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Fig. 1. Connected Coxeter graphs of spherical type with a specific enumeration of the vertices.

1. Introduction

Let S be a finite set. A Coxeter matrix over S is a symmetric square matrix M =
(ms,t)s,t∈S indexed by the elements of S, such that ms,s = 1, and ms,t ∈ {2, 3, 4, . . . , ∞}
for all s, t ∈ S, s �= t. Such a Coxeter matrix is usually represented by its Coxeter graph, 
denoted by Γ = ΓS = Γ(M). This is a labeled graph whose set of vertices is S, in which 
two distinct vertices s and t are connected by an edge if ms,t � 3; if in addition ms,t � 4, 
the corresponding edge wears the label ms,t.

The Artin-Tits system of Γ is the pair (A, S), where A = AΓ is the group

AΓ =
〈
S

∣∣∣Π(s, t;ms,t) = Π(t, s;ms, t) for all s, t ∈ S, s �= t, ms,t �= ∞
〉
,

where, for m � 2,

Π(a, b;m) =
{

(ab)k if m = 2k,
(ab)ka if m = 2k + 1.

The group AΓ is called the Artin-Tits group of Γ; sometimes we shall also use the notation 
AS to refer to this group. If we add to the presentation of AΓ the relations s2 = 1, for 
every s ∈ S, we obtain the Coxeter group associated to AΓ. When this group is finite we 
say that AΓ has spherical type. By extension, we say that Γ is of spherical type if AΓ has 
spherical type. AΓ is called irreducible if the graph Γ is connected and reducible otherwise. 
Notice that if Γ1, · · · , Γr are the connected components of Γ, then AΓ = AΓ1 ×· · ·×AΓr

. 
We recall Coxeter’s classification [5] of connected Coxeter graphs of spherical type (hence 
of irreducible Artin-Tits groups of spherical type) in Fig. 1. The name of the graph will 
be used to refer to the corresponding Artin-Tits group; for instance the Artin-Tits group 
of type E7 is the Artin-Tits group of the graph E7.

Let X be a subset of S. The standard parabolic subgroup associated to X is the 
subgroup of AΓ generated by X and denoted by AX . Consider the subgraph ΓX of 
Γ = ΓS generated by X (the set of vertices is X and the edges are exactly the edges 
of ΓS which connect two vertices in X). It is known [13] that (AX , X) is the Artin-Tits 
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system of ΓX . A parabolic subgroup is a subgroup P conjugate to some standard parabolic 
subgroup AX . Note that P and AX are isomorphic; if AX is irreducible of spherical type, 
the type of P is the name of the graph ΓX in Fig. 1.

The flagship example of an Artin-Tits group of spherical type is the braid group on n
strands Bn (n � 2) [2]. It is associated to the Coxeter graph An−1 depicted in Fig. 1; the 
corresponding Coxeter group is the symmetric group Sn. We recall that each generator 
si is the crossing of the strands in the positions i and i +1. Let m and n be two positive 
integers such that 2 � m � n. Considering only the m − 1 first vertices of the graph 
An−1 furnishes a fundamental example of a standard (irreducible) parabolic subgroup: 
the braid group Bm embedded in Bn by adding n −m straight strands to any m-strand 
braid.

It was shown in [11] that the above embedding Bm ↪→ Bn (for 2 � m < n) does not 
merge conjugacy classes, i.e. if two m-strand braids are conjugate in the n-strand braid 
group, they must already be conjugate as m-strand braids.

Motivated by the latter result, Ivan Marin asked some years ago whether standard
parabolic subgroups of irreducible Artin-Tits groups of spherical type are conjugacy sta-
ble. A (non-trivial) proper subgroup H of a group G is said to be conjugacy stable if any 
two elements of H which are conjugated in G must be conjugated through an element 
of H; this is equivalent to saying that the conjugacy classes of H do not merge in G. It 
is an easy exercise to check that conjugacy stability is preserved under subgroup conju-
gation; therefore Marin’s question actually covers all parabolic subgroups of irreducible 
Artin-Tits groups of spherical type.

