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Abstract

We consider the p-center problem on tree graphs where the customers are modeled as continua subtrees. We address unweighted
and weighted models as well as distances with and without addends. We prove that a relatively simple modification of Handler’s
classical linear time algorithms for unweighted 1- and 2-center problems with respect to point customers, linearly solves the
unweighted 1- and 2-center problems with addends of the above subtree customer model. We also develop polynomial time
algorithms for the p-center problems based on solving covering problems and searching over special domains.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a typical center problem defined on a network (a metric space induced by an undirected graph G = (V, E)

and its positive edge lengths), there is a set of demand points (customers), represented by a subset of points of the
network. Each demand point is associated with a cost function, transportation or service cost, which is assumed to
be a nondecreasing linear function of the distance of the point to its server. Given an integer p, the objective is to
locate p servers (facilities) on the network, minimizing the maximum transportation cost of the customers. (Servers
are assumed to be uncapacitated and identical in terms of their services, so that each demand point is served by its
respective closest server.) The above model is called the p-center problem. The seminal paper of Hakimi [16], which
is considered as a milestone in modern location theory, provides an algorithmic framework to deal with single server
problems. An extended algorithmic framework to multifacility center location problem on networks is presented in
the paper by Kariv and Hakimi [22]. In that paper the authors consider problems where the set of demand points
is finite and coincides with the node set of the underlying graph. It is shown that the multifacility problems are
NP-hard. Moreover, polynomial time algorithms are presented for the p-center problem defined on tree networks.
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The reader is referred to Megiddo et al. [30], Frederickson and Johnson [12], Megiddo and Tamir [29], Cole [7] and
Frederickson [11] for the most efficient algorithms, known today, for various versions of the p-center problem on
tree networks when the demand set is finite. The first polynomial time algorithm for the p-center problem when the
demand set is the continuum set of all points on a tree network is given in Chandrasekaran and Daughety [5]. This
version is called the continuous p-center problem. Generalizations are discussed and polynomially solved in Tamir
and Zemel [36]. The reader is referred to Frederickson and Johnson [12], Megiddo and Tamir [29] and Cole [7] for
the most efficient algorithms, known today, for the continuous p-center problem on tree networks. In the last decade
there has been a great interest in locating “extensive” servers (new facilities), like paths or subtrees of a network,
which cannot be represented as points of the network or points in a continuous space, (see the surveys by Plastria
[32] and Dı́az-Báñez et al., [8]). The interested reader is referred to [33] and the references therein for a variety of the
most recent algorithmic and structural results. In this paper we study and focus on location problems with “extensive”
customers, (see the paper by Nickel et al., [31] and the references therein). For motivation purposes consider a network
with communication lines, where each line is used exclusively to connect between a pair of points. To check whether
a line properly functions it is sufficient to reach any point on that line, and transmit to each one of its endpoints.
(From a given point the server can test the functionality of all lines passing through that point.) In this model each
communication line is viewed as an extensive customer on the network and the servers are the checkpoints that we
need to choose on the network so that we cover all the extensive customers (lines). The optimization problem is to
find the minimum number of checkpoints needed to cover all lines.

Another example of such a model is the round-trip problem studied by Chan and Francis [6], Kolen [23], Kolen and
Tamir [24] and Tamir and Halman [35]. In this model a customer is represented by some fixed point on the network.
The customer is also associated with its depot, e.g., a fixed warehouse, or a dumping site. When a call is placed by
a customer, a server is required to depart from its home base, travel to the depot (customer), deliver some good from
the depot (customer) to the customer (depot), and return to its home base. The transportation cost is assumed to be a
linear function of the distance of the round-trip traveled by the server. More general models are studied by Berman,
Simchi-Levi and Tamir [3]. (Here the extensive demand facilities are the shortest paths connecting each point customer
with its respective depot. For further details the reader is referred to Section 6.) In all the above examples subtrees
represent the extensive customers. To motivate the fact that they may be non-disjoint, consider the first example.
Two communication lines, each one connecting a different pair of two terminals, may in practice pass through some
common intermediate points. Such points can be used as potential checkpoints for both lines.

Motivated by the above examples of extensive customers, we consider center problems on tree graphs where
the demand originates at continua (extensive) connected facilities: paths, neighborhoods and general subtrees. As
in Berman, Simchi-Levi and Tamir [3], we can view the extensive customer model as follows:

There is a finite collection of subsets Si , i ∈ I = {1, . . . , m}, where Si ⊆ V . Si is viewed as a set of demand
points. (Let n = |V |.) When a demand is originated at some subset Si , a server located at x must travel and visit each
of the customers in Si and return to its home base. The total travel distance of the server will be 2d(x, Ti ) + 2L(Ti ),
where Ti is the subtree induced by Si , d(x, Ti ) is the distance between x and its closest point in Ti , and L(Ti ) is the
length of Ti . The transportation cost of Si is assumed to be a linear function of 2d(x, Ti ) + 2L(Ti ). Specifically, for
i ∈ I , let wi and ki be a pair of reals with wi ≥ 0. Then the transportation cost is wi (d(x, Ti )+ ki ). (The terms ki and
wi are referred to as the addend and weight of the extensive customer Ti , respectively. Due to the form of the distance
function which depends on Ti we refer to the extensive Ti customer instead of Si customer.) The p-center problem of
the above extensive customer model is to locate p points (servers) on the tree network, minimizing the maximum over
all transportation costs of the m extensive customers to their respective nearest servers. By the unweighted version we
refer to the case where wi = 1 for all i ∈ I , while the model without addends corresponds to the case where ki = 0
for all i ∈ I .

We present polynomial time algorithms to solve the above p-center problems. These algorithms are based on
solving covering problems and searching over specially structured domains. Our algorithmic results are summarized
in Tables 1 and 2.

In addition to the general algorithmic results, we focus on the case, relevant to most applications, where the number
of servers p is significantly smaller than the number of customers. In particular, we prove that the classical linear
time algorithms of Handler (1973, 1978) [18,19] for the unweighted 1- and 2-center problems with respect to point
customers with no addends extend to the unweighted model with extensive subtree customers with addends, while
keeping the linear complexity. In the single facility case Handler considers the problem of finding a point on a tree
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Table 1
Resume of the results in the paper

Unweighted models

Structure +addends Problem
1-center 2-center Covering p-center

Points Without O(n) [18] O(n)[19] O(n)[34] O(n) [10]
With O(n) [25] O(n) [25] O(n) [34] O(n log n) [12]

Discrete Without O(m + n) O(m + n) O(n + p log n + pm)c O(mn log(n))b

paths With O(n + m) O(n + m) O(n + p log n + pm)c O(mn log(mn))

Neighborhoods Without O(m + n) O(m + n) O(m + n) [34] O((m + n) log n)

With O(m + n) O(m + n) O(m + n) O((m + n) log(mn))

Discrete Without O(n + t)a O(n + t) O(min{mn, n + p log n + pt})c O(mn log n)

subtrees With O(n + t) O(n + t) O(min{mn, n + p log n + pt})c O(mn log(mn)) [35]

a t is the total number of leaves of the m subtrees in T .
b The optimal value is the maximum of the addends or an element in the set {

d(vs ,vt )+ki +k j
2 }vs ,vt ∈V, i, j=1,...,m .

c Time for deciding the existence of a p covering.

Table 2
Resume of the results in the paper

Weighted models

Structure +addends Problem
1-center Covering p-center

Points Without O(n) [28] O(n) [34] O(n log2 n) [30]
|I | = n With O(n) [28] O(n) [34] O(n log2 n) [30]

Discrete Without O(n + m log n) O(n + p log n + pm)a O(mn log2(mn))

paths With O(n + m log n) O(n + p log n + pm)a O(min[mn log2(mn), (p log m +

log n log m)(n + p log n + pm)])

Neighborhoods Without O(m + n) O(m + n) O((m + n) log2(m + n))

With O(m + n) [28] O(m + n) O((m + n) log2(m + n))

Discrete Without O(n + t log n) O(min{mn, n + p log n + pt})a O((mn) log2(mn))

subtrees With O(n + t log n) O(min{mn, n + p log n + pt})a O(min[(mn) log2(mn), (p log t+
log m log n)(n + p log n + pt)])

a Time for deciding the existence of a p covering.

network minimizing the (unweighted) maximum distance to the nodes of the tree. (The problem is equivalent to
finding the diameter of the tree.) His classical solution is obtained as follows: Choose an arbitrary point y. Find a
node, say v j , which is furthest away from y. Find a node, say vk , which is furthest away from v j . The path connecting
v j and vk is a diameter of the tree, and its midpoint, say x1, is the unique solution to the unweighted 1-center problem.
(We note that in a recent paper, Bulterman et al. (2002) [4], attribute this algorithm to Dijkstra.) Halfin (1974) [17]
and Lin (1975) [25] extended Handler’s algorithm to the unweighted 1-center problem with addends.

To solve the 2-center problem, following Handler [19], split the tree into two subtrees, say T j and T k , containing
v j and vk respectively, and satisfying T j

∪ T k
= T , T j

∩ T k
= {x1}. Let x j and xk be the 1-centers of T j and

T k respectively. Then (x j , xk) solve the 2-center problem on T . (Handler’s algorithm for the 2-center problem was
recently rediscovered by Huang et al. [21].)

We prove that the above algorithms are valid for a general collection {Ti } of extensive subtree customers.
Specifically, to solve the unweighted 1-center problem without addends, choose an arbitrary point y, which is not
in ∩i∈I {Ti }. Find a subtree, say T j , which is furthest away from y. Find a subtree, say Tk , which is furthest away from
T j . Then the midpoint of the path connecting T j and Tk , say x1, is the unique solution to the unweighted 1-center
problem. (The problems with addends are slightly more complex.)
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The organization of the paper is as follows: In Section 2 we present preliminary results which are instrumental
in the rest of the paper. In particular, we develop simple expressions to compute distances between pairs of paths,
neighborhoods, and general subtrees. Section 3 is devoted to the unweighted 1-center problem with addends of a
collection of subtrees. We present a linear time algorithm which extends the intuitive ideas and the classical algorithm
of Handler [18] for the standard 1-center problem for point customers. In the following section we consider the
unweighted 2-center problem with addends of a collection of subtrees. Again, we present a linear time algorithm
that resembles the approach followed by Handler [19] in his classical algorithm for the unweighted 2-center problem.
Section 5 deals with the weighted 1-center problem with addends of a collection of subtrees. We provide a subquadratic
algorithm solving the general case. Section 6 covers the weighted p-center problem. We develop several algorithms
that are based on solving the covering problem and then using efficient search on structured domains or applying the
parametric approach. Finally, in Section 7 we make some final comments and pose a few open problems related to the
ones considered in the paper.

