigma_{j} \sigma_{j-1} \ldots \sigma_{i+1}\right)\left(\sigma_{j+1} \sigma_{j} \ldots \sigma_{i+2}\right) \ldots\left(\sigma_{k-1} \sigma_{k-2} \ldots \sigma_{i+k-j}\right)
$$

Lemma 10 Applying $s=s(i, j, k)$ to a curve system \mathcal{S}, when $i \frown j \smile k$ is a bending point, decreases the length of the curve system at least by two.

Fig. 8 Applying $s(0,3,6)$

Fig. 9 How the automorphism $d\left(x_{1}, x_{2}, x_{3}\right)$ acts on the arcs of C. a d acting on the arcs in the upper half-plane. $\mathbf{b} d$ acting on the arcs in the lower half-plane

Proof We will describe the arcs of the curves of \mathcal{S} in a new way, by associating a real number $c_{p} \in(0, n+1)$ to each of the intersections of \mathcal{S} with the real axis, where p is the position of the intersection with respect to the other intersections: c_{1} is the leftmost intersection and $c_{\ell(\mathcal{S})}$ is the rightmost one. We will obtain a set of words representing the curves of \mathcal{S}, on the alphabet $\left\{\smile, \frown, c_{1}, \ldots, c_{\ell(\mathcal{S})}\right\}$, by running along each curve, starting and finishing at the same point. As before, we write down a symbol \smile for each arc on the lower half-plane, and a symbol \frown for each arc on the upper half-plane. We also define the following function that sends this alphabet to the former one:

$$
\begin{aligned}
L: & \left\{\smile, \frown, c_{1}, \ldots, c_{\ell(\mathcal{S})}\right\} \longrightarrow\{\smile, \frown, 0, \ldots, n\} \\
& L(\smile)=\smile, \quad L(\frown)=\frown, \quad L\left(c_{p}\right)=\left\lfloor c_{p}\right\rfloor .
\end{aligned}
$$

Take a disk D such that its boundary $\partial(D)$ intersects the real axis at two points, x_{2} and x_{3}, which are not punctures and do not belong to \mathcal{S}. Consider another point x_{1}, which should not be a puncture or belong to \mathcal{S}, on the real axis such that $L\left(x_{1}\right)<L\left(x_{2}\right)$. Suppose that there are no arcs of \mathcal{S} on the upper half-plane intersecting the arc $x_{1} \frown x_{2}$ and there are no arcs of \mathcal{S} on the lower half-plane intersecting the arc $x_{2} \smile x_{3}$. We denote $I_{1}=\left(0, x_{1}\right), I_{2}=\left(x_{1}, x_{2}\right), I_{3}=\left(x_{2}, x_{3}\right)$ and $I_{4}=\left(x_{3}, n+1\right)$ and define $\left|I_{t}\right|$ as the number of punctures that lie in the interval I_{t}.

We consider an automorphism of D_{n}, called $d=d\left(x_{1}, x_{2}, x_{3}\right)$, which is the final position of an isotopy that takes D and moves it trough the upper half-plane to a disk

Fig. 10 Applying $s(i, j, k)$ to a curve is equivalent to permute their intersections with the real axis and then make the curve tight

of radius ϵ centered at x_{1}, which contains no point c_{p} and no puncture, followed by an automorphism which fixes the real line as a set and takes the punctures back to the positions $1, \ldots, n$. This corresponds to "placing the interval I_{3} between the intervals I_{1} and I_{2} ". Firstly, we can see in Fig. 9 that the only modifications that the arcs of \mathcal{S} can suffer is the shifting of their endpoints. By hypothesis, there are no arcs in the upper half-plane joining I_{2} with I_{j} for $j \neq 2$, and there are no arcs in the lower half-plane joining I_{3} with I_{j} for $j \neq 3$. Any other possible arc is transformed by d into a single arc, so every arc is transformed in this way. Algebraically, take an arc of $\mathcal{S}, c_{a} \frown c_{b}$ (resp. $c_{a} \cup c_{b}$), such that $L\left(c_{a}\right)=\tilde{a}$ and $L\left(c_{b}\right)=\tilde{b}$. Then, its image under d is $c_{a}^{\prime} \frown c_{b}^{\prime}\left(\right.$ resp. $\left.c_{a}^{\prime} \smile c_{b}^{\prime}\right)$ where

$$
L\left(c_{p}^{\prime}\right)=\left\{\begin{array}{ll}
\tilde{p} & \text { if } c_{p} \in I_{1}, I_{4}, \\
\tilde{p}+\left|I_{3}\right| & \text { if } c_{p} \in I_{2}, \\
\tilde{p}-\left|I_{2}\right| & \text { if } c_{p} \in I_{3},
\end{array} \quad \text { for } p=a, b\right.
$$

After applying this automorphism, the curve could fail to be reduced, in which case relaxation of unnecessary arcs could be done, reducing the complexity of \mathcal{S}.

