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On the local monodromy of
A-hypergeometric functions and

some monodromy invariant subspaces

Maŕıa-Cruz Fernández-Fernández

Abstract. We obtain an explicit formula for the characteristic polyno-
mial of the local monodromy of A-hypergeometric functions with respect
to small loops around a coordinate hyperplane xi = 0. This formula is
similar to the one obtained by Ando, Esterov and Takeuchi for the local
monodromy at infinity. Our proof is combinatorial and can be adapted
to provide an alternative proof for the latter formula as well. On the
other hand, we also prove that the solution space at a nonsingular point
of certain irregular and irreducible A-hypergeometric D-modules has a
nontrivial global monodromy invariant subspace.

1. Introduction

Gel’fand, Graev, Kapranov and Zelevinsky started the study of A-hypergeometric
systems in [10] and [13]. These systems of linear partial differential equations gen-
eralize all of the classical hypergeometric equations and have many applications in
other areas of Mathematics. They are determined by a matrix A = (a1 · · ·an) ∈
Zd×n such that ZA :=

∑n
j=1 Zai � Zd and a parameter vector β ∈ Cd. More pre-

cisely, let HA(β) be the left ideal of the Weyl algebraD = C[x1, . . . , xn]〈∂1, . . . , ∂n〉
generated by the following set of differential operators:

(1.1) �u := ∂u+ − ∂u− for u ∈ Zn, Au = 0,

where u = u+ − u− and u+, u− ∈ Nn have disjoint supports, and

(1.2) Ei − βi :=

n∑
j=1

aij xj ∂j − βi for i = 1, . . . , d.

Mathematics Subject Classification (2010): 32C38, 33C70, 32S40.
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The A-hypergeometric D-module with parameter β is MA(β) = D/DHA(β).
One can also consider its analytification version MA(β) = D/DHA(β), where D
denotes the sheaf of linear partial differential operators with coefficients in the
sheaf O of holomorphic functions on Cn. Such a D-module was proved to be
holonomic in [10] and [1]. Moreover, if β is nonresonant for A (i.e., the boundary
of

∑n
i=1 R≥0aj does not contain any point of β + ZA) they also proved that the

holonomic rank ofMA(β) (i.e., the dimension of its space of holomorphic solutions)
equals the normalized volume of A (see (3.1)). The exact set of parameters for
which this is true was given in [17]. It is also well known that the A-hypergeometric
system is regular holonomic if and only if the Q-rowspan of A contains the vector
(1, . . . , 1) (see Section 6 in [14], Theorem 2.4.11 in [23], and Corollary 3.16 in [24]).

One fundamental open problem in this setting is to understand the monodromy
of the solutions of a general A-hypergeometricD-module. By Theorem 2.11 in [11],
if β ∈ Cd is nonresonant and MA(β) is regular holonomic then the monodromy
representation of its solutions is irreducible. Adolphson conjectured this fact to
be true also in the irregular case (see the comment in [1] after Corollary 5.20),
but we will see in this note that this is not the case (see Corollary 5.3). On
the other hand, it was proved in [22] that MA(β) is an irreducible D-module
if and only if β is nonresonant. Independently, in [25] the set of parameters β
for which C(x)⊗C[x]MA(β) is an irreducible C(x)⊗C[x]D-module is characterized,
generalizing [4]. It was previously proved in [28] that the irreducibility of C(x)⊗C[x]

MA(β) depends only on the equivalence class of β ∈ Cd modulo ZA :=
∑n

j=1 Zaj .
Let us point out that M being an irreducible D-module implies C(x) ⊗C[x] M
being an irreducible C(x) ⊗C[x] D-module. Moreover, for a regular holonomic D-
module M, it is equivalent to say that M is an irreducible D-module and that
its solution sheaf complex RHomD(M,O) is an irreducible perverse sheaf by the
Riemann–Hilbert correspondence of Kashiwara [16] and Mebkhout [18].