2. Notation, definitions and preliminaries

Let T = (V, E) be an undirected tree network with node set V = {v1, . . . , vn} and edge set E = {e2, . . . , en}.
Each edge e j , j = 2, 3, . . . , n, has a positive length l j , and is assumed to be rectifiable. In particular, an edge e j
is identified as an interval of length l j , so that we can refer to its interior points. We assume that T is embedded in
the Euclidean plane. Let A(T ) denote the continuum set of points on the edges of T . Each subgraph of T is also
viewed as a subset of A(T ). We refer to an interior point on an edge by its Euclidean distances along the edge to the
nodes of the edge. Let Pi j = P[vi , v j ] denote the unique simple path in A(T ) connecting vi and v j . d(vi , v j ) will
denote the length of P[vi , v j ]. Suppose that the tree T is rooted at some distinguished node, say v1. For each node
v j , j = 2, 3, . . . , n, let vp( j), the parent of v j , be the node v ∈ V , closest to v j , v 6= v j , on P[v1, v j ]. v j is then the
child of vp( j). v j is a leaf if it has no children. A node vi is a descendant of v j if v j ∈ P[v1, vi ]. v j is then an ancestor
of vi . Define level(vi ) = depth(vi ) to be the number of nodes on P[vi , v1]. A Level Ancestor Query (L A(vi ; k))
is to find the depth k ancestor of vi . Given a pair of nodes vi , v j , their least common ancestor (LC A(vi , v j )) is a
node of maximum depth, which is an ancestor of both vi and v j . The edge lengths induce a distance function on
A(T ). For any pair of points x, y ∈ A(T ), let d(x, y) denote the length of P[x, y], the unique simple path in A(T )

connecting x and y. With this distance function A(T ) is viewed as a metric space. For any pair of compact subsets
X, Y ⊆ A(T ), d(X, Y ) = min{d(x, y) : x ∈ X, y ∈ Y }. A subtree is a compact and connected subset of A(T ). A
subtree is discrete if its relative boundary points are nodes. Note that for any pair of subtrees X, Y ⊆ A(T ), and a
point z ∈ A(T ), d(X, Y ) ≤ d(X, z) + d(Y, z). If d(X, Y ) > 0, there are unique points x ′

∈ X and y′
∈ Y such

that d(X, Y ) = d(x ′, y′). In this case we define P[X, Y ] = P[x ′, y′
]. If Y is a singleton and d(X, Y ) = 0 we define

P[X, Y ] = Y . Given a point x ∈ A(T ) and a nonnegative real r , Nx (r), the neighborhood subtree of radius r centered
at x , is defined by Nx (r) = {y ∈ A(T ) : d(x, y) ≤ r}. For any subtree T ′, and a node vi of T ′, define F(T ′

: vi ) to
be the forest of T ′ obtained from T ′ by removing vi and all edges of T ′ incident to vi .

In this paper we consider the following multi-center location problem. Given a collection of m discrete subtrees
T = {Ti }, i ∈ I = {1, 2, . . . , m}, a set of real numbers, {ki }, i ∈ I , called addends, and nonnegative weights {wi }i∈I ,
the weighted p-center problem with addends is to find a set of p points, X p = {x1, . . . , x p}, X p ⊆ A(T ), minimizing

max
i∈I

{wi (d(Ti , X p) + ki )}.

We let r∗
p denote the optimal objective value. Since each subtree Ti is discrete, we may assume that p < n, and p < m.

When wi = 1 for all i ∈ I , we refer to the unweighted center problem, and when ki = 0 for all i ∈ I , we refer to the
center problem without addends.

In this section we present some results and their algorithmic implications involving collections of subtrees. We
will later use these results to develop our efficient algorithms to solve the above p-center problem. Given the above
collection of m discrete subtrees T , each subtree Ti , i ∈ I is represented in terms of its root xi and its set of leaves,
L∗

i . Set nl
i = |L∗

i | + 1. xi , the root of Ti , is the closest point of Ti to v1.
Given a subset I ′

⊆ I , a pair of subtrees Tr , Ts , r, s ∈ I ′, is called a diametrical pair of I ′, if

d(Tr , Ts) + kr + ks = max
i, j∈I ′

{d(Ti , T j ) + ki + k j }.
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Note that r and s are not necessarily distinct. Moreover, if d(Tr , Ts) = 0 then both (Tr , Tr ) and (Ts, Ts) are diametrical
pairs. If d(Tr , Ts) > 0, for any point x ∈ P[Tr , Ts], define a diametrical partition of T with respect to Tr , Ts and x
by a pair of subtrees X, Y in A(T ) satisfying, X ∪ Y = A(T ), X ∩ Y = {x}, Tr ⊆ X and Ts ⊆ Y .

Lemma 2.1. Let xq , q ∈ I be such that there is no x j , x j 6= xq and xq ∈ P[x j , v1]. Then xq ∈ Ti for all i ∈ I , or
there exists some Tp such that Tp

⋂
Tq = ∅.

Proof. Suppose Tq
⋂

Ti 6= ∅ for all i ∈ I . If xi = xq , then xq ∈ Ti . If xi 6= xq , then by the minimality property
of xq , xi is not in Tq . But since Ti

⋂
Tq 6= ∅, Ti contains some point y in Tq . Hence, from the connectivity of Tq ,

P[y, xi ] ⊆ Ti . But xq ∈ P[y, xi ], and therefore xq ∈ Ti . �

By definition of xq we obtain the next lemma.

Lemma 2.2. Assume that there exists a diametrical pair T1, T2 ∈ T such that d(T1, T2) + k1 + k2 > 2 maxi∈I ki .
Let xq , q ∈ I be such that there is no x j , x j 6= xq and xq ∈ P[x j , v1]. If the collection T does not intersect at xq ,
then Tq does not intersect the interior of P[T1, T2].

Given the rooted tree T , Harel and Tarjan (1984) [20] present data structures which require O(n) preprocessing
time, and enables one to find the nearest or least common ancestor (LCA) of a given pair of nodes or points in A(T )

in constant time. In addition, Dietz (1991) [9], Berkman and Vishkin (1994) [2], and Bender and Farach-Colton
(2002) [1] present data structures which require O(n) preprocessing time, and allows one to answer a level ancestor
query in constant time. (The reader is referred to Bender and Farach-Colton (2002) [1] for the simplest data structure.)
These results are very useful to evaluate distances between subtrees as illustrated in the next lemma.

Lemma 2.3. Let x, y be a pair of points in A(T ), and let z be their least common ancestor. Then d(x, y) =

d(x, v1) + d(y, v1) − 2d(z, v1), and d(x, y) can be computed in constant time. Let x, y, z, u be four points in A(T ),
then

d(P[x, y], P[z, u]) = max{0, 1/2(d(x, z) + d(y, u) − d(x, y) − d(z, u))},

and d(P[x, y], P[z, u]) can be computed in constant time. Let x, y be a pair of points in A(T ), and let r, s be a pair
of nonnegative reals. Then

d(Nx (r), Ny(s)) = max{0, d(x, y) − r − s}.

Let Ti and T j be a pair of subtrees in T . Let z be the least common ancestor of xi and x j , the roots of Ti and T j
respectively. Suppose that xi 6= x j . If z 6= xi and z 6= x j , then d(Ti , T j ) = d(xi , x j ). If z = x j , then

d(Ti , T j ) = d(T j , xi ) = min
vk∈L∗

j

{d(xi , P[x j , vk])}.

In particular, d(Ti , T j ) can be computed in O(nl
j ) time. Let x be a point in A(T ). Then the set {d(x, T j )}, j ∈ I ,

can be computed in O(
∑

j∈I nl
j ) time. Let Ti be a subtree in T . Then the set {d(Ti , T j )}, j ∈ I , can be computed in

O(n +
∑

j∈I nl
j ) time.

Proof. The results about computing the distances between a pair of points, a pair of paths, a pair of neighborhoods,
and a pair of subtrees in T are clear. Consider the computation of the set {d(x, T j )}, j ∈ I where x ∈ A(T ).
For each j ∈ I , let z j be the least common ancestor of x and x j , the root of T j . If z j 6= x , and z j 6= x j , then
d(x, T j ) = d(x, x j ). If z j = x , d(x, T j ) = d(x, x j ), and if z j = x j

d(T j , x) = min
vk∈L∗

j

{d(x, P[x j , vk])}.

Therefore the set {d(x, T j )}, j ∈ I , can be computed in O(
∑

j∈I nl
j ) time. Finally, consider the last statement where

Ti is an arbitrary subtree in T . For each subtree T j ∈ T , we compute zi, j , the least common ancestor of xi and x j . If
zi, j 6= xi , and zi, j 6= x j , then d(Ti , T j ) = d(xi , x j ). Let I +

i = { j ∈ I : zi, j = xi } and let I −

i = { j ∈ I : zi, j = x j }.
We clearly have, d(Ti , T j ) = d(x j , Ti ), for j ∈ I +

i , and d(Ti , T j ) = d(xi , T j ), for j ∈ I −

i . By scanning the subtree
of all descendants of xi , starting at xi , we can compute d(x j , Ti ) for all j ∈ I +

i in O(m + n) time. (Note that the time
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to compute max j∈I +

i
{d(x j , Ti )} is only O(n) since we consider discrete subtrees, and therefore there are only O(n)

different values of x j , j ∈ I +

i .) Next, consider a subtree T j such that xi is a descendant of x j , i.e., j ∈ I −

i . Then,

d(Ti , T j ) = d(T j , xi ) = min
vk∈L∗

j

{d(xi , P[x j , vk])}.

In particular, d(Ti , T j ) can be computed in O(nl
j ) time. Hence, for Ti ∈ T , the set {d(Ti , T j )}, j ∈ I , can be computed

in O(n +
∑

j∈I nl
j ) time. �

To conclude, when all subtrees are discrete, and represented as above, (root and leaves), the time to compute
distances from a given subtree Ti to all other subtrees is O(n +

∑
j∈I nl

j ). This is a linear time algorithm in terms of
the input size. In particular, for a collection of paths we obtain the bound O(n + m) as a special case.

