
Abstract—Elevators are among the oldest and most widespread
transportation systems, yet their complexity increases rapidly to
satisfy customization demands and to meet quality of service
requirements. Verification and validation tasks in this context
are costly, since they rely on the manual intervention of domain
experts at some points of the process. This is mainly due to
the difficulty to assess whether the elevators behave as expected
in the different test scenarios, the so-called test oracle problem.
Metamorphic testing is a thriving testing technique that alleviates
the oracle problem by reasoning on the relations among multiple
executions of the system under test, the so-called metamorphic
relations. In this practical experience paper, we report on the
application of metamorphic testing to verify an industrial elevator
dispatcher. Together with domain experts from the elevation
sector, we defined multiple metamorphic relations that consider
domain-specific quality of service measures. Evaluation results
with seeded faults show that the approach is effective at detecting
faults automatically.
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I. INTRODUCTION

Elevator installations are Cyber-Physical Systems (CPSs)

that must satisfy vertical transportation demands while pro-

viding the best possible Quality of Service (QoS) to its users.

Nowadays, there is an increasing amount of metrics that can

be used to measure the QoS of a system of elevators, such as

the Average Waiting Time (AWT) for the passengers or the

energy consumption of the elevators [5], [32].
In order to ensure that an elevator installation complies with

the customer demands, a thorough verification and validation

process must ensure that all the relevant QoS measures are

within acceptable boundaries. Unfortunately, this verification

and validation process is expensive, as manual intervention of

domain experts is required at certain points. Since the dispatch-

ing algorithm is thoroughly tested in several different elevators

installations, and each of them has different transportation

demands and requirements, it is usually difficult to determine

the exact QoS measure (e.g., the AWT value) that should be

expected from a test, i.e., it is difficult to predict the test

outcome. The resulting inability to determine whether a test

outcome is correct or not is known as the oracle problem [6].

As a consequence, a manual assessment by the test engineer

is often needed in order to determine whether the outcome of

a test is good or not, which is becoming increasingly costly

as these systems become more complex and customizable.
Metamorphic testing [10], [28] alleviates the oracle prob-

lem by adopting a singular approach to software testing: in-

stead of verifying the correctness of each individual execution

of the program under test, metamorphic testing exploits known

input and output relations that should hold among multiple
executions of the program, the so-called metamorphic rela-

tions. Metamorphic testing has been used in many domains,

such as machine learning applications, web services, computer

graphics, and compilers [11], [26]. This technique has also

been successfully applied in the domain of CPSs, such as for

testing wireless sensor networks [9], autonomous drones [18],

or self-driving cars [33], [37].

Since its introduction back in 1998, most applications of

metamorphic testing have focused on the detection of func-

tional faults. More lately, however, some authors have explored

applications of metamorphic testing in the context of non-

functional testing [8], [15], [29], [30]. Recently, Segura et

al. [29], [30] proposed the concept of performance metamor-

phic testing, where the metamorphic relations are defined in

terms of how the performance of the program under test (e.g.,

execution time) is expected to change when making certain

changes in the program’s inputs.

In this practical experience report paper, we describe how

we applied metamorphic testing for the automated identifica-

tion of bugs in an industrial elevator dispatcher. Analogously

to performance metamorphic testing, we propose metamorphic

relations that relate the performance (QoS metrics) of several

executions of the dispatcher under test. However, unlike previ-

ous work on performance metamorphic testing, and as a novel

contribution, our approach uses performance (QoS metrics) as

a proxy to detect functional bugs rather than performance bugs.

For example, an unexpected value for the AWT may indicate

a wrong assignment of the elevators by the dispatcher due to

a (functional) bug in the program.

We evaluated the fault-detection capability of the proposed

metamorphic relations using mutation testing. The paper de-

scribes the steps followed, as well as the lessons learned. Over-

all, our approach improved the testing process by providing an

automated mechanism to identify undesirable behaviours from

the dispatcher. However, we found that some manual work and

the advice from domain experts were still needed to tune the

metamorphic relations in order to achieve the best results. This

manual endeavour, however, is an upfront investment that can

be compensated by reusing the metamorphic relations during

the development of new versions of the product.

The rest of the paper is structured as follows: Section II

provides some background on metamorphic testing. Section
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III presents our industrial case study and its testing process.

Section IV describes the metamorphic relations we propose

for the domain of elevation. Section V presents our empirical

evaluation. Section VI describes the main lessons learned from

our study and its future prospects. Section VII points out the

potential threats to the validity of our study. Section VIII

presents the related work and points out our contributions to

the state of the art. Section IX concludes the paper.

II. METAMORPHIC TESTING

Metamorphic testing (MT) [10], [28] aims to detect bugs by

looking at the relations among the inputs and outputs of two

or more executions of the program under test, so called meta-
morphic relations (MRs). For example, consider the program

merge(L1, L2) that merges two lists into a single ordered

list without duplicated elements. Checking if the output of

the program is correct for two non-trivial input lists would

be difficult: this is an instance of the oracle problem. The

order of the parameters should not influence the result, which

can be expressed as the following MR: merge(L1, L2) =
merge(L2, L1). In this relation, (L1, L2) is the source test
case, and (L2, L1)—created by switching the two input lists—

is the follow-up test case. This metamorphic relation can be

instantiated into one or more metamorphic tests by using

specific input values and checking whether the relation holds,

e.g., merge([a, k, d], [t,m]) = merge([t,m], [a, k, d]). If the

relation is violated, the metamorphic test is said to have failed,

indicating that the program under test contains a bug.