In some special cases of regular A-hypergeometric systems, Beukers provided
a method to compute the monodromy group of the solutions of MA(β) [5]. Mon-
odromy of regular bivariate hypergeometric systems of Horn type is also investi-
gated in [21]. On the other hand, in [27] and [2] the authors provide a formula
for the characteristic polynomial of the local monodromy at infinity of the A-
hypergeometric functions with nonresonant parameters, that is, with respect to
large enough loops around xj = 0 for j = 1, . . . , n. The proof of this result in [2] is
based on the use of rapid decay homology cycles constructed in [6]. One goal of this
paper is to obtain a similar formula for the corresponding local monodromy with
respect to small enough loops around xj = 0. To this end, we first characterize in
Section 2 those regular triangulations of A that yield a basis of convergent Γ-series
solutions of the A-hypergeometric system in a common open set containing this
type of loops. We will see that they correspond to refinements of a particular regu-
lar polyhedral subdivision of A. In Section 3 we recall the construction of Γ-series
solutions of A-hypergeometric systems, introduced in [13]. In Section 4 we ob-
tain the formula for the characteristic polynomial of the local monodromy around
xj = 0 which depends only on this polyhedral subdivision (see Theorem 4.2). Our
proof can be easily adapted to obtain the monodromy at infinity (see Remark 4.5),
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providing a simpler proof of the main result in [2]. In Section 5, we conjecture
the existence of a global monodromy invariant subspace of solutions of MA(β) (see
Conjecture 5.1) and we prove it under certain additional condition (see Proposi-
tion 5.2). We also show that a proof of the conjecture would characterize when the
solution space of MA(β) at a nonsingular point has reducible (global) monodromy
representation (i.e., when it has a nontrivial monodromy invariant subspace). In
particular, there is a family of irregular A-hypergeometric systems with nonreso-
nant parameters whose solutions spaces at a nonsingular point are direct sums of
one-dimensional monodromy invariant subspaces, despite the fact that MA(β) is
an irreducible D-module in this case (see Corollary 5.3).

The author is grateful to Saiei-Jaeyeong Matsubara-Heo for pointing out a gap
in a previous version of Section 5.

2. On certain regular triangulations of A

In this section we recall the definition of regular triangulation of a full rank matrix
A = (a1 · · · an) ∈ Zd×n, consider certain open sets in Cn associated to them and
determine those regular triangulations that will be useful for local monodromy
computations.

For any set τ ⊆ {1, . . . , n}, let Δτ be the convex hull of {ai : i ∈ τ}∪{0} ⊆ Rd.
In order to simplify notation, we shall identify τ with the set {ai : i ∈ τ} and
with its convex hull, and denote by Aτ the corresponding submatrix of A. Let us
denote Zτ = ZAτ =

∑
i∈τ Zai ⊆ Zd and pos(τ) :=

∑
i∈τ R≥0ai ⊆ Rd. We will

also denote τ = {1, . . . , n} \ τ .
We will assume for simplicity that ZA = Zd throughout this paper.

A vector ω = (ω1, . . . , ωn) ∈ Rn defines an abstract polyhedral complex Tω

with vertices in {1, . . . , n} as follows: τ ∈ Tω if and only if there exists a vector
c ∈ Rd such that

〈c, aj〉 = ωj for all j ∈ τ,(2.1)

〈c, aj〉 < ωj for all j /∈ τ.(2.2)

We will say that ω is a weight vector and that Tω is a regular subdivision of A if
pos(A) = ∪τ∈Tω pos(τ). This is always the case if either ωi > 0 for all i = 1, . . . , n
or A is pointed (i.e., the intersection of Rn

>0 with the Q-rowspan of A is nonempty).
If T is any regular subdivision of A then the set C(T ) = {ω ∈ Rn : T = Tω} is a
convex polyhedral cone. The closures of these cones form the so called secondary
fan of A, introduced and studied by Gelfand, Kapranov and Zelevinsky [12] (see
also [26]).

Remark 2.1. If we take ω = (1, . . . , 1) then Tω is the set of facets of ΔA that do
not contain the origin. Let us denote ΓA := Tω in this case.

Definition 2.2. A weight vector ω ∈ Rn is said to be generic if Tω is an abstract
simplicial complex. In this case, Tω is called a regular triangulation of A.
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Remark 2.3. A weight vector ω defines a regular triangulation Tω if and only
if C(Tω) is a full-dimensional cone in the secondary fan of A. On the other hand, a
vector ω′ belongs to the closure of the cone C(Tω) if and only if Tω is a refinement
of Tω′ .

