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Artin–Tits groups act on a certain delta-hyperbolic complex, called the “additional 
length complex”. For an element of the group, acting loxodromically on this complex 
is a property analogous to the property of being pseudo-Anosov for elements of 
mapping class groups. By analogy with a well-known conjecture about mapping class 
groups, we conjecture that “most” elements of Artin–Tits groups act loxodromically. 
More precisely, in the Cayley graph of a subgroup G of an Artin–Tits group, the 
proportion of loxodromically acting elements in a ball of large radius should tend to 
one as the radius tends to infinity. In this paper, we give a condition guaranteeing 
that this proportion stays away from zero. This condition is satisfied e.g. for Artin–
Tits groups of spherical type, their pure subgroups and some of their commutator 
subgroups.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let A be an irreducible Artin–Tits group of spherical type which acts on the additional length graph, 
denoted CAL, which is a δ-hyperbolic complex introduced in [1, Definition 2]. The Cayley graph of a subgroup 
G of A with generator system S will be denoted Γ(G, S). The ball on Γ(G, S) centered in the trivial vertex 
with radius R will be denoted by BΓ(G,S)(R), and by Lox(G, CAL) we mean the set of all the elements in G
that act loxodromically on CAL.

There is a well-known conjecture which claims that “most”, or “generic” elements of the mapping classes 
of a surface are pseudo-Anosov: picking an element of the mapping class group “at random” yields a 
pseudo-Anosov element with overwhelming probability. The braid group with n strands happens to be both 
a mapping class group (of the n-punctured disk) and the Artin–Tits group An−1, and it was proven in [1, 
Definition 2] that if a braid acts loxodromically on CAL, then it is pseudo-Anosov (this is actually believed 
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to be an equivalence). By analogy, this justifies the following conjecture: “generic” elements of an Artin–Tits 
group A (or of a reasonable subgroup G) act loxodromically on CAL.

In order to make the definition of genericity more precise, let us describe two possible definitions of 
picking randomly an element in Γ(G, S). The first method consists of performing a random walk of a 
certain length � on Γ(G, S), starting from the identity vertex; the second method is to pick a random vertex 
from the ball BΓ(G,S)(R) of radius R.

The genericity conjecture claims that, if G contains at least one element which acts loxodromically on CAL, 
then picking randomly an element in Γ(G, S) yields a loxodromically acting element with a probability that 
tends to one when the length � of the random walk, or when the radius R of the ball tends to infinity. In 
the “large balls” model, this is claiming that

lim
R→∞

|Lox(G, CAL) ∩BΓ(G,S)(R)|
|BΓ(G,S)(R)| = 1.

The paper [2] contained a partial proof of this conjecture, namely when G = A, and

• either genericity was defined according to the random walks model,
• or genericity was defined according to the large balls model, but only with respect to one very particular 

generating set S, namely Garside’s set of simple elements (see below).

In the present paper (Lemma 8), we will give a condition for G so that the proportion of loxodromic 
elements in BΓ(G,S)(R) stays away from zero when R tends to infinity. Notice that this is a weaker conclusion, 
but it will be proven for every generator system S. Our main result is the following:

Theorem 1. Let G be an Artin–Tits group of spherical type, a pure subgroup of an Artin–Tits group of 
spherical type or the commutator subgroup of the Artin–Tits group of type I2(2m+1), An, Dn, En or Hn. 
Let S be any finite generator set of G. Then the following condition is satisfied:

lim inf
R→∞

|Lox(G, CAL) ∩BΓ(G,S)(R)|
|BΓ(G,S)(R)| > 0

2. Reminders

In this section we will recall the main concepts and results used throughout this paper. First, we define 
the groups that participate in Theorem 1.

Definition 2 (Artin–Tits group). Let I be a finite set and M = (mi,j)i,j∈I a symmetric matrix with mi,i = 1
and mi,j ∈ {2, . . . , ∞} for i �= j. Let S = {σi | i ∈ I}. The Artin–Tits system associated to M is (A, S), 
where A is a group with the following presentation

A = 〈S | σiσjσi . . .︸ ︷︷ ︸
mi,j elements

= σjσiσj . . .︸ ︷︷ ︸
mi,j elements

∀i, j ∈ I, i �= j, mi,j �= ∞〉.