MRs can often be defined at a very abstract level, rep-

resenting not a single relation, but a set of relations. When

this happens, relations are referred to as metamorphic relation

patterns [25], [27], [36]. Zhou et al. [36] defines a metamor-
phic relation pattern as an abstraction that characterizes a set

of (possibly infinitely many) MRs. MR patterns have proved

to be very helpful on guiding testers on the identification of

MRs. As an example, Zhou et al. [36] proposed a symmetry
MR pattern, based on the observation that most systems can

be observed from different viewpoints from which the system

appear the same. For example, an AI-enabled object recog-

nition system should recognize the same objects in a video,

regardless of whether it is played forwards or backwards. MR

patterns are often defined as incomplete MRs where only the

relation among the inputs or the outputs is specified. These

are referred to as metamorphic relation input patterns [36]

and metamorphic relation output patterns [27], respectively.

Most of the works on metamorphic testing have focused

on the detection of functional faults [11], [26]. Recently,

Segura et al. [29], [30] proposed the concept of performance
metamorphic testing, where MRs are defined in terms of how

the performance of the program under test (e.g., execution

time) is expected to change when making certain changes in

the program’s inputs. For example, intuitively, the execution

time required to merge two lists should be equal or greater if

more elements are added to both lists. This can be expressed

as the following (performance) MR: T (merge(L1, L2)) ≤
T (merge(L1 ∪ L3, L2 ∪ L4)), where L3 and L4 are two

lists containing k random items each, with k > 0. Research

on performance metamorphic testing is thriving with new

applications emerging in domains such as code generators [8]

and data analytic platforms [15].

III. ELEVATION CASE STUDY

An elevator is a complex Cyber-Physical System (CPS)

where software and hardware interact with the goal of trans-

porting passengers safely and by considering certain QoS

measures. Among the components of the elevator installation,

the traffic master is in charge of managing the passenger

flow. This element is composed of different software modules,

including the dispatching algorithm, which decides which

elevator should attend each call. The dispatching algorithm

has a high impact on the QoS measures of the elevator

installation. These QoS measures include, among others, the

Average Waiting Time (AWT), which refers to the average

time passengers need to wait until they are attended by an

elevator, or the Average Time To Destination (ATTD), which

refers to the average time passengers wait until they arrive to

their destination. More recently, with the goal of providing

greener elevator installations, the dispatching algorithms have

started to consider energy consumption as a new QoS measure.

The elevators dispatching algorithms are highly complex,

as they need to consider several functionalities for a wide

range of types of elevators installations. Orona has a large

suite of elevators dispatching algorithms, which need constant

maintenance in order to address new functional requirements,

new QoS measures, legislative changes, bug fixing, hardware

obsolescence or system degradation, adaptation to building

requirements, etc. When changes are made, Orona has a

well established verification and validation process of the

dispatching algorithm before deploying the new release in real

installations. The overall verification and validation process

is shown in Figure 1. In a first stage, tests are executed

within a Software-in-the-Loop (SiL) level. The software of the

dispatching algorithm is an executable that communicates with

a domain-specific simulator named Elevate. Elevate simulates

all the physical components of the elevator and provides a set

of QoS measure results when the simulation has finished. The

following stage is related to the HiL stage. In this case, the

software of the dispatching algorithm is integrated with the rest

of software and hardware infrastructure, encompassing, among

others, real-time operating systems, communication protocols,

and the real-target at which the software is executed. At this

stage, the tests are executed in real-time, and their goal is

to validate the functional correctness of the release within the

real infrastructure. Lastly, the software is deployed into the real

system at operation. The elevator maintainer performs a set of

manual tests to ensure that the software has been successfully

deployed and that it works correctly. As the test level becomes

more realistic, the test execution cost increases significantly.

Therefore, it is important to detect bugs as early as possible

during the verification and validation process.

At the SiL and HiL test levels, two types of tests are carried

out: (1) short-scenario tests and (2) full-day tests. The former’s



Fig. 1: Process for testing the elevator dispatching system [4]

objective is to test specific functional properties by providing

short and isolated scenarios. The simulations performed are

usually 1 to 6 minutes long. In the latter, the objective is to test

the behavior of a system of elevators by mimicking a normal

full-day (or sub-scenarios of it) in the life-cycle of an elevator.

These tests simulate the passenger flow traffic of 2 to 18 hours.

In this case, to assess whether the test has passed or failed,

certain QoS measures (e.g., AWT) are considered (both overall

values and values within time-series). This paper is focused

on short-scenario tests, where determining the expected test

outputs is not evident, and in occasions, infeasible. This is, to

a large extent, caused by (1) the dynamic environment in which

the elevators operate and (2) the building installation. For the

dynamic environment, changing a property of a specific call of

a passenger (e.g., its arrival time or its destination floor) can

have a drastic impact on the overall behavior of the system

of elevators. As for the building installation, the outcome of a

test is completely influenced by the elevator’s characteristics.

For instance, the AWT highly depends on several properties,

including the number of elevators, the dynamic properties of

each elevator (e.g., speed, acceleration, etc.), the maximum

number of passengers each elevator can lift, etc. That is why in

most of these short-scenario tests, manual intervention by the

test engineer is required to determine whether a test has passed

or failed. For this manual intervention, domain experience is

also often needed.

A test for the dispatching algorithm is constituted by (1)

the test input and (2) the building installation information.

The test input consists in a list of passengers which arrive

to a landing, call an elevator, and request a destination. For

each passenger, the following information is provided: (1) the

arrival time, (2) the arrival floor, (3) the destination floor, (4)

the weight of the passenger, (5) capacity factor by mass, (6) the

loading time, (7) the unloading time and (8) how the passenger

behaves when not all elevators serve all floors. Regarding the

building installation information, it refers to an XML file with

all related information of the building and elevators installation

at which the SUT is being tested. For instance, its information

encompasses the number of floors of a building, number of

elevators, floors served by each of the elevators, maximum

weight each elevator can lift, etc.