A set σ ⊆ {1, . . . , n} is called a simplex if the columns of Aσ form a basis of Rd.
For any simplex σ we set

(2.3) Uσ(R) := {x ∈ Cn : |xj | < R|xA−1
σ aj

σ |, ∀j /∈ σ such that |A−1
σ aj | = 1}⊆Cn,

where R > 0, |b| denotes the sum of the coordinates of b ∈ Rd, xσ = (xi : i ∈ σ)

and we use the multi-index notation for x
A−1

σ aj
σ .

Remark 2.4. For any R > 0 the open set UT (R) := ∩σ∈TUσ(R) is not empty for
any regular triangulation T of A since it contains those points x ∈ (C∗)n for which
(− log |x1|, . . . ,− log |xn|) lies in a sufficiently far translation of the nonempty open
cone C(T ) inside itself (see Proposition 2 and Section 1.2 in [13], and Remark 6.1
in [7]).

Notation 2.5. Let us denote ω0 = ω0(ε) := (1, . . . , 1) + ε(0, . . . , 0, 1) for ε > 0
small enough so that we have the equality of polyhedral subdivisions Tw0(ε′) =
Tω0(ε) for all ε

′ ∈ (0, ε). We will also denote by T0 this regular subdivision.

Remark 2.6. If an is not a vertex of ΔA then T0 = {τ \ {n} : τ ∈ ΓA}. Let us
assume that an is a vertex of ΔA. If an /∈ τ ∈ ΓA then τ ∈ T0. If an ∈ τ ∈ ΓA,
let τ ′ be the convex hull of all the columns of A in τ but an. Then τ ′ ∈ T0. The
rest of facets of T0 are of the form Γ ∪ {an} ∈ T0 for any facet Γ of τ ′ that is not
contained in a facet of τ (see Figure 1 in Example 4.6).

The following lemma is a key ingredient in the proof of Theorem 4.2.

Lemma 2.7. Let T be a regular triangulation of A that refines ΓA. The following
conditions are equivalent :

i) ω0 belongs to the closure of the cone C(T ).

ii) T refines the polyhedral subdivision T0.

iii) UT (R) ∩ {xn = 0} �= ∅ for all R > 0.

iv) UT (R) ∩ {xn = 0} �= ∅ for some R > 0.

Proof. The equivalence of i) and ii) is just a particular case of Remark 2.3 and it
is obvious that iii)⇒ iv).

Let us prove first ii)⇒ iii). Since T is a regular triangulation that refines T0,
there exists ω′ ∈ Rn such that T = Tω with ω = ω0(ε)+ε2ω′ for ε > 0 small enough.
Fix any R > 0. We have that UT := UT (R) ⊆ Cn is a nonempty open set. Thus,
we can choose p = (p1, . . . , pn) ∈ UT such that pj �= 0 for 1 ≤ j < n. Let us prove
that πn(p) := (p1, . . . , pn−1, 0) ∈ UT . Since p ∈ UT it is clear that πn(p) satisfies all
the inequations in (2.3) that do not depend on xn. Obviously, it also satisfies all the

inequations of the form |xn| < R|xA−1
σ an

σ |. Thus we only need to check that πn(p)
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satisfies the inequations |xj | < R|xA−1
σ aj

σ | for all j /∈ σ whenever n ∈ σ ∈ T and
|A−1

σ aj| = 1. It is enough to show that the last coordinate of A−1
σ aj is either zero

or negative in this case. Since σ ∈ T there exists τ ∈ T0 such that σ ⊆ τ . Thus,
there exists a vector c ∈ Rd satisfying (2.1) and (2.2) for the vector ω0. Since σ ⊆ τ
is a simplex we obtain from (2.1) that c = (1, . . . , 1, 1 + ε)A−1

σ . Thus, by (2.2) we
have that (1, . . . , 1, 1 + ε)A−1

σ aj ≤ 1 for all j /∈ σ for all ε > 0 small enough. For
all j /∈ σ such that |A−1

σ aj | = 1, this implies that the last coordinate of A−1
σ aj is

either zero or negative. As a consequence, πn(p) ∈ UT .

