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A positive proportion of elements of mapping class
groups is pseudo-Anosov

Maŕıa Cumplido and Bert Wiest

Abstract

In the Cayley graph of the mapping class group of a closed surface, with respect to any generating
set, we look at a ball of large radius centered on the identity vertex, and at the proportion among
the vertices in this ball representing pseudo-Anosov elements. A well-known conjecture states
that this proportion should tend to one as the radius tends to infinity. We prove that it stays
bounded away from zero. We also prove similar results for a large class of subgroups of the
mapping class group.

1. Pseudo-Anosovs in mapping class groups

Let G be the mapping class group of a closed surface Σ (with genus(Σ) � 2), equipped with any
finite generating set S. It is a widely held belief that ‘most’ elements of G are pseudo-Anosov.
In order to make this statement precise, we have to specify a way picking a ‘random element’
of G.

There are at least two standard methods for doing so, both involving the Cayley graph Γ of
G with respect to S. The first method is to perform a random walk in the Cayley graph Γ of G,
starting at the identity vertex. In this framework, the belief is that the probability of obtaining
a pseudo-Anosov element tends (exponentially quickly) to 1 as the length of the random walk
tends to infinity. This belief has been proven to be correct, and it has been generalised far
beyond the realm of mapping class groups, in [8, 10, 11].

For the second method, consider the ball BΓ(1, R) in Γ of radius R and centered on the
identity vertex 1. The belief now is that the proportion of pseudo-Anosov elements among the
vertices in this ball tends to 1 as the radius tends to infinity:

lim
R→∞

|pseudo-Anosov elements of G ∩ BΓ(1, R)|
|BΓ(1, R)| = 1.

This statement remains a conjecture despite some progress in [4]. Our main result is

Corollary 1.

lim inf
R→∞

|pseudo-Anosov elements of G ∩ BΓ(1, R)|
|BΓ(1, R)| > 0.

Our proof is actually very easy, and it uses only well-known ingredients — notably, a classical
theorem of Albert Fathi [7], and the acylindrical hyperbolicity of the mapping class group
action on the curve complex [3]. Therefore it seems likely that Corollary 1, and our proof, is
well known to some experts. However, we have not been able to locate it in the literature, and
believe it deserves to be written down.
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We will deduce Corollary 1 from the following, which is our main technical result:

Theorem 2 (Positive density of pseudo-Anosovs). There exists a finite subset F of G such
that for any element g of G, at least one of the mapping classes in {f ◦ g | f ∈ F} is pseudo-
Anosov.

The proofs of Corollary 1 and Theorem 2 will be given in Section 2. In Section 3 we will
show that analogue results also hold in a large class of subgroups of mapping class groups,
notably in finite index subgroups of G, and in the Torelli group.

2. Proofs

Proof of Theorem 2. In what follows, by a curve we always mean an isotopy class of simple
closed curves. We start by recalling the result from [7]:

Theorem 3 (Fathi). If g ∈ G and if c is a simple closed curve on Σ such that the curves
{gn(c) | n ∈ Z} together fill Σ, then T k

c ◦ g is always pseudo-Anosov, except for at most seven
consecutive values of k (where Tc denotes the Dehn twist along the curve c). In particular,
either g or T 7

c ◦ g (or both) are pseudo-Anosov.

Lemma 4. There are two curves a, b in Σ such that for all but finitely many elements g of
G, either a and g(a) together fill Σ, or b and g(b) together fill Σ (or both).

Proof of Lemma 4. Recall that two curves together fill Σ if and only if, in the curve complex
CC(Σ), they are at distance at least 3.

Next we recall a fundamental result due to Bowditch [3]: the mapping class group G acts
acylindrically on the curve complex, that is, for any r � 0, there exist R(r), N(r) � 0 so that
for any two vertices a, b of the curve complex with dCC(a, b) > R(r) there are at most N(r)
distinct elements g of G such that dCC(a, g(a)) < r and dCC(b, g(b)) < r.

We will apply this result in the case r = 3. We simply choose arbitrarily two curves a and
b in Σ, the only restriction being that dCC(a, b) > R(3). Bowditch’s result says that for all
but finitely many (at most N(3)) elements g of G, the action of g on the curve complex
displaces least one of the two vertices, a or b, by at least 3. This completes the proof of
Lemma 4. �

Now we define F ′ = {1G ∪ T 7
a ∪ T 7

b }. Fathi’s theorem and Lemma 4 together imply the
following: for every element g of G, apart from the finitely many exceptional ones, at least
one of the mapping classes in {f ◦ g | f ∈ F ′} is pseudo-Anosov.

Now we have to deal with the finitely many exceptional elements of G, say {g1, . . . , gN}, where
N � N(3). For each gi, we choose one fi ∈ G such that fi ◦ gi is not an exceptional element.
Then for every i, at least one of the mapping classes in {f ◦ fi ◦ gi | f ∈ F ′} is pseudo-Anosov.
Thus we have completed the proof of Theorem 2, with

F =
{
1, T 7

a , T
7
b

} ⋃
i=1,...,N

{
fi, T 7

a ◦ fi, T 7
b ◦ fi

}
.

Proof of Corollary 1. Let R′ = max {dΓ(1, f) | f ∈ F} + 1. Theorem 2 tells us that the
union of all the balls of radius R′ centered on the pseudo-Anosov vertices of Γ is the whole
Cayley graph Γ.