The Coxeter group W associated to (A, S) can be obtained by adding the relations σ2
i = 1:

WA = 〈S |σ2
i = 1 ∀i ∈ I; σiσjσi . . .︸ ︷︷ ︸ = σjσiσj . . .︸ ︷︷ ︸ ∀i, j ∈ I, i �= j, mi,j �= ∞〉.
mi,j elements mi,j elements
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Fig. 1. Classification of Artin–Tits groups of spherical type.

An Artin–Tits system (A, S) can be represented with a Coxeter graph, denoted ΓA. The set of vertices of ΓA

is S, and there is an edge joining two vertices s, t ∈ Σ if ms,t ≥ 3. The edge will be labeled with ms,t if 
ms,t ≥ 4.

Through this paper, we shall only be interested in Artin–Tits groups of spherical type, meaning that 
their associated Coxeter groups are finite. It is well known [3] that Artin–Tits group of spherical type are 
classified into 10 different types. The classification is described in Fig. 1 by using Coxeter graphs.

The best-known example for these groups is the braid group with n strands (An−1 in Fig. 1). Each braid 
with n strands can also be seen as a collection of n disjoint paths in a cylinder, defined up to isotopy, joining 
n points at the top with n points at the bottom, running monotonically in the vertical direction. In this 
case, each generator σi represents a crossing between the strands in the position i and i + 1 with a fixed 
orientation, while σ−1

i represents the same crossing with the opposite orientation.

Definition 3. Let (A, S) be an Artin–Tits system where A is an Artin–Tits group of spherical type. Its pure
subgroup P (A) ⊂ A is defined as follows

P (A) := ker(p : A −→ WA)

where p is the canonical projection from A to its associated Coxeter group WA.

The techniques used in the proofs that we will see involve Garside theory. Let us now recall some 
important concepts about this theory. A group G is called a Garside group with Garside structure (G, P, Δ)
if it admits a submonoid P of positive elements such that P ∩ P−1 = {1} and a special element Δ ∈ P, 
called Garside element, satisfying the following:

• There is a partial order in G, �, defined by a � b ⇔ a−1b ∈ P such that for all a, b ∈ G there exists 
a unique gcd a ∧ b and a unique lcm a ∨ b. This order is called prefix order and it is invariant by 
left-multiplication.

• The set of simple elements [1, Δ] = {a ∈ G | 1 � a � Δ} generates G.
• Δ−1PΔ = P.
• P is atomic: If we define the set of atoms as the set of elements a ∈ P such that there is no non-trivial 

elements b, c ∈ P such that a = bc, then for every x ∈ P there is an upper bound on the number of 
atoms in the decomposition x = a1a2 · · · an, where each ai is an atom.
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In a Garside group, the monoid P also induces a partial order invariant under right-multiplication. This 
is the suffix order, �, defined by a � b ⇔ ab−1 ∈ P, such that for all a, b ∈ G there exists a unique lcm 
(a ∧� b) and a unique gcd (a ∨� b). It is well known that every Artin–Tits group of spherical type admits a 
Garside structure of finite type [4,5], which means that [1, Δ] is finite.

The atoms of an Artin–Tits group of spherical type, A, equipped with the Garside structure mentioned 
above, are the generators of the presentation given in Definition 2.

Definition 4 (Normal forms). Given two simple elements a, b, the product a ·b is said to be in left (respectively 
right) normal form if ab ∧ Δ = a (respectively ab ∧� Δ = b).

We say that Δkx1 · · ·xr is the left normal form of an element x if k ∈ Z, xi /∈ {1, Δ} is a simple element 
for i = 1, . . . , r, and xixi+1 is in left normal form for 0 < i < r. Analogously, x1 · · ·xrΔk is the right normal 
form of x if k ∈ Z, xi /∈ {1, Δ} is a simple element for i = 1, . . . , r, and xixi+1 is in right normal form for 
0 < i < r.