Finally, combining Lemma 2.3 with the data structures that answer level ancestor queries in constant time, we get
the following corollary.

Corollary 2.1. There are data structures, requiring O(n) preprocessing, which resolve the following query in
O(log n) time: Given a node vi , a point x on the edge (vi , vp(i)), and a real r ≤ d(x, v1), find a node v j , an
ancestor of vi , and a point y on the edge (v j , vp( j)) such that d(x, y) = r .

We will also need the next result which follows directly from the above discussion.

Lemma 2.4. There are data structures, requiring O(n) preprocessing, which resolve the following query in constant
time: Given a pair of paths, P[vi , v j ] and P[vk, vt ], determine whether the pair intersects, and find the two end points
(nodes) of the path P[vi , v j ] ∩ P[vk, vt ] when it is nonempty.

Proof. Suppose without loss of generality that LC A(vi , v j ) = vi and LC A(vk, vt ) = vk . (Otherwise, consider
the intersections between the four relevant pairs among the set {P[vi , LC A(vi , v j )], P[v j , LC A(vi , v j )],

P[vk, LC A(vk, vt )], P[vt , LC A(vk, vt )]}.) If LC A(vi , vk) 6∈ {vi , vk}, then the paths do not intersect. Suppose
without loss of generality that LC A(vi , vk) = vi . Note that vk ∈ P[vi , v j ] if and only if LC A(v j , vk) = vk . If vk 6∈

P[vi , v j ] the paths do not intersect. Otherwise, the intersection of the two paths is the path P[vk, LC A(v j , vt )]. �

3. Unweighted 1-center problem with addends of a collection of subtrees

Given is a finite collection of subtrees T = {Ti }i∈I of a tree T and their associated addends. Notice that we
can assume without loss of generality that the addends are nonnegative since we are solving minimax problems. If
Ti
⋂

T j = ∅ let P[Ti , T j ] be the unique simple path connecting Ti and T j . The unweighted 1-center problem with
addends of T is to find x∗

∈ T satisfying

max
i∈I

{d(x∗, Ti ) + ki } = min
x∈A(T )

max
i∈I

{d(x, Ti ) + ki }.

x∗ is called an unweighted 1-center with addends of T .
The optimal value is at least maxq∈I kq . For each pair of subtrees Ti , T j , the optimal solution value to the

unweighted 1-center problem with addends for the subcollection {Ti , T j } is clearly max{(d(Ti , T j )+ki +k j )/2, ki , k j }.
Due to the Helly property, (see Kolen and Tamir (1990) [24]), the optimal solution value to the unweighted 1-center
problem with addends for T is

max
{

max
i, j∈I

(d(Ti , T j ) + ki + k j )/2; max
i∈I

{ki }

}
.

Thus, a necessary and sufficient condition to have an optimal value greater than k∗
= maxi∈I ki is that there exists a

pair of subtrees Ti , T j such that d(Ti , T j ) + ki + k j > 2k∗. We next show how to test efficiently whether the optimal
solution value is equal to k∗. For each i ∈ I , define T ′

i = {x ∈ A(T ) : d(x, Ti ) ≤ k∗
− ki }. Then the optimal value is

equal to k∗ if and only if ∩i∈I {T ′

i } is nonempty. For i ∈ I , let zi be the closest point to v1 in T ′

i . Let t ∈ I satisfy

d(zt , v1) = max
i∈I

{d(zi , v1)}.
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By Lemma 2.1, (replace Ti by T ′

i and xi by zi ), ∩i∈I {T ′

i } is nonempty, if and only if zt ∈ ∩i∈I {T ′

i }. Thus, it is sufficient
to compute the distances d(zi , v1), i ∈ I , identify zt explicitly on A(T ), and check whether zt is contained in T ′

i for
all i ∈ I .

As above, we let xi to be the closest point to v1 in Ti . If d(xi , v1) ≤ k∗
− ki , then d(zi , v1) = 0. Otherwise,

d(zi , v1) = d(xi , v1) + ki − k∗. Thus, by the results in Section 2, in O(n + m + log n) time we find the point zt .
Finally, we note that for each i ∈ I , zt ∈ T ′

i if and only if d(zt , Ti ) ≤ k∗
− ki . Again, using the results in Section 2,

we conclude that the total effort to determine whether the optimal solution value to the unweighted 1-center problem
with addends is equal to k∗ is O(n +

∑
i∈I nl

i ). In this case, zt , defined above, is an optimal solution.
Without loss of generality suppose that T1, T2 ∈ T satisfy

d(T1, T2) + k1 + k2 = max
i, j∈I

{d(Ti , T j ) + ki + k j }.

For the ease of readability, we denote the following inequality by (A1):

(A1): d(T1, T2) + k1 + k2 > 2 maxq∈I kq .

Lemma 3.1. Assume that (A1) holds. Then x∗, the point of P[T1, T2] such that d(x∗, T1) = (d(T1, T2)− k1 + k2)/2,
is an unweighted 1-center with addends of T . In particular, the optimal value is (d(T1, T2) + k1 + k2)/2.

Proof. When (A1) is satisfied we have d(T1, T2) + k1 + k2 > 2 max{k1, k2}. Thus, x∗ is clearly the unweighted
1-center with addends of {T1, T2}. In particular, d(T1, T2) > 0. It is sufficient to show that for each i ∈ I ,
d(Ti , x∗) + ki ≤ d(T1, x∗) + k1 = d(T2, x∗) + k2 = (d(T1, T2) + k1 + k2)/2. If x∗

∈ Ti , then from (A1)
d(Ti , x∗) + ki = ki < (d(T1, T2) + k1 + k2)/2. Suppose that x∗

6∈ Ti , and let yi be the closest point to Ti on
P[T1, T2]. (If Ti intersects P[T1, T2], define yi to be the closest point to x∗ in Ti .) Without loss of generality suppose
that yi ∈ P[x∗, T2]. If d(Ti , x∗) + ki > d(T2, x∗) + k2, we obtain the contradiction

d(T1, Ti ) + k1 + ki = d(T1, x∗) + k1 + d(Ti , x∗) + ki > d(T1, x∗) + k1 + d(T2, x∗) + k2

= d(T1, T2) + k1 + k2. �

Lemma 3.2. Assume that (A1) holds. Let T ′ be a subtree in A(T ), not necessarily in T , which does not intersect the
interior of P[T1, T2]. Then maxi∈I {d(T ′, Ti ) + ki } = max{d(T ′, T1) + k1, d(T ′, T2) + k2}.

Proof. Note that property (A1) implies that d(T1, T2) > 0. Suppose, Tp ∈ T is such that:

d(T ′, Tp) + kp = max
i∈I

{d(T ′, Ti ) + ki }.

Case 1. First we analyze the case when Tp intersects P[T1, T2]. Assume by contradiction that d(T ′, Tp) + kp >

max{d(T1, T ′) + k1, d(T2, T ′) + k2}. Let y be the closest point to T ′ on P[T1, T2]. Suppose first that y 6∈ Tp, and
assume without loss of generality that Tp intersects P[T1, y]. Then, d(T ′, Tp) + kp > d(T ′, T1) + k1 would imply
that d(y, Tp) + kp > d(y, T1) + k1. Hence,

d(T2, Tp) + k2 + kp = d(T2, y) + k2 + d(y, Tp) + kp > d(T2, y) + k2 + d(y, T1) + k1

= d(T1, T2) + k1 + k2.

The latter contradicts the maximality of the pair T1, T2. Suppose now that y ∈ Tp. Assume first that y is in the interior
of P[T1, T2]. Then,

d(T ′, y) + kp ≥ d(T ′, Tp) + kp > d(T ′, T1) + k1 = d(T ′, y) + d(y, T1) + k1.

Hence, kp > d(y, T1) + k1. Similarly,

d(T ′, y) + kp ≥ d(T ′, Tp) + kp > d(T ′, T2) + k2 = d(T ′, y) + d(y, T2) + k2,

and kp > d(y, T2) + k2. Thus, we obtain the following contradiction,

2kp > d(T1, y) + k1 + d(y, T2) + k2 = d(T1, T2) + k1 + k2.
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Fig. 1. Illustration of the proof of Lemma 3.2. Case 2-a when y = u.

If y is not an interior point, assume without loss of generality that y ∈ T1. In this case, d(T1, Tp) = 0, and therefore,
the inequality k1 + kp ≤ d(T1, T2) + k1 + k2 = d(y, T2) + k1 + k2, implies kp ≤ d(y, T2) + k2. Hence,

d(T ′, Tp) + kp ≤ d(T ′, y) + kp ≤ d(T ′, y) + d(y, T2) + k2 = d(T ′, T2) + k2.

Case 2. Next we consider the case when Tp does not intersect P[T1, T2]. Let T̄ be the minimal subtree including
T1
⋃

T2
⋃

T ′. Let z be a closest point to Tp in T̄ . If z is not unique, i.e., when Tp intersects T̄ , set z to be the closest
point to P[T1, T2] in Tp ∩ T̄ . Let y be the closest point on P[T1, T2] to T ′. Suppose first that y is not in the interior of
P[T1, T2]. Without loss of generality assume that y ∈ T1. We distinguish two cases: z ∈ P[T1, T2] and z 6∈ P[T1, T2].
(a) z 6∈ P[T1, T2]. (See Fig. 1.) Let u be the closest point to Tp on P[T1, T2]. If y 6= u, using the maximality
property of T1 and T2, i.e., d(Tp, T1) + kp + k1 ≤ d(T1, T2) + k1 + k2, we have d(Tp, u) + kp ≤ d(u, T2) + k2.
Hence, d(T ′, Tp) + kp ≤ d(T ′, T2) + k2. Suppose that y = u. In this case, from the maximality of T1, T2, we have
d(Tp, T2) + kp + k2 ≤ d(T1, T2) + k1 + k2. The latter implies that d(Tp, u) + kp ≤ d(T1, u) + k1 ≤ d(T2, u) + k2.
(Note that the second inequality follows directly from condition (A1).) Therefore,

d(T ′, Tp) + kp ≤ d(T ′, u) + d(u, Tp) + kp ≤ d(T ′, u) + d(u, T2) + k2 = d(T ′, T2) + k2.

