
Assessment of C++ object-oriented mutation operators:
A selective mutation approach

Pedro Delgado-Pérez1 Sergio Segura2 Inmaculada Medina-Bulo1

1Escuela Superior de Ingeniería, University of

Cádiz, Cádiz, Spain
2Escuela Superior de Ingeniería, University of

Sevilla, Sevilla, Spain

Correspondence

Pedro Delgado-Pérez, Escuela Superior de

Ingeniería, University of Cádiz, Cádiz, Spain.

Email: pedro.delgado@uca.es

Funding information

European Commission (FEDER); DArDOS,

Grant/Award Number: TIN2015-65845-C3-

3-R; CICYT BELI, Grant/Award Number:

TIN2015-70560-R; SEBASEnet, Grant/Award

Number: TIN2015-71841-REDT; THEOS,

Grant/Award Number: TIC-5906; COPAS,

Grant/Award Number: P12-TIC-1867

Summary

Mutation testing is an effective but costly testing technique. Several studies have observed that

some mutants can be redundant and therefore removed without affecting its effectiveness. Sim-

ilarly, some mutants may be more effective than others in guiding the tester on the creation of

high-quality test cases. On the basis of these findings, we present an assessment of C++ class

mutation operators by classifying them into 2 rankings: the first ranking sorts the operators on the

basis of their degree of redundancy and the second regarding the quality of the tests they help to

design. Both rankings are used in a selective mutation study analysing the trade-off between the

reduction achieved and the effectiveness when using a subset of mutants. Experimental results

consistently show that leveraging the operators at the top of the 2 rankings, which are different,

lead to a significant reduction in the number of mutants with a minimum loss of effectiveness.

KEYWORDS

class mutation operators, C++, mutation testing, selective mutation, quality of mutation operators

1 INTRODUCTION

Mutation testing [1] is a common fault-based testing technique to

assess and enhance the fault-detection capability of test suites. This

technique creates several modified versions (mutants) of the original

program under test (PUT), which differ in a simple syntactic change

injected by a mutation operator. Each mutant is then executed on the

same test suite as the original program. If a test case distinguishes the

original program from a mutant, we say that the mutant has been killed

and the test case has proved to be effective at finding faults in the

program. Otherwise, the mutant remains alive. Mutants that keep the

same program functionality and thus cannot be detected are referred

to as equivalent. Mutation testing has traditionally been applied to pro-

cedural programs written in languages like Fortran [2] or C [3], using

traditional or standard mutation operators. However, the increasing

presence of object-oriented programs in industrial systems has pro-

gressively drawn the attention of mutation researchers toward other

languages such as Java [4], C# [5] or C++ [6]. Contributions in this con-

text mainly focus on the development of new tools and mutation opera-

tors (named class or object-oriented operators) specifically designed to

create faults involving typical object-oriented features like inheritance

or polymorphism.

Mutation testing is mainly used for 2 purposes: evaluate and refine

test suites. During test suite evaluation (TSE), mutation testing is used

to assess how effective a test suite is at detecting faults in the PUT. The

test suite effectiveness is measured using the mutation adequacy score,

the ratio of killed mutants to the total of mutants derived from the PUT

(excluding equivalent mutants). A test suite is said to be adequate if it

achieves a mutation score of 100% and minimal when it contains the

minimum number of test cases that are essential to kill all the mutants.

A mutant remaining alive uncovers a weakness in the test suite. Dur-

ing test suite refinement (TSR), mutation testing guides the tester on

the improvement of the suite by designing new test cases that kill the

surviving mutants.

Mutation testing also suffers from several drawbacks. A key limi-

tation of the technique is its high cost due to the large number of

mutants that can be generated even in the case of small-sized programs.

For instance, applying mutation testing to a numerical program of 78

lines of code written in Fortran yielded 7,435 mutants using traditional

operators [7]. Another limitation is related to detection of equivalent

mutants, which is a time-consuming, error-prone manual task. In the-

ory, equivalent mutants should be excluded from the set of mutants,

but in practice, this is not always possible since program equivalence

is undecidable [8]. Consequently, even when the number of mutants is

manageable, the effort required to identify equivalent mutants could

make the application of the technique not affordable.

Multiple techniques have been propose to reduce the cost of

mutation testing including high-order mutation [9] and mutant

https://doi.org/10.1002/stvr.1630
http://orcid.org/0000-0003-1568-9288
http://orcid.org/0000-0001-8816-6213

clustering [10]. Selective mutation is a well-known cost reduction

technique to exclude some of the mutants without significant loss

of effectiveness. We can distinguish 2 main selective approaches:

operator-based and mutant-based selection [11]. On the one hand,

operator-based mutant selection [12, 13] works under the assumption

that not all mutation operators are equally effective and that there

should be a sufficient set of operators that allows us to accurately pre-

dict the overall mutation score. The rationale behind operator-based

selection is that some mutation operators are redundant, and they can

be therefore discarded. Intuitively, an operator is redundant if it pro-

duces mutants that are always killed by the test cases that kill mutants

from other operators. In the mutation literature, an operator that only

generates redundant mutants is said to be subsumed by the rest of

mutation operators in the set [12]. As a notable example, Offutt et al. [7]

found that using 16 mutation operators for Fortran is almost as strong

as using the whole set of 22 operators achieving a reduction over 60%

in the number of mutants. On the other hand, mutant-based selection

[14, 15] also presumes the existence of redundancy but at the level of

mutants instead of operators. In this way, in random mutant selection,

only a subset of the mutants from the full set of operators is randomly

analysed, whereas the rest of the mutants are discarded. Although

random selection has drawn less attention than operator-based selec-

tion, Zhang et al. [11] recently produced evidence that the former can

be as effective as the latter with the same number of mutants. Most

relevant studies on selective strategies have been reported for tradi-

tional operators in languages like C [11, 13, 16] or Fortran [7, 12, 17].