Suppose now that AS is a reducible Artin-Tits group of spherical type, expressed 
as the direct product AS = AS1 × . . . × ASr

, where r > 1 and each ASi
is non-trivial 

and irreducible. For a subset X � S, we can consider Xi = X ∩ Si (i = 1, . . . , r) and 
decompose AX as a direct product of parabolic subgroups AX = AX1 × . . .×AXr

–notice 
that AXi

might be trivial (when Xi is empty) or reducible. Since elements in distinct 
components of AS commute pairwise, AX is conjugacy stable in AS if and only if AXi

is conjugacy stable in ASi
for all i.

In view of the above remarks, the following, which is our main result, allows to de-
cide the conjugacy stability of any given parabolic subgroup of any Artin-Tits group of 
spherical type:

Theorem 1. Let AΓ = AS be an irreducible Artin-Tits group of spherical type and let 
∅ �= X � S.

(1) If AX is irreducible, AX is conjugacy stable in AS except in the following cases:
(a) AS is of type E6, E7 or E8 and AX is of type D,
(b) AS is of type E8 and AX is of type E7,
(c) AS is of type D and AX is of type D2k,
(d) AS is of type H4 and AX is of type H3.

(2) If AX is reducible, AX is not conjugacy stable in AS except in the following cases:
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(a) AS is of type Bn (n � 3) and AX = A{s1} ×AZ , with Z ⊂ {s3, . . . , sn} and AZ

irreducible.
(b) AS is of type F4.

González-Meneses’ proof in the specific case of braids relies heavily on the iden-
tification between braids and mapping classes of punctured disks: Birman-Lubotzky-
McCarthy’s Canonical Reduction Systems of mapping classes play a fundamental role. 
Although more combinatorial in spirit, our approach was inspired by González-Meneses’: 
instead of the Canonical Reduction System, we use the parabolic closure of elements of 
Artin-Tits groups of spherical type introduced recently in [7]; see Theorem 7.

The first main tool we will use are ribbons. These objects are highly useful when 
conjugating parabolic subgroups and we introduce them in Section 2. The other main 
result consists in making depend conjugacy stability of standard parabolic subgroups on 
a special property that we will call Property �. This property and its implications will 
be explained in Section 3. Finally, in Section 4 we finish the proof of Theorem 1.

2. Garside elements and ribbons

Given a group G and g, x ∈ G, we denote by xg = g−1xg the conjugate of x by g; this 
defines a right-action of G on itself. In the same way, for g ∈ G and a subset H of G, we 
denote by Hg the set of g-conjugates of elements of H.

For the remainder of the present section, we fix an irreducible Artin-Tits group of 
spherical type AS . The monoid A+

S consisting of positive elements (which can be written 
as words on S with only positive exponents) is a Garside monoid (see [4,8]): this involves, 
among other things, a fundamental or Garside element which we denote by ΔS (for 
X ⊂ S, the Garside element of AX will be denoted by ΔX).

Example. In the braid group on n +1 strands (Artin-Tits group of type An), the Garside 
element is s1(s2s1)(s3s2s1) · · · (snsn−1 · · · s1); it can be seen as a half-twist of the trivial 
braid on n + 1 strands.

Although the paper builds on previous works which use in a crucial way the Garside 
structure of AS , our arguments do not directly involve this structure so we only record 
some useful properties of the Garside element ΔS .

It is known that conjugation by ΔS is an involution and that SΔS = S. Moreover, ΔS

is central if AS is of type A1, Bn, Dn (n even), E7, E8, F4, H3, H4 or I2m (m even) [4,9]. 
Table 1 synthesizes the conjugacy action by ΔS in the other irreducible cases. In each 
of the cases considered in Table 1, we call flip automorphism the inner automorphism 
s 	→ sΔS of AS . For more information about the specific construction of ΔS , see [4].

We are now able to define ribbons. Note that the following definition is slightly dif-
ferent from the original definition of ribbon from [10] based upon [12].
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Table 1
Conjugation by the special Garside element ΔS .

