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ABSTRACT
Alzheimer
still not completely understood. The identification of underlying pathological mechanisms is becoming
increasingly important for the discovery of biomarkers and therapies, for which metabolomics presents a
great potential. In this work, we studied metabolic alterations in different brain regions of the APP/PS1
mice by using a high-throughput metabolomic approach based on the combination of gas
chromatography-mass spectrometry and ultra-high performance liquid chromatography-mass
spectrometry. Multivariate statistics showed that metabolomic perturbations are widespread, affecting
mainly to hippocampus and cortex, but also present in regions not primarily associated with AD such as
striatum, cerebellum and olfactory bulbs. Multiple metabolic pathways could be linked to the
development of AD-type disorders in this mouse model, including abnormal purine metabolism,
bioenergetic failures, dyshomeostasis of amino acids and disturbances in membrane lipids, among others.
Interestingly, region-specific alterations were observed for some of the potential markers identified,
associated with abnormal fatty acid composition of phospholipids and sphingomyelins, or differential
regulation of neurotransmitter amino acids (e.g. glutamate, glycine, serine, N-acetyl-aspartate), not
previously described to our knowledge. Therefore, these findings could provide a new insight into brain
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1. Introduction

involves a progressive loss of memory and cognitive abilities leading to dementia. Deposition of senile
plaques containing -amyloid peptides and formation of neufibrillary tangles are the two major hallmarks
of AD (Selkoe 2003), but other profound biochemical alterations also occur in the AD brain, including
oxidative stress, mitochondrial, dysfunction, inflammation, membrane lipid dysregulation and
neurotransmitter disruption, among others (Maccioni et al. 2001; Maruszak and Zekanowski 2011;
Kosicek and Hecimovic 2013). These pathological lesions are mainly localized in medial temporal lobe
structures, specifically the cortex and hippocampus (Braak and Braak 1991), contributing to neuronal
degeneration, loss of synapses, and brain atrophy. However, it has been demonstrated that perturbations
are more widespread and affect to a variety of sites such as cerebellum (Braak et al. 1989), brainstem
(Simic et al. 2009) or the olfactory system (Struble and Clark 1992). Neuroimaging techniques have been
extensively applied for in vivo detection of neuropathological features in AD patients, including magnetic
resonance imaging (MRI) to measure structural and functional changes of brain (Lin et al. 2012), positron
emission tomography (PET) for detection of amyloid plaques (Rowe and Villemagne 2013) and changes
in glucose metabolism (Mosconi et al. 2009), and magnetic resonance spectroscopy (MRS) to quantify
metabolite markers (Kantarci et al. 2007). On the other hand, metabolomic analysis is gaining great
importance for the discovery of novel potential biomarkers for diagnosis and the elucidation of
underlying mechanisms. Metabolomics, based on the comprehensive and simultaneous analysis of
multiple metabolites in biological samples, presents a great potential in health survey for the study of
disease pathology, discovery of biomarkers and drug development because metabolites represent the end
point of biological reactions, reflecting well the interactions between genes, proteins and the environment
(Lindon et al. 2004). Thereby, several metabolomic studies have been performed in the last years for the
investigation of AD (Ibáñez et al. 2013). Most of these studies have been performed in biofluids due to
the difficult availability of human brain tissue, and because the use of postmortem tissues supposes that
disease is at its end stage. Thus, only a few preliminary studies have been previously reported in this
subject (Botosoa et al. 2012; Inoue et al. 2013; Graham et al. 2013a), demonstrating the potential of this
approach although requires further investigation with larger and better characterized patient cohorts.
Alternatively, numerous transgenic animal models have been developed for studying AD
pathophysiology (Hall and Roberson 2012), from which brain samples can be obtained at different stages
of disease. Forster et al. used the TASTPM transgenic mice to investigate brain longitudinal metabolic
differences by proton magnetic resonance spectroscopy, and found significant differences in levels of
metabolites such as myo-inositol, succinate, glycerophosphocholine and choline (Forster et al. 2011). In
other studies, the metabolic profiles of both brain and plasma from different mouse models were
characterized and compared to those from wild-type mice (Hu et al. 2012; Graham et al. 2013b). Lower
levels of metabolites were found in plasma samples, and they fluctuate more between the two groups than
brain metabolites. However, the statistical models built using plasma metabolite profiles were more
accurate than brain tissue despite the smaller number of factors. Furthermore, the role of a dysregulated
endocannabinoid-eicosanoid network in pathogenesis of AD has been recently demonstrated in the
APP/PS1 mice with inactivated monoacylglycerol lipase (Piro et al. 2012). On the other hand, other
studies focused on individual brain areas including hippocampus (Trushina et al. 2012; Lin et al. 2013;
Wang et al. 2014), cortex (Dedeoglu et al. 2004) and cerebellum (Lin et al. 2014; Balayssac et al. 2013),
because metabolic perturbations induced by AD-type disorders could be region-specific in the brain. In
this sense, the characterization of regional metabolomic perturbations may be of greater interest in order
to investigate the impact of disease on different brain regions and determine the most affected ones in AD
mice. Only a few authors have previously performed a comparative metabolomic investigation in
different brain areas, by using in vitro nuclear magnetic resonance (Salek et al. 2010; Woo et al. 2010;
Lalande et al. 2014). These findings demonstrated that hippocampus and cortex are the most sensitive
regions during early-stage AD, but perturbations in metabolism also affect other tissues such as
cerebellum and midbrain. However, limited metabolic information was obtained considering the total
number of discriminant metabolites detected (N-acetylaspartate, myoinositol, glutamate, GABA, creatine,
taurine, and a few others), because of the low sensitivity of this approach. For this reason, the application
of high-throughput metabolomic approach based on mass spectrometry could be of great interest in order

erent brain
regions.

In this study, a metabolomic platform based on complementary analysis by gas chromatography-mass
spectrometry (GC-MS) and reversed-phase ultra-high performance liquid chromatography-mass



spectrometry (UPLC-MS) was used to investigate metabolic perturbations in five brain regions of the
, including cortex, hippocampus, striatum, cerebellum

and olfactory bulbs. This mouse model is extensively employed in AD research given that reproduces
well some of the neuropathological and cognitive deficits observed in human Alzheimer, with a

activation, and deficits in cognitive functions at the age of 6 months (Malm et al. 2011). Furthermore, the
application of this multiplatform approach using two complementary methods allowed extending the
analytical coverage of endogenous metabolites present in brain samples compared with conventional
procedures based on NMR. Thereby, while GC-MS provides high-chromatographic resolution for
primary low molecular weight metabolites, reversed phase liquid chromatography can be considered as
the standard tool for the separation of medium polar and non-polar analytes. Multivariate statistics was
used to discriminate metabolic profiles from transgenic animals and wild-type controls, and thus
numerous metabolites could be identified as potential markers of disease. These findings indicated that all
brain regions analyzed are affected to a greater or lesser extent, but in addition it is noteworthy that some
of these metabolic alterations could be region-specific.