It is well known that the normal forms of an element are unique [5] and that the numbers r and k
are the same for both normal forms. We define the infimum, the canonical length and the supremum of x
respectively as inf(x) = k, �(x) = r and sup(x) = k + r.

Remark 5. Notice that, even though we will work with an arbitrary generator system S for a subgroup G

of A, every time we talk about normal forms we will be always using the above definition, where each 
letter xi of the normal form is simple and maybe not in S.

Definition 6 (Rigidity). Let x = Δkx1 · · ·xr be in left normal form. We define the initial and the final factor 
respectively as ι(x) = Δkx1Δ−k and ϕ(x) = xr. We will say that x is rigid if ϕ(x) · ι(x) is in left normal 
form.

3. Proportion of loxodromic actions

In this section we will give the condition to have the positive proportion of loxodromic actions for an 
Artin–Tits group of spherical type and we will apply it to some subgroups. From now on, suppose that A

is an Artin–Tits group of spherical type.

Lemma 7 (See [2]). For every atom a ∈ A, there is an element xa ∈ A which acts loxodromically on CAL

such that the left and the right normal forms of xa are the same and ι(xa) = ϕ(xa) = a.
Moreover, if g ∈ A is rigid and its normal form contains the subword wa := x390

a , then g acts loxodromi-
cally on CAL.

The previous lemma is a summary of some results proven by Calvez and Wiest. For every atom a, the 
element xa is constructed in [2, Proposition 3]. The second part of the lemma is proven in [2, Lemma 9].

Lemma 8. Let G be a subgroup of A. Suppose that there is a finite set X of elements in G such that for 
every g ∈ G there exists x ∈ X such that g · x is rigid and its normal form contains the subword wa. Let 
B(R) := BΓ(G,S)(1, R), where S is a finite generator system of G. Then there are constants ε, R0 > 0
depending on S, such that for all R > R0,

|Lox(G, CAL) ∩B(R)|
|B(R)| > ε

Proof. Define ‖x‖S = min{n | x = a1 · · · an, ai ∈ S ∪ S−1 ∀i} to be the word length of x with respect S. 
Let R0 = max{‖x‖Σ | x ∈ X} be the maximum of the canonical lengths, with respect to the generator 
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system S, of all the elements in X. By Lemma 7, g · x acts loxodromically on CAL, for some x ∈ X. Thus, 
d(g, Lox(G, CAL)) ≤ R0, for every g ∈ G. In particular for every g ∈ B(R − R0), there is a loxodromic 
element which is at distance at most R0 from g and which lies in B(R). Therefore,

|B(R−R0)| ≤ |Lox(G, CAL) ∩B(R)| · |B(R0)|,

which implies that

|Lox(G, CAL) ∩B(R)|
|B(R)| ≥ |B(R−R0)|

|B(R)| · 1
|B(R0)|

.

Now notice that, since the number of elements of a ball in a Cayley graph grows at most exponentially 
with its radius, we have that

|B(R0)| ≥ 1 + 2|S| + (2|S|)2 + · · · + (2|S|)R0 .

Following the same argument, we can see that the number of elements x such that d(1, x) = R−R0 + k

is bounded from above by |B(R−R0)| · (2|S|)k, for 1 ≤ k ≤ R0. Hence we have that

|B(R)|
|B(R−R0)|

≥ |B(R−R0)|
|B(R−R0)|

+ 2|S| + (2|S|)2 + · · · + (2|S|)R0

≥ 1 + 2|S| + (2|S|)2 + · · · + (2|S|)R0 .

Therefore, the number ε = 1
(2|S|)2(R0+1) does the job. �

3.1. Proof of Theorem 1

Theorem 1 is a summary of the following three theorems, which will be proven separately.