(b1) z ∈ P[T1, T2], and z 6= y. (See Fig. 2.) In this case we must have d(z, Tp) + kp ≤ d(z, T2) + k2, since
otherwise, d(T1, Tp) + k1 + kp > d(T1, T2) + k1 + k2, contradicting the maximality of the pair T1, T2. Therefore,

d(T ′, T2) + k2 ≤ d(T ′, Tp) + kp ≤ d(T ′, z) + d(z, Tp) + kp ≤ d(T ′, z) + d(z, T2) + k2 = d(T ′, T2) + k2.

(b2) z ∈ P[T1, T2], and z = y. (See Fig. 3.) In this case, from the maximality of T1, T2, we have d(Tp, T2) + kp +

k2 ≤ d(T1, T2) + k1 + k2. The latter implies that d(Tp, z) + kp ≤ d(T1, z) + k1 ≤ d(T2, z) + k2. Therefore,

d(T ′, Tp) + kp ≤ d(T ′, z) + d(z, Tp) + kp ≤ d(T ′, z) + d(z, T2) + k2 = d(T ′, T2) + k2.

Next, suppose that y ∈ P[T1, T2], y 6∈ T1, y 6∈ T2 and d(y, T1)+k1 ≤ d(y, T2)+k2. Let α = (d(T1, T2)−k1+k2)/2,
α1 = d(y, x∗) and α2 = d(y, T1). (Recall that x∗ is the 1-center with addends of the collection T .) Notice that from
construction α = α1 + α2, α1 ≥ 0 and α2 > 0. Let β = d(T ′, y). Note that β > 0. Let γ = d(z, Tp) + kp. To
conclude the proof we perform a subcase analysis distinguishing the following subcases:

(a′) z ∈ T ′

d(T ′, Tp) + kp ≤ d(z, Tp) + kp = γ < γ + β ≤ α2 + k1.

Notice that the last inequality holds since otherwise d(T2, Tp) + k2 + kp > d(T1, T2) + k1 + k2. Therefore

d(T ′, T2) + k2 ≤ d(T ′, Tp) + kp < α2 + k1 ≤ α + k1 ≤ d(y, T2) + k2 ≤ d(T ′, T2) + k2.

(b′) z ∈ P[y, T ′
], z 6= y. Let β = β1 + β2, where β1 = d(z, y) > 0 and β2 = d(z, T ′). Again, from the maximality

of the pair T1, T2, it is clear that:

γ < β1 + γ ≤ α2 + k1.
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Fig. 2. Illustration of the proof of Lemma 3.2. Case 2-(b1).

Fig. 3. Illustration of the proof of Lemma 3.2. Case 2-(b2).

Thus,

d(T1, T ′) + k1 = β2 + β1 + α2 + k1 > β2 + γ = d(T ′, Tp) + kp.

(c′) z ∈ T2 and z 6∈ P[T1, T2]. In this case since d(T1, Tp)+k1 +kp ≤ d(T1, T2)+k1 +k2 then d(z, P[T1, T2])+kp ≤

k2. Hence,

d(T2, T ′) + k2 ≥ d(Tp, T ′) + kp.

(d′) z ∈ T1, z 6∈ P[T1, T2]. Following the argument in case (c′), we obtain

d(T1, T ′) + k1 ≥ d(Tp, T ′) + kp.

(e′) z ∈ P[T1, T2]. Assume first that z ∈ P[y, T2]. Then, from the maximality of T1 and T2, d(z, Tp) + kp ≤

d(z, T2) + k2. Therefore, d(T ′, T2) + k2 ≤ d(T ′, Tp) + kp ≤ d(T ′, T2) + k2. Next assume that z ∈ P[y, T1]. In this
case, d(z, T1) + k1 ≥ d(z, Tp) + kp, and hence d(T ′, T1) + k1 ≥ d(T ′, Tp) + kp ≥ d(T ′, T1) + k1. �

Lemma 3.3. Assume that (A1) holds. Let T ′ be a subtree of A(T ), not necessarily in T , which intersects the interior
of P[T1, T2], but does not intersect some subtree Ti , i ∈ I . Let Tp ∈ T be a subtree satisfying

d(T ′, Tp) + kp = max
i∈I

{d(T ′, Ti ) + ki }.

Suppose that d(Tp, T ′) + kp > maxi∈I ki . Then either:

max
i∈I

ki < d(T ′, Tp) + kp = max{d(T ′, T1) + k1, d(T ′, T2) + k2},

or Tp does not intersect the interior of P[T1, T2].

Proof. Assume that Tp intersects the interior of P[T1, T2]. Suppose without loss of generality that,

Tp ∩ P[T1, T2] ⊂ P[T ′, T2].

Note that Tp does not intersect T ′ since we assume that d(Tp, T ′)+kp > maxi∈I ki . If d(T ′, Tp)+kp > d(T ′, T2)+k2
then

d(T1, Tp) + kp + k1 > d(T1, T2) + k1 + k2
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which contradicts the maximality property of T1 and T2. Hence,

d(T ′, T2) + k2 ≥ d(T ′, Tp) + kp. �

3.1. Algorithmic implications

The above lemmas imply the validity of the following algorithm to solve the unweighted 1-center problem with
addends for a collection T . By the results in Section 2 we first find a point which is not in ∩i∈I {Ti }, in O(n+

∑
i∈I nl

i )

time, or conclude that the optimal value is maxi∈I ki .

Algorithm 3.1.

1. Find a point x ∈ A(T ) which does not intersect all subtrees in T or conclude that the optimal value is maxi∈I ki .
2. Let Tp be such that d(x, Tp) + kp = maxi∈I {d(x, Ti ) + ki }.
3. Let Tr be such that d(Tp, Tr ) + kr = maxi∈I {d(Tp, Ti ) + ki }.
4. Let Ts be such that d(Tr , Ts) + ks = maxi∈I {d(Tr , Ti ) + ki }. Stop. x∗, the point of P[Tr , Ts] such that

d(x∗, Tr ) = (d(Tr , Ts) − kr + ks)/2, is an unweighted 1-center with addends of T . In particular, the optimal
value is (d(Tr , Ts) + kr + ks)/2.

Applying the results in Section 2 we conclude with the next results.

Theorem 3.1. Let T = {Ti }, i ∈ I , be a collection of m subtrees. For i ∈ I , let nl
i denote the number of leaves of Ti

plus 1. The unweighted 1-center problem with addends of T can be solved in O(n +
∑

i∈I nl
i ) time.

Theorem 3.2. Let T = {Ti }, i ∈ I , be a collection of m paths. The unweighted 1-center problem with addends of T
can be solved in O(n + m) time.

Theorem 3.3. Let T = {Ti }, i ∈ I , be a collection of m neighborhood subtrees. The unweighted 1-center problem
with addends of T can be solved in O(n + m) time.

3.2. Unweighted 1-center problem with no addends

In this subsection we specialize to the case where there are no addends associated with the subtrees in T , i.e.,
ki = 0 for all i ∈ I . The above lemmas imply the validity of the following algorithm to solve this specialized model
for a collection T which does not intersect at a point of A(T ).

Algorithm 3.2.

1. Find Tq ∈ T which does not intersect all subtrees in T .
2. Let Tp be such that d(Tq , Tp) = maxi∈I {d(Tq , Ti )}.
3. Let Tr be such that d(Tp, Tr ) = maxi∈I {d(Tp, Ti )}.
4. Let Ts be such that d(Tr , Ts) = maxi∈I {d(Tr , Ti )}. Stop, d(Tr , Ts) = maxi, j∈I {d(Ti , T j )}.

We next show the redundancy of Step 4 if we initiate Step 1 with a neighborhood subtree. For general subtrees, Step
4 is essential, as illustrated by the following example.

Example 3.1. Define T = (V, E) by V = {v1, v2, v3, v4}, and E = {(v1, v3), (v2, v3), (v3, v4)}. Let d(v1, v3) = 3,
d(v2, v3) = 2, and d(v3, v4) = 1. Finally, T = {T1, T2, T3, T4}, where T1 = {v1}, T2 = {v2}, T3 = P[v1, v2] and
T4 = {v4}. If we apply the above algorithm initiating with Tq = T3, we obtain Tp = T4, Tr = T1, and Ts = T2.

Lemma 3.4. Assume that ∩{Ti }i∈I is empty. Let T ′ be a neighborhood subtree in A(T ), not necessarily in T ,
which does not intersect some subtree T j , j ∈ I . Let Tp ∈ T , satisfy d(T ′, Tp) = maxi∈I {d(T ′, Ti )}. Then
d(T ′, Tp) = max{d(T ′, T1), d(T ′, T2)}.
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Proof. Using Lemma 3.2, we assume without loss of generality that T ′ intersects the interior of P[T1, T2]. We can
assume that Tp does not intersect the path P[T1, T2], since otherwise

max{d(T ′, T1), d(T ′, T2)} ≤ d(T ′, Tp) ≤ max{d(T ′, T1), d(T ′, T2)}.

Let z ∈ A(T ) be the center of the neighborhood T ′, and let r ≥ 0 be its radius. Since z 6∈ T1 ∩ T2, assume without
loss of generality that z 6∈ T1. Let x ∈ P[T1, T2] be the closest point to z in P[T1, T2]. Note that x ∈ T ′, since
T ′ intersects P[T1, T2]. Let T̄ be the minimal subtree of A(T ) containing T1, T2 and z. From the maximality of
the path P[T1, T2], we can assume that Tp does not intersect T̄ , and that the closest point to Tp in T̄ , say y is in
P[T1, z] ∪ P[x, T2] = P[T1, T2] ∪ P[x, z]. Suppose first that y ∈ P[T1, z]. From the maximality of P[T1, T2], we
have d(x, Tp) ≤ d(x, T1). Hence,

0 < d(Tp, T ′) = d(Tp, z) − r ≤ d(Tp, x) + d(x, z) − r ≤ d(T1, x) + d(x, z) − r = d(T1, z) − r ≤ d(T1, T ′).