Now, given a bending point $i \frown j \smile k$ of \mathcal{S}, consider the set

$$
B=\left\{c_{p} \frown c_{q} \smile c_{r} \mid L\left(c_{p}\right)<L\left(c_{q}\right)<L\left(c_{r}\right) \text { and } L\left(c_{q}\right)=j\right\}
$$

and choose the element of B with greatest sub-index q, which is also the one with lowest p and r. Define x_{1}, x_{2} and x_{3} such that $x_{1} \in\left(c_{p-1}, c_{p}\right) \cap\left(L\left(c_{p}\right), L\left(c_{p}\right)+1\right)$, $x_{2} \in\left(c_{q}, c_{q+1}\right) \cap(j, j+1)$ and $x_{3} \in\left(c_{r-1}, c_{r}\right) \cap\left(L\left(c_{r}\right), L\left(c_{r}\right)+1\right)$. Then, the braid $s\left(L\left(c_{p}\right), j, L\left(c_{r}\right)\right)$ is represented by the automorphism $d\left(x_{1}, x_{2}, x_{3}\right)$ (see Fig. 10). Notice that the choice of the bending point from B guarantees the nonexistence of arcs of C intersecting $x_{1} \frown x_{2}$ or $x_{2} \smile x_{3}$. After the swap of I_{2} and I_{3}, the arc $c_{q} \smile c_{r}$ will be transformed into $c_{q}^{\prime} \smile c_{r}^{\prime}$, where $L\left(c_{q}^{\prime}\right)=L\left(c_{r}^{\prime}\right)=L\left(c_{r}\right)$, and then relaxed, reducing the length of \mathcal{S} at least by two.

The automorphism $s=s(i, j, k)$ involves at most $(k-j) \cdot(j-i)$ generators and this number is bounded by $\frac{1}{4} n^{2}$, because $(k-j)+(j-i) \leq n$ and $(u+v)^{2} \geq 4 u v$. Then, the output of our algorithm has at most $\frac{1}{8} \ell(\mathcal{S}) n^{2}$ letters, because we have proven that s reduces the length of the curve system at each step. Let us bound this number in terms of the input of the algorithm, i.e., in terms of reduced Dynnikov coordinates.

Definition 12 We say that there is a left hairpin (resp. a right hairpin) of C at j if we can find in $W(\mathcal{C})$, up to cyclic permutation and reversing, a subword of the form $i \frown j-1 \smile k$ (resp. $i \frown j \smile k$) for some $i, k>j-1$ (resp. $i, k<j$) (see Fig. 11).

Fig. 11 Detecting hairpins with Dynnikov coordinates. a Two left hairpins. b A right hairpin

Proposition 9 Let \mathcal{S} be a curve system on D_{n} represented by the reduced Dynnikov coordinates $\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$. Then $\ell(\mathcal{S}) \leq \sum_{i=0}^{n-1}\left(2\left|a_{i}\right|+\left|b_{i}\right|\right)$.

Proof Notice that each intersection of a curve \mathcal{C} with the real axis corresponds to a subword of $W(\mathcal{C})$ of the form $i \frown j \smile k$ or $i \smile j \frown k$. If $i<j<k$ the subword corresponds to a bending point or a reversed bending point, respectively. If $i, k>j$, there is a left hairpin at $j+1$. Similarly, if $i, k<j$, there is a right hairpin at j.

Recall that Lemma 2 already establishes how to detect bending points with reduced Dynnikov coordinates. In fact, there are exactly R bending points (including reversed ones) at i if and only if $\left|a_{i-1}-a_{i}\right|=R$. We want to detect also hairpins in order to determine $\ell(\mathcal{S})$. Observe in Fig. 11 that the only types of arcs that can appear in the region between the lines $e_{3 j-5}$ and $e_{3 j-2}$ are left or right hairpins and arcs intersecting both $e_{3 j-5}$ and $e_{3 j-2}$. The arcs intersecting both $e_{3 j-5}$ and $e_{3 j-2}$ do not affect the difference $x_{3 j-5}-x_{3 j-2}$ whereas each left hairpin decreases it by 2 and each right hairpin increases it by 2 . Notice that in the mentioned region there cannot be left and right hairpins at the same time. Then, there are exactly R left (resp. right) hairpins at j if and only if $b_{j-1}=-R$ (resp. $b_{j-1}=R$). Hence, as $a_{0}=a_{n-1}=0$, we have:

$$
\ell(\mathcal{S})=\sum_{i=1}^{n-1}\left|a_{i-1}-a_{i}\right|+\sum_{j=0}^{n-1}\left|b_{j}\right| \leq \sum_{i=1}^{n-1}\left(\left|a_{i-1}\right|+\left|a_{i}\right|\right)+\sum_{j=0}^{n-1}\left|b_{j}\right|=\sum_{i=0}^{n-1}\left(2\left|a_{i}\right|+\left|b_{i}\right|\right)
$$

Corollary 3 Let \mathcal{S} be a curve system on D_{n} represented by the reduced Dynnikov coordinates $\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$. Then, the length of the minimal standardizer of \mathcal{S} is at most

$$
\frac{1}{8} \sum_{i=0}^{n-1}\left(2\left|a_{i}\right|+\left|b_{i}\right|\right) \cdot n^{2}
$$

Proof By Lemma 10, the length of the minimal standardizer of \mathcal{S} is at most $\frac{1}{8} \ell(\mathcal{S}) n^{2}$. Consider the bound for $\ell(\mathcal{S})$ given in Proposition 9 and the result will follow.

Fig. 12 The curve \mathcal{S}_{5}

Remark 7 To check that this bound is computationally optimal, we need to find a case where at each step we can only remove a single bending point, i.e., we want to find a family of curve systems $\left\{\mathcal{S}_{k}\right\}_{k>0}$ such that the length of the minimal standardizer of \mathcal{S}_{k} is quadratic on n and linear on $\ell(\mathcal{S})$. Let $n=2 t+1, t \in \mathbb{N}$. Consider the following curve system on D_{n},

$$
\mathcal{S}_{0}=\{t \smile n \frown\}
$$

and the braid $\alpha=s(0, t, n-1)$. Now define $\mathcal{S}_{k}=\left(\mathcal{S}_{0}\right)^{\alpha^{-k}}$. The curve \mathcal{S}_{k} is called a spiral with k half-twists (see Fig. 12) and is such that $\ell\left(\mathcal{S}_{k}\right)=2(k+1)$. Using Algorithm 1, we obtain that the minimal standardizer of this curve is α^{k}, which has $k \cdot t^{2}$ factors. Therefore, the number of factors of the minimal standardizer of \mathcal{S}_{k} is of order $O\left(\ell\left(\mathcal{S}_{k}\right) \cdot n^{2}\right)$.

Corollary 4 Let \mathcal{S} be a curve system on D_{n} represented by the reduced Dynnikov coordinates $\left(a_{0}, b_{0}, \ldots, a_{n-1}, b_{n-1}\right)$. Letm $=\sum_{i=0}^{n-1}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)$. Then, the complexity of computing the minimal standardizer of \mathcal{S} is $O\left(n^{2} m \log (m)\right)$.

Proof First notice that

$$
\ell(\mathcal{S}) \leq \sum_{i=0}^{n-1}\left(2\left|a_{i}\right|+\left|b_{i}\right|\right) \leq 2 \sum_{i=0}^{n-1}\left(\left|a_{i}\right|+\left|b_{i}\right|\right)=2 m
$$

and that the transformation described in Proposition 2 involves a finite number of basic operations (addition and max). Applying σ_{j} to the Dynnikov coordinates modifies only four such coordinates, and each maximum or addition between two numbers is linear on the number of digits of its arguments. This means that applying σ_{j} to the curve has a cost of $O(\log (M))$, where $M=\max \left\{\left|a_{i}\right|,\left|b_{i}\right| \mid i=0, \ldots, n-1\right\}$. By Corollary 3, the number of iterations performed by the algorithm is $O\left(n^{2} m\right)$. Hence, as $M \leq m$, computing the minimal standardizer of \mathcal{S} has complexity $O\left(n^{2} m \log (m)\right)$.

