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ABSTRACT

With the increasing development of critical systems based on 
artifi-cial intelligence (AI), methods have been proposed and 
evaluated in academia to assess the reliability of these systems. In 
the context of computer vision, some approaches use the 
generation of images altered by common perturbations and 
realistic transformations to assess the robustness of systems. To 
better understand the strengths and limitations of these 
approaches, we report the results obtained on an industrial case of 
a road object detection system. By compar-ing these results with 
those of reference models, we identify areas for improvement 
regarding the robustness of the system and the metrics used for 
this evaluation.

CCS CONCEPTS

• Computing methodologies → Machine learning.␣
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1 INTRODUCTION

With the increasing development of critical systems based on artifi-
cial intelligence (AI) the question of the reliability of these systems 
has become of paramount importance. As such systems usually 
evolve in dynamic environments, it is important to ensure that they 
are indeed trustworthy during their entire lifecycle under different 
operating conditions.

∗Also with Lab-STICC, ENSTA Bretagne.
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A common approach to assess the reliability of AI system is by
testing its robustness, this is, assessing “the degree to which a sys-
tem operates correctly in the presence of invalid inputs or stressful
environmental conditions” (ISO/IEC/IEEE 24765:2010). In the con-
text of computer vision—the scope of this paper—this is often done
by generating adversarial examples [1]. Adversarial examples are
created with perturbations that are invisible to the human eye and
that can change the predictions of AI models dramatically. Other
approaches resort to generating images altered by common per-
turbations and realistic transformations, the choice of which may
be guided by domain knowledge [2], coverage measures [5], or by
properties that the system must verify [4]. These transformations
usually concern three aspects of the system under test (SUT): the
environment, the sensor, and the digital processing. Thus, various
perturbations on images have been proposed to ensure the robust-
ness of the system in novel scenarios (e.g. changes in weather or in
the settings of its hardware setup).

Regardless of techniques used, most approaches have been pro-
posed and evaluated in academia and therefore their applicability
and usefulness in practice is mostly unknown. However, industrial
case studies are required to better understand the strengths and lim-
itations of current software engineering approaches for assessing
the reliability of AI systems.

In this paper, we report the results on an industrial case on ro-
bustness testing of a safety-critical machine learning-based object
detection system. In contrast to related work, mostly interested
in assessing the performance under worst-case scenarios (e.g., ad-
versarial examples), we aim to test the performance of the system
when facing common perturbations, encountered in its normal
functioning. To this end, we use fifteen transformations representa-
tive of changes in the sensor and digital processing parameters. By
comparing the behaviour of the SUT with that of baseline models,
we observe several similarities in their overall behaviour against
perturbations, with local differences that may indeed be related to
the datasets used and the intrinsic robustness of the models. The
benefit of re-training with data augmentation is also studied.

In what follows, we report the system under test (Section 2),
experimental evaluation (Section 3), and lessons learned (Section 4).

2 ROAD OBJECT DETECTION SYSTEM
The system under consideration has been developed by an indus-
trial actor in the field of embedded artificial intelligence for the
automotive and smart city domains. It falls within the scope of road
monitoring and aims to be widely deployed in cities. Using cameras
strategically placed in road junctions, it allows traffic regulation at

https://orcid.org/0000-0002-7927-4332
https://orcid.org/0000-0001-8816-6213
https://orcid.org/0000-0003-0629-1542
https://orcid.org/0000-0002-2742-1804
https://doi.org/10.1145/3526073.3527592
https://doi.org/10.1145/3526073.3527592


two levels: at the macroscopic level for the flow of vehicles through-
out the day, and at the microscopic level for the management of 
specific events such as the crossing of a pedestrian, as in Figure 1. 
In practice, it consists of a road observation module, linked to a 
traffic light management module. Thus, when a person approaches 
the pedestrian crossing, the system detects him and can act on the 
traffic lights to let him pass.

In particular, we are interested in the subsystem based on ma-
chine learning, whose aim is to correctly detect and identify the 
various road users (vehicles, pedestrians, etc.) on the basis of im-
ages from the cameras. This subsystem is critical at the microscopic 
level, and a failure in detection can have serious, life-threatening 
consequences, as the decision to change the traffic lights is based 
on its detections. It is therefore imperative for this subsystem to be 
reliable.

Figure 1: View of the road junction

3 EVALUATION
3.1 Objective and scope
Our objective is to characterise the detection system and produce
robustness metrics in order to assess its reliability. Robustness can
be assessed against perturbations related to the hardware and soft-
ware environment (e.g. change in the parameters of the image signal
processor), the observed environment (e.g. change in weather), and
external adversary (e.g. adversarial attacks). In this paper, we focus
on testing the robustness with respect to the hardware and soft-
ware environment. This is a particularly relevant problem for the
system under test since it needs to be usable with different camera
technologies.