Next, suppose that y ∈ P[x, T2]. From the maximality of P[T1, T2], we have d(x, Tp) ≤ d(x, T2). Hence,

0 < d(Tp, T ′) = d(Tp, z) − r = d(Tp, x) + d(x, z) − r ≤ d(T2, x) + d(x, z) − r

= d(T2, z) − r ≤ d(T2, T ′). �

The last lemma suggests that we can start the algorithm with an arbitrary point (degenerate subtree T ′). This choice
simplifies the above algorithm.

Algorithm 3.3.

1. Let x be an arbitrary point of A(T ). If x ∈ Ti , for each i ∈ I : Stop, all subtrees have a common point.
2. Let Tp be such that d(x, Tp) = maxi∈I {d(x, Ti )} > 0. Let y ∈ Tp satisfy d(x, y) = d(x, Tp). If y ∈ Ti , for each

i ∈ I : Stop, all subtrees have a common point.
3. Let Tr be such that d(Tp, Tr ) = maxi∈I {d(Tp, Ti )}. Stop, d(Tr , Tp) = maxi, j∈I {d(Ti , T j )}.

Remark 3.1. Note that if x is not a common point of all subtrees in the collection T , then T has a common point if
and only if the point y is a common point.

The above algorithm extends the classical algorithm of Handler [18] from 1973, which applies to the case where each
subtree in the collection is a point in A(T ).

4. Unweighted 2-center problem with addends of a collection of subtrees

Given the collection T = {Ti }i∈I of subtrees and their associated addends, the unweighted 2-center problem with
addends is to find a pair of points X∗

= {x∗

1 , x∗

2 } such that:

max
i∈I

{d(X∗, Ti ) + ki } = min
X :|X |=2

max
i∈I

{d(X, Ti ) + ki }.

First of all, we can assume without loss of generality that (A1) holds. Otherwise the 2-center problem reduces to a
1-center problem and the optimal value is maxi∈I ki . In this case the optimal solution can be found in linear time
solving one 1-center problem with addends.

Lemma 4.1. Suppose that (A1) holds and let Ti , T j be a diametrical pair of I . Let x be an interior point of P[Ti , T j ].
Let Ai (T ), A j (T ), be a diametrical partition with respect to Ti , T j and x, i.e., Ai (T ), A j (T ) are subtrees of A(T ),

Ai (T ) ∪ A j (T ) = A(T ), Ai (T ) ∩ A j (T ) = {x}, Ti ⊂ Ai (T ), T j ⊂ A j (T ).

Define Ti = {T i
t = Tt ∩ Ai (T ) : t ∈ I }, and I ′

= {t ∈ I : T i
t 6= ∅}. If maxt,u∈I ′{d(T i

t , T i
u ) + kt + ku} > maxt∈I ′ 2kt ,

then there exists a subtree T i
s ∈ Ti such that Ti , T i

s is a diametrical pair of Ti .

Proof. First we note that for each pair of (nonempty) subtrees T i
t and T i

u in Ti , d(T i
t , T i

u ) = d(Tt , Tu). Suppose that
the subtrees T i

q and T i
l , where T i

q 6= Ti and T i
l 6= Ti , are diametrical for the collection Ti . From the supposition in the

lemma it follows that d(T i
q , T i

l ) > 0, and therefore the path P[T i
q , T i

l ] is well defined. Let z be the closest point of Ti
to x . (Note that z 6= x .) To prove the result we distinguish the following cases. First, assume that z ∈ P[Tq , x]. Then,
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in this case T i
q = Tq . Since Ti , T j are diametrical for T we have ki ≥ d(Tq , z)+ kq . Suppose that z ∈ P[Tl , x]. Then,

by the same argument, T i
l = Tl and ki ≥ d(Tl , z) + kl . Thus,

d(Tq , Tl) + kq + kl ≤ d(Tq , z) + d(z, Tl) + kq + kl ≤ 2ki = d(Ti , Ti ) + 2ki .

The above implies that the pair Ti , Ti is also a diametrical pair of Ti . Suppose now that z 6∈ P[Tl , x]. If z ∈ Tl , then
we have

d(Tq , Tl) + kq + kl ≤ d(Tq , z) + kq + kl ≤ ki + kl = d(Ti , Tl) + ki + kl .

The above implies that the pair Ti , T i
l is also a diametrical pair of Ti . If z 6∈ Tl , we clearly have z ∈ P[Tl , Tq ]. Hence,

using the above inequality, ki ≥ d(Tq , z) + kq , we obtain

d(Tl , Tq) + kl + kq = d(Tl , z) + d(z, Tq) + kl + kq ≤ d(Tl , z) + kl + ki = d(Tl , Ti ) + kl + ki .

The above implies that the pair Ti and T i
l is diametrical for Ti . This concludes the proof for the case z ∈

P[Tq , x]. A symmetric proof validates the case z ∈ P[Tl , x]. Thus, it is sufficient to consider the case where
z 6∈ P[Tq , x] ∪ P[Tl , x]. In particular, z 6∈ P[Tq , Tl ]. Next, consider the case where P[Tq , Tl ] does not intersect
P[Ti , x], and let y be the closest point to P[Tq , Tl ] on P[Ti , x]. At least one of the pair {Tq , Tl} does not intersect
P[Ti , x]. Suppose that Tl ∩ P[Ti , x] = ∅. Then y ∈ P[Ti , Tl ]. Suppose that y ∈ Tq . Then

d(Ti , Tl) = d(Ti , y) + d(y, Tl) ≥ d(Ti , y) + d(Tq , Tl). (1)

Using the maximality of (Tq , Tl), in Ti and (1) we have

kl + kq + d(Tq , Tl) ≥ kl + ki + d(Tl , Ti ) ≥ kl + ki + d(Ti , y) + d(Tq , Tl).

Hence,

kq ≥ ki + d(Ti , y). (2)

The maximality of (Ti , T j ) in T implies

ki + d(Ti , y) ≥ kl + d(Tl , y). (3)

Combining (2) and (3) we obtain kq ≥ kl + d(Tl , y). Therefore,

2kq ≥ kq + kl + d(Tl , y) ≥ kq + kl + d(Tl , Tq).

The above contradicts the condition in the lemma which requires kq + kl + d(Tq , Tl) > 2 maxt∈I ′ kt .
If y 6∈ Tq , then, from the fact that {Ti , T j } is a diametrical pair,

d(Tq , Tl) + kq + kl ≤ d(Tl , y) + d(y, Tq) + kq + kl ≤ d(Tl , y) + d(y, Ti ) + kl + ki = d(Tl , Ti ) + kl + ki .

The result holds with T i
s = T i

l . Next, consider the case where P[Tq , Tl ] intersects P[Ti , x]. (See Fig. 4.) Let xl (xq )
be the closest point to Tl (Tq ) in P[Tq , Tl ] ∩ P[Ti , x]. Without loss of generality suppose that xl ∈ P[xq , x]. (If
xq = xl and this point is an endpoint of P[Tq , Tl ], we assume, for convenience, that this is the endpoint of Tl .) Then,
xl ∈ P[Ti , Tl ]. From the fact that {Ti , T j } is a diametrical pair,

d(Tl , Tq) + kq + kl = d(Tl , xl) + d(xl , Tq) + kq + kl ≤ d(Tl , xl) + d(xl , Ti ) + kl + ki = d(Tl , Ti ) + kl + ki .

The result holds with T i
s = T i

l . �

Remark 4.1. We note that the above result holds even if we replace the collection Ti by a subcollection induced by
any subset I ′′

⊆ I ′, such that i ∈ I ′′.

Remark 4.2. The reader can check that in the 2-center problems without addends if Ai (T ), A j (T ) is a diametrical
partition with respect to Ti , T j and x (x being interior to P[Ti , T j ]), then there always exists a subtree T i

s ∈ Ti such
that Ti , T i

s is a diametrical pair of Ti . Nevertheless, the additional condition in the above lemma is essential when
addends are present, as illustrated in the next example.
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Fig. 4. Illustration of the proof of Lemma 4.1 when P[Tq , Tl ] ∩ P[Ti , x] 6= ∅.

Example 4.1. Consider the path network with node set V = {v1, v2, v3} and edge set E = {(v1, v2), (v2, v3)}.
The edge lengths are: d(v1, v2) = 1, d(v2, v3) = 2. The family of subtrees and their corresponding addends are:
T1 = {v1}, k1 = 0; T2 = {(v1, v2), (v2, v3)}, k2 = 1.25; and T3 = {v3} and k3 = 0. The unique diametrical pair for
the entire collection is T1, T3. If we establish a diametrical partition with respect to x∗, the 1-center solution, which
is the midpoint of P[T1, T3], then T1 = {T1, T 1

2 }, and I ′
= {1, 2}. In the subtree induced by these two elements T1 is

not an element in the diametrical pair of I ′. The unique diametrical pair of I ′ is T 1
2 , T 1

2 .

Theorem 4.1. Let x∗ be a solution to the 1-center problem with addends on T , and let Ti , T j be a pair of diametrical
subtrees. Suppose that d(Ti , T j ) + ki + k j > 2 maxl∈I kl . Let Ai (T ), A j (T ) be a diametrical partition of A(T ) with
respect to Ti , T j and x∗. Define

Ti = {Tl : l ∈ I, d(Tl , Ti ) + ki ≤ d(Tl , T j ) + k j }, T j = T \ Ti .

Let x∗

i (x∗

j ) be the solution to the 1-center problem with addends for Ti (T j ) on Ai (T ) (A j (T )). Then {x∗

i , x∗

j } is a
solution to the unweighted 2-center problem with addends for T on A(T ).