To find the complexity of the algorithm which computes the minimal standardizer of a parabolic subgroup $P=(X, \alpha)$ of an Artin-Tits group A, we only need to know the cost of computing the $p n$-normal form of c_{P}. If $x_{r} \ldots x_{1} \Delta^{-p}$ with $p>0$ is the right normal form of c_{P}, then its $p n$-normal form is $\left(x_{r} \ldots x_{p+1}\right)\left(x_{p} \ldots x_{1} \Delta^{-p}\right)$. Hence, we just have to compute the right normal form of c_{P} in order to compute the minimal standardizer. It is well known that this computation has quadratic complexity (for a proof, see [9, Lemma 3.9 \& Section 6]). Thus, we have the following:

Proposition 10 Let $P=(X, \alpha)$ be a parabolic subgroup of an Artin-Tits group of spherical type, and let $\ell=\ell(\alpha)$ be the canonical length of α. Computing the minimal standardizer of P has a cost of $O\left(\ell^{2}\right)$.

Acknowledgements This research was supported by a Ph.D. contract funded by Université Rennes 1, Spanish Projects MTM2013-44233-P, MTM2016-76453-C2-1-P, FEDER and French-Spanish Mobility programme "Mérimée 2015". I thank my advisors, Juan González-Meneses and Bert Wiest, for helping and guiding me during this research work. I am also grateful to the anonymous referees for having taken the time to read my paper and having helped me to improve it with accurate corrections and significant remarks.

References

1. Artin, E.: Theory of braids. Ann. of Math. 2(48), 101-126 (1947)
2. Brieskorn, E., Saito, K.: Artin-Gruppen und Coxeter-Gruppen. Invent. Math. 17(4), 245-271 (1972)
3. Calvez, M.: Dual Garside structure and reducibility of braids. J. Algebra 356(1), 355-373 (2012)
4. Caruso, S.: Algorithmes et généricité dans les groupes de tresses. Ph.D. thesis, Université Rennes 1 (2013)
5. Charney, R.: Geodesic automation and growth functions for Artin groups of finite type. Math. Ann. 301, 307-324 (1995)
6. Coxeter, H.S.M.: The complete enumeration of finite groups of the form $r_{i}^{2}=\left(r_{i} r_{j}\right)^{k_{i j}}=1$. J. Lond. Math. Soc. 1-10(1), 21-25 (1935)
7. Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Why are Braids Orderable? Panoramas et Synthèses, vol. 14. Société Mathématique de France, Paris (2002)
8. Dehornoy, P., Dynnikov, I., Rolfsen, D., Wiest, B.: Ordering Braids, Mathematical Surveys and Monographs, vol. 148. American Mathematical Society, Providence (2008)
9. Dehornoy, P., Paris, L.: Gaussian gand Garside groups, two generalisations of Artin groups. Proc. Lond. Math. Soc. 3(79), 569-604 (1999)
10. Dynnikov, I., Wiest, B.: On the complexity of braids. J. Eur. Math. Soc. (JEMS) 9(4), 801-840 (2007)
11. Elrifai, E.A., Morton, H.R.: Algorithms for positive braids. Q. J. Math. 45(4), 479-497 (1994)
12. Fenn, R., Greene, M.T., Rolfsen, D., Rourke, C., Wiest, B.: Ordering the braid groups. Pac. J. Math. 191(1), 49-74 (1999)
13. Gebhardt, V.: A new approach to the conjugacy problem in Garside groups. J. Algebra 292, 282-302 (2005)
14. Gebhardt, V., González-Meneses, J.: Solving the conjugacy problem in Garside groups by cyclic sliding. J. Symbolic Comput. 45(6), 629-656 (2010)
15. Gebhardt, V., González-Meneses, J.: The cyclic sliding operation in Garside groups. Math. Z. 265, 85-114 (2010)
16. Godelle, E.: Normalisateur et groupe d'Artin de type sphérique. J. Algebra 269(1), 263-274 (2003)
17. Lee, E.K., Lee, S.J.: A Garside-theoretic approach to the reducibility problem in braid groups. J. Algebra 320(2), 783-820 (2008)
18. Paris, L.: Parabolic subgroups of Artin groups. J. Algebra 196(2), 369-399 (1997)
19. Picantin, M.: The conjugacy problem in small Gaussian groups. Comm. Algebra 29(3), 1021-1039 (2001)
20. Thurston, W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.) 19(2), 417-432 (1988)
21. Van der Lek, H.: The Homotopy Type of Complex Hyperplane Complements. Ph.D. thesis, Nijmegen (1983)

[^0]: María Cumplido
 maria.cumplidocabello@univ-rennes1.fr
 1 CNRS, IRMAR - UMR 6625, Univ Rennes, 35000 Rennes, France
 2 Depto. de Álgebra, Instituto de Matemáticas (IMUS), Universidad de Sevilla, Av. Reina Mercedes $\mathrm{s} / \mathrm{n}, 41012$ Seville, Spain