3.2 Experimental setup
We consider the detection system in a black-box setting. We there-
fore have no information on its architecture and parameters. More-
over, the interactions with the system are limited to sending an
image from a camera as input, and retrieving a list of detected ob-
jects as output. Six classes of objects are detected by the system:
cars, trucks, buses, people, bicycles, and motorcycles.

The object detection system has been trained and evaluated on a
proprietary dataset, called Mango. Each image in the dataset is the
view of a real road junction. In practice, it consists of images from
the video stream that have already been preprocessed (the details

of which are not known) to be saved in jpeg format (1920x1080,
96 dpi). We do not have access to the data used for training and
performance evaluation by the development team. However, in
order to perform the tests, we have at our disposal 2645 images
extracted from this dataset which were not used during the training
phase of the detection model.

Following its training, the detection system has been evaluated
by the development team of the system under test (SUT), using the
COCO detection evaluation metrics1. These 12 metrics are widely
used in object detection, as they take into account both localisa-
tion and classification performance. For the sake of conciseness,
we will only use the AP metric in reporting our results. It is the
average accuracy over all classes, for Intersection over Union (IoU)
thresholds between 0.5 and 0.95. This metric is the primary COCO
challenge metric and rewards detectors with better localization. Its
values are between 0 and 1, and the better the performance, the
higher the value. According to the COCO challenge leaderboard2,
the latest and best performing detection models have an AP around
0.5. Nevertheless, more attention will be paid to the evolution of
this metric during the tests than to its intrinsic value (see below).

In the absence of specifications to guide the testing of the detec-
tion system, we seek to test the system against plausible scenarios.
To do so, we analyse the response of the system to images that
have been modified by realistic transformations with respect to the
image acquisition and creation process. Thus, the main constraint
is that images produced may reflect a change in the settings or a
failure of the subsystems upstream of the detection model. In prac-
tice, a system that is robust to a change or a failure will maintain
the same performance; i.e., it will make the same predictions as in
the initial configuration.

In order to define relevant perturbations, we have selected the
transformations proposed in [2] that can be applied to our system
and that correspond to our objectives. In particular, we set aside
all the transformations that reflect meteorological changes. We
then mapped these transformations, originally classified into four
categories (blur, noise, weather, digital), to the parameters that can
affect the different stages of the image acquisition process (see
Table 1). This ensures that the transformations are representative of
reality. Moreover, this mapping between the real phenomena and
the types of transformations on the images allowed us to define new
transformations that were not included in [2], such as dead pixels,
unsharp mask, and chromatic aberration. This gives a total of 15
transformations. The blur category includes the different blurring
techniques (Gaussian blur, zoom blur, motion blur, etc.), but also
the inverse transformations (e.g. pixelation). The colour category
includes transformations that affect the histogram of the image
in the broadest sens, such as colour, contrast and brightness. The
noise category includes Gaussian noise, Speckle noise, Salt noise,
Pepper noise, and the Salt and Pepper noises combination. Finally,
the faulty pixel category includes dead pixels and their extension
to dead lines.

In order to study the response of the system to perturbations, we
first need to make the results comparable. However, not all trans-
formations performed have the same level of severity nor represent

1https://cocodataset.org/#detection-eval
2https://cocodataset.org/#detection-leaderboard
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Table 1: Types of transformations.

Step Parameter Category
Acquisition Lens material Blur
(camera) Lens distortion Image distortion

Focus Blur
Resolution Blur
Aperture Colour
Shutter speed Blur
ISO Sensitivity / Gain Noise
Dead pixels/lines Faulty pixel

Processing Dematrixing Colour
(ISP) Tone mapping (HDR) Colour

Sharpening Blur
Contrast Colour
Brightness Colour
Noise reduction Noise
White balance Colour
Lens shading Colour
Color mapping Color
Encoding/Compression Blur
Black level Noise

the same difficulties for the system. To overcome this problem and
build a common scale, we use the Structural Similarity (SSIM) met-
ric proposed by [6], a full-reference quality metric that measure
the similarity between an original image and its transformed coun-
terpart, in terms of luminance, constrast and structure. The SSIM
value is between 0 and 1, where a SSIM of 1 corresponds to the case
where the two images being compared are identical.

Finally, in order to compare and validate our results, we provide
baseline results for a set of common object detection models, includ-
ing Faster R-CNN, RetinaNet, Cascade R-CNN, FCOS, Deformable
ConvNets v2, Libra R-CNN, HRNet, and Sparse R-CNN. Those mod-
els were trained and evaluated on the BDD100k dataset [8], which
is a dataset consisting of 100,000 videos of driving scenes recorded
under different conditions (change of weather, time of day, and
city).