Some studies have addressed object-oriented languages like C# [18]

or Java [19], where operators at the class level were tackled along with

traditional operators.

In a recent study, Estero-Botaro et al. [20] compared the effective-

ness of mutation operators from a different perspective. In particular,

the authors noticed that not all operators are equally effective at induc-

ing the creation of high-quality test cases; these test cases detect non-

trivial faults, which are not easy to find with a straightforward test case.

On the basis of this premise, the authors proposed a metric to evaluate

the quality of mutation operators according to their ability to generate

hard-to-kill mutants.

Problem. Contrary to traditional mutation operators and

well-studied languages such as Java, the applicability of mutation

testing to C++ object-oriented features is a research topic under devel-

opment. In particular, it remains unclear whether C++ class mutation

operators exhibit any degree of redundancy (percentage of redundant

mutants generated by each operator) or to what extent they contribute

to create high-quality test cases. As a result, it is unknown what are

the most promising operators and the loss of accuracy we must con-

cede when using them in a selective mutation strategy. Overall, the

lack of experimental results on C++ class mutation operators hinders

their applicability and discourages researchers and practitioners from

using them.

Contribution. In this paper, we present an assessment of muta-

tion operators at the class level for C++. We conjecture that the

value of each mutation operator differs depending whether the test

suite is being evaluated (TSE) or refined (TSR). During TSE, testers

aim to reduce the number of redundant mutants because they add

no value in the process. During TSR, testers wish to favour those

operators that contribute to create high-quality test cases able to

uncover hard-to-detect faults. On the basis of this idea, we rank muta-

tion operators regarding their influence during TSE and TSR, respec-

tively. The first ranking sorts the operators on the basis of their degree

of redundancy; the second ranking sorts the operators regarding their

potential to contribute on the creation of high-quality test cases (based

on Estero-Botaro's metric [20]). These 2 rankings are used as the basis

for a selective mutation study showing the trade-off between remov-

ing mutants and the loss in the effectiveness of the technique. We

apply 2 selective strategies to this end: an operator-based selection and

a rank-based mutant selection (ie, favouring the selection of mutants

from the top-ranked operators). These outcomes are based on the

results of several experiments with 6 open-source applications. The

following are the main contributions of this paper:

• A double assessment of C++ class mutation operators based on

their influence during TSE and TSR, respectively. To the best of our

knowledge, this is the first work assessing mutation operators from

this double perspective.

• A selective mutation study for TSE using the ranking based on

mutant redundancy. Among other findings, results show that apply-

ing the top 6 operators (out of 24) leads to a reduction over 31% in

the number of mutants with a mutation score of 97.22%. With the

same size of mutants, a rank-based mutant selection obtains 98.87%

of adequacy.

• A selective mutation study for TSR using the ranking based on test

quality. Among other results, experiments reveal that applying the

top 7 operators leads to a reduction of almost 40% in the number

of the mutants assuming a loss of only 13% in the number of test

cases in an adequate and minimal test suite. With the same num-

ber of mutants, the percentage of test cases lost using rank-based

mutant selection is under 6%.

• A comparison between the 2 rankings, where it is revealed that they

are quite interrelated, except for a few operators with a substan-

tially different position in both classifications. This fact supports the

evaluation of mutation operators from a double perspective.

• A comparison between operator-based and mutant-based selec-

tion, where experiments show that using a subset of mutants from

all mutation operators is a preferable option in the case of class-level

mutation testing (in the case of the highest reduction assessed, with

a difference in the average over 5% and 10% in the evaluations for

TSE and TSR, respectively).

• A comparison between rank-based and random mutant selection,

where the results of the rank-based strategy show that favouring the

selection of mutants from the best-valued operators in both rank-

ings offers a better outcome than the random selection of mutants

overall (in the case of the highest reduction assessed, with a differ-

ence in the average of 0.3% and 1.85% in the evaluations for TSE and

TSR, respectively).

The remainder of this paper is structured as follows. Section 2

exposes the class mutation operators for C++ and the classification of

mutants through the execution matrix. Section 3 and Section 4 describe

the experiments performed for TSE and TSR, respectively, and show the

reported results. Section 5 discusses the empirical results and threats

to validity. Section 6 studies related work in the scope of this paper,

and the last section presents the conclusion and future work about the

applied approach.

2 BACKGROUND

2.1 Mutation operators for C++ object-oriented

programs

The study of mutation testing at the class level began in 1999 with

the definition of the first class mutation operators by Kim et al.

[21]. These mutation operators have been subject of study in recent

years [18, 22, 23, 24]. Class-level operators are known to produce

fewer mutants than traditional operators, and they appear with vary-

ing frequency depending on the features of the PUT [24]. In addi-

tion, equivalence is even a more pronounced issue when applying

this kind of operators [22]. Still, operators at the class level deserve

special attention because they are useful to test structures related

to object-oriented features, which are not targeted by traditional

operators.

In a previous work, some of the authors proposed a collection of

class mutation operators for C++ [6]. These operators are similar to

the ones defined for other object-oriented languages, such as Java [4]

and C# [5], but taking into account specific features of the language

(eg, default parameters in a method). Moreover, new operators were

defined regarding some characteristics not explored up to now, such as

multiple inheritance or the existence of