Proof. Let {y1, y2} be an optimal solution to the unweighted 2-center problem with addends for T , and let r∗

2 be
the optimal objective value. Consider the pair of points, {x∗

i , x∗

j } as a feasible solution to the 2-center problem with
addends for T . Suppose without loss of generality that its objective value is determined by x∗

i , the solution to the
1-center problem with addends for Ti . Hence, by the above lemma, the 2-center objective value corresponding to
{x∗

i , x∗

j } is either kr = maxT i
t ∈Ti

kt , or there exists a subtree T i
s ∈ Ti such that the pair Ti , T i

s is a diametrical
pair for Ti , and the 2-center objective value corresponding to {x∗

i , x∗

j } is (d(Ti , Ts) + ki + ks)/2. If the value of
the 2-center problem corresponding to {x∗

i , x∗

j } is kr , then r∗

2 ≥ maxt∈I {kt } ≥ kr . The latter implies that {x∗

i , x∗

j }

is also an optimal solution. Hence, suppose that the value of the 2-center problem corresponding to {x∗

i , x∗

j } is
(d(Ti , Ts) + ki + ks)/2. Suppose without loss of generality that d(Ti , y1) ≤ d(Ti , y2), i.e., Ti is “served” by y1.
If Ts is also served by y1, then r∗

2 ≥ max(d(Ti , y1) + ki ; d(Ts, y1) + ks) ≥ (d(Ti , Ts) + ki + ks)/2. The latter then
implies that {x∗

i , x∗

j } is also an optimal solution. Hence, suppose that Ts is served by y2, i.e., d(Ts, y2) < d(Ts, y1).
Consider first the case where Ts does not contain x∗, the solution of the 1-center with addends. If y1 serves T j then
r∗

2 ≥ max(d(Ti , y1)+ ki ; d(T j , y1)+ k j ) ≥ (d(Ti , T j )+ ki + k j )/2 ≥ (d(Ti , Ts)+ ki + ks)/2. The latter then implies
that {x∗

i , x∗

j } is also an optimal solution. Hence, suppose that T j is served by y2. In this case

r∗

2 ≥
d(Ts, T j ) + ks + k j

2
=

d(Ts, x∗) + ks

2
+

d(x∗, T j ) + k j

2
=

d(Ts, x∗) + ks

2
+

d(x∗, Ti ) + ki

2

≥
d(Ti , Ts) + ki + ks

2
.

Again, it follows that {x∗

i , x∗

j } is also an optimal solution. Suppose now that Ts contains x∗. Since T i
s ∈ Ti we

have d(Ti , Ts) + ki ≤ d(T j , Ts) + k j . If y1 serves T j then, as above, r∗

2 ≥ max(d(Ti , y1) + ki ; d(T j , y1) + k j ) ≥

(d(Ti , T j ) + ki + k j )/2 ≥ (d(Ti , Ts) + ki + ks)/2, and {x∗

1 , x∗

2 } is also an optimal solution. Finally, suppose that T j
is served by y2. In this case, since d(Ti , Ts) + ki ≤ d(T j , Ts) + k j , we have

r∗

2 ≥ (d(Ts, T j ) + ks + k j )/2 ≥ (d(Ti , Ts) + ki + ks)/2.

Again, it follows that {x∗

i , x∗

j } is also an optimal solution. �
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The above theorem generalizes the classical result of Handler [19], who proved that in order to solve the unweighted
2-center problem without addends for nodes on a tree, one has to split the tree at the middle point of its diameter, and
solve the respective two unweighted 1-center problems. The next theorem summarizes the algorithmic implication of
the above result.

Theorem 4.2. The unweighted 2-center problem with addends of a collection of subtrees T can be solved by solving
three 1-center problems.

5. Weighted 1-center problem with addends of a collection of subtrees

Given is the collection of subtrees T = {Ti }i∈I , and a set of reals {ki }i∈I . For each i ∈ I , define

fi (x) = wi [d(x, Ti ) + ki ].

Consider the function f (x), defined on A(T ), and the following optimization problem:

f (x) = max
i∈I

fi (x),

min
x∈A(T )

f (x). (4)

This problem can also be rewritten as:

min
x∈A(T )

z

z ≥ wi [d(Ti , x) + ki ], i ∈ I.

We note that the above problem is a special case of a much more general, non-convex, single facility location
problem on a tree, discussed in Tamir and Halman (2005) [35]. As a result it can be solved by the general
algorithm in [35] in O((n + (

∑
i∈I nl

i )) log n) time, (see Theorem 4.3 in [35]). We next show a simple specialized
O(n + (

∑
i∈I nl

i ) log n) algorithm.

Algorithm 5.1.

1. Find a centroid v̄ of T ′, the current subtree search domain. (Initially, the subtree search domain is the original
tree T .) The complexity of this step is O(n′), where n′ is the number of nodes in T ′. (See Kariv and Hakimi
(1979) [22].)

2. Compute f (v̄), the objective value at v̄. The complexity of this step is O(n′
+
∑

i∈I nl
i ), if we apply the results in

Section 2.
3. Identify I ′′

= {i ∈ I : f (v̄) = fi (v̄)}. The complexity of this step is again O(n′
+
∑

i∈I nl
i ).

(a) If there exists i ∈ I ′′ such that v̄ ∈ Ti , stop. v̄ is optimal. (For any x ∈ A(T ), f (x) ≥ fi (x) ≥ wi ki = fi (v̄) =

f (v̄).)
(b) If there exists a pair of distinct indices i, j ∈ I ′′, such that Ti and T j are in distinct connected components of

F(T ′
: v̄), stop. v̄ is optimal.

(c) If there exists a connected component T q of F(T ′
: v̄) such that Ti ⊆ T q , for all i ∈ I ′′, then there is an

optimal solution x∗ which is contained either in T q or on the unique edge connecting v̄ to T q . Define T ′ to be
the subtree induced by T q and v̄ as the current search domain.

(d) If T ′ has more than two nodes, repeat. If T ′ is an edge of T , say T ′
= P[vr , vs], for some pair of adjacent

nodes in V , x∗, the solution to the 1-center problem is defined by the solution to the following two-dimensional
linear programming problem:

min
x∈P[vr ,vs ]

z

z ≥ wi [d(Ti , x) + ki ], i ∈ I.
The above linear program can be solved in O(|I |) time by the algorithm in Megiddo (1983) [28].
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The complexity of the above algorithm is clearly O(n + (
∑

i∈I nl
i ) log n), since we use centroid decomposition, and

therefore there are O(log n) iterations. When each subtree Ti is a path then nl
i ≤ 3 and therefore the complexity

reduces to O(n + m log n). Thus, we have

Theorem 5.1. The weighted 1-center problem with addends of a collection of subtrees T = {Ti : i ∈ I } can be solved
in O(n + (

∑
i∈I nl

i ) log n) time. If for each i ∈ I , Ti is a path the time reduces to O(n + m log n).

Remark 5.1. The weighted 1-center problem with addends of a collection of neighborhoods can be solved in
O(m + n) time by a simple modification of the linear time algorithm in Megiddo (1983) [28] to solve the weighted
1-center problem of a collection of points. In addition, the weighted 1-center problem with addends of a collection
of subtrees on a path graph can be solved in O(m) since it reduces to a linear program with 4m constraints and 2
variables. In fact, the problem can be solved in linear time even when the nodes (points on the line) are not sorted.
Also, note that in the case of a path, subtrees are actually subpaths.

6. Weighted and unweighted p-center problems with addends of a collection of subtrees {Ti }i∈I

Given a set of real addends, {ki }, i ∈ I and nonnegative weights {wi }i∈I ; the weighted p-center problem with
addends is to find a set of p points, X p = {x1, . . . , x p}, X p ⊆ A(T ), minimizing

max
i∈I

{wi (d(Ti , X p) + ki )}.

We have assumed that each subtree Ti is discrete. Hence, in this case we may assume that p < n, and p < m. The
above model is a special case of the round-trip weighted p-center problem studied in Tamir and Halman (2005) [35].
To see the connection, for each Ti let zi be the closest point of Ti to v1, the root of T , and let L∗

i denote the set of
leaves of Ti . Now Ti can be represented as the union of the |L∗

i | paths connecting zi to the leaves of Ti . In particular,
d(Ti , X p) = miny∈L∗

i
d(P[zi , y], X p). Next, for each center x j ∈ X p, and leaf y ∈ L∗

i , d(P[zi , y], x j ), the distance
of x j from the path P[zi , y], satisfies the linear equation 2d(P[zi , y], x j ) + 2d(zi , y) = r t (x j , zi , y, x j ), where
r t (x j , zi , y, x j ) is the length of the tour on T , starting at x j , visiting zi and y and returning to x j . (See Section 4.2
in [35].) Thus, wi (d(P[zi , y], x j )+ki ) = 2wir t (x j , zi , y, x j )+wi (ki −2d(zi , y)). In Tamir and Halman zi represents
a customer and its respective set L∗

i represents the set of depots where zi can be served. As a special case, our model
can be solved in O(mn log(m+n)) by the algorithms in Tamir and Halman (2005) [35]. These algorithms are based on
the general parametric approach of Megiddo (1979, 1983) [26,27], and they have the same uniform complexity for all
values of p. In particular, even for the case where the number of centers p is fixed, and each of the subtrees is a path,
we obtain superquadratic algorithms. This is certainly a shortcoming, since in most applications, p is significantly
smaller than n and m. Thus, there is a need for algorithms which are more efficient for these cases. This is what we
focus on. To illustrate, the algorithm we develop here has O((n + m log n)(log n + log m)) complexity when applied
to the case when p is fixed and each subtree is a path.

6.1. Solving the weighted covering problem with addends

Given a set of reals {ri }i∈I , the minimum covering problem is to find a set X of minimal cardinality such that:

d(Ti , X) + ki ≤ ri/wi , i ∈ I.

For a prescribed integer p, the p-covering decision problem is to determine whether the solution to the minimum
covering problem is at most p. (Note that in this subsection the reals {ki } and {ri } are not assumed to be nonnegative.
Also, to simplify the notation we rename the values ri/wi , ∀i ∈ I , as ri .) Without loss of generality we assume that
ri ≥ ki for all i ∈ I , since otherwise there is no solution to the problem. We set r ′

i = ri −ki , for i ∈ I , and reformulate
the problem.

Find a subset X ⊆ A(T ) of minimum cardinality, such that

d(Ti , X) ≤ r ′

i , i ∈ I.

For i ∈ I , define T ′

i = {x ∈ A(T ) : d(x, Ti ) ≤ r ′

i }. Then, the covering problem is equivalent to finding X ⊆ A(T )

of minimum cardinality, such that T ′

i ∩ X is nonempty for each i ∈ I . To solve the covering problem we use the
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following algorithm based on Theorem 6.5 in Kolen and Tamir (1990) [24]. It is the simplification of the respective
covering algorithm in Tamir and Halman (2005) [35].

Algorithm 6.1.