2. Materials and methods
2.1. Animal handling

Transgenic APP/PS1 mice (C57BL/6 background) were generated as previously described by Jankowsky
et al., expressing the Swedish mutation of APP together with PS1 deleted in exon 9 (Jankowski et al.
2004). On the other hand, age-matched wild-type mice of the same genetic background (C57BL/6) were
purchased from Charles River Laboratory for their use as controls (WT). In this study, male and female
animals at 6 months of age were used for experiments (TG: N=30, male/female 13/17; WT: N=30,
male/female 15/15). Animals were acclimated for 3 days after reception in rooms with a 12-h light/dark
cycle at 20-25 °C, with water and food available ad libitum. Then, mice were anesthetized by isoflurane
inhalation and sacrificed by exsanguination via cardiac puncture. Brains were rapidly removed, rinsed
with saline solution (0.9% NaCl w/v) and dissected into hippocampus, cortex, striatum, cerebellum and
olfactory bulbs. Finally, tissues were transferred to individual Eppendorf tubes, snap-frozen in liquid

Animals were handled according to the directive 2010/63/EU
stipulated by the European Community, and the study was approved by the Ethical Committee of
University of Huelva.

2.2. Sample preparation
Large brain regions (cortex and cerebellum) were cryo-homogenized using a cryogenic homogenizer
SPEX SamplePrep (Freezer/Mills 6770), during 30 seconds at rate of 10 strokes per second.
Subsequently, tissues were extracted with pre-cooled 0.1% formic acid in methanol (-20ºC) using a pellet
mixer for cell disruption (VWR International, UK). For this, tissue samples were exactly weighed in
Eppendorf tubes (30 mg for homogenized tissues, and the entire organ for smaller tissues) and mixed with
the extraction solvent (10 l/mg). The mixture was homogenized during 2 min in an ice bath, and then
centrifuged at 10000 g for 10 min at 4ºC. An aliquot of the supernatant (50 l) was splitted for
derivatization before GC-MS fingerprinting, and the rest of the sample was transferred to the injection
vial for UPLC-MS analysis. Derivatization was carried out according to a two-step methodology
previously described (Begley et al. 2009). For this, 50 l of extracts were dried under nitrogen stream and

-1 methoxyamine in pyridine for protection of carbonyl groups by
methoximation. After briefly vortexing, samples were incubated at 80°C for 15 min in a water bath. Then

Finally, extracts were centrifuged at 4000 g for one minute and supernatant was collected for analysis.
Furthermore, quality control (QC) samples were prepared by pooling equal volumes of each sample,
which allows monitoring the stability and performance of the system along the analysis period (Sangster
et al. 2006).

2.3. Metabolomic analysis by GC-MS
Analyses were performed in a Trace GC ULTRA gas chromatograph coupled to an ion trap mass
spectrometer detector ITQ 900 (Thermo Fisher Scientific), using a Factor Four capillary column VF-5MS
30m×0.25mm ID, with 0.25 µm of film thickness (Varian). The GC column temperature was set to 100ºC
for 0.5 minutes, and programmed to reach 320ºC at a rate of 15ºC per minute. Finally, this temperature
was maintained for other 2.8 minutes, being the total time of analysis 18 minutes. The injector
temperature was kept at 280ºC, and helium was used as carrier gas at a constant flow rate of 1 ml min -1.
For mass spectrometry detection, ionization was carried out by electronic impact (EI) using a voltage of



70 eV, and the ion source temperature was set at 200ºC. Data were ob tained acquiring full scan spectra in
the m/z range 35-650. For analysis, 1 µl of sample is injected in splitless mode.

2.4. Metabolomic analysis by UPLC-MS
Samples were fingerprinted by ultra performance liquid chromatography (Accela LC system, Thermo
Fisher Scientific) coupled to a quadrupole-time-of-flight mass spectrometry system equipped with
electrospray source (QSTAR XL Hybrid system, Applied Biosystems). Chromatographic separations
were performed in a reversed-phase column (Hypersil Gold C18, 2.1x50 mm, 1.9 m) thermostated at
50ºC, with an injection volume of 5 l. Solvents were delivered at a flow rate 0.5ml/min, using methanol
(solvent A) and water (solvent B), both containing 10mM ammonium formate and 0.1% formic acid. The
gradient elution program was: 0-1 min, 95% B; 2.5 min, 25% B; 8.5-10 min, 0% B; 10.1-12 min, 95% B.
MS operated in positive and negative polarities, acquiring full scan spectra in the m/z range 50-1000 with
1.005 seconds scan time. The ion spray voltage (IS) was set at 5000V and -2500V, and high-purity
nitrogen was used as curtain, nebulizer and heater gas at flow rates about 1.48 L min-1, 1.56 L min-1 and
6.25 L min-1, respectively. The source temperature was fixed at 400ºC, with a declustering potential (DP)
of 100V/-120V, and a focusing potential (FP) of ±350V. To acquire MS/MS spectra, nitrogen was used as
collision gas.

2.5. Data pre-processing
Raw data was processed following the pipeline described by Katajamaa et al., which proceeds through
multiple stages including feature detection, alignment of peaks and normalization (Katajamaa and Oresic
2007). For this purpose, we employed the freely available software XCMS, included in the R platform
(http://www.r-project.org). UPLC-MS files were converted into mzXML format using the msConvert tool
(ProteoWizard), while GC-MS files were converted into netCDF using the Thermo File Converter tool
(Thermo Fisher Scientific). Subsequently, data were extracted using the matchedFilter method. This
algorithm slices data into extracted ion chromatograms (XIC) on a fixed step size (default 0.1 m/z), and
then each slice is filtered with matched filtration using a second-derivative Gaussian as the model peak
shape (Smith et al. 2006). The XCMS parameters were optimized according to the characteristics of data
sets obtained in order to extract the maximum information as possible. Finally, the settings applied for
UPLC-MS data were S/N threshold 2 and full width at half-maximum (fwhm) 10, while for GC-MS data
the fwhm was set at 3. After peak extraction, grouping and retention time correction of peaks (alignment)
was accomplished in three iterative cycles with descending bandwidth (bw) from 10 to 1 seconds in
UPLC-MS, and descending bw from 5 to 1 seconds for GC-MS. Then, imputation of missing values was
performed by returning to the raw spectral data and integrating the areas of the missing peaks which are
below the applied signal-to-noise ratio threshold, using the fillPeaks algorithm. For data normalization,
the locally weighted scatter plot smoothing (LOESS) normalization method was used, which adjusts the
local median of log fold changes of peak intensities between samples in the data set to be approximately
zero across the whole peak intensity range (Veselkov et al. 2011). Finally, data were submitted to
logarithmic transformation, in order to stabilize the variance of results. The preprocessed data were then
exported as a .csv file for further data analysis by multivariate procedures.

2.6. Multivariate statistics
Data were subjected to multivariate analysis by principal component analysis (PCA) and partial least
squares discriminant analysis (PLS-DA) in order to compare metabolomic profiles obtained, using the
SIMCA- , Umeå, Sweden). Before performing statistical
analysis, data was submitted to Pareto scaling for reducing the relative importance of larger values (van
den Berg et al. 2006). Quality of the models was assessed by the R2 and Q2 values, supplied by the
software, which provide information about the class separation and predictive power of the model,
respectively. These parameters are ranged between 0 and 1, and they indicate the variance explained by
the model for all the data analyzed (R2) and this variance in a test set by cross-validation (Q2). Finally,
potential biomarkers were selected according to the Variable Importance in the Projection, or VIP (a
weighted sum of squares of the PLS weight, which indicates the importance of the variable in the model),
considering only variables with VIP values higher than 1.5, indicative of significant differences among
groups. Furthermore, these metabolites were validated by t-test with Bonferroni correction for multiple
testing (p-values below 0.05), using the STATISTICA 8.0 software (StatSoft, Tulsa, USA).