Let us prove now iv)⇒ i). Since C(T ) is a convex cone, it is enough to show
that if ω ∈ C(T ) then ω+ω0 ∈ C(T ). Notice that ω ∈ C(T ) if and only if T = Tω

and from (2.1) and (2.2) this holds exactly when ωσA
−1
σ aj < ωj for all j /∈ σ and

for all σ ∈ T . Since T refines ΓA, we have |A−1
σ aj | ≤ 1 for all j /∈ σ, ∀σ ∈ T . Since

UT (R)∩{xn = 0} �= ∅ for some R > 0, we have that for all σ ∈ T , ∀j /∈ σ such that
|A−1

σ aj| = 1 then the last coordinate of A−1
σ aj must be nonpositive if n ∈ σ. Hence,

we have (ω0)σA
−1
σ aj ≤ 1 ≤ ω0,j for all j /∈ σ and thus (ω+ω0)σA

−1
σ aj < ωj +ω0,j

for all j /∈ σ and for all σ ∈ T . This implies that ω + ω0 ∈ C(T ). �

3. Γ-series solutions of MA(β)

For any set τ ⊆ {1, . . . , n}, we recall that the normalized volume of τ (with respect
to the lattice ZA = Zd) is given by

(3.1) volZd(τ) = d! vol(Δτ ),

where vol(Δτ ) denotes the Euclidean volume of Δτ . If σ ⊆ {1, . . . , n} is a simplex,
the normalized volume of σ with respect to Zd is equal to [Zd : ZAσ] = | det(Aσ)|.

For v ∈ Cn with Av = β, the Γ-series defined in [13],

ϕv :=
∑
u∈LA

1

Γ(v + u+ 1)
xv+u,

is formally annihilated by the differential operators (1.1) and (1.2). Here Γ is the
Euler Gamma function and LA := ker(A) ∩ Zn. These series were used in [13]
in order to construct bases of holomorphic solutions of MA(β) in the case when
all the columns of A belong to the same hyperplane, but they can be used in the
general case too (see for example [19], [7], [9]).

Let vkσ ∈ Cn be the vector satisfying Avkσ = β and (vkσ)j = kj for j /∈ σ, where
k = (ki)i/∈σ ∈ Nσ.

We consider the series

φk
σ := ϕvk

σ
= x

A−1
σ β

σ

∑
k+m∈Λk

x
−A−1

σ (
∑

i/∈σ(ki+mi)ai)
σ xk+m

σ

Γ(A−1
σ (β −∑

i/∈σ(ki +mi)ai) + 1)(k+m)!
,

where
Λk :=

{
k+m = (ki +mi)i∈σ ∈ Nn−d :

∑
i∈σ

aimi ∈ ZAσ

}
.
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Notice that φk
σ is zero if and only if for all m ∈ Λk, A

−1
σ (β−∑

i/∈σ(ki+mi)ai) has
at least one negative integer coordinate.

Let

Ωσ ⊆ Nσ

be a set of representatives for the different classes with respect to the following
equivalence relation in Nσ: we say that k ∼ k′ if and only if Aσk − Aσk

′ ∈ ZAσ.
Thus, Ωσ is a set of cardinality volZd(σ).

Given a regular triangulation T of A we will say that β is very generic if
A−1

σ (β − ∑
i/∈σ kiai) does not have any integer coordinate for all σ ∈ T and for

all k ∈ Ωσ. Thus, very generic parameter vectors β lie in the complement of a
countable union of hyperplanes.

If β ∈ Cd is very generic, the series φk
σ is convergent if and only if σ is contained

in a facet of ΓA (see for example Corollary 3.9 in [7]). In this case, it is convergent
in Uσ(R) ∩ ((C∗)σ × Cσ) for some R > 0. Moreover, we have the following result
which is a slightly modified version of Theorem 2 in [19] (this version can also be
seen as the particular case τ = A in Section 6.2 of [7] by substituting “Gevrey
series along Yτ” by “convergent series”). The fact that our open set UT (R) is
defined by less restrictions than the ones used in [19] is important for the results
in Section 5.

Theorem 3.1. If T is a regular triangulation of A that refines ΓA and β ∈ Cd is
very generic, the set {φk

σ : σ ∈ T, k ∈ Ωσ} is a basis of holomorphic solutions of
MA(β) in the open set UT (R) ∩ (C∗)n for some R > 0.