Theorem 9. Let (A, S) be an Artin–Tits system and let S′ be a generator system for A. Let B(R) :=
BΓ(A,S′)(1, R). Then there are constants ε, R0 > 0 depending on S′, such that for all R > R0,

|Lox(A, CAL) ∩B(R)|
|B(R)| > ε

Proof. We want to prove that Lemma 8 can be applied. We claim that for each g ∈ G we can find an x ∈ G

such that g · x is rigid and its normal form contains the subword wa. We also have to prove that the length 
of x is bounded from above, in order to guarantee the finiteness of the family X described in Lemma 8. 
The desired element x will be constructed as a product x = wz · wa · wr, where wz, wa and wr are words 
in normal form with infimum equal to zero. We also need the whole word wg · wz · wa · wr to be in normal 
form, where wg is the normal form of g. Before going into details, we describe the function of each factor 
of x. The first word wz makes sure that the product g · x is in normal form; wa is the element mentioned 
in Lemma 8; finally, wr provides the rigidity of the element gx.

We recall that by Lemma 7, ι(wa) = ϕ(wa) = a. Let b be an atom such that ϕ(wg) � b and let s be an 
atom such that s �� ι(g). Now, the aim is to write

wz = b · w′
z · a, wr = a · w′

r · Δs−1,

where the first and the last factor of the normal forms of wz, and wr are distinguished in bold. In order to 
help visualize the idea of the proof, we say that x should be such that g · x is of the form
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s ��︷︸︸︷
ι(g) · · ·

�b︷ ︸︸ ︷
ϕ(g)︸ ︷︷ ︸

wg

· b · · ·a︸ ︷︷ ︸
wz

·a · · ·a︸ ︷︷ ︸
wa

·a · · · (Δs−1)︸ ︷︷ ︸
wr

Words wz and wr with these characteristics can be constructed with less than 6 simple elements. This is 
proven in [6, Lemma 3.4] in the case of braids and in [7, Propositions 57-65] for the other Artin–Tits groups 
of spherical type. Hence, x can be constructed and its length is bounded, as we wanted to show. �

We want to prove this also for pure subgroups of Artin–Tits groups. In particular, the following theorem 
shows that the pure braid group has a positive proportion of pseudo-Anosov elements.

Theorem 10. Let G ⊆ A be the pure subgroup of an Artin–Tits group, equipped with any finite generator 
system S. Define B(R) := BΓ(G,S)(1, R). Then there are constants ε, R0 > 0 depending on S, such that for 
all R > R0,

|Lox(G, CAL) ∩B(R)|
|B(R)| > ε

Proof. We want to prove again that Lemma 8 can be applied, claiming that for each g ∈ G we can find 
an x ∈ G such that g · x is rigid and its normal form contains the subword wa. The choice of the atom a

(atoms are described in Fig. 1) depends on A: we choose specifically a = σ2 for Bn, H3, H4, F4, I2m, a = σ3
for Dn and a = σ4 for E6, E7, E8. For An we can set a equal to any atom σi, i = 1, . . . , n − 1. We also have 
to prove that the length of x is bounded from above, in order to guarantee the finiteness of the family X

described in Lemma 8. We will follow the same scheme as in Theorem 9.
We recall that by Lemma 7, ι(wa) = ϕ(wa) = a. Let b be an atom such that ϕ(wg) � b. Let p : A −→ WA

be the canonical projection of A to its Coxeter group and let s be an atom such that s �� ι(g). Then, g · x
should be of the form:

s ��︷︸︸︷
ι(g) · · ·

�b︷ ︸︸ ︷
ϕ(g)︸ ︷︷ ︸

wg

· b · · ·a︸ ︷︷ ︸
wz

·a · · ·a︸ ︷︷ ︸
wa

·a · · ·a︸ ︷︷ ︸
wp

·a · · · (Δs−1)︸ ︷︷ ︸
wr

where wp provides the pureness of g · x.
We have already seen that wz and wr can be constructed with a bounded number of letters. Then, the 

only remaining step is to construct, for any given w ∈ WA, a word in normal form wp whose first and last 
factors are equal to a and which is such that p(wp) = w. To do that, we will choose a generator system S′

for WA and find for each s′ ∈ S′ an element s̃ ∈ p−1(s′) such that the first and last factor of its normal 
form is a. Hence, with the elements of the form s̃ it is possible to construct wp with the desired properties. 
In order to construct this element s̃, let