2.7. Metabolites identification
Discriminant metabolites detected by GC-MS were identified using the NIST Mass Spectral Library
(version 08), considering only those variables with a similarity index (SI) greater than 70%. Alternatively,
identification of metabolites from UPLC-MS profiling was made matching the experimental accurate



mass and tandem mass spectra (MS/MS) with those available in metabolomic databases (HMDB,
METLIN and LIPIDMAPS). Furthermore, identity of lipids was confirmed based on characteristic
fragmentation patterns previously described. Phosphatidylcholines (PCs) and lysophosphatidylcholines
(LPCs) presented characteristic ions in positive ionization mode at m/z 184, 104 and 86, and two typical
fragments due to the loss of trimethylamine (m/z 59) and phosphocholine (m/z 183). In contrast, the
product-ion spectra of ethanolamines and serines were dominated by [M+H-141]+ and [M+H-185]+

respectively, arising from the elimination of the phosphoethanolamine or phosphoserine moiety. Finally,
in negative mode these distinctive signals were found at 168, 196, 241, 171 and [M-H-87]-, for choline,
ethanolamine, inositol, glycerol and serine derived lipids, respectively (Pulfer and Murphy 2003).
Furthermore, the fragmentation in the glycerol backbone and release of the fatty acyl substituents enabled
the identification of individual species of phospholipids, as previously described (Wang et al. 2004). For
sphingomyelins, typical product ions appear at m/z 264 and 282 due to the fragmentation in the
sphingosine moiety, and the cleavage of phosphocholine headgroup generates characteristic fragments at
184 and 168 m/z, in positive and negative modes respectively (Haynes et al. 2009).

3. Results
Metabolomic profiles corresponding to transgenic animals, wild-type controls and quality control samples
were aligned together to perform sample classification by multivariate data analysis. An initial principal
components analysis (PCA) plot was generated with data from each brain region using the different
techniques (UPLC-ESI(+)/MS, UPLC-ESI(-)/MS, GC-MS) in order to check trends, outliers and quality
of the analysis, and to ensure grouping of QC samples. A good clustering of quality control samples was
observed in the scores plot (Fig 1A, for hippocampus), indicative of stability during the analyses
(Sangster et al. 2006), without significant outliers according to the Hotelling T2-range plot (not shown).
Partial least squares discriminant analysis (PLS-DA) was used in the same data sets to obtain a perfect
separation of the different study groups (Fig 1B, for hippocampus). These models yielded satisfactory
values for the quality parameters R2 and Q2, with a variance explained close to 100% and variance
predicted above 60% for all models (Table 1).
Discriminant metabolites were then selected according to the VIP value for each PLS-DA model (Tables
2-4). Major changes were observed in amino acids and related compounds, nucleotides, and other low
molecular weight metabolites (Table 2), lysophospholipids (Table 3) and phospholipids (Table 4). Most
of these metabolomic alterations were found in hippocampus and cortex, but several impairments were
also present in cerebellum, striatum and olfactory bulbs. Moreover, it is noteworthy that some metabolites
showed opposite trends in different brain areas, suggesting that region-specific perturbations might occur.
Therefore, the characterization of regional metabolic abnormalities in brain of the APP/PS1 mice might
provide an interesting insight into pathological mechanisms associated with the development and spread
of disease in brain.

4. Discussion
A metabolomic platform based on the combination of gas chromatography-mass spectrometry and
reversed-phase ultra-high performance liquid chromatography-mass spectrometry was used to study
regional metabolic abnormalities in brain of 6 months-old APP/PS1 transgenic mice. This mouse model,
co-expressing mutated amyloid precursor protein and deleted presenilin 1, exhibits accelerated AD
phenotype characterized by amyloid deposits and behavioral deficits (Malm et al. 2011). Furthermore, the
study of the neurochemical profile and age-dependent metabolic changes exhibited by the transgenic
APP/PS1 mice has demonstrated that these alterations precede cognitive dysfunctions (Chen et al. 2012),

Therefore, the characterization of
region-specific metabolic abnormalities in this model might aid in the investigation of the pathological
mechanisms associated with AD.
Purine metabolism has been repeatedly associated with neurodegenerative mechanisms occurring in

disease, which is in accordance with our metabolomic findings (Table 2). Hippocampus was
the most affected region, but these metabolic changes were also observed in other areas such as cortex,
striatum and cerebellum (in this order). Cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and
cyclic guanosine monophosphate (cGMP), are second messengers associated with neuroplasticity and
neuroprotection, which have been suggested to be affected in AD. Phosphodiesterases, enzymes
responsible for the breakdown of cyclic nucleotides, appear to be over-expressed in AD brains (Bolle and
Prickaerts 2012), together with a perturbation of cAMP/PKA (Liang et al. 2007) and NO/cGMP (Domek-
Lopacinska and Strosznajder 2010) signaling pathways, supporting the decrease of these compounds in
brain tissue (Table 2). On the other hand, reduced levels of adenosine monophosphate (AMP) could be
related to accelerated degradation due to elevated activity of adenosine monophosphate deaminase in
brain, provoking over-production of ammonia leading to hyperammonemia (Sims et al. 1998). This