For a regular triangulation T , set UT := UT (R) for some R > 0 as in Theo-
rem 3.1.

4. Local monodromy computation

Let us denote by SA the singular locus of MA(β). A hyperplane xj = 0 is
contained in SA if and only if aj is a vertex of the polytope ΔA. Since reorder-
ing the variables is equivalent to reordering the columns of A we will assume for
simplicity and without loss of generality that an is a vertex of ΔA and we will
study the local monodromy of the solutions of MA(β) around {xn = 0}. Let
us consider a complex line Lc := {x ∈ Cn : xj = cj , 1 ≤ j ≤ n − 1} with
c = (c1, . . . , cn−1) ∈ Cn−1 such that Lc intersects SA in at most a finite number
of points and (c, 0) := (c1, . . . , cn−1, 0) does not belong to a component of SA

different from {xn = 0}. We consider the loop γε,c parametrized by xj = cj
for 1 ≤ j ≤ n − 1 and xn = εe2πiθ, θ ∈ [0, 1], for ε > 0 small enough so that
Lc ∩ SA \ {xn = 0} ⊆ {x ∈ Lc : |xn| > ε}. We include a proof of the following
known result for the sake of completeness.

Lemma 4.1. The characteristic polynomial of the local monodromy with respect
to γε,c of the solutions of a holonomic D-module with singular locus S does not
depend on c or ε chosen as above.
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Proof. It is clear that for fixed c as above the monodromy matrix will be indepen-
dent of ε > 0 small enough. Let d be another point chosen as c. If Z denotes the
union of all the irreducible components of S different from {xn = 0}, then (c, 0)
and (d, 0) belong to {xn = 0}\Z, which is connected. Let α : [0, 1] −→ {xn = 0}\Z
be a path from (c, 0) to (d, 0). Then the family of loops {γε,c′ : (c′, 0) ∈ α([0, 1])}
is a continuous family with respect to c′ and since Cn \ Z is an open set we can
choose ε > 0 small enough so that none of these loops intersect S . In particu-
lar one can deform continuously γε,c into γε,d in Cn \ S in such a way that the
point γε,c(0) is transformed into γε,d(0) along a path δ such that δ(t) = γε,c′(0)
whenever (c′, 0) = α(t). Assume Mc is the monodromy matrix corresponding
to γε,c (for a fixed basis of solutions), Md is the monodromy matrix correspond-
ing to γε,d (for another fixed basis of solutions) and C is the connecting matrix
(between those bases) for the path δ. Then we have that C−1MdC = Mc, and
thus Md and Mc have the same characteristic polynomial. �

Let us set some more notation in order to state the main result in this section.
We consider the regular subdivision T0 (see Notation 2.5) and the set

Σ = {τ ∈ T0 : n ∈ τ}.
Each τ ∈ Σ is of the form Γ(τ) ∪ {n} for some (d − 2)-dimensional face Γ(τ)

of T0, by Remark 2.6. Let ρ(τ) be the primitive inner conormal vector of the
facet ΔΓ(τ) of the polytope Δτ and set h(τ) = 〈ρ(τ), an〉 > 0.

We obtain the following theorem for the local monodromy around xn = 0, which
is reminiscent of the main theorem in [2] for the local monodromy around xn = ∞.

Theorem 4.2. If the parameter vector β ∈ Cd is nonresonant, then the character-
istic polynomial of the local monodromy of the solutions of MA(β) around xn = 0
is

λ0(z) = (z − 1)volZd (A)−∑
τ∈Σ vol

Zd
(τ)

∏
τ∈Σ

(zh(τ) − e2πi〈ρ(τ),β〉)volZd(τ)/h(τ)

Proof. By Lemma 4.1 we are allowed to choose any convenient c and ε > 0 as
above in order to compute the characteristic polynomial. Let T be any regular
triangulation of A that refines T0 and assume first that β ∈ Cd is very generic.
By Lemma 2.7, the open set UT intersects the hyperplane xn = 0. We choose
(c1, . . . , cn−1, cn) ∈ UT ∩ (C∗)n and 0 < ε < |cn| so that the loop γc,ε is contained
in UT ∩ (C∗)n. On the other hand, from Theorem 3.1 there is a fundamental set of
volZd(A) many (multivalued) holomorphic solutions that can be written as Γ-series
in the open set UT ∩ (C∗)n. By analytic continuation along γε,c, each series φk

σ

is transformed into e2πi(v
k
σ)nφk

σ. Hence, we just need to show that the roots of

the polynomial λ0(z) are exactly {e2πi(vk
σ)n : σ ∈ T,k ∈ Ωσ} where each root is

repeated as many times as its multiplicity. Notice that both the degree of λ0 and
the cardinality of the pairs (σ,k) are equal to volZd(A).