AS An (n � 2) Dn (n odd) E6 I2m (m odd)

sΔS
i sn−i+1, 1 � i � n

⎧⎪⎨
⎪⎩
s2 i = 1
s1 i = 2
si 3 � i � n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

s6 i = 1
s2 i = 2
s5 i = 3
s4 i = 4
s3 i = 5
s1 i = 6

s(i+1) mod 2

Definition 2. [7, Definition 4.1] Let AS be an Artin–Tits group of spherical type. Given 
X ⊆ S and t ∈ S, we define the positive element

r(t,X) = Δ−1
X ΔX∪{t}

and we call it a ribbon. If moreover t is adjacent to X in the Coxeter graph ΓS, we say 
that r(t, X) is an adjacent ribbon.

Remark 3. Notice that r(t, X) conjugates X to some subset X ′ of X ∪ {t} and X ′ =
XΔX∪{t} .

The forthcoming proofs use a weak version of a result from [1] and [7]. The support
of a positive element g of AS is defined as

Supp(g) = {s ∈ S, s appears in any positive word on S representing g}.

Lemma 4 ([7, Corollary 6.5]; [1, Lemma 21]). Let g, h be positive elements of an Artin–
Tits group AS of spherical type such that Supp(g) = Y � S and Supp(h) = Z � S. If g
and h are conjugate in AS, then Y and Z are also conjugate. Moreover, there are subsets 
Y = Y0, . . . , Yn = Z of S and adjacent ribbons r(ti, Yi−1) (i = 1, . . . , n) conjugating Yi−1
to Yi.

3. The Property �

In this section we introduce our Property � and we show its sufficiency for conjugacy 
stability, in the spherical case. In a second step, we show that Property � holds in several 
cases.

Definition 5. Let (AS , S) be an Artin-Tits system (of spherical type) and let ∅ �= X � S

We say that (AX , AS) satisfies Property � if for all Y1, Y2 ⊂ X, and g ∈ AS such that 
Y1

g = Y2, there exists h ∈ AX such that sh = sg for all s ∈ Y1.

Proposition 6. Let (AS, S) be an Artin-Tits system of spherical type and let ∅ �= X � S. 
If (AX , AS) has Property �, then AX is conjugacy stable in AS.
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Before proceeding to the proof, we recall the important and recently defined notion 
of parabolic closure of elements of Artin-Tits groups of spherical type:

Theorem 7 ([7, Section 7, Lemma 8.1]). Let (AS, S) be an Artin-Tits system of spherical 
type. For each a ∈ AS, there is a unique minimal (with respect to inclusion) parabolic 
subgroup Pa of AS which contains a; we call this subgroup the parabolic closure of a. 
Furthermore, for g ∈ AS, we have Pa

g = Pag .

Proof of Proposition 6. Let a, b ∈ AX and c ∈ AS satisfying ac = b. According to 
Theorem 7, we have that Pa

c = Pac = Pb. According to [6, Theorem 3], both subgroups 
Pa and Pb of AX can be standardized inside AX : i.e. there exist α, β ∈ AX and subsets 
Ya, Yb of X such that Pa

α = AYa
and Pb

β = AYb
. Notice that Aα−1cβ

Ya
= AYb

.
By [10, Proposition 2.1.(3)] we can find u ∈ AS with Ya

u = Yb and v ∈ AYb
, such 

that α−1cβ = uv. By Property �, we can find u′ ∈ AX such that su′ = su for every 
s ∈ Ya. It follows that su′v = suv = sα

−1cβ for all s ∈ Ya; therefore for any element 
z ∈ AYa

, we have zu
′v = zα

−1cβ . Applying this to the particular element aα ∈ AYa
, 

we obtain aαu
′v = aαα

−1cβ = acβ = bβ . It follows that b = aαu
′vβ−1 , and we note that 

αu′vβ−1 ∈ AX . �
Remark 8. Given an Artin-Tits system (AS , S) of spherical type, Property � for the pair 
(AX , AS) implies that the automorphisms of AX induced by conjugation by an element in 
the normalizer NAS

(AX) are inner automorphisms of AX . Indeed, we know [10, Theorem 
0.1] that NAS

(AX) = AX · QZAS
(AX) (where QZAS

(AX) = {g ∈ AS , Xg = X}); 
Property � then says that for g ∈ QZAS

(AX), we can find h ∈ AX such that xg = xh

for all x ∈ AX and the claim follows.

Now, we will see that Property � holds in some cases.