Different elevator dispacthers can be used to optimize

different objectives depending on the installation requirements

and traffic profiles. For example, the dispatcher that we use

for our evaluation is based on a rule based algorithm which

optimizes for the best AWT.

We assessed several QoS metrics among the ones typically

used within the domain in order to evaluate passenger experi-

ence, particularly the ones that we expected could help reveal

faulty behaviors and inefficient dispatching within test cases.

The following are the specific metrics we selected for our MRs

after discussing with domain experts:

Average Waiting Time (AWT). This is the average time

from the moment a landing call is issued until an elevator stops

to attend the call. This metric does not take the transit times

for the calls issued from inside the elevator into account. This

is among the most important metrics for providing a good user

experience [5], and as we previously mentioned, is the metric

for which the dispatcher we test is designed to optimize.

Total Distance (TD). This is the sum of the distances

traversed by all the elevators of the building. We measure this

distance in floors rather than actual distance, although this

would not make any difference for our experiments because

the building we used has equally spaced landings. We consider

this metric as relevant because an unexpected value may reveal

behaviours such as consistently not assigning elevators which

are close to the landing calls or unnecessarily dispatching

multiple elevators to a single call.

Total Movements (TM). This is the sum of all the

movements (i.e., engine start-ups) of all the elevators of the

building. We considered that this metric may reveal inefficient

dispatching or bugged behaviours in a similar way to Total
Distance. When compared with Total Distance, we expected

this metric to be easier to predict, although potentially less

effective in detecting failures.

IV. METAMORPHIC RELATIONS

In this section, we describe the MRs proposed for the

identification of failures in elevator dispatchers. Specifically,



we propose three metamorphic relation input patterns (MRIPs)

and three specific MRs derived from each pattern, each of

which is related to one of the QoS metrics described in

the previous section. Each MRIP describes an input relation

between the source and a follow-up test case exploited in

different MRs.

These MRs are defined based on non-functional properties

(the QoS metrics) of the system, which in practice makes

this approach similar to performance metamorphic testing.

However, in contrast to previous work on performance meta-

morphic testing, our aim is detecting functional failures (i.e.,

incorrect or inefficient choices from the dispatching algorithm)

rather than performance bugs.

The effectiveness of the metamorphic relations can be

severely affected by the features of the test cases that are used,

such as their duration. For our simulation-based experimental

setup, it is not feasible to perform metamorphic testing with

day-long traffic profiles, since the time required to execute a

significant amount of source and follow-up test cases would be

exceedingly long. Therefore, the MRs we present and evaluate

in this paper have been designed with short-scenario test cases

in mind. We hypothesize that some of the proposed MRs

could also be applicable to large test cases, but that should

be investigated further.

The execution of each test case is expressed as a call to the

operation serve(E,C), where E is the set of initial elevator

positions (|E| being the number of elevators), and C is the

list of passenger calls, where each c ∈ C has a source and

destination floor, and a timestamp in which the passenger will

issue a landing call from the source floor. For the sake of

simplicity, the relations used in our work are composed of

two test cases, the source test case and one follow-up test

case, although they could be easily generalized to two or more

follow-up test cases. When needed, we denote the source test

case as (Es, Cs) and the follow-up test case as (Ef , Cf ).
The testing based on QoS metrics is inherently complex due

to the lack of a clear line between acceptable and failing be-

haviours. Although the manufacturer usually defines a worst-

case value for the QoS metrics, the elevators should perform

better than that under most circumstances, so there are many

potential failures that cannot be detected by only checking

these minimum requirements. This task becomes even harder

when we consider that there are many specific scenarios where

apparently faulty behaviour is actually correct, such as in

cases where there are trade-offs between different QoS metrics.

In order to mitigate this issue, inspired by [23], we defined

tolerance thresholds that allow small differences between the

expected and actual results to pass. Therefore, when we

express a MR as serve(Ef , Cf ) � F (serve(Es, Cs)), where

F can be any formula over the source and follow-up test case

inputs and outputs, its actual implementation will have the

form of serve(Ef , Cf ) ≤ a · F (serve(Es, Cs)) + b, where a
and b are tolerance values specific to each MR. The specific

values of these parameters were defined by consulting domain

experts and experimenting with a subset of the test cases

in order to ensure that the non-faulty system (the dispatcher

we use for our experiments, which is a validated production

version) would not violate the MRs. While in most cases

the value of a could just be 1, we found that a constant

tolerance b was always needed for some corner cases. This

was particularly needed for very short test cases, since a lot of

these MRs describe expected trends rather than invariants. For

simplicity, our descriptions of the MRs will not specify these

tolerance thresholds, but will instead use relational operators

that express inaccuracy (� and �).

Furthermore, in order to differentiate slight deviations and

huge differences between the expected value of a QoS metric

and the actual value, all of our MRs provide a quantitative

verdict which indicates the severity of the failures. These

quantitative verdicts are obtained by transforming the MRs

with the form serve(Es, Cs) � F (serve(Ef , Cf )) into

min(F (serve(Ef , Cf ))− serve(Es, Cs), 0.0). An analogous

transformation can also be performed for MRs with the form

serve(Es, Cs) � F (serve(Ef , Cf )). With this transforma-

tion, the verdict from a metamorphic test is a decimal value

ranging from 0.0 to −∞, with 0.0 indicating a PASS verdict

and a negative value indicating a FAIL that is more severe the

closer to negative infinity it is. These quantitative verdicts can

be used to direct the attention of the test engineers towards

the most severe failures, which generally should be prioritized.