Indeed, for all τ ∈ T0 \Σ and for all σ ∈ T with σ ⊆ τ we have (vkσ)n = kn ∈ Z

and e2πi(v
k
σ)n = 1. This corresponds with the factor (z − 1)volZd (A)−∑

τ∈Σ vol
Zd

(τ)
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of λ0. Let us consider now τ ∈ Σ and σ ∈ T with n ∈ σ ⊆ τ . Let α > 0 be the
smallest positive integer such that αenA

−1
σ ∈ Zd where en = (0, . . . , 0, 1) ∈ Rσ. It

is clear that ρ(τ) = αenA
−1
σ and that h(τ) = α. On the other hand, we have

(vkσ)n = enA
−1
σ (β −Aσk) =

1

h(τ)
〈ρ(τ), β −Aσk〉.

Since the primitive vector ρ(τ) induces a surjective morphism of abelian groups
from Zd/ZAσ to Z/h(τ)Z, we have that the cardinality of its kernel is equal to
volZd(σ)/h(τ). Since

∑
τ⊇σ∈T volZd(σ) = volZd(τ) we get the result for very generic

parameters.
On the other hand, from the proof of Corollary 3.3 in [2] (which does not

use rapid decay cycles of [6]), we have that the local monodromy matrix depends
holomorphically on nonresonant parameters. �

Remark 4.3. By [9], running the canonical series algorithm introduced in [23],
Chapter 2.5, for a weight vector ω such that (1, . . . , 1) ∈ C(Tω) produces a basis
of convergent series solutions of MA(β) for any β ∈ Cd. In particular, this holds if
ω0 ∈ C(Tω) and in this case these series are convergent in the open set UTω . Thus,
by Lemma 2.7, one could use these series in order to compute the characteristic
polynomial λ0(z) for any β.

Remark 4.4. In [20] the authors compute an upper bound for the set of roots of
the b-function of MA(β) for the restriction at xj = 0. In the case when MA(β) is
regular holonomic, if α is a root of the b-function then e2πiα is a root of λ0(z), but
in the irregular case the roots of this b-function might be related with monodromy
of non convergent Γ-series instead. On the other hand, their description uses
quasidegrees of certain toric modules instead of a polyhedral subdivision of A, so it
does not seem obvious to compare their candidates to roots with the roots of λ0(z).

Remark 4.5. Consider the vector ω∞ = (1, . . . , 1, 1− ε) for ε > 0 small enough.
Take T∞ to be the regular subdivision of A induced by ω∞, then T∞ is a refinement
of ΓA. If we substitute T0 by T∞, ω0 by ω∞ and consider loops of the form γc,ν
with ν > 0 big enough so that Lc∩SA ⊆ {x ∈ Lc : |xn| < ν} and with the opposite
orientation, then for any regular triangulation that refines T∞ we have that UT

contains loops of this type (the proof is analogous to the proof of Lemma 2.7). With
these modifications, the proof of Theorem 4.2 gives an alternative combinatorial
proof of the main theorem in [2].

Example 4.6. Let us consider the matrix

A =

⎛
⎝ 1 1 1 1 1

0 1 0 1 2
0 0 1 1 2

⎞
⎠

and a nonresonant parameter vector β ∈ C3.
The facets of the regular subdivision T0 are τ1 = {1, 2, 3, 4}, τ2 = {2, 4, 5}

and τ3 = {3, 4, 5} (see Figure 1). We have that volZA(τ1) = 2, Σ = {τ2, τ3},
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Figure 1. Regular subdivisions T0 (left) and T∞ (right) of A.

volZA(τ) = 1 and h(τ) = 1 for τ ∈ Σ, ρ(τ2) = (−1, 1, 0) and ρ(τ3) = (−1, 0, 1).
The characteristic polynomial for the monodromy of the solutions ofMA(β) around
x5 = 0 is given by

λ0(z) = (z − 1)2(z − e2πi(β2−β1))(z − e2πi(β3−β1)).