Lemma 9. Let AX be an Artin–Tits group of type An, E6 or I2·m, m odd, and let ΓX

be its defining Coxeter graph. Let Y1, Y2 ⊂ X, let ΓY1 , ΓY2 be the respective induced 
subgraphs of ΓX and let ψ : ΓY1 −→ ΓY2 be an isomorphism of labeled graphs. Then 
there exists v ∈ AX such that ψ(y) = yv, for all y ∈ Y1.

Proof. Suppose first that AX is of type I2·m. Write s̄i = s(i+1) mod 2, for i = 1, 2. Then 
ψ(y) = y for all y ∈ Y1, or ψ(y) = ȳ for all y ∈ Y1. It then suffices to take v to be the 
identity or ΔX , accordingly.

Suppose that AX is of type An. The graph ΓY1 is a disjoint union of path graphs 
(possibly with a single vertex) and the graph isomorphism ψ: ΓY1 −→ ΓY2 can be realized 
conjugating first by a product of ribbons (as in the example of Fig. 2) and then by a 
product of the Garside elements of some irreducible components of AY2 .

Now suppose that AX is of type E6. It can be checked that in this case, two standard 
parabolic subgroups ΓY1 and ΓY2 are isomorphic if and only if Y1 and Y2 are conjugate; 
therefore under our hypothesis Y1 and Y2 must be conjugate in AX .
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Fig. 2. In the braid group B12, a braid made of ribbons conjugating Y1 = {s1, s2} ∪ {s6} ∪ {s9, s10, s11} to 
Y2 = {s2, s3, s4} ∪ {s8} ∪ {s10, s11}.

Table 2
The conjugacy classes of subsets of X with no representative lying in {s1, s3, s4, s5, s6}.

Y1 Type of Y1 Automorphism of ΓY1 v

{s1, s2, s4, s6} A1 × A1 × A2
flip on A2-component
transposition of the A1-components

Δ{s2,s4}
ΔX

{s1, s2, s3, s5, s6} A1 × A2 × A2

flip on the first A2-component
flip on the second A2-component
transposition of the A2-components

Δ{s1,s3}
Δ{s5,s6}
ΔX

{s2, s3, s4, s5} D4
transposition of the leaves s3, s5 of ΓY1

transposition of the leaves s2, s5 of ΓY1

ΔX

Δ{s1,s2,s3,s4,s5}

{s1, s2, s4, s5, s6} A1 × A4 flip on the A4-component Δ{s2,s4,s5,s6}

X E6 flip of the whole ΓX ΔX

If Y1 or Y2 is a subset of {s1, s3, s4, s5, s6}, we are back to the previous case, as 
A{s1,s3,s4,s5,s6} is a braid group on 6 strands. In Table 2, we list the conjugacy classes of 
subsets of X with no representative in {s1, s3, s4, s5, s6}. In each case, we see that every 
possible graph automorphism of ΓY1 (the table considers generators of the automorphism 
group of ΓY1) is induced by conjugation by some v ∈ AX , given explicitly in the last 
column. �
Remark 10. Although this will not be used in the sequel, we note that the statement of 
Lemma 9 holds as well for AX of type E8.

It also is easily seen that the statement of Lemma 9 is not true if AX is of type B or 
D. If AX is of type B, it suffices to consider Y1 = Y2 = {s1, s2} and the automorphism ψ

of ΓY1 which permutes its two vertices; it can be checked that s1 and s2 are not conjugate 
in AX (see Lemma 13), so ψ fails to be induced by an inner automorphism of AX . If AX

has type D, choosing Y1 = {s1, s2} and Y2 = {s1, s4}, we’ve just seen in the above proof 
that the graph isomorphism ΓY1 −→ ΓY2 given by s1 	→ s1 and s2 	→ s4 is not induced 
by any inner automorphism of AX .
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Proposition 11. Let AS be any Artin–Tits group, let ∅ �= X � S such that AX is of type 
An, E6 or I2·m, m odd. Then (AX , AS) has Property �.