decrease of AMP levels may have important consequences in cellular energy homeostasis, given that it
plays a central role in glucose and lipid metabolism through the AMP-activated protein kinase (AMPK),
which is known to be decreased in AD brain (Cai et al. 2012). Concentrations of nucleosides (adenosine,
guanosine, inosine) tended to be higher in brains from APP/PS1 mice, which might suggest a disturbed
neuroprotective function leading to neural damage because purine nucleosides exert important
neuromodulator roles in the central nervous system (Thauerer et al. 2012). In addition, this abnormal
recycling of brain nucleosides is finally reflected in altered levels of other purine metabolites such as
adenine, hypoxanthine and xanthine (Table 2), in agreement with previous studies (Lin et al. 2014;
Kaddurah-Daouk et al. 2011, 2013). Therefore, metabolism of purines highlights as a candidate pathway
for the search of potential markers of pathological processes occurring in the APP/PS1 transgenic mice,
as schematized in Fig. 2 (simplified scheme of biochemical pathways related to metabolism of purines
according to the Kyoto Encyclopedia of Genes and Genomes).
Homeostasis of amino acids also suffered important impairments in brain of the APP/PS1 transgenic
mice. Glutamate and glycine were reduced in hippocampus and cortex, while hippocampal serine was
increased, denoting a dysfunctional modulation of N-methyl-D-aspartate receptors (NMDA-R). In this
sense, it has been reported that NMDA receptors are decreased in different areas of brain with AD (Mota
et al. 2014), resulting in reduced levels of agonist neurotransmitter amino acids such as glutamate (Wang
et al. 2014; Salek et al. 2010; Lalande et al. 2014), glycine (Wang et al. 2014) and D-serine, this latter
accompanied with increased L-serine (Hu et al. 2012; Hashimoto et al. 2004). By contrast, the opposite
trend was observed in cerebellum, with increased levels of glutamate and glycine (Table 2). This could be
because NMDA receptors have specific characteristics in cerebellum that make their function and
modulation different from those of NMDA receptors in other brain areas (Llansola et al. 2005). Thereby,
Balayssac et al. found a significant increase of cerebellar glutamate in the APP-Tg2576 transgenic mice
(Balayssac et al. 2013), confirming a differential dysregulation of NMDA synapse depending on the brain
region considered. Finally, striatum showed a significant increase of glutamate levels, as observed in
cerebellum, but alterations of other NMDA co-agonists (glycine and serine) were in line with what
described for hippocampus and cortex. Therefore, it could be concluded that region-specific alterations
occur in NMDA signaling, which has not been described in any previous metabolomic study of AD,
demonstrating the specificity of pathological mechanisms in brain of the APP/PS1 transgenic mice.
Moreover, this abnormal content of brain amino acids could also indicate a deregulation of their transport
across the blood brain barrier, supported by altered pyroglutamate levels. Amino acids enter into the
central nervous system by means of the sodium- -glutamyl cycle
(Lee et al. 1996). In this process, amino acids react with glutathione by the action of -glutamyl
transpeptidase to form -glutamyl amino acids, which after enter cells are degraded to the corresponding
amino acid, being liberated a molecule of pyroglutamate that is essential since stimulates sodium
dependent carriers for the later removal of deleterious amino acids from brain. In this context, reduced
levels of pyroglutamate have been previously reported in AD brain (Trushina et al. 2012), as observed in
hippocampus, cortex, and striatum (Table 2). However, pyroglutamate was increased in cerebellum, in
accordance with the specific alterations observed in this region regarding glutamate and glycine.
Similarly to glutamate, aspartate is an excitatory neurotransmitter that usually presents lower
concentrations in AD brain (Wang et al. 2014). Interestingly, levels of this amino acid were reduced in
brain regions where glutamate was decreased (hippocampus, cortex and olfactory bulbs), pointing to
correlated metabolic networks. In the same way, a similar correlation was observed between levels of
glutamate and N-acetylaspartate (NAA). This neurochemical is a conventional biomarker for neuronal
integrity whose reduction has been (Salek
et al. 2010; Lalande et al. 2014), in agreement with our metabolomic results in hippocampus, cortex and
olfactory bulbs (Table 2). By contrast, striatal and cerebellar levels of NAA were higher in the APP/PS1
mice, which could be linked to increased glutamate through the destabilization of Ca2+ homeostasis, as
previously described for cerebellum of the APP-Tg2576 model (Balayssac et al. 2013) Taurine is an
amino acid highly concentrated in rodent brain, with several roles in neurotransmission, neuromodulation,
osmoregulation, control of calcium influx, and cell excitability. In this study, we observed a slight
decrease in its concentration in all brain regions investigated (except for olfactory bulbs), in accordance
with a previous metabolomic study (Salek et al. 2010). On the other hand, threonine connects the
metabolism of glycine and serine to biosynthesis of branched-chain amino acids, so hippocampal
deficiency of this amino acid might be correlated with perturbations in levels of glycine, serine and valine
(Table 2). Finally, reductions in histidine and its precursor, phosphoribosyl-AMP, might suggest impaired
synthesis of carnosine and/or histamine, important biomolecules associated with oxidative stress (Hipkiss
2007) and failures in neurotransmission (Nuutinen and Panula 2010)
Metabolomic signatures also revealed significant disturbances in energy metabolism, principally in
hippocampus and cortex, considering decreased levels of lactic acid, malic acid, creatinine, 2-



hydroxyglutaric acid, pyrophosphate (PPi), citric acid ad glucose-6-phosphate (G6P), as well as increased
lactose (Table 2). The decrease of glycolytic intermediates (lactate and G6P) and increased lactose levels
support a reduced carbohydrate metabolism, while reduced citrate (in all brain regions studied) and
malate (only in hippocampus and cortex) could be behind perturbed Krebs cycle, in agreement with
previous studies (Hu et al. 2012; Trushina et al. 2012; Wang et al. 2014; Redjems-Bennani et al. 1998).
Reduced PPi, formed by the hydrolysis of ATP into AMP, denoted mitochondrial impairments related to
aberrations in the oxidative phosphorylation system. Moreover, the deficiency of 2-hydroxyglutarate also
points to disrupted mitochondrial activity, given that this compound is a byproduct resulting from a side-
reaction of malate dehydrogenase (Van Schaftingen et al. 2009). Furthermore dyshomeostasis of
phosphocreatine system might also occur in brain, considering the decrease of creatinine levels observed
in all brain regions analyzed. Therefore, it could be concluded that defects in energy metabolism are a key
hallmark in the APP/PS1 transgenic mice of AD, involving multiple metabolic pathways such as
glycolysis, TCA cycle, oxidative phosphorylation or phosphocreatine system.
Numerous alterations were also observed in metabolism of phospholipids, as reflected in Tables 2-4,
which depended on the type of fatty acid linked to the molecular moiety. Phospholipids containing
polyunsaturated fatty acids (principally docosahexaenoic acid) were reduced in brain samples, including
phosphatidylcholines (mainly in cortex and striatum) and minor species such as phosphatidylserines,
phosphatidylinositols and phosphatidylglycerols (in hippocampus and to a lesser extent cortex).
Furthermore, most phospatidylethanolamines and plasmenylethanolamines were decreased as well,
principally in hippocampus but also affecting other areas investigated. These deficits in certain
phospholipids suggest a role for oxidative stress in the increased degradation of these compounds, in
accordance with previous studies in brain from transgenic mice of AD (Yao et al. 2009; Han et al. 2001;
Chan et al. 2012). By contrast, a parallel accumulation of phospholipids containing short chain fatty acids
was also observed, especially in phosphocholines and phosphoserines from hippocampus and cortex
(Table 4). Thereby, membrane destabilization processes in the APP/PS1 mice could be related to
imbalances in the levels of saturated/unsaturated fatty acids contained in the structure of phospholipids, as
recently proposed for human AD (González-Domínguez et al. 2014a). Moreover, phospholipids derived
from docosapentaenoic and docosatetraenoic acids were also increased in cortex and other brain regions
(Table 4), which might be correlated to peroxisomal dysfunction given that these fatty acids are
intermediates for the biosynthesis of DHA and other long chain polyunsaturated fatty acids in
peroxisomes. Surprisingly, aforementioned changes were accompanied by an overall increase of
arachidonoyl-derived phospholipids (i.e. stearoyl-arachidonoyl phospholipids and di-arachidonoyl
phospholipids), being cortex the most affected region. This altered fatty acid profile could suggest a
deregulation in the biosynthesis, turnover and acyl chain remodeling of phospholipids, with a great
relevance in AD pathology given that the release and oxidation of arachidonic acid from these
phospholipids may produce several lipid mediators closely associated with neuronal pathways involved in
AD (Frisardi et al. 2011). Besides these changes in phospholipid species, numerous byproducts resulting
from their degradation were found in brain of the APP/PS1 mice. Thereby, hydrolysis of the ester bonds
from phospholipids by the action of PLA2 leads to the accumulation of brain lysophospholipids (Table 3),
not previously described to our knowledge in the APP/PS1 mice. In addition, catabolic metabolites
glycerophosphocholine, phosphocholine and choline were elevated, in agreement with previous reports
(Walter et al. 2004), as well as the final products of this degradation process, glycerol-3-phosphate and
free glycerol (Table 2). On the other hand, biosynthesis of phosphatidylcholines via the Kennedy cycle
was also disturbed in hippocampus, considering reductions in the precursor uridine monophosphate
(Czech et al. 2012). Furthermore the decrease of ethanolamine, involved in the turnover of
phosphatidylethanolamines, has been previously observed in postmortem AD brains (Ellison et al. 1987),
corroborating the evidence for a membrane defect in Alzheimer disease.
Alternatively, alterations in sphingomyelins (Table 4) and cholesterol (Table 2) also emerge as a pivotal
event in the dysfunctional homeostasis of neural membranes in the APP/PS1 mice, suggesting
abnormalities in lipid rafts (Fabelo et al. 2012). In this study, a differential regulation of brain
sphingomyelins was observed depending on the region considered and the fatty acid contained in the
structure, as described for phospholipids. Thereby, saturated species were increased in hippocampus, and
unsaturated ones decreased in cortex and cerebellum. However, the most important finding was the
reduction of very long chain species in all brain regions investigated, in accordance with previous studies
that demonstrated elevated degradation of sphingomyelins leading to the accumulation of ceramides
containing very long chain fatty acids (Wang et al. 2008). On the other hand, reduced content of
cholesterol has been already described in brains from transgenic mice of AD (Yao et al. 2009; Fabelo et
al. 2012), generating serious alterations of the physicochemical structure of lipid rafts.
Finally, other discriminant metabolites could be considered as markers for integrity of the central nervous
system, including deficits in dopamine and urea, as well as increased myo-inositol (Table 2). Dopamine is