On the other hand, the facets of T∞ are {1, 2, 5} and {1, 3, 5}. The characteristic
polynomial λ∞ for the monodromy around x5 = ∞ is

λ∞(z) = (z2 − e−2πiβ2)(z2 − e−2πiβ3).

5. Monodromy invariant subspaces corresponding to facets
of ΓA

From Theorem 4.1 in [3], an A-hypergeometric function can only have singularities
along the zero set of the product of the principal τ -determinants Eτ = EAτ ∈
C[xτ ] := C[xj : j ∈ τ ] for τ varying between the different facets of ΓA (see [12],
Chapter 10, Equation 1.1, for the definition of EA). The following conjecture would
provide a refinement of this result.

Conjecture 5.1. If τ is a facet of ΓA and β is nonresonant, then the space of
holomorphic solutions ofMA(β) at a nonsingular point has a monodromy invariant
subspace Sτ of dimension volZd(τ) that can only have singularities along the zero
set of the principal τ -determinant Eτ . If T is any regular triangulation refining ΓA

and β ∈ Cd is very generic, then we can take Sτ the space generated by {φk
σ : σ ∈

T (τ), k ∈ Ωσ}, where T (τ) := {σ ∈ T : σ ⊆ τ}.
We prove a particular case of this conjecture.

Proposition 5.2. Conjecture 5.2 holds if τ is a facet of ΓA containing only d
columns of A.

Proof. From the proof of Corollary 3.3 in [2], we can assume that β is very
generic. By the assumption, any regular triangulation T refining ΓA satisfies that
T (τ) = {τ}.
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Notice also that Uτ = Cn in this case, hence each Γ-series φk
τ is convergent

at any point of Cτ × (C∗)τ . In particular, it defines a multivalued function with
singularities only around the hypersurface {∏j∈τ xj = 0}. Since the fundamental
group of the complement of ∪j∈τ{xj = 0} is the free group generated by one loop
around each xj = 0 for j ∈ τ , it is enough to consider the monodromy action with
respect to these kind of loops. It is clear that the analytic continuation of φk

τ with

respect to a loop around xj = 0 is given by e2πi(A
−1
τ (β−Aτk))jφk

τ . Thus, it follows
that the space Sτ generated by {φk

τ : k ∈ Ωτ} is monodromy invariant and it is a
subspace of dimension volZd(τ) of the space of solutions of MA(β). �

Corollary 5.3. If there are no more than d columns of A in any facet of ΓA

and β ∈ Cd is nonresonant, then the solution space of MA(β) is a direct sum of
one-dimensional (global) monodromy invariant subspaces.

Proof. The proof of Proposition 5.2 can be applied to each facet of ΓA in this case.
In particular, for very generic β ∈ Cd the set of Γ-series given in Theorem 3.1 for
T = ΓA is a basis of (multivalued) holomorphic functions in UT ∩ (C∗)n = (C∗)n

and the C-linear space generated by each Γ-series is monodromy invariant. Thus,
from the proof of Corollary 3.3 in [2], we get the result for nonresonant β ∈ Cd. �

The following lemma generalizes Proposition 6.8 in [22].

Lemma 5.4. Let M be a holonomic D-module and M(x) := C(x)⊗C[x] M . Then
M(x) is reducible as a module over D(x) = C(x) ⊗C[x] D if and only if M has a
quotient D-module with holonomic rank between 1 and rank(M)−1. In particular,
if M(x) is reducible then the solution space of M has a proper monodromy invariant
subspace.