Proof. Let Y1, Y2 ⊂ X and w ∈ AS such that Y w
1 = Y2; in particular, conjugation by w

induces an isomorphism between the labeled graphs ΓY1 and ΓY2 and it follows from 
Lemma 9 that we can find v ∈ AX so that yv = yw, for all y ∈ Y1. �
Proposition 12. Let AS be an irreducible Artin–Tits group of spherical type and let ΓS

be its defining Coxeter graph. Let ∅ �= X � S. Assume that:

• AX is of type Bn, or
• AX is of type Dn (n odd) and AS is of type Dm (m > n).

Then (AX , AS) satisfies Property �.

Proof. Whenever Z ⊂ S, we write ΓZ for the subgraph of ΓS induced by Z. We fix 
once and for all Y1, Y2 ⊂ X and w ∈ AS such that Y w

1 = Y2. Suppose first that AX

is of type Bn; observe that AS must be of type F4 or Bm (m > n) and that the first 
possibility might occur only if n � 3. We give a detailed proof assuming that AS is of 
type Bm; the case AS of type F4 can be dealt with in a similar fashion and is left as an 
exercise for the reader.

Given any subset Z ⊂ S, we denote by Z ′ the set of vertices of the connected compo-
nent of ΓZ containing s1 and we set Z ′ = ∅ if s1 /∈ Z; we also denote Z ′′ = Z \Z ′. Notice 
that the conjugation by w induces an isomorphism between the Coxeter graphs ΓY1

and ΓY2 . Then Y ′
1 = Y ′

2 with yw = y for all y ∈ Y ′
1 (due to the defining relations of AS) 

and the graphs ΓY ′′
1

and ΓY ′′
2

have to be isomorphic. If Y ′′
1 is empty, we can replace w

by the trivial element of AX and we are done. Otherwise observe that Y ′′
1 and Y ′′

2 are 
subsets of {s2, . . . , sn}, which generates a braid group on n strands. By applying Propo-
sition 11, we can find w′ ∈ A{s2,...,sn} ⊂ AX performing the same conjugation as w on Y1
(if Y ′

1 �= ∅, we can choose w′ ∈ A{s3,...,sn} commuting with Y ′
1).

Suppose now that AX is of type Dn (n odd) and that AS is of type Dm (m > n). 
Recall (Table 1) that conjugation by ΔX leaves invariant s3, . . . , sn and permutes s1
and s2. If each of the chosen subsets Y1 and Y2 contains at most one of s1, s2, up to 
replacing one of Yi (i = 1, 2) by Y ΔX

i , we may assume that both Y1, Y2 are subsets of 
{s1, s3, . . . , sn}; the latter set defines a braid group of type An−1 and Proposition 11
allows us to conclude.

Suppose that Y1 contains both s1 and s2. Then Y2 has to contain also both s1 and s2. 
To see this, observe that the only ribbon adjacent to {s1, s2} is s3s1s2s3 which con-
jugates s1 to s2 and s2 to s1 and apply Lemma 4: it follows that s1 and s2 can be 
simultaneously conjugated in AS to letters in S only if they are fixed or permuted with 
each other. As for type B, denoting by Y ′

i (i = 1, 2) the set of vertices of the (union of 
the) connected component(s) of ΓYi

containing s1 and s2, we obtain Y ′
1 = Y ′

2 . We also 
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see that the Y ′′
i = Yi \ Y ′

i define isomorphic subgroups of the braid group A{s4,...,sn}, 
and we conclude as in type B case using Proposition 11 again. �
4. Proof of Theorem 1

4.1. Irreducible case

Let AS be an irreducible Artin-Tits group of spherical type and let ΓS be its defining 
Coxeter graph. Vertices of ΓS are numbered s1, . . . s#S , according to Fig. 1. Let ∅ �=
X � S such that AX is irreducible. First, we observe that, as AX is a proper subgroup 
of AS , it cannot be of type E8, F4, H4 or I2m, m > 5.

Suppose that the pair (AX , AS) does not satisfy any of the conditions (a) to (d) of 
Theorem 1(1). The group AX cannot be either of type E7, D2k or H3; otherwise (AX , AS)
would satisfy either (b), (c) or (d). Finally, AX can be of type D5 (D7, respectively) only 
if AS is of type Dn, n � 6, (n � 8, respectively); otherwise (AX , AS) would satisfy (a). 
Then Proposition 6, Proposition 11 and Proposition 12 show that AX is conjugacy stable 
in AS , as desired.