Furthermore, the quantitative verdicts can also enable the use

of additional techniques that can improve the testing process,

such as using falsification-based automatic test case generation

[2], [34] in order to find the test cases that are closer to

violating MRs, thus increasing the fault detection capability of

the test suite and reducing the overall cost of testing. In fact,

Segura et al. have already proposed transforming performance

metamorphic relations into fitness functions in order to guide

search-based testing [29].

Next, we describe the patterns and relations used in our

case study:

MRIP1: Additional calls. This pattern represents those rela-

tions where the follow-up test case is constructed by adding

one or more passenger calls C ′ to the passenger calls list in

the source test case. Formally, the input relation is defined

as follows: Cf = Cs ∪ C ′. When this happens, the Total

Movements (TM) of the follow-up test case should either be

similar or higher than in the source test case. Furthermore, we

can set the worst-case cost for executing the additional call

(TMworst(C
′), which is always 2 movements per call, one to

reach the call floor and the other to get to the destination) as

the upper bound for their increase. For instance, an additional

call should cost two additional movements at worst: one for the

landing call and one for the car call. This can be represented

as the following relation:

TM(serve(E,Cf ))− TM(serve(E,Cs)) � 0

TM(serve(E,Cf ))− TM(serve(E,Cs)) � TMworst(C
′)

(MR1TM)

An analogous relation is expected to hold using the Total

Distance (TD) metric (MR1TD), where TDworst(C
′) is calcu-



lated as the sum of max(FLOORS − c.source, c.source −
1) + |c.source − c.destination| for each c ∈ C ′ (the first

part being the worst-case distance from the attending elevator

to the source floor in a building with FLOORS floors and

the second part being the distance from the source to the

destination floor).

We can also define a similar relation for the Average

Waiting Time (AWT), but in this case the worst possible Total

Waiting Time (TWT), i.e., the sum of all the waiting times,

is calculated and then divided by the total number of calls in

order to calculate the maximum change to the AWT, which

could be either an increase or a decrease:

|AWT (serve(E,Cf ))−AWT (serve(E,Cs))| � TWTworst(C
′)

|Cf | (MR1AWT)

where TWTworst(C
′) is calculated with a linear function

which approximates the worst-case time it would take an

elevator to arrive for each c ∈ C ′, and then summing the

times for each call. This is based on the worst-case arrival

distance (max(FLOORS − c.source, c.source − 1), same as

in TDworst(C
′)).

MRIP2: Additional elevators. In this pattern, the follow-

up test case is constructed by either adding or removing

one or more elevators, E′, to the set of available elevators,

i.e., Ef = Es ∪ E′ if we add elevators or Ef = Es\E′

if we remove them. This transformation will affect each of

the proposed QoS metrics differently. For simplicity, all of

the equations for these MRs have been written under the

assumption that the number of elevators is increased, i.e.,

|Ef | > |Es|. For the opposite cases, the corresponding MRs

can be easily inferred by swapping the Es and Ef occurrences

on all the given equations.

For the AWT, we can expect that after adding more elevators

the waiting times will remain unchanged in the worst case,

or be reduced otherwise, since the algorithm is supposed to

optimize for the best AWT and has more resources (available

elevators) to work with. Furthermore, we expect that the AWT

cannot be reduced by a factor greater than the factor in which

the number of elevators has been increased. For instance, if

we triple the number of elevators available, the AWT can be

reduced up to a third of the original test case:

AWT (serve(Ef , C))−AWT (serve(Es, C)) � 0

AWT (serve(Ef , C))

AWT (serve(Es, C))
� |Es|
|Ef |

(MR2AWT)

As for the TD, increasing the number of elevators can, on

the one hand, reduce the distance traversed by the elevators

due to the fact that the more elevators there are, the higher

the chance of having a closer elevator when a landing call

is issued. On the other hand, the distance may also increase

because the dispatcher sent multiple elevators for multiple calls

in the same direction, increasing the traversed distance in order

to reduce the waiting times. For either case, we can define the

upper bound for the change of TD based on the factor in

which the number of elevators has been increased, similar to

the AWT:

|Es|
|Ef | �

TD(serve(Ef , C))

TD(serve(Es, C))
� |Ef |
|Es| (MR2TD)

For TM, we expect this metric to remain unchanged or

increase when adding more elevators, since unlike TD, the

elevators will need to start-up their engines to move regardless

of proximity, whereas the potential increase of this metric due

to moving multiple elevators in parallel still applies. On the

other hand, the number of elevator start-ups (TM) should not

increase by a factor higher than the increase in the number of

elevators:

TM(serve(Ef , C))− TM(serve(Es, C)) � 0

TM(serve(Ef , C))

TM(serve(Es, C))
� |Ef |
|Es|

(MR2TM)

MRIP3: Initial position change. This pattern represents those

MRs where the initial positions of all the elevators Es are ran-

domly changed to Ef , where |Ef | = |Es|. This transformation

could result in either improving, deteriorating or not affecting

the QoS metrics, since it is difficult to predict its effects on

the test case execution. Nevertheless, we can define an upper

bound on the maximum effect that this transformation should

have. For TM and TD, we can define this upper bound as the

cost for transitioning from the source initial positions Es to

the follow-up initial positions Ef :

|TM(serve(Ef , C))− TM(serve(Es, C))| � TMworst(Es, Ef ) (MR3TM)

where TMworst(Es, Ef ) is the worst case scenario cost for

moving the elevators from Es to Ef . Another relation with

the same pattern can be instantiated for the TD (MR3TD).