whose reduction has been also reported in AD subjects (Storga et al. 1996). It is noteworthy that the
higher decrease of this neurotransmitter was found in striatum, where dopaminergic neurons are primarily
localized. The overall reduction in urea levels supports an abnormal homeostasis of ammonia in the
whole brain, which may elicit deleterious effects on central nervous system (Felipo and Butterworth
2002). In this sense, the alteration of the urea cycle has been previously demonstrated on the basis of
altered levels of expression in different enzymes and the corresponding genes (Hansmannel et al. 2001),
which finally results in altered content of related metabolites (González-Domínguez et al. 2014b;
González-Domínguez et al. 2015) as found in our metabolomic study. To conclude, the increase of myo-
inositol has been traditionally proposed as a marker for osmotic stress or astrogliosis, frequently detected
by 1H-NMR investigations (Forster 2011; Woo et al. 2010).

In conclusion, this study shows that levels of numerous metabolites are altered in brain from APP/PS1
mice, such as phospholipids, amino acids or nucleotides among others, affecting primarily to
hippocampus and cortex, and to a lesser extent cerebellum, striatum and olfactory bulbs. These metabolic
alterations enabled the elucidation of underlying pathological mechanisms in the APP/PS1 mice,
including abnormal metabolism of purines, bioenergetic failures, dyshomeostasis of amino acids and
disturbances in membrane lipids. Furthermore, it is noteworthy the region-specificity of processes
occurring in brain of the APP/PS1 mice. As a future plan, a second validation phase should be performed
on a larger number of samples using a targeted approach, more sensitive and selective, in order to confirm
our findings and demonstrate the potential of these discriminant metabolites as potential biomarkers for
diagnosis.

Acknowledgements
This work was supported by the projects CTM2012-38720-C03-01 from the Ministerio de Ciencia e
Innovación and P012-FQM-0442 and P009-FQM-4659 from the Consejería de Innovación, Ciencia y
Empresa (Junta de Andalucía). Raúl González Domínguez thanks the Ministerio de Educación for a
predoctoral scholarship.

References
Balayssac S., Déjean S., Lalande J., Gilard V., Malet-Martino M. (2013) A toolbox to explore NMR

metabolomic data sets using the R environment. Chemometr. Intell. Lab. 126, 50-59.
Begley P., Francis-McIntyre S., Dunn W. B., Broadhurst D. I., Halsall A., Tseng A., Knowles J.,

HUSERMET Consortium, Goodacre R., Kell D. B. (2009) Development and performance of a gas
chromatography-time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic
studies of human serum. Anal. Chem. 81, 7038-7046.

Bollen E. and Prickaerts J. (2012) Phosphodiesterases in neurodegenerative disorders. IUBMB Life 64,
965-970.

Botosoa E. P., Zhu M., Marbeuf-Gueye C., Triba M. N., Dutheil F., Duyckäerts C., Beaune P., Loriot M.
A., Le Moye L. (2012) NMR metabolomic of frontal cortex extracts: First study comparing two
neurodegenerative diseases, Alzheimer disease and amyotrophic lateral sclerosis. IRBM 33, 281-286.

Braak H., Braak E., Bohl J., Lang W. (1989) Alzheimer's disease: amyloid plaques in the cerebellum. J.
Neurol. Sci. 93, 277-287.

Braak H. and Braak E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta
Neuropathol. 82, 239-259.

Cai Z., Yan L. J., Li K., Quazi S. H., Zhao B. (2012) Roles of AMP-activated protein kinase in
-14.

Chan R. B., Oliveira T. G., Cortes E. P., Honig L. S., Duff K. E., Small S. A., Wenk M. R., Shui G., Di
Paolo G. (2012) Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J.
Biol. Chem. 287, 2678-2688.

Chen S. Q., Cai Q., Shen Y. Y., Wang P. J., Teng G. J., Zhang W., Zang F. C. (2012) Age-related
changes in brain metabolites and cognitive function in APP/PS1transgenic mice. Behav. Brain Res.
235, 1-6.

Czech C., Berndt P., Busch K., Schmitz O., Wiemer J., Most V., Hampel H., Kastler J., Senn H. (2012)

Dedeoglu A., Choi J. K., Cormier K., Kowall N. W., Jenkins B. G. (2004) Magnetic resonance

altered neurochemical profile. Brain Res. 1012, 60-65.
Domek-Lopacinska K. U. and Strosznajder J. B. (2010) Cyclic GMP and nitric oxide synthase in aging

-137.



Ellison D. W., Beal M. F., Martin J. B. (1987) Phosphoethanolamine and ethanolamine are decreased in
Alzheimer's disease and Huntington's disease. Brain Res. 417, 389-392.

Fabelo N., Martín V., Marín R., Santpere G., Aso E., Ferrer I., Díaz M. (2012) Evidence for premature
lipid raft aging in APP/PS1 double-transgenic mice, a model of familial Alzheimer disease. J.
Neuropathol. Exp. Neurol. 71, 868-881.

Felipo V. and Butterworth R. F. (2002) Neurobiology of ammonia. Prog. Neurobiol. 67, 259-279.

neurochemical expression in the mouse brain determined by 1H MRS in vitro. NMR Biomed. 25, 52-
58.

Frisardi V., Panza F., Seripa D., Farooqui T., Farooqui A. A. (2011) Glycerophospholipids and
glycerophospholipid-
Prog. Lipid Res. 50, 313-330.

Gonzalez-Dominguez R., Garcia-Barrera T., Gomez-Ariza J. L. (2014a) Combination of metabolomic
and phospholipid-profiling approaches for the study of Alzheimer's disease. J. Proteomics 104, 37-47.