Therefore, to prove the first part of Theorem 1, one has to prove that AX is not 
conjugacy stable in AS whenever (AX , AS) satisfies one of the conditions (a) to (d). 
Lemma 4 will be the main tool to provide counterexamples. In each case (a) to (d), we 
shall exhibit two elements of AX which are conjugate in AS but not in AX .

Let ΓX be the defining Coxeter graph of AX and number the elements of X
x1, . . . , x#X , according to Fig. 1. Notice that there might be different ways to embed ΓX

as an induced subgraph of ΓS ; following our notation, this is to say that a given xi may 
be equal to distinct sj ’s, depending on the chosen embedding of ΓX in ΓS .

(a) Suppose that AX is of type D5 and AS is of type E6, E7 or E8. There are 4 different 
embeddings ι : ΓX ↪→ ΓS , namely:

ι1 : x1 = s2, x2 = s3, x3 = s4, x4 = s5, x5 = s6,

ι2 : x1 = s3, x2 = s2, x3 = s4, x4 = s5, x5 = s6,

ι3 : x1 = s5, x2 = s2, x3 = s4, x4 = s3, x5 = s1,

ι4 : x1 = s2 x2 = s5, x3 = s4, x4 = s3, x5 = s1.

However to pass from one to another it suffices to pre- or post-compose by graph 
automorphisms which are induced by conjugation by ΔX or Δ{s1,s2,s3,s4,s5,s6} re-
spectively. Therefore it is enough to give a pair of non-conjugate elements of AX

whose images under ι1 are conjugate elements of AS.
Take g = ι1(x1x3x2) = s2s4s3 and h = ι1(x4x3x2) = s5s4s3. The following product 
of ribbons (each arrow indicates the conjugation by its label) conjugates g to h in 
AS :
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Y = {s2, s3, s4} Y2 = {s1, s3, s4} Z = {s3, s4, s5}
r(s1, Y ) r(s5, Y2)

However, the only vertex in ΓX which is adjacent to {x1, x3, x2} is x4 and we ob-
serve that r(x4, {x1, x3, x2}) = x4x3x1x2x3x4 normalizes A{x1,x3,x2}. Therefore, by 
Lemma 4, x1x3x2 and x4x3x2 cannot be conjugate in AX .

(b) Suppose that AX is of type D7 and AS is of type E8. There is only one induced 
subgraph of type D7 in ΓS and two ways of embedding it:

ι1 : x1 = s2, x2 = s3, x3 = s4, x4 = s5, x5 = s6, x6 = s7, x7 = s8,

ι2 : x1 = s3, x2 = s2, x3 = s4, x4 = s5, x5 = s6, x6 = s7, x7 = s8,

which differ by precomposing by the graph automorphism of ΓX induced by conju-
gation by ΔX .
Take g = ι1(x1x3x2) = s2s4s3 and h = ι1(x4x3x2) = s5s4s3. We conclude exactly 
in the same way as in (a): g and h are conjugate in AS but the only vertex t of ΓX

which is adjacent to {x1, x3, x2} produces an adjacent ribbon r(t, {x1, x3, x2}) which 
normalizes A{x1,x3,x2}. Therefore by Lemma 4, x1x3x2 and x4x3x2 are not conjugate 
in AX .

(c) Suppose that AX is of type E7 and AS is of type E8. We must have xi = si for 
all 1 � i � 7. Take g = s1s3s4s5s6 and h = s2s4s5s6s7. The following product of 
ribbons conjugates g to h in AS :

Y = {s1, s3, s4, s5, s6}

Y2 = {s3, s4, s5, s6, s7} Y3 = {s4, s5, s6, s7, s8}

Z = {s2, s4, s5, s6, s7}

r(s7, Y )
r(s8, Y2)

r(s2, Y3)

However, a conjugation in AX by a sequence of adjacent ribbons never takes 
{x1, x3, x4, x5, x6} to {x2, x4, x5, x6, x7}, as shows the following picture:

Y = {x1, x3, x4, x5, x6} Y2 = {x3, x4, x5, x6, x7}

r(x7, Y )

r(x1, Y2)

r(x2, Y2)r(x2, Y )