For the AWT, the longer a test case is, the smaller the effect

we can expect from this transformation, since it only affects

the initial state of the system, while in longer test cases the

dominant factors that will affect the AWT will be the passenger

calls and the dispatcher algorithm. Because of this, we divide

the estimated maximum cost by the count of passenger calls

|C|:
|AWT (serve(Ef , C))−AWT (serve(Es, C))| � TWTworst(Es,Ef )

|C| (MR3AWT)

V. EMPIRICAL EVALUATION

In this section, we describe the experimental validation per-

formed to assess the fault-detection capability of the proposed

MRs in an industrial elevator dispatcher.

A. Mutant Generation

Mutation testing was employed to assess the fault detection

capability of the proposed approach in the context of elevators

dispatching algorithms. This approach has been found to be a

valid substitute for testing with real faults [16]. Specifically, we

created 99 faulty variants (mutants) of the elevator dispatcher

with seeded faults. Faults were manually seeded by a domain

expert who applied syntactic changes to the source code of the



dispatcher, which is written in the C programming language.

Specifically, faults were seeded applying traditional mutation

operators, including arithmetic, logical and relational operator

mutations [1]. Faults were introduced in a uniform manner

throughout the sections of the source code that are relevant in

the simulation environment. Notice that although it is not a

large number of mutants, we used simulation-based testing to

execute the tests, which requires a significant amount of time.

In fact, the number of mutants employed in our evaluation is

similar or higher to other approaches using simulation-based

testing [3], [19], [22].

After executing the test cases generated for the experiments,

10 out of 99 mutants blocked the simulation indefinitely in

some test cases. Thus, we opted for discarding these mutants,

since such trivial failures could be easily detected by setting

a time out. This resulted in a final set of 89 mutants used

in our evaluation. Furthermore, all the mutants were reviewed

by a domain expert to check that they were not semantically

equivalent to the original program.

B. Test Case Generation

As mentioned in Section IV, our empirical evaluation is

based on short-scenario test cases, which have a duration of

roughly 3 minutes on average. We chose to use this type of test

cases as opposed to longer ones because they allow performing

a significant amount of metamorphic tests for all the mutants

with a reasonable total execution time for our experiments.

Source test cases were randomly generated starting from a

template project from a real building with 10 floors and 6

elevators. For each generated test case, we selected a random

number of elevators (between 2 and 6), a random initial floor

for each elevator, and a random passenger list generated by

uniformly distributing a number of calls |C| across a fixed

time period [0, T ). The source and destination floors for each

call c ∈ C were also uniformly selected from the 10 landing

positions of the building. We used T values of 10 seconds, 2

minutes, and 4 minutes. As for the number of calls |C|, our

source test cases have varying densities, ranging from 2 up to

36 calls per minute (
|C|
T ). In total, we generated 140 random

source test cases.

Follow-up test cases were generated by applying changes

to the input of source test cases, as described in the proposed

MRIP, namely:

• MRIP1. Additional calls. An additional random call is

inserted to the passengers list. The time of the call is

random within the range [0, Tc], where Tc is the time of

the last call in the source test case. For our experiments,

we only add a single additional call, since the number of

calls on each test case is small enough for this to have a

noticeable effect on their execution.

• MRIP2. Additional elevators. The number of available

elevators |E| is changed to a different value |E′|, which is

randomly sampled from the range of possible values [2, 6]
excluding |E|. If |E′| > |E|, the initial positions of the

first |E| elevators remain the same, while the additional

elevators get randomized. On the other hand, if |E′| <

|E|, the initial positions remain the same as the first |E′|
elevators in E.

• MRIP3. Initial position change. The initial positions of all

the elevators are shuffled, without changing the number

of available elevators.

In total, we generated 1200 different pairs of source and

follow-up test cases: 420 for MRIP1, 360 for MRIP2, and

420 for MRIP3. These test cases, plus the initial set of 140

source test cases, were executed against the original dispatcher

and the 89 mutants resulting in a total of (140+1200)×90 =
120, 600 executions.

It is worth noting that each pair of source and follow-up test

cases were used to check several MRs (those derived from the

corresponding pattern). Specifically, each pair of test cases

resulted in 3 metamorphic tests, since we derive 3 different

MRs for each MRIP (one for each QoS metric). Considering

this, there are a total of (3× 420) + (3× 360) + (3× 420) =
3600 metamorphic tests per mutant, and 89×3600 = 320, 400
metamorphic tests in total for all the mutants.

C. Results and Discussion

The test generation, execution (in simulator) and metamor-

phic tests have been fully automated with Python scripts,

which have been employed for our empirical evaluation.

Our evaluation mainly employed two metrics to determine

the effectiveness of our approach: (1) The mutation score,

which refers to the percentage of mutants killed by the MRs,

and (2) the failure detection ratio, which is the percentage of

metamorphic tests that resulted in a failing verdict. For both

of these metrics, a higher percentage is better. Note that we

consider a mutant as “detected” or “killed” when one or more

of the metamorphic tests resulted in a MR violation.

After executing the test cases, all of the proposed MRs

combined killed 74 out of 89 mutants, which results in a

mutation score of 83%. Nevertheless, the analysis of each

individual MR revealed that there is a great disparity between

their performances. The original dispatcher was also verified

with the proposed MRs and the same test cases, and none of

the metamorphic tests yielded any failing verdict for it.

Metamorphic Relation Mutation Score

MRIP1
MR1AWT 55.1%

79.8%

83.1%

MR1TD 74.2%
MR1TM 56.2%

MRIP2
MR2AWT 57.3%

59.6%MR2TD 14.6%
MR2TM 5.6%

MRIP3
MR3AWT 14.6%

46.1%MR3TD 40.4%
MR3TM 4.5%

TABLE I: Mutation scores of MRs.