Σi,j =
{

σiσi+1 · · ·σj if i < j

σiσi−1 · · ·σj if j < i
, Σ(2)

i,j =
{

σ2
i σ

2
i+1 · · ·σ2

j if i < j

σ2
i σ

2
i−1 · · ·σ2

j if j < i
.

We study in Table 1 each possible class for A (see Fig. 1). Some remarks about this table are given below.
In the case where A is the braid group with n + 1 strands, A = An, the associated Coxeter group is the 

symmetric group. Then, to generate an arbitrary permutation we need a (n +1)-cycle and a transposition of 
two adjacent element in that (n + 1)-cycle. We will choose as transposition (1 2), which will be represented 
in S as σ1. As (n + 1)-cycle, we will take either (1 2 . . . n + 1) or (n + 1 n . . . 1), which are represented 
respectively by σ1 · · ·σn and σn · · ·σ1. Examples of suitable preimages s̃ associated to the elements in S are 
provided in Fig. 2.
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Table 1
Every s̃ ∈ A projects to a generator s′ of the associated Coxeter group of A, WA. Then, with the words of the form s̃ we can 
construct, for every p ∈ WA, an element of A that projects to p and whose normal form has as first and last factor the atom a.

A An Bn

a σ1 σi, i = 2, . . . n − 1 σn σ2

s′ σ1 Σn,1 σi Σ1,n σn Σ1,n σ1 σ2 Σ2,n

s̃ σ1 Σ(2)
1,nΣn,1σ

2
1 σi Σ(2)

i,1Σ1,nΣ(2)
n,i σn Σ(2)

n,1Σn,1σ
2
1 σ2

2σ1σ
2
2 σ2 σ2

2Σ2,nΣ(2)
n,2

A Dn Ei, i = 6, 7, 8 H3

a σ3 σ4 σ2

s′ σ1 σ3 Σ2,n σ1 σ4 Σ2,n σ1 σ2 σ3

s̃ σ2
3σ

3
1σ

2
3 σ3 Σ(2)

3,2Σ2,nΣ(2)
n,3 σ2

4σ
3
1σ

2
4 σ4 Σ(2)

4,2Σ2,nΣ(2)
n,4 σ2

2σ1σ
2
2 σ2 σ2

2σ
3
1σ

2
2

A H4 F4 I2m

a σ2 σ2 σ2

s′ σ1 σ2 Σ2,4 σ1 σ2 σ3 σ4 σ1 σ2

s̃ σ2
2σ1σ

2
2 σ2 Σ(2)

2,4Σ4,2σ
2
2 σ2

2σ
3
1σ

2
2 σ2 σ2

2σ3σ
2
2 σ2

2σ
2
3σ4σ

2
2 σ2

2σ1σ
2
2 σ2

Fig. 2. Examples of elements s̃ of A3 that projects to a 4-cycle whose normal form have as first and last factor of the atom a. The 
dashed lines separate the factors of the normal form.

Now notice that in the case A = Bn we choose a = σ2 and take S′ = {σ1, σ2, σ2σ3 · · ·σn} because s′ = σ2

and s′ = σ2σ3 · · ·σn generate a symmetric group with n elements. Then we proceed with these generators 
as in braid groups. A similar reasoning applies also for H3, H4, Dn, E6, E7 and E8. The other elements of 
the form s̃ are computed in an explicit way.