Now for R > R′, the centers of the balls of radius R′ covering BΓ(1, R−R′) have to lie
in BΓ(1, R). Thus the union of the balls of radius R′ around the pseudo-Anosov vertices of
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392 MARÍA CUMPLIDO AND BERT WIEST

BΓ(1, R) contains BΓ(1, R−R′). We obtain

|BΓ(1, R′)| · |pseudo-Anosov elements of G ∩ BΓ(1, R)| � |BΓ(1, R−R′)|
and hence

|pseudo-Anosov elements of G ∩ BΓ(1, R)|
|BΓ(1, R)| � |BΓ(1, R−R′)|

|BΓ(1, R)| · 1
|BΓ(1, R′)| .

Both factors can be bounded below independently of R. Indeed, since all vertices of Γ are of
valence at most 2|S|, we have the very rough estimate

� 1
2|S| + (2|S|)2 + · · · + (2|S|)R′ ·

1
1 + 2|S| + (2|S|)2 + · · · + (2|S|)R′ � 1

(2|S|)2(R′+1)
.

Thus the lim inf studied in Corollary 1 is at least (2 |S|)−2(R′+1). �

Remark 1. After a first version of this paper appeared as a preprint, Mladen Bestvina
kindly pointed out to us that there is a completely different proof of Theorem 2. This proof
has the virtue of also applying to other contexts, notably to proving that fully irreducible
elements have positive density in Out(Fn). The key is the existence [2] of homogeneous quasi-
morphisms ϕ : G → R which are unbounded, but so that |ϕ| is uniformly bounded by some
constant C on all reducible and periodic elements. Now simply fix such a quasi-morphism ϕ,
and some element f of G with ϕ(f) > C + Δ and ϕ(f−1) < −C − Δ (where Δ denotes the
defect of ϕ). Then for any g ∈ G, either f−1 ◦ g or f ◦ g is pseudo-Anosov. For details in the
Out(Fn)-context see [1], particularly Remark 4.33.

Remark 2. If we want to adapt our method of proof to the Out(Fn)-context, we need an
analogue of Fathi’s theorem in this setting. Unfortunately, no such result seems to be known.
Note that [5, Proposition 3.1] is insufficient for this purpose, as it yields no universal bound
on the number of exceptional twists.

3. Pseudo-Anosovs in subgroups of mapping class groups

Throughout this section, we take H to be a subgroup of G, and we take ΓH to be the Cayley
graph of H with respect to any fixed finite generating set. We will be interested in the case
when H satisfies the following condition:

Condition (∗) There are vertices a, b of the curve complex of CC(Σ) and integers ka, kb ∈ Z

such that

• dCC(a, b) � R(3) and
• T ka

a , T kb

b ∈ H
were R(3) is the number used in the proof of Lemma 4 in Section 2.

Example 1. Condition (∗) is for instance satisfied

• if H is a finite index subgroup of G, or
• if H is the Torelli group — see [6, Chapter 6]. Note that the Torelli group contains in

particular all Dehn twists along separating curves of Σ, or
• if H is any finite index subgroup of the Torelli group.

Theorem 5. Suppose H is a subgroup of G, the mapping class group of Σ, satisfying
Condition (∗) above. Then pseudo-Anosovs have positive density in H: there exists a finite
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A POSITIVE PROPORTION OF ELEMENTS OF MAPPING CLASS GROUPS 393

subset F of H such that for any element g of H, at least one of the mapping classes in
{f ◦ g | f ∈ F} is pseudo-Anosov. Moreover,

lim inf
R→∞

|pseudo-Anosov elements of H ∩ BΓH(1, R)|
|BΓH(1, R)| > 0

Proof. The proof follows very closely the proof of Theorem 2. This time we choose the
vertices a and b of Σ, as well as integers ka and kb according to Condition (∗). Possibly after
replacing ka and kb by integer multiples of themselves, we can assume moreover that ka, kb � 7.

Defining F ′ = {1H ∪ T ka
a ∪ T kb

b }, Fathi’s theorem and Lemma 4 now imply: for every element
g of H, apart from the finitely many exceptional ones, at least one of the mapping classes in
{f ◦ g | f ∈ F ′} is pseudo-Anosov.

For each exceptional element gi ∈ H, we choose one fi ∈ H such that fi ◦ gi ∈ H is non-
exceptional. Now with the exact same argument as in the proof of Theorem 2 we have:
for every g ∈ H, at least one of the mapping classes in {f ◦ g | f ∈ F ′} is pseudo-Anosov,
with

F =
{

1, T ka
a , T kb

b

} ⋃
i=1,...,N

{
fi, T ka

a ◦ fi, T kb

b ◦ fi
}
.

Finally, the deduction that the limit inferior of the proportion of pseudo-Anosov elements in
large balls in the Cayley graph of H is strictly positive works literally as the proof of Corollary 1,
just replacing G by H and Γ by ΓH throughout. �

Remark 3. The proof of Theorem 2 did not use the full strength of Bowditch’s
theorem [3] — knowing that there exists one element of G which acts in a weakly
properly discontinuous (WPD) manner on the curve complex [9] was more than sufficient.
However, for our proof of Theorem 5, Bowditch’s theorem is needed almost in its full
strength.

Acknowledgements. We thank Anna Lenzhen for a helpful conversation, and Mladen
Bestvina for the email mentioned in Remark 1.
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