Table I shows the mutation scores of each individual MR,

as well as the aggregate results for each MRIP and the global

score. These results show that MR1TD obtained the highest

mutation score by a wide margin, while MR2AWT, MR1TM,

MR1AWT and MR3TD also obtained significant scores. This

indicates that these MRs are capable of detecting more (types



of) failures than the rest, at least for the seeded faults used in

our evaluation.

On the other hand, there were 1147 out of 320,400 metamor-

phic test failures, which corresponds with a failure detection
ratio of 0.36%. The fact that only a small percentage of

metamorphic tests detected failures suggests that the mutants

were not trivial.

Metamorphic Relation Failure Detection Ratio

MRIP1
MR1AWT 0.64%

0.45%

0.36%

MR1TD 0.45%
MR1TM 0.26%

MRIP2
MR2AWT 1.64%

0.59%MR2TD 0.09%
MR2TM 0.04%

MRIP3
MR3AWT 0.04%

0.07%MR3TD 0.14%
MR3TM 0.02%

TABLE II: Failure detection ratio of MRs.

Table II shows the failure detection ratio of the individual

MRs, as well as the aggregate results for each MRIP and the

total ratio for all MRs. As illustrated, MR2AWT stands out

over the rest by having more than twice the failure rate than

any other MR. Other than that, all of the MRs from MRP1

have a significantly higher failure rate than the rest of MRs.

A higher failure detection ratio means that the same amount

of failures could be detected with a smaller amount of test

cases, thus reducing the cost of the test executions. However,

a high failure detection ratio but a low mutation score means

that failures are only detected in a few specific mutants, which

might indicate that the MR can only detect some specific types

of failures.

Figure 2 shows the metamorphic failure counts for each

mutant. Each of the bars represents one of the 89 mutants,

and each color on a stacked bar represents a different MRIP.

From this diagram, we can see that the MRs derived from

MRIP1 reveal metamorphic failures across most of the mu-

tants. Conversely, the relations derived from MRIP2 seem to

reveal many more metamorphic test failures on a few mutants,

but does not seem to be that effective for the rest of them.

This explains why the mutation score of MRIP2 is lower than

that of MRIP1, even though its failure detection ratio is higher

(particularly for MR2AWT). Finally, the results from MRIP3 as

a whole seem unremarkable, with no more than 6 metamorphic

test failures on any mutant, whereas either MRIP1 or MRIP2

accomplish significantly better results on almost all mutants.

Furthermore, Figure 3 shows the most severe failures for

each mutant and MRIP. Section IV describes the meaning of

these values, which in a nutshell encode the degree of the MR

violation, with a lower value signifying a more severe failure.

It is interesting to note that this diagram strongly resembles the

one from Figure 2, which indicates that, in general, mutants

that display more severe MR violations tend to have a higher

number of MR violations as well (and vice versa).

The overall conclusion from these results is that our ap-

proach appears to be effective at automatically detecting

failures in the dispatcher, thus alleviating the oracle problem.

Furthermore, the quantitative verdicts can allow prioritizing

the most severe MR violations over less severe failures. The

MRIP1 relations seem to be able to detect more (types of)

failures, whereas MRIP2 can detect some types of failures

more clearly, i.e., with a higher quantity of metamorphic test

failures and more severe MR violations. This seems to indicate

that the MRIP1 relations have the best potential for detecting

more different types of failures. The possible advantages of

MRIP2 over MRIP1 are the fact that it might be able to

provide useful results without having to set very tight tolerance

thresholds for the MRs and without using as many test cases

as for MRIP1, which means that these MRs can be used at

a lower cost. Finally, even though MRIP3 did reveal some

failures, this group of MRs appears to be the least effective

among the proposed patterns. As for the QoS metrics, the

AWT, as expected, appears to be effective in most cases,

although TD seems to obtain better results in some instances,

such as having better mutation scores than the other MRIP1

relations (but worse failure detection ratio) and having the best

results among the MRIP3 relations. As for TM, it obtained the

worst results among the QoS metrics, although the results from

MR1TM could be considered good.

VI. LESSONS LEARNED AND FUTURE PROSPECTS

Next, we describe the main lessons learned from our study

and its future prospects.

Lesson 1 – Cost-effectiveness of the approach: After

experimenting with the MRs we proposed, we have concluded

that the approach is indeed effective and can be used to detect

functional failures in the elevator dispatchers. Even though the

cost of this approach appears to be high, the fact that it can be

fully automated makes it a valuable solution. It must be noted

that the high cost of this approach comes mainly from the

system executions on the simulator, and the time required to

check the MRs based on the execution results was negligible

in comparison. It may seem that metamorphic testing is more

costly than other techniques due to the need for multiple test

cases in order to check a MR. However, we must note that a

single source test case can be reused for several metamorphic

tests, and in our case we used 1200 follow-up test cases based

on solely 140 source test cases. Furthermore, having multiple

MRs for each MRIP is an advantage because the same test

case results can be reused for all of them. This implies that

defining and using MRs for additional QoS metrics would be

nearly zero-cost as long as they are based on the same MRIPs.

In this regard, we must note that some MRIPs are more

flexible than others in terms of the number and the diversity

of the follow-ups that can be generated for a source test case.

For instance, MRIP1 (Additional calls) enables the generation

of as many follow-up test cases as desired, if we consider

all the combinations of possible source and destination floors

for the call and the time when the call is issued. On the

other hand, MRIP2 (Additional elevators) is more restrictive,

since there are usually limited possibilities in the number of

available elevators. In our case, the number of active elevators

could only be a number in the range [2, 6], which limited the
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Fig. 2: Metamorphic test failure counts for each mutant.