1. Suppose that the tree is rooted at v1. For each T ′

i , i ∈ I , let zi , be the closest point in T ′

i to v1.
2. Let Z = {zi : i ∈ I }. If v1 is not already in Z , augment it to Z . Partially order {zi } by the partial order induced by

the rooted tree, i.e. zi � z j iff z j ∈ P[zi , v1].
3. Select a minimal point with respect to the partial order, zk ∈ Z . Add zk to X (initially X = ∅).
4. Let Ik = {i ∈ I : zk ∈ T ′

i }, I := I \ Ik , Z := Z \ {zi : i ∈ Ik}. If I = ∅, stop; X is a solution to the minimum
covering problem. Otherwise go to step 3.

Remark 6.1. When we apply the above algorithm to solve the p-covering decision problem we can stop also when
the cardinality of the covering set X exceeds the prescribed value p. In particular, Steps 3–4 are iterated at most
min(n, m, p + 1) = p + 1 times.

6.1.1. Complexity analysis
• Step 1. We assume that each Ti is discrete. For each i ∈ I , if we root T at xi , the root of Ti , and scan the tree

T from top to leaves it takes O(n) time to find V ′

i ⊆ V , the set of all the nodes of T ′

i , and the set Yi ⊆ A(T ),
consisting of all the leaves of T ′

i , which are not nodes. Note that Yi has at most one point on each edge of T . Hence,
|Yi | ≤ n − 1. (Actually, if T has n′ leaves, |Yi | ≤ n′.) For convenience, each point in Yi is recorded by the edge it
belongs to, and its distances from the two nodes of that edge. For each T ′

i , let vq(i) be the closest node to the tree
root v1 in V ′

i . We also assume that for each node vt ∈ V we have a list, L t of all T ′

i , i ∈ I , containing vt . Compute
the nodes {vq(i)}i∈I as follows: Starting at v1, scan T from root to leaves. Reaching a node vt do:
– consider the list L t of trees T ′

i .
– for each i ∈ I such that T ′

i ∈ L t , set vq(i) = vt and remove i from I .
– if I is empty stop.

Next generate the points {zi }i∈I as follows: If there is a leaf of T ′

i on the edge connecting vq(i) to its father in V ,
set zi to be equal to that leaf. Otherwise, set zi = vq(i). The complexity of the above step is clearly O(mn).

• Step 2. From top to bottom generate in O(m + n) time the partial ordering on {zi }i∈I with the exception that the
points {zi } on any given edge are not ordered. (We want to avoid the effort of ordering the points {zi } that are on
the same respective edge, since that will require O(n + m log m) additional time.)

• Step 3. The cardinality of Z is at most m. To identify a minimal point zk ∈ Z with respect to the partial order, we
consider some minimal edge, say (vs, vw) ∈ E containing points in Z . If vs is the father of vw, then the minimal
point of Z on this edge is the one closest to vw. We define this point as zk .

• Steps 4. To identify the set of subtrees {T ′

i } containing zk , consider the lists Ls and Lw, consisting of all subtrees
containing the node vs and vw, respectively. If T ′

i ∈ Lw, then from the minimality of zk , zk ∈ T ′

i . Hence, suppose
that T ′

i ∈ Ls \ Lw. If zk = vs , then clearly zk ∈ T ′

i . If zk 6= vs , then zk ∈ T ′

i if and only if T ′

i has a leaf in Yi , say
y′ such that d(y′, vs) ≥ d(zk, vs).

Each iteration of Steps 3 and 4 takes O(m) time, using the preprocessing done in Step 2. Therefore, the complexity
of the above algorithm is O(mn).

Remark 6.2. The O(nm) complexity of the above implementation is determined by the preprocessing and is
independent of p. Hence, we suggest a different implementation which avoids the above preprocessing. As we will
shortly see, it is particularly useful for solving the decision problem, where Steps 3–4 are iterated at most p times.

We implement the above algorithm differently to obtain improved bounds for cases where
∑

i∈I nl
i = o(mn).

Algorithm 6.2.

1. Suppose that the tree is rooted at v1. For each T ′

i , i ∈ I , let zi be the closest point in T ′

i to v1.
2. Let Z = {zi : i ∈ I }. If v1 is not already in Z , augment it to Z . Compute d(zi , v1) for all i ∈ I . (We do not

explicitly generate the set Z .)
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3. Let zk ∈ Z satisfy d(zk, v1) = max{d(zi , v1) : zi ∈ Z}. Find explicitly the location of zk in A(T ), i.e., find the
edge of P[xk, v1] containing zk , and add it to X (initially X = ∅).

4. Let Ik = {i ∈ I : zk ∈ T ′

i }, I := I \ Ik , Z := Z \ {zi : i ∈ Ik}. If I = ∅, stop; X is a solution to the minimum
covering problem. Otherwise go to step 3.

6.1.2. Complexity analysis
The complexity of Step 2 is O(m). (d(zi , v1) = max{0, d(xi , v1) − r ′

i }). The effort to find zk explicitly in Step
3 is O(m + log n) by the results in Section 2. Finally, the effort to execute Step 4 is O(

∑
i∈I nl

i ), by the results in
Section 2, (see also Section 3), since it is dominated by the time needed to compute d(zk, Ti ) for all i ∈ I . Therefore,
with this implementation, the total time needed to determine whether the minimum covering size is at most p is
O(n + p log n + p

∑
i∈I nl

i ).

6.1.3. Special cases
For a collection of paths when Ti = P[ai , bi ] for each i ∈ I , the time needed for resolving the decision problem is

only O(n + p log n + pm). (Kolen (1985) [23] describes an O(mn) algorithm for this case.)
When each subtree Ti , i ∈ I , is a neighborhood, centered at some point in A(T ), so is T ′

i . Hence, the covering
problem can be solved in O(n + m) time by the algorithms in Slater (1976) [34] and Kariv and Hakimi (1979) [22].
When the tree T is a path then we can solve the covering decision problem scanning the path, and since we assume
that there are n nodes the complexity is O(n).

6.2. Solving the weighted p-center problem with addends of a collection of discrete subtrees {Ti }i∈I

As noted above, the problem can be solved in O(mn log(m + n)) time by applying the algorithms in Tamir and
Halman (2005) [35]. These algorithms are based on the parametric approach of Megiddo (1979, 1983) [26,27].
We first show a direct search procedure, which is easier to implement, but has a slightly worst complexity,
i.e., O(mn log2(m + n)). Then, in the following sections we present the algorithms which are significantly more
efficient when the number of centers p is “smaller” than m and n, e.g., when p is fixed. We start by identifying a set
containing the optimal value r∗

p for the weighted case with addends. We claim that r∗
p is either equal to maxi∈I {wi ki },

or is an element in the set

R = {(d(Ti , T j ) + ki + k j )/(1/wi + 1/w j ) : i, j ∈ I }.

To verify the above, it is sufficient to consider the single center case. Hence, assume that x is an optimal solution to
the 1-center problem. Then if the optimal solution value r∗

1 , is greater than maxi∈I {wi ki }, there is a pair of subtrees,
Ti and T j such that

wi (d(x, Ti ) + ki ) = w j (d(x, T j ) + k j ) = r∗

1 .

Therefore, there is a pair of nodes, vs ∈ Ti , and vt ∈ T j , such that x ∈ P[vs, vt ] and wi (d(vs, x) + ki ) =

w j (d(vt , x) + k j ) = r∗

1 . The latter implies that r∗

1 = (d(vs, vt ) + ki + k j )/(1/wi + 1/w j ).
In the unweighted case without addends r∗

p, the optimal objective value, is an element in the set {d(vt , vs)/2 :

vs, vt ∈ V }. As in the classical unweighted p-center problem for nodes, (see Frederickson and Johnson (1983) [12]),
the effort to find r∗

p is dominated by the time needed to solve O(log n) covering problems. Hence, the total complexity
is O(mn log n). In the particular case that T is a path since the decision problem is solved in O(n) the p-center can
be solved in O(n log n). Next we discuss the weighted case with or without addends, and assume without loss of
generality that r∗

p is an element in the set R = {(d(Ti , T j ) + ki + k j )/(1/wi + 1/w j ) : i, j ∈ I }, which in turn is
a subset of {(d(vs, vt ) + ki + k j )/(1/wi + 1/w j ) : vs, vt ∈ V, i, j ∈ I }. We can refine the definition of a superset
containing R as follows: For each subtree Ti and a node vs ∈ Ti , augment a node vi

s to the tree T , and connect it to
vs with an edge of length ki . The augmented tree, T ′

= (V ′, E ′), will have O(nm) nodes. It is then clear that R is
contained in the set

R′
= {d(vi

s, v
j
t )/(1/wi + 1/w j ) : vi

s, v
j
t ∈ V ′, i, j ∈ I }.

With the above representation of R′, we can search for r∗
p in this set, using the method in Megiddo and Tamir

(1983) [29] with the improvement by Cole (1987) [7]. (To determine whether a given r ∈ R′ satisfies r∗
p ≤ r or
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not, we apply the covering problem algorithm from the previous section.) The augmented tree T ′ has O(mn) nodes,
and therefore with these search procedures, we can identify r∗

p in O(mn log2(mn)) time. In the particular case that T

is a path the p-center problem reduces to O(n log2(mn)) since the covering problem is solved in O(n) time.
Applying the above results for the weighted model with nonnegative addends to the unweighted case with

nonnegative addends, we conclude that in the latter case the problem has an optimal solution value r∗
p equal to

max
i∈I

ki ,

or equal to an element in the set

R′′
= {(d(vs, vt ) + ki + k j )/2 : i, j ∈ I ; vs, vt ∈ V }.

As above we define a superset containing R′′. Specifically, for each subtree Ti and a node vs ∈ Ti , augment a node
vi

s to the tree T , and connect it to vs with an edge of length ki . The augmented tree, T ′
= (V ′, E ′), will have O(nm)

nodes. It is then clear that R′′ is contained in the set

R′′ = {d(vi
s, v

j
t )/2 : vi

s, v
j
t ∈ V ′, i, j ∈ I }.

We can now apply the procedure in Frederickson and Johnson (1983) [12], using the covering problem to determine
whether a given element r ∈ R′′, satisfies r∗

p ≤ r or not. Since T ′ has O(mn) nodes, the total time to find r∗
p is

O(mn log(mn)). We summarize the above results in the following theorem.