Gonzalez-Dominguez R., Garcia-Barrera T., Gomez-Ariza J. L. (2014b) Metabolomic study of lipids in
. J.

Pharm. Biomed. Anal. 98, 321-326.
González-Domínguez R., Garcia-Barrera T., Gomez-Ariza J. L. (2015) Application of a novel

metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow
-489.

Graham S. F., Chevallier O. P., Roberts D., Holscher C., Elliot C. T., Green B. D. (2013a) Investigation
of the human brain metabolome to identify potential markers for early diagnosis and therapeutic

Anal. Chem. 85, 1803-1811.
Graham S. F., Holscher C., McClean P., Elliott C. T., Green B. D. (2013b) 1H NMR metabolomics

disturbances in brain and plasma. Metabolomics 9, 974-983.
3-12.

Han X., Holtzman D. M., McKeel Jr D. W. (2001) Plasmalogen deficiency in early Alzheimer's disease
subjects and in animal models: molecular characterization using electrospray ionization mass
spectrometry. J. Neurochem. 77, 1168-1180.

Hansmannel F., Sillaire A., Kamboh M. I., Lendon C., Pasquier F., Hannequin D., Laumet G., Mounier
A., Ayral A. M., DeKosky S. T., Hauw J. J., Berr C., Mann D., Amouyel P., Campion D., Lambert J.

Dis. 21, 1013-1021.
Hashimoto K., Fukushima T., Shimizu E., Okada S., Komatsu N., Okamura N., Koike K., Koizumi H.,

Kumakiri C., Imai K., Iyo M. (2004) Possible role of D-
disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 385-388.

Haynes C. A., Allegood J. C., Park H., Sullards M. C. (2009) Sphingolipidomics: Methods for the
comprehensive analysis of sphingolipids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877,
2696-2708.

Hipkiss A. R. (2007) Could carnosine or related structures suppress Alzheimer's disease? J. Alzheimers
Dis. 11, 229-240.

Hu Z. P., Browne E. R., Liu T., Angel T. E., Ho P. C., Chan E. C. Y. (2012) Metabonomic profiling of
se model. J. Proteome Res. 11, 5903-5913.

34, 2799-2811.
Inoue K., Tsutsui H., Akatsu H., Hashizume Y., Matsukawa N., Yamamoto T., Toyo'oka T. (2013)

Metabolic profiling of Alzheimer's disease brains. Sci. Rep. 3, 2364.
Jankowsky J. L., Fadale D. J., Anderson J., Xu G. M., Gonzales V., Jenkins N. A., Copeland N. G., Lee

M. K., Younkin L. H., Wagner S. L., Younkin S. G., Borchelt D. R. (2004) Mutant presenilins
specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for
augmentation of a 42-specific g secretase. Hum. Mol. Genet. 13, 159-170.

Kaddurah-Daouk R., Rozen S., Matson W., Han X., Hulette C. M., Burke J. R., Doraiswamy P. M.,
Welsh-Bohmer K. A. (2011) Metabolomic changes in autopsy-
Alzheimers Dement. 7, 309-317.

Kaddurah-Daouk R., Zhu H., Sharma S., Bogdanov M., Rozen S. G., Matson W., Oki N. O., Motsinger-
Reif A. A., Churchill E., Lei Z., Appleby D., Kling M. A., Trojanowski J. Q., Doraiswamy P. M.,
Arnold S. E., Pharmacometabolomics Research Network (2013) Alterations in metabolic pathways

Kantarci K., Weigand S. D., Petersen R. C., Boeve B. F., Knopman D. S., Gunter J., Reyes D., Shiung
1H



-
1339.

Katajamaa M. and Oresic M. (2007) Data processing for mass spectrometry-based metabolomics. J.
Chromatogr. A 1158, 318-328.

and potential biomarkers. Int. J. Mol. Sci. 14, 1310-1322.
Lalande J., Halley H., Balayssac S., Gilard V., Déjean S., Martino R., Francés B., Lassalle J. M., Malet -

Martino M. (2014) 1

mouse model of Alzheimer's disease at four ages. J. Alzheimers Dis. 39, 121-143.
Lee W. J., Hawkins R. A., Peterson D. R., Viña J. R. (1996) Role of oxoproline in the regulation of

neutral amino acid transport across the blood-brain barrier. J. Biol. Chem. 271, 19129-19133.
Liang Z., Liu F., Grundke-Iqbal I., Iqbal K., Gong C. X. (2007) Down-regulation of cAMP-dependent

protein kinase by over-activated calpain in Alzheimer disease brain. J. Neurochem. 103, 2462-2470.
Lin A. L., Laird, A. R., Fox, P. T., Gao, J. H. (2012) Multimodal MRI neuroimaging biomarkers for

Int. 2012, 907409.
Lin S., Liu H., Kanawati B., Liu L., Dong J., Li M., Huang J., Schmitt-Kopplin P., Cai Z. (2013)

Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation
-5117.

Lin S., Kanawati B., Liu L., Witting M., Li M., Huang J., Schmitt-Kopplin P., Cai Z. (2014) Ultra high
resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed
region in two animal models. Talanta 118, 45-53.

Lindon J. C., Holmes E., Nicholson J. K. (2004) Metabonomics and its role in drug development and
disease diagnosis. Expert Rev. Mol. Diagn. 4, 189-199.

Llansola M., Sanchez-Perez A., Cauli O., Felipo V. (2005) Modulation of NMDA receptors in the
cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum 4, 154-161.

Maccioni R. B.
neurodegenerative disorders. Arch. Med. Res. 32, 367-381.

Malm T., Koistinaho J., Kanninen K. (2011) Utilization of APPswe/PS1dE9 transgenic mice in research
of Alzheimer's disease: Focus on gene therapy and cell-based therapy applications. Int. J. Alzheimers
Dis. 2011, 517160.

Neuropsychopharmacol. Biol. Psychiatry 35, 320-330.
Mosconi L., Mistur R., Switalski R., Tsui W. H., Glodzik L., Li Y., Pirraglia E., De Santi S., Reisberg B.,

Wisniewski T., de Leon M. J. (2009) FDG-PET changes in brain glucose metabolism from normal
. Eur. J. Nucl. Med. Mol. Imaging 36, 811-

822.
- A focus on

NMDA receptors. Neuropharmacology 76, 16-26.
Nuutinen S. and Panula P. (2010) Histamine in neurotransmission and brain diseases. Adv. Exp. Med.

Biol. 709, 95-107.
Piro J. R., Benjamin D. I., Duerr J. M., Pi Y. Q., Gonzales C., Wood K. M., Schwartz J. W., Nomura D.

K., Samad T. A. (2012) A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in
-623.

Pulfer M. and Murphy R. C. (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom.
Rev. 22, 332-364.

Redjems-Bennani N., Jeandel C., Lefebvre E., Blain H., Vidailhet M., Guéanta J. L. (1998) Abnormal
substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer
patients. Gerontology 44, 300-304.

Rowe C. C. and Villemagne V. L. (2013) Brain amyloid imaging. J. Nucl. Med. 41, 11-18.
Salek R. M., Xia J., Innes A., Sweatman B. C., Adalbert R., Randle S., McGowan E., Emson P. C.,

disease. Neurochem. Int. 56, 937-943.
Sangster T., Major H., Plumb R., Wilson A. J., Wilson I. D. (2006) A pragmatic and readily implemented

quality control strategy for HPLC-MS and GC-MS-based metabonomic analysis. Analyst 131, 1075-
1078.