3.3 Experimental results
Before going into the details of the results for the SUT over all
transformations, a comparison is made with the baseline models.
Due to space constraints, we choose to present the results for only
one transformation, Gaussian blur, in Figure 2. Nevertheless, the
observed behaviour is similar whatever the transformation consid-
ered. The models are compared on the basis of the average SSIM
value on their respective datasets (BDD100K for the baseline mod-
els, Mango for the SUT). The results for the baseline models are
roughly identical, which can be explained by a similar architecture,
based on R-CNN, and training on the same dataset, BDD100K. In
contrast, the results for the SUT differ significantly: the slope of
the performance is much lower at high SSIM (i.e. for low image
alterations), which reflects a certain robustness, even though the
performance of the SUT on its original dataset is worse than that
of the baseline models on their original dataset. Note also that the
transformation is applied with the same parameter range, but this

does not necessarily result in the same SSIM. For example, the first
point corresponds to the same transformation parameters, yet the
SSIM on BDD100K is much higher than on Mango. This could be
explained by the nature of the dataset (variety of situations, format,
etc.), but further experimentation is needed to conclude on this
subject.

Figure 2: Comparison between the SUT and the baselinemod-
els against Gaussian blur.

Figure 3 shows the results obtained for the SUT against the
transformations defined in the previous section. This behaviour is
similar in the case of a baseline model (Faster R-CNN). Overall, it
can be observed that the lower the SSIM, the lower the AP value.
However, two areas with significantly different average slopes can
be distinguished. The area with the lowest average slope is mostly
related to Noise transformations: on average, the detection model is
quite robust to electronic noise. On the other hand, the performance
degrades rapidly in the case of Blur or Colour transformations.
This can be explained by the fact that an object detection model
is very sensitive to edges and contours. A Blur transformation
has an immediate effect on this characteristic. The same is true of
some colour transformations, such as chromatic aberration, which
shifts the contours between the RGB layers. In the case of the
SUT, it can be seen that the brightness (GammaCorrection and
SaltNoise curves) also plays a very important role: this is because
the dataset images already have a high exposure, and by increasing
the brightness a little bit, the object edges quickly disappear. While
brightness and colour issues can be adjusted during the digital
processing phase, it is more difficult to correct the blurring created
during acquisition: this is where the greatest care needs to be taken.

To overcome these issues, methods exist to improve the intrinsic
robustness of detection models. For instance, in the context of ad-
versarial examples, Adversarial Training [3] consists of augmenting
the training dataset with adversarial examples and then retraining
the model to improve its performance and its robustness against
new adversarial examples. In the same way, we are interested in the
effect of such data augmentation, based on the transformations, in
the case of the SUT. Thus, images altered by the Gamma Correction
transformation were added to the training dataset, and the detection
model was retrained. We observed an improvement in robustness
against the corresponding transformation, which was reflected by
a translation of the curve along the y-axis. These results should be



Figure 3: Overall behaviour of (a) SUT, and (b) Faster R-CNN
when confronted with the transformations

treated with caution, as two successive trainings can give signifi-
cantly different results, but they suggest that the data augmentation
solution is a good avenue for robustness improvement.

4 LESSONS LEARNED
The main issue when using transformations to test a model is
selecting the most appropriate ones. It is necessary to validate that
they have a physical reality or that they are representative of a
physical change, which often requires domain knowledge. In our
experiment, we only test transformations separately, but it would
be necessary to also study the behaviour of the system when faced
with combinations of transformations, which would be all the more
representative of real situations.

Comparing the performance of models trained on different data-
sets can also be a real challenge. The choice of a full reference
metric such as SSIM avoids this problem, as it compares degrees
of similarity to the original dataset. However, we observed that if
the range of transformations parameters applied on two different
datasets is the same, it may not be the case of the average SSIM. This
could be related to the nature of the dataset (variety of situations,
format, etc.), but further experimentation is needed to conclude.

We used the AP metric to evaluate the performance of the detec-
tion models and defined their robustness according to the evolution
of this performance. However, it is questionable to what extent
this approach is sufficient for the study of robustness. In particular,

it would be interesting to study the type of error introduced by
a transformation (misclassification, mislocation, etc.). In addition,
papers report the study of model quality metrics, initially focused
on adversarial examples, but which could be applied to our case
study [7].

5 CONCLUSION AND FUTUREWORK
In the context of computer vision, several approaches to evaluate
the robustness of a system have been proposed in the literature, to
ensure that they are indeed trustworthy under different operating
conditions. In this paper, we report the results of robustness testing
on an industrial case of a safety-critical object detection system
based on machine learning.

The performance of the system against transformations repre-
sentative of changes in sensor or digital processing parameters is
evaluated. The strengths of the system are thus identified, as well
as areas where there is still room for improvement, notably through
data augmentation.

Future work will focus on further developing of this case with
respect to the limitations mentioned, as well as on investigating of
new metrics for robustness assessment that provide more informa-
tion about the errors made by the system.
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