-30

-25

-20

-15

-10

-5

0

W
O

RS
T 

VE
RD

IC
T 

VA
LU

E

MUTANT

MRIP1 MRIP2 MRIP3

Fig. 3: Worst verdicts for each mutant.

number of follow-ups that could be generated for each source

test case to only 4. Finally, MRIP3 (Initial position change)

also has a limited number of possible follow-ups, but this is

the number of possible elevator positions, which will usually

be larger than what will be needed in practice.

Lesson 2 – Disparity between MRs: When we evaluated

the effectiveness of our approach, we discovered that there

is a great disparity between the performances of the different

MRs we proposed. We also found out that one of the MRIPs

is somewhat effective with any of the QoS metrics we use,

whereas the other two MRIPs only appear to be effective when

combined with specific QoS metrics. We can enumerate some

of the reasons why some of the MRs may be ineffective:

In some cases the output relations might be too loose, and

therefore only very severe failures can be detected; in other

cases, the effect of the input transformation over the QoS

metric might not be relevant for any of the common failure

modes of the system. Therefore, new MRs should be tested

(e.g., via experimentation with seeded faults) before deciding

whether to keep or discard them.

Lesson 3 – Implementation of MRs: The initial definition of

the MRIPs was fairly simple and remained mostly unchanged

in our implementation. The definition of the specific MRs

was more challenging, because understanding the effect that

the MRIPs were expected to have on each QoS metric (i.e.,

the metamorphic output relations) required some knowledge

about the domain and the particular system we were testing.

Finally, the MRs also required some tolerance thresholds in

order to handle some cases where failing verdicts would be

undesirable. This is because many of the MRs are not absolute

invariants, and although they should hold in general, they may

be violated by a small margin on very short test cases or other



uncommon scenarios. Defining these threshold values not only

required the assistance from domain experts, but also some

manual experimentation in order to discover the worst possible

cases that should be tolerated. Previous works on metamorphic

testing have also concluded that defining good metamorphic

relations requires practical experience in the domain [26].

This manual experimentation, however, is already common in

practice, and does not require a significant extra effort from

practitioners.

Future prospect 1 – Generalizability to other CPSs: It

would be interesting to analyze if the MRIPs and the QoS

metrics we have employed in this work can be adopted for

other systems. On the one hand, there are elevator dispatchers

which have significantly different features than the one we

have used for our evaluation, such as those which can optimize

for multiple objectives or use non-deterministic algorithms,

and the MRs we proposed would need to be adapted for them.

On the other hand, the MRIPs we have proposed could be

generalized and adapted to other domains. For instance, “Addi-

tional Calls” and “Additional Elevators” can be generalized as

“Additional Jobs” and “Additional Workers”, and then adapted

to other systems where a set of workers are assigned jobs that

need to be executed efficiently, e.g., a task scheduler which

assigns running processes to the available CPUs.

Future prospect 2 – Variability in MRs: Elevators are

highly configurable systems, and their software has hundreds

of parameters that need to be tuned for each specific instal-

lation. Currently, our MRs have been defined in a generic

way that could be applicable under most configurations of

the tested dispatcher. However, the effectiveness of the test

oracles could be further optimized by tuning them for the

specific configuration that is being used, such as adjusting the

tolerance thresholds and enabling or disabling specific MRs

depending of the dispatcher configuration. In this regard, it

could be interesting to leverage software product line [24]

techniques such as feature models [7] in our MRs.

Besides tuning the test oracles, another possibility could

be defining MRIPs based on changes in the dispatcher con-

figurations. For instance, multi-objective dispatchers have pa-

rameters that allow tuning the weight of each QoS metric to

optimize, indicating its degree of importance, and by changing

these weights for the follow-up test case should cause the QoS

metrics with increased weights to improve, while the ones with

reduced weights might become worse.

Future prospect 3 – Test case generation: The number,

complexity and duration of the test case executions is one

of the most important factors that determines the cost of

simulation-based testing. In order to minimize the time spent

on simulation without reducing the effectiveness of the testing

process, it is important to have a test suite with a high

failure detection ratio. For our approach thus far we have

only employed random test case generation, which might not

result in a very effective test suite. In order increase the failure

detection ratio and reduce the cost of testing, we could exploit

the quantitative results provided by our MRs in order to search

for test cases that violate them as severely as possible. Even

though this process also requires a large upfront investment

in simulation time, the resulting test suite would be efficient

and reusable, thus reducing the testing cost in the longer run.

Similar approaches have already been used in order to search

for test inputs that violate some given properties [2], [34].

Future prospect 4 – Fault localization: The experiments

performed so far have only considered fault detection, but the

subsequent fault localization process has not been addressed

yet. It would be interesting to investigate if there is a relation

between the quantitative verdict for each MR and the location

of the fault in the source code, which could be leveraged in

order to automate this process at least partially.

VII. THREATS TO VALIDITY

A. Internal validity

One of the potential threats to the validity of this empirical

evaluation is related with the manual generation of mutants,

which might have introduced a bias in our results. In order to

mitigate this, we introduced mutations uniformly throughout

the relevant parts of the source code, and we generated an

amount of mutants which is comparable to other research

works that use simulation-based mutation testing [3], [19],

[22]. Furthermore, these mutants were also checked in order

to identify and filter out equivalent mutants.

Another potential threat is that the randomly generated test

cases might have been too few to demonstrate the effectiveness

of our approach. We mitigated this by generating a large

amount of test cases, which resulted in over a month of

execution time for all the generated mutants. This corresponds

with several hours of simulation time for a single system,

which is comparable to other testing approaches already in

use within the domain. We also diversified our test cases in

order to include different test case lengths and traffic densities.