Selkoe D. J. (2003) Folding proteins in fatal ways. Nature 426, 900-904.
Simic G. ., Mladinov M., Jovanov-Milosevic N., Kostovic I., Hof P. R. (2009) Does Alzheimer's

disease begin in the brainstem? Neuropathol. Appl. Neurobiol. 35, 532-554.



Sims B., Powers R. E., Sabina R. L., Theibert A. B. (1998) Elevated adenosine monophosphate
-391.

spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and
identification. Anal. Chem. 78, 779-787.

Storga D., Vrecko K., Birkmayer J. G. D., Reibnegger G. (1996) Monoaminergic neurotransmitters, their
precursors and metabolites in brains of Alzheimer patients. Neurosci. Lett. 203, 29-32.

Struble R. G. and Clark H. B. (1992) Olfactory bulb lesions in Alzheimer's disease. Neurobiol. Aging 13,
469-473.

Thauerer B., Zur Nedden S., Baier-Bitterlich G. (2012) Purine nucleosides: endogenous neuroprotectants
in hypoxic brain. J. Neurochem. 121, 329-342.

Trushina E., Nemutlu E., Zhang S., Christensen T., Camp J., Mesa J., Siddiqui A., Tamura Y., Sesaki H.,
Wengenack T. M., Dzeja P. P., Poduslo J. F. (2012) Defects in mitochondrial dynamics and
metabolomic signatures of evolving energetic stress in mouse models of familial
PLoS ONE 7, e32737.

van den Berg R. A., Hoefsloot H. C. J., Westerhuis J. A., Smilde A. K., van der Werf M. J. (2006)
Centering, scaling, and transformations: improving the biological information content of
metabolomics data. BMC Genomics 7, 142.

Van Schaftingen E., Rzem R., Veiga-da-Cunha M. (2009) L: -2-Hydroxyglutaric aciduria, a disorder of
metabolite repair. J. Inherit. Metab. Dis. 32, 135-142.

Veselkov K. A., Vingara L. K., Masson P., Robinette S. L., Want E., Li J. V., Barton R. H., Boursier-
Neyret C., Walther B., Ebbels T. M., Pelczer I., Holmes E., Lindon J. C., Nicholson J. K. (2011)
Optimized preprocessing of ultra-performance liquid chromatography/mass spectrometry urinary
metabolic profiles for improved information recovery. Anal. Chem. 83, 5864-5872.

Walter A., Korth U., Hilgert M., Hartmann J., Weichel O., Hilgert M., Fassbender K., Schmitt A., Klein
J. (2004) Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol.
Aging 25, 1299-1303.

Wang C., Xie S., Yang J., Yang Q., Xu G. (2004) Structural identification of human blood phospholipids
using liquid chromatography/quadrupole-linear ion trap mass spectrometry. Anal. Chim. Acta 525, 1-
10.

Wang G., Silva J., Dasgupta S., Bieberich E. (2008) Long-chain ceramide is elevated in presenilin 1
(PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56, 449-456.

Wang H., Lian K., Han B., Wang Y., Kuo S. H., Geng Y., Qiang J., Sun M., Wang M. (2014) Age-related
alterations in the metabolic profile in the hippocampus of the senescence-accelerated mouse prone 8: a
spontaneous Alzheimer's disease mouse model. J. Alzheimers Dis. 39, 841-848.

Woo D. C., Lee S. H., Lee D. W., Kim S. Y., Kim G. Y., Rhim H. S., Choi C. B., Kim H. Y., Lee C. U.,
Choe B. Y. (2010)
mutant human APP-PS1 by 1H HR-MAS. Behav. Brain Res. 211, 125-131.

Yao J. K., Wengenack T. M., Curran G. L., Poduslo J. F. (2009) Reduced membrane lipids in the cortex
Neurochem. Res. 34, 102-108.



Fig. 1 Scores plots of PCA (A) and PLS-DA (B) models for hippocampus

Fig. 2 Overview of hippocampal metabolomic changes in APP/PS1 mice related to purine metabolism

Table 1 Statistical parameters of PLS-DA models for hippocampus (HP), cortex (CT), striatum (ST),
cerebellum (CB), and olfactory bulb (OB). A: number of latent components; R2: variance explained; Q2:
variance predicted

HP CT ST CB OB

GC/MS
A 4 4 3 3 3
R2 0.997 0.992 0.991 0.996 0.998
Q2 0.735 0.719 0.69 0.61 0.722

UPLC-
ESI(+)/MS

A 4 4 5 5 6
R2 0.992 0.99 0.95 0.995 0.992
Q2 0.922 0.924 0.788 0.944 0.89

UPLC-
ESI(-)/MS

A 5 4 6 6 7
R2 0.991 0.983 0.981 0.992 0.988
Q2 0.877 0.794 0.8 0.844 0.862



Table 2 Low molecular weight metabolites identified as potential markers for discrimination between
APP/PS1 and control mice. HP, hippocampus; CT, cortex; ST, striatum; CB, cerebellum; OB, olfactory
bulb. NS: non significant change

metabolite RT (min)*
fold change
HP CT ST CB OB

amino acids
glycine 4.42a, 0.28b 0.72 0.62 0.74 1.47 NS
serine 4.72a, 0.28b 1.21 NS 1.35 NS NS
threonine 4.95a 0.66 NS NS NS NS
aspartate 6.07a 0.54 0.46 NS NS 0.69
pyroglutamate 6.28a, 0.28b 0.75 0.67 0.85 2.11 NS
glutamate 6.95a, 0.28b 0.46 0.72 1.46 1.49 0.62
N-acetylaspartate 7.18a 0.75 0.46 1.58 1.22 0.72
valine 0.28b 1.14 1.07 1.10 NS NS
histidine 0.28b NS 0.71 NS NS NS
taurine 0.28b 0.92 0.92 0.73 0.85 NS
nucleotides
adenine 0.32b 0.70 0.90 NS NS NS
hypoxanthine 8.47a, 0.40b 1.41 1.46 1.46 1.53 NS
xanthine 9.85a 1.48 1.79 1.46 NS NS
inosine 13.05a, 0.42b 1.78 1.76 2.24 2.23 NS
adenosine 13.38a 1.21 1.35 NS 1.67 NS
guanosine 14.02a 1.24 1.24 1.58 1.47 NS
AMP 0.36b 0.80 0.89 0.82 NS NS
cAMP 0.36b 0.79 0.84 0.82 NS NS
cGMP 0.36b 0.87 NS NS NS NS
UMP 0.36b 0.88 NS NS NS NS
phosphoribosyl-AMP 0.36b 0.91 0.89 0.82 NS NS
others
lactic acid 2.70a 0.76 0.67 0.90 0.63 0.58
urea 3.97a 0.38 0.60 0.70 0.58 0.42
glycerol 4.08a 1.52 1.41 2.06 1.77 NS
malic acid 5.88a 0.78 0.65 NS NS NS
creatinine 6.38a 0.53 0.59 0.67 0.67 0.66
2-hydroxyglutarate 6.58a NS 0.69 NS 0.58 NS
pyrophosphate 7.08a 0.84 NS NS NS NS
ethanolamine 7.38a 0.53 0.45 0.69 0.82 0.48
glycerol-3-phosphate 7.97a 1.39 1.84 1.43 1.38 NS
citric acid 8.39a 0.45 0.61 0.69 0.73 NS
myoinositol 10.22a 2.11 1.37 1.82 2.07 1.34
glucose-6-phosphate 10.93a 0.67 NS NS NS NS
cholesterol 16.47a 0.25 0.49 0.43 0.23 0.35
choline 0.28b 1.25 1.30 1.28 NS NS
phosphocholine 0.28b 1.16 1.25 1.30 1.13 NS
glycerophosphocholine 0.28b 1.17 1.28 1.41 1.18 NS
dopamine 0.28b 0.94 NS 0.83 NS NS
lactose 0.33b 1.18 NS NS NS NS
* retention times for metabolites detected by GC/MSa and/or UPLC/MSb. Abbreviations: AMP, adenosine
monophosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate;
UMP, uridine monophosphate.