Theorem 6.1. The weighted p-center problem with nonnegative addends of a collection of subtrees T = {Ti : i ∈ I }
can be solved in O(mn log2(mn)) time. In the unweighted case without addends the time reduces to O(mn log n)

while in the case with addends the time is O(mn log(mn)).

The above solution approach does not provide improved complexity bounds to solve the p-center problem for
fixed p ≥ 2. The bounds stated in the last theorem are independent of p, and the best bound that we have even for
the 2-center problem is still O(mn log2(mn)). We next propose a different algorithm which is based on the general
parametric approach in Megiddo [26,27]. This new algorithm is more efficient when p is “small” relative to n, and∑

i∈I nl
i = o(nm). The algorithm is based on parametrization of the above O(n + p log n + p

∑
i∈I nl

i ) algorithm to
resolve the covering decision problem.

6.3. The parametric algorithm I

We apply the parametric approach of Megiddo (1983) [28], to solve the p-center problem, using the above
Algorithm 6.2 which resolves the decision problem, as a master algorithm. Consider the following parametric decision
problem: Is there a set X , with |X | ≤ p, such that

d(Ti , X) ≤ r/wi − ki , i ∈ I.

r∗
p, the optimal value of the weighted p-center problem with addends, is clearly the smallest value of the parameter r ,

for which the answer to the decision problem is affirmative. The general parametric approach of Megiddo, suggests
that in our application, we simulate the above algorithm for the decision problem parametrically, without specifying
a value for the parameter r . Specifically, in Step 2, we can use m processors working in O(1) parallel time, (phases).
Each processor will be assigned a point xi and compute the respective distance d(zi (r), v1) in O(1) time. Thus, the
total effort to find d(zi (r), v1), for all i ∈ I , is dominated by the time we need to apply the decision problem algorithm
O(log m) times plus O(m) extra time. In Step 3 we need to compute maxi∈I {d(zi (r), v1)}. We use a parallel sorting
algorithm (as in Cole (1987) [7]). The total effort to find d(zk(r), v1) is dominated by the time we need to apply the
decision problem algorithm O(log m) times plus O(m log m) extra time. In this step we also need to find the edge
of T containing zk(r), i.e., explicitly locate zk(r) in A(T ). By Lemma 2.3 this can be done in O(log n) time, by a
single processor. Thus, the total effort to find the edge containing zk(r∗

p), will require O(log n) applications of the
decision problem algorithm plus O(log n) extra time. In Step 4 we need to compute the distance d(zk(r), Ti ) for each
i ∈ I , and compare it with r/wi − ki . This can be done in constant time in parallel, by O(

∑
i∈I nl

i ) processors. Each
processor will compute the distance of zk(r) from a path connecting a root of some subtree Ti to one of the leaves
of Ti . Thus, the total effort per each iteration of Step 4 in the parametric implementation is dominated by the time
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required to solve O(log
∑

i∈I nl
i ) decision problems plus O(

∑
i∈I nl

i ) extra time. We iterate Steps 3–4 O(p) times.
To conclude the total time to solve the weighted p-center problem with nonnegative addends with the parametric
approach is

O

((
p

(
log

(∑
i∈I

nl
i

))
+ p log n

)(
n + p log n + p

∑
i∈I

nl
i

))
.

6.4. The parametric algorithm II

We note that for the case where log m ≤ p, we can obtain the slightly better bound

O

((
p

(
log

(∑
i∈I

nl
i

))
+ log m log n

)(
n + p log n + p

∑
i∈I

nl
i

))
,

by applying the parametric approach to the the following version of the above covering algorithm.

Algorithm 6.3.

1. Suppose that the tree is rooted at v1. For each T ′

i , i ∈ I , let zi be the closest point in T ′

i to v1.

2. Let Z = {zi : i ∈ I }. If v1 is not already in Z , augment it to Z . Compute d(zi , v1) for all i ∈ I . Sort the set
{d(zi , v1) : i ∈ I }. Explicitly generate the set Z , by finding for each zi , i ∈ I , the respective edge of P[xi , v1],
containing zi .

3. Let zk ∈ Z satisfy d(zk, v1) = max{d(zi , v1) : zi ∈ Z}. Add zk to X (initially X = ∅).

4. Let Ik = {i ∈ I : zk ∈ T ′

i }, I := I \ Ik , Z := Z \ {zi : i ∈ Ik}. If I = ∅, stop; X is a solution to the minimum
covering problem. Otherwise go to step 3.

In the parametrization of the above algorithm, to explicitly find the points {zi (r)}, i ∈ I , in Step 1 we can use m
processors working in O(log n) parallel time, (phases). Each processor will be assigned a point xi and locate the
respective point zi (r) in O(log n) time, (based on Lemma 2.3). Thus, the total effort to find for all points zi (r), i ∈ I ,
the respective edges containing zi (r∗

p), will require O(log n log m) applications of the decision problem algorithm
plus O(m log n) extra time. Next we find the partial ordering (corresponding to r∗

p), of all points zi (r), (including the
ordering within each edge). We use a parallel sorting algorithm (as in Cole (1987) [7]). The total effort for this step is
dominated by the time we need to apply the decision problem algorithm O(log m) times plus O(m log m) extra time.
Finally, we have to iterate Steps 3–4 O(p) times. At a given iteration we need to compute the distances from some
point zk(r) to the remaining subtrees {Ti }. This can be done in constant time in parallel, by O(

∑
i∈I nl

i ) processors.
Each processor will compute the distance of zk(r) from a path connecting a root of some subtree Ti to one of the
leaves of Ti . Thus, the total effort per each iteration of Step 4 in the parametric implementation is dominated by the
time required to solve O(log

∑
i∈I nl

i ) decision problems plus O(
∑

i∈I nl
i ) extra time. To conclude the total time to

solve the weighted p-center problem with nonnegative addends with the second parametric approach is

O

((
p

(
log

(∑
i∈I

nl
i

))
+ log m log n

)(
n + p log n + p

∑
i∈I

nl
i

))
.

Theorem 6.2. The weighted p-center problem with addends of a collection of subtrees T = {Ti : i ∈ I } can be
solved in

O

((
p

(
log

(∑
i∈I

nl
i

))
+ min(p, log m) log n

)(
n + p log n + p

∑
i∈I

nl
i

))
.
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6.4.1. Special cases

A collection of paths. In this case nl
i ≤ 3 and the complexity for solving the p-center problem reduces to

O ((p log m + min(p, log m) log n) (n + p log n + pm)) .

In particular, the 2-center model for a collection of paths is solvable in

O((n + m)(log n + log m))

time. For comparison purposes, the 1-center case is solved in Section 5 in O(n + m log n) time.

A collection of neighborhoods. Suppose that for each i ∈ I , Ti is a neighborhood centered at the point yi ∈ I , with
radius ri , i.e.,

Ti = {x ∈ A(T ) : d(x, yi ) ≤ ri }.

From the above discussion we conclude that in this case, the optimal objective value, r∗
p is either equal to maxi∈I {ki },

or r∗
p is an element in the set R = {(d(Ti , T j ) + ki + k j )/(1/wi + 1/w j ) : i, j ∈ I }, where d(Ti , T j ) =

d(yi , y j ) − ri − r j . Thus

R = {(d(yi , y j ) − ri − r j + ki + k j )/(1/wi + 1/w j ) : i, j ∈ I }.

We can assume without loss of generality that the points {yi : i ∈ I } are nodes of T . Hence, T has O(n + m)

nodes. With the above representation of R, we can search for r∗
p in this set, using the method in Megiddo and Tamir

(1983) [29] with the improvement by Cole (1987) [7]. (To determine whether a given r ∈ R′ satisfies r∗
p ≤ r or not,

we apply the above O(n + m) covering problem algorithm from the previous section.) The augmented tree T ′ has
O(m + n) nodes, and therefore with these search procedures, we can identify r∗

p in O((m + n) log2(m + n)) time.

7. Final comments and open problems

In the center problems considered above the p servers can be located anywhere in A(T ). This version is usually
labelled as a continuous model. In the discrete version servers are restricted to a finite set, e.g., the node set of the tree.
We note in passing that the algorithms presented in Sections 3, 5 and 6 can easily be modified to the discrete case,
without increasing the complexity. The results in Section 4 about the continuous unweighted 2-center model are not
known to be extendable to the discrete case. (The latter statement applies even to the discrete, unweighted 2-center
problem for the case where the customers are represented by the nodes of the tree.) A generalization of the above
discrete center problem is the following covering problem with setup costs for the serving facilities (servers). In this
model each subtree customer Ti , i ∈ I , is associated with a service radius ri . The setup cost of establishing a facility
at node v j , j = 1, . . . , n, is c j ≥ 0. The goal is to establish facilities with minimum total setup cost, such that for each
Ti there is a facility within a distance of ri from Ti . This problem is polynomially solvable for neighborhood subtrees,
and NP-hard even for covering paths on a star tree with ri = 0 for all i ∈ I , (Kolen and Tamir (1990) [24]). Finally
we pose a few open problems.

1. We have presented above an O(n + m log n) algorithm to solve the weighted 1-center problem for a collection of
m paths. Can we obtain a better complexity bound e.g., O(n + m), by reducing the size of I by a constant factor at
each iteration?

2. Given a set of radii {r ′

i }, i ∈ I , we have presented in Section 6 an O(n + p log n + pm) algorithm to determine
whether there is a p-covering for a collection of m paths. The question is whether there are subquadratic algorithms
in terms of p and m to solve this problem. The papers by Gavril [13–15] might be useful in this regard. We note
that the special case where r ′

i = 0 for all i ∈ I , can be solved in O(n + m) time by a simple implementation of
Algorithm 6.2.

3. We have described in Section 3 a linear time algorithm to solve the unweighted 1-center problem with addends for a
general collection of subtrees. When each subtree is a point our algorithm reduces to Handler’s classical algorithm.
Hence, it is an interesting and insightful question to determine whether the 1-center problem for general subtrees or
even paths can actually be transformed or reduced to one with points. (It is easy to verify that such a transformation
does exist for a collection of neighborhood subtrees.) In view of the above mentioned NP-hardness result it seems



2910 J. Puerto et al. / Discrete Applied Mathematics 156 (2008) 2890–2910

unlikely that for a general integer p, the p-center problem for a collection of paths can be transformed to an
equivalent model with a collection of points.
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