Proof. The if direction holds because C(x)⊗C[x] is a right exact functor and the
fact that rank(N) = dimC(x)(N(x)) for any holonomic D-module N , which is
a well known result due to Kashiwara. Let us prove the converse. Since M is
holonomic we may assume that M = D/I for some left ideal I ⊆ D. If M(x)
is reducible then it has a proper submodule of the form N = J/D(x)I for some
left ideal J � D(x). Moreover, 1 ≤ dimC(x)(N) < dimC(x)(M) = rank(M).
Hence the quotient M(x)/N is isomorphic to D(x)/J and its C(x)-dimension is

between 1 and rank(M) − 1. We have that I ⊆ D ∩ D(x)I ⊆ J̃ := D ∩ J � D

and so D/J̃ is a quotient of M . Moreover, it is obvious that J̃(x) = J . Thus,

rank(D/J̃) = dimC(x)(D(x)/J) is between 1 and rank(M)− 1. The last statement
follows from the fact that the solution space of any quotient of M is a subspace of
the solutions of M . �

Remark 5.5. Let us point out that there are reducible holonomic D-modules
without quotients of nonzero smaller rank. For example, M = D/Dx∂ is reducible
and N = D/D∂ is a quotient of M , but M(x) = N(x) is an irreducible D(x)-
module.

Remark 5.6. For any holonomic reducible D-module M such that M(x) is irre-
ducible there is an irreducible subquotient N of M with the same rank such that
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the solution spaces of M and N at nonsingular points are isomorphic (although
their solutions complexes are not). If N is regular holonomic then its irreducibility
is equivalent to the irreducibility of its solution complex by the Riemann-Hilbert
correspondence (cf. [16], [18]). In particular, ifM is regular holonomic andM(x) is
irreducible then its solution space does not have any proper monodromy invariant
subspace. However this is not true in general when M is not regular holonomic.
In fact, Proposition 5.2 and Corollary 5.3 provide an infinite family of irregular
hypergeometric systems MA(β) with a proper monodromy invariant subspace even
when MA(β)(x) is irreducible.

Let G be a minimal set of columns of A such that pos(G) is a face of pos(A)
and rankZ(ZG) + card(G) = d. Then, by Lemma 3.7 (10) in [25], it is equivalent
to study the solutions of MA(β) and the solutions of MG(βG) where β = βG + βG

and βG ∈ CG and βG ∈ CG are unique.

Theorem 5.7. If Conjecture 5.1 holds, the solution space of MA(β) at any non-
singular point has reducible monodromy representation if and only if at least one
of the following conditions holds :

i) βG ∈ Cd is resonant for G.

ii) There is no hyperplane off the origin containing all the columns of A.

Proof. If G = ∅ we consider by convention that βG = 0 is nonresonant for G. In
this case rank(MA(β)) = volZd(A) = 1 and so the space of solutions has irreducible
monodromy representation. By Lemma 3.7 (10) in [25], we can assume without loss
of generality that G = A in order to simplify the proof (otherwise everything would
be written for βG and G instead of β and A respectively).

Let us prove first the if direction. If β is resonant, then by the proof of Theo-
rem 4.1 in [25], we have that MA(β)(x) is a reducible D(x)-module and it is enough
to use Lemma 5.4 in this case. Thus we can assume now that β ∈ Cd is nonreso-
nant and that ii) holds. If ΓA has at least two facets and τ is one of them, since
we assume that Conjecture 5.1 holds, there exists a proper monodromy invariant
subspace of solutions of MA(β) of dimension volZd(τ) < volZd(A) = rank(MA(β)).

We can assume now that ΓA = τ is a facet and that all the columns of A that
do not belong to τ belong to ΔA \ τ . Then the variety Yτ = {xj = 0 : ∀j /∈ τ}
is non-characteristic for MA(β). Thus, by Theorem 2.3.1 in [15], the restriction
of the solution sheaf of MA(β) to Yτ is isomorphic to the solution sheaf of the
D-module restriction of MA(β) to Yτ . Since ZA �= Zτ , by Theorem 2.1 in [8],
the restriction of MA(β) to Yτ is isomorphic to ⊕β′∈ΛMτ (β

′) for certain set Λ
of cardinality [ZA : Zτ ] > 1. Moreover, if we denote by V (Eτ ) ⊆ Cτ the zero
set in Cτ of the principal τ -determinant, it is clear that π1(C

n \ (Cτ × V (Eτ )) �
π1(C

τ \ V (Eτ )). Thus, since the solution space of ⊕β′∈ΛMτ (β
′) has reducible

monodromy representation we have that the solution space of MA(β) does too.

For the converse, assume that i) and ii) are false, then A = τ , MA(β) is regular
holonomic by [14] and the solution space of MA(β) has irreducible monodromy
representation for nonresonant parameters by [11], 2.11 Theorem. �
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