Table 3 Lysophospholipids identified as potential markers for discrimination between APP/PS1 and
control mice. HP, hippocampus; CT, cortex; ST, striatum; CB, cerebellum; OB, olfactory bulb. NS: non
significant change

metabolite
RT
(min)

fold change
HP CT ST CB OB

LPI(20:4) 4.07 1.56 1.60 1.67 NS NS
LPE(22:6) 4.28 1.62 1.63 1.57 1.59 1.66



LPE(20:4) 4.28 1.79 1.72 1.35 NS 1.81
LPI(16:0) 4.32 1.53 NS NS NS NS
LPC(22:6) 4.47 1.53 1.45 NS NS 1.56
LPC(20:4) 4.47 1.46 1.61 1.61 NS 1.58
LPI(18:0) 4.87 1.62 1.84 NS 1.84 1.71
LPC(18:1) 4.88 1.54 1.38 NS NS 1.61
LPI(20:1) 4.88 1.41 NS NS NS NS
LPC(16:0) 4.93 1.28 1.36 1.67 NS NS
LPE(18:0) 5.22 NS 1.49 NS NS NS
LPC(18:0) 5.67 1.36 1.56 1.74 1.56 NS
Abbreviations: LPI, lysophosphoinositol; LPE, lysophosphoethanolamine; LPC, lysophosphocholine.

Table 4 Phospholipids and sphingomyelins identified as potential markers for discrimination between
APP/PS1 and control mice. HP, hippocampus; CT, cortex; ST, striatum; CB, cerebellum; OB, olfactory
bulb. NS: non significant change

metabolite
RT
(min)

fold change
metabolite

RT
(min)

fold change
HP CT ST CB OB HP CT ST CB OB

decreased phospholipids increased phospholipids
PC(18:3/22:6) 8.40 NS 0.67 0.66 NS NS PC(20:4/20:4) 8.17 NS 1.36 NS NS NS
PC(18:1/22:6) 8.46 NS 0.71 0.63 NS 0.66 PC(22:6/22:4) 8.40 1.46 1.39 NS NS NS
PC(18:0/22:6) 8.47 0.67 0.74 0.59 0.70 NS PC(16:0/18:2) 8.57 1.61 1.80 1.55 1.80 1.43
PE(22:6/22:6) 7.68 0.68 NS NS NS 0.61 PC(18:0/20:4) 8.86 NS 1.36 NS NS NS
PE(16:1/20:4) 7.70 0.62 0.77 0.74 0.74 NS PC(16:0/18:1) 8.87 NS 1.36 NS NS NS
PE(20:4/22:6) 7.73 0.68 NS NS NS 0.62 PC(18:1/18:0) 9.19 1.36 1.33 NS NS NS
PE(18:3/22:6) 7.97 NS 0.65 NS NS NS PC(18:0/22:4) 9.20 NS 1.38 NS NS NS
PE(16:0/22:6) 7.97 NS 0.73 NS 0.73 0.66 PC(16:0/18:0) 9.25 NS 1.45 NS NS NS
PE(16:1/18:1) 8.02 0.70 NS NS 0.75 NS PE(20:4/20:4) 7.79 NS 1.32 NS NS NS
PE(18:1/20:4) 8.10 0.71 NS NS NS 0.64 PE(20:4/22:4) 8.11 NS 1.50 NS 1.39 NS
PE(16:0/18:1) 8.31 0.65 NS NS 0.73 NS PE(18:0/20:4) 8.40 NS 1.43 NS NS NS
PE(18:1/18:1) 8.40 0.63 0.66 0.70 0.77 0.72 PE(18:0/22:5) 8.58 NS 1.61 NS NS NS
PE(18:1/18:0) 8.66 0.72 NS NS NS NS PE(18:0/22:4) 8.66 1.43 1.62 NS NS NS
PPE(18:1/16:1) 8.20 0.62 0.66 NS NS NS PPE(16:0/20:4) 8.20 NS 1.57 NS NS NS
PPE(18:1/20:4) 8.25 0.72 0.74 NS NS NS PPE(18:0/20:4) 8.58 NS 1.42 NS NS NS
PPE(18:1/22:6) 8.25 NS 0.77 NS NS 0.64 PPE(18:0/22:4) 8.85 NS 1.38 1.86 1.70 1.37
PPE(18:1/16:0) 8.49 0.68 NS NS NS NS PS(18:2/18:1) 7.97 1.33 NS NS NS NS
PPE(18:1/18:1) 8.58 0.58 0.61 NS NS 0.61 PS(18:0/22:5) 8.27 1.55 1.38 NS NS NS
PPE(18:0/18:1) 8.85 0.70 0.72 NS 0.72 NS PS(18:0/20:4) 8.37 NS 1.62 NS NS NS
PPE(18:1/20:1) 8.92 0.71 NS NS NS NS PS(18:1/18:0) 8.37 NS 1.28 NS NS NS
PS(22:6/22:6) 7.35 0.71 0.77 0.63 NS NS PS(18:0/20:1) 8.67 1.33 NS NS NS NS
PS(20:4/22:6) 7.40 0.50 NS NS NS NS PI(18:0/20:4) 7.94 NS 1.51 NS NS NS
PS(18:1/22:6) 7.74 0.67 NS 0.60 NS NS PG(18:0/20:4) 7.99 1.42 1.40 NS NS NS
PI(16:0/22:6) 7.51 NS 0.78 NS NS NS PG(18:1/22:4) 8.01 1.37 NS NS NS NS
PI(18:1/18:0) 8.22 0.68 NS NS NS NS SM(d18:1/16:0) 8.32 NS 1.37 NS 1.34 NS
PG(16:1/22:6) 7.35 0.73 0.68 NS NS NS SM(d18:1/18:0) 8.70 NS 1.60 NS 1.55 NS
SM(d18:1/18:1) 8.38 0.67 NS NS NS NS
SM(d18:1/23:1) 9.55 0.63 0.69 NS 0.69 0.60
SM(d18:1/24:1) 9.76 0.62 0.58 0.67 0.62 0.60
Abbreviations: PC, phosphocholine; PE, phosphoethanolamine; PPE, plasmenylethanolamine; PS,
phosphoserine; PI, phosphoinositol; PG, phosphoglycerol; SM, sphingomyelin.