Finally, notice that the length of wp is also bounded because the Coxeter group WA is finite by definition. 
This completes the proof. �
Theorem 11. Let A′ be the commutator subgroup of I2(2m+1), An, Dn, En or Hn equipped with a finite 
generator system S. Define B(R) := BΓ(G,S)(1, R). Then there are constants ε, R0 > 0 depending on S, 
such that for all R > R0,

|Lox(G, CAL) ∩B(R)|
|B(R)| > ε
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Proof. Let (A, Σ) be an Artin–Tits system and denote A′ the commutator subgroup of A. Consider the 
kernel K (of finite generation) of the homomorphism e : A −→ Z such that e(σi) = 1, ∀σi ∈ Σ. For all A
we have that A′ ⊆ K. However, if we set A = I2(2m+1), An, Dn, En, Hn, we have that A/A′ = Aab = Z

[8, Proposition 1]. Hence, A′ = K, i.e., A′ is equal to the subgroup of elements with exponent sum equal 
to zero. To get the explicit generators of A′, notice that an element of A′ in normal form is written as 
x = Δ−kx1 · · ·xr, where k, r ≥ 0. If e(Δ) = p, then e(x1) + · · · + e(xr) = p · k, because e(x) = 0. Thus, we 
can write

x = Δ−1a1 · Δ−1a2 · · ·Δ−1ak, e(ai) = p, ai ∈ P, ∀i = 1, . . . , k.

This means that we can choose S = {Δ−1a | a ∈ P, e(a) = p}, which is finite.
Define wg to be the normal form of an element g ∈ A′ and let a be any atom such that ϕ(wg) � a. We 

claim that for each g ∈ A′ we can find an x ∈ A′ such that g · x is rigid and its normal form contains the 
subword wa. We will follow the same scheme as in Theorems 9 and 10, taking into consideration that Δ2h

is central for every h ∈ Z. Then, g · x has to be of the form

Δ−2h ·
s ��︷︸︸︷
ι(g) · · ·

�a︷ ︸︸ ︷
ϕ(g)︸ ︷︷ ︸

wg

·a · · ·a︸ ︷︷ ︸
wa

·a · · ·a︸ ︷︷ ︸
wc

·a · · · (Δs−1)︸ ︷︷ ︸
wr

Let d = −e(wg ·wa ·wr) and recall that e(Δ) = p. If we find a word wc and h ∈ Z such that e(Δ−2hwc) = d, 
for some h ∈ Z, and such that ι(wc) = ϕ(wc) = a, then we can define

x = Δ−2h · wa · wc · wr.

Hence, the normal form of g · x would be Δ−2h ·wg ·wa ·wc ·wr, which would be rigid and contains wa, as 
we want. If d ≥ 0, then h = 0 and wc = ad does the job. Otherwise, we choose h = d and wc = ad(1+2p). 
Finally, notice that h and the length of wc depends on d, which depends on the length of wa and wr. But we 
already know that wa and wr are bounded as in Theorem 10. Thus, x is bounded and Lemma 8 applies. �
Remark 12. In this article, we only look at the commutator subgroups of I2(2m+1), An, Dn, En and Hn

because these are the only cases where the commutator subgroup is well-understood and finitely generated 
[9].

Notice that I ′2(2m) is infinitely generated. On the other hand, B′
3 and F ′

4 are finitely generated, but the 
question of their finite presentation is still open. Bn (n > 3) is finitely generated and finitely presented 
but does not fit in the scheme of the proof above. In fact, for A = I2(2m), Bn, F4 we have A/A′ = Z

2 [8, 
Proposition 1]. However, we conjecture that these groups have also a positive proportion of loxodromically 
acting elements.

Note. While putting the finishing touches on this paper, we learned about the existence of a work of W.Y. 
Yang which proves a more general result. Yang proved [10, Proposition 2.21] that every group finitely 
generated acting properly on a geodesic metric space with at least one contracting element has a positive 
proportion of contracting elements. As explained in his paper, this implies the positive proportion of lox-
odromic elements in groups acting in hyperbolic spaces, that have at least one WPD-loxodromic element, 
which is our case [2, Theorem 2].

The proofs and techniques explained in this paper, which mainly use Garside theory, have been done 
independently and simultaneously with Yang’s article.
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