It should also be noted that these results are all based on

short-scenario level tests, with durations of up to several

minutes. The effectiveness of the proposed techniques might

be completely different if longer test cases (e.g., full day traffic

profiles) were to be used instead, which is also a common

practice for testing systems in the elevation domain.

Finally, we must also consider the threat introduced by the

tolerance thresholds that have been introduced to the MRs.

We determined these threshold values by experimenting and

consulting with domain experts, and selected values which

are high enough to never cause a MR violation on Orona’s

dispatcher. However, as shown in Figure 3, many mutants

have very severe failing verdicts, which indicates that this

technique can still detect some faults by just setting naively

high tolerance values. For instance, if we were to double

the tolerance values for all of the MRs we used in our

experiments, the total mutation score would be 50.6% (45

out of 89 mutants killed). Nevertheless, we acknowledge that

obtaining the best results from this approach requires some

manual experimentation and domain knowledge. The benefit

provided by this technique is that the resulting test oracle can

be reused for automated testing throughout the rest of the

dispatcher’s life-cycle.



B. External validity

The main external validity threat relates to the used case

study. Although only a single case study was used, it is impor-

tant to note that it is a real industrial case study, which provides

a high degree of complexity to our evaluation. Furthermore,

the used dispatching algorithm is the most commonly used

one in Orona’s elevators. Nevertheless, we acknowledge that

our results may not be applicable to other systems in the

domain with different features from the one employed in our

evaluation, such as elevator dispatchers that are capable of

optimizing for multiple objectives, or dispatchers that employ

evolutionary algorithms rather than deterministic algorithms.

VIII. RELATED WORK

Metamorphic testing has been used as a solution to mitigate

the oracle problem in many types of cyber-physical systems.

In [18], metamorphic testing and model based testing ap-

proaches are combined in order to test autonomous drones

in a simulated environment. Several other recent publications

have also proposed the use of metamorphic testing in order

to verify autonomous self-driving cars [33], [37]. This is a

particularly difficult task because these systems are typically

based on machine learning models, and therefore predicting

their expected output is often infeasible. However, to the best

of our knowledge, this work constitutes the first research

publication concerning the application of metamorphic testing

in the domain of elevation.

To this date, the majority of metamorphic testing-related

works use MRs that are related with functional properties,

whereas non-functional properties have only been applied spo-

radically. As an early example of using non-functional prop-

erties, Chan et al. addressed testing wireless sensor networks

with metamorphic testing, and they proposed a MR based on

the power consumption of the computations from the wireless

sensors [9]. More recently, Segura et al. discussed performance

metamorphic testing [29], [30] as a mostly unexplored research

topic and identified its potential advantages and challenges.

Besides performance-related properties, metamorphic security

testing is also a type of non-functional testing that is being

explored [12], [20]. Lately, performance metamorphic testing

has been adopted in new domains, such as webpages [15]

and code generators [8]. Nevertheless, the application of

performance metamorphic testing has not been explored yet

in many domains, and most of the existing examples of this

approach address testing software applications rather than

cyber-physical systems. Besides the application of metamor-

phic testing in a new domain, our main contribution to the

state of the art is the usage of non-functional properties (QoS

metrics) in order to identify functional failures, which has not

yet been explored extensively by any previous work. In fact,

to the best of our knowledge, [9] contains the only instance

of such MRs being suggested on a research paper.

When it comes to performance failure detection, most

approaches so far rely on either setting threshold values which

can never be violated, detecting known types of problems, or

comparing the results against existing data [14]. In some cases,

it is possible to execute the same performance tests multiple

times in order to detect inconsistencies among executions, or

even performing comparisons within the results of the same

execution [14], but the most common approach is to perform

regression testing against an existing baseline (e.g., a previous

version of the system) [13], [14], [31]. Nevertheless, these

solutions require an appropriate baseline in order to evaluate

the performance results, which may not be available in some

cases. A solution that can can mitigate the shortcomings of

regression testing are machine learning based techniques. For

instance, [21] employs several supervised and unsupervised

machine learning approaches for generating performance sig-

natures and detecting deviations. However, these techniques

still require appropriate training data, which is not an issue

with metamorphic testing.

As for examples of the industrial adoption of metamorphic

testing, this technique has been successfully applied to the

Data Collection JavaScript Library of the Adobe Analytics

software in order to find bugs related with specific versions

of browsers or their JavaScript engines [35]. In [17], a model-

based metamorphic testing approach is used in NASA’s Data

Access Toolkit, which is an interface to query a large database

of telemetry data, in order to verify that its API returns the

correct data for the input queries. This work introduces the use

of metamorphic testing in the industrial domain of elevation.

IX. CONCLUSIONS

Metamorphic testing based on QoS metrics is a promising

solution for alleviating the oracle problem in the domain of

elevation. In this paper, we have proposed several Metamor-

phic Relation Input Patterns (MRIPs) and QoS metrics to use

for testing elevator dispatchers, and we have derived specific

MRs for the most commonly used elevator dispatcher from

Orona. By employing mutation testing on this case study,

our experiments have concluded that many of these MRs can

detect a high percentage of the randomly injected faults, with

83% (74 out of 89) of the mutants being killed in total. Even

though the cost of this approach appears to be high, the reusing

of test cases, and possibly the adoption of better test generation

techniques, can mitigate this issue by reducing the time spent

on simulations.
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Reinfrank. Automated analysis in feature modelling and product
configuration. In International Conference on Software Reuse, pages
160–175. Springer, 2013.

[8] Mohamed Boussaa, Olivier Barais, Gerson Sunyé, and Benoit Baudry.
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