Hence, by Lemma 4, x1x3x4x5x6 and x2x4x5x6x7 are not conjugates in AX .
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(d) Suppose that AX is of type D2k. There exists X � X ′ ⊆ S so that AX′ is of type 
D2k+1 so we can assume that AS is of type D2k+1. We have two possible embeddings

ι1 : x1 = s1, x2 = s2, xi = si for 3 � i � 2k,

ι2 : x1 = s2, x2 = s1, xi = si for 3 � i � 2k

which differ by post-composing by the graph automorphism of ΓS induced by con-
jugation by ΔS . Let Y = {s1, s3, . . . , s2k} and Z = {s2, s3, . . . , s2k}.
The product of adjacent ribbons r1 = r(s2k+1, Y ) and r(s2, Y r1) conjugates Y to Z
in AS ; it also conjugates the element s1s3 · · · s2k = ι1(x1x3 · · ·x2k) to s2s3 · · · s2k =
ι1(x2x3 . . . x2k). However, due to Lemma 4, the two elements x1x3 · · ·x2k and 
x2x3 . . . x2k cannot be conjugate inside the parabolic subgroup AX because the only 
possible adjacent ribbon – r(x2, {x1, x3, . . . , x2k}) – normalizes A{x1,x3,...,x2k}.

(e) Suppose that AX is of type H3 and AS is of type H4. There is only one possible 
embedding and for 1 � i � 3, we have xi = si. We are going to prove that s1s3s3 and 
s3s1s1 are conjugate in AS but not in AX . One can easily verify that conjugation by

r(s4, {s1, s3}) · r(s2, {s1, s4}) · Δ{s2,s3,s4} · r(s1, {s2, s4}) · r(s3, {s1, s4})

permutes s1 and s3 and hence conjugates s1s3s3 to s3s1s1.
However, Lemma 4 shows that x1x3x3 and x3x1x1 are not conjugate in AX because 
the adjacent ribbon r(x2, {x1, x3}) commutes with x1 and x3.

This finishes the proof of the first part of Theorem 1.

4.2. Reducible case

Let AS be an irreducible Artin-Tits group of spherical type and let ∅ �= X � S such 
that AX is reducible. Let ΓX be the subgraph of ΓS induced by X. We first make a 
preliminary observation.

Lemma 13. Let (AS , S) be any Artin-Tits system; let ΓS be the defining Coxeter graph. 
Two letters s, t ∈ S are conjugate in AS if and only if the vertices s and t of the Coxeter 
graph ΓS can be connected in ΓS by a path following only edges with odd labels (or no 
label).

Proof. Suppose that s, s′ are connected by an edge with odd label m or no label, in which 
case we set m = 3. We have Π(s, s′; m −1)s = s′Π(s, s′; m −1) and s, s′ are conjugate. An 
immediate induction shows that s, s′ are conjugate in AS whenever they are connected in 
ΓS by a path following only edges with odd labels (or no label). Assume on the contrary 
that no path with this property connects s and s′ in ΓS . It follows from [3, Chap. IV, 
§1, no.3, Proposition 3] that the respective images of s and s′ in the Coxeter group 
AS/〈〈s2, s ∈ S〉〉 are not conjugate; therefore s and s′ cannot be conjugate either. �
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The previous result implies that if ΓX has two connected components that can be 
connected through a path following only edges with odd labels (or no label) in ΓS, then 
AX cannot be conjugacy stable in AS. The only cases that do not satisfy this condition 
are the cases (a) and (b) of Theorem 1(2). Therefore, to finish the proof of our theorem 
we just need to show that in these cases AX is conjugacy stable in AS .

In both cases, we have AX = AX1 ×AX2 , where AX1 is cyclic generated by a letter of 
S which is conjugate to no other letter of X and AX2 is a braid group. By Proposition 11, 
the pair (AX , AS) has Property � and by Proposition 6, AX is conjugacy stable in AS . 
This completes the proof of Theorem 1.

Remark 14. A posteriori, one sees that, when AS is an Artin-Tits group of spherical 
type and ∅ �= X ⊂ S, AX is conjugacy stable in AS if and only if (AX , AS) satisfies 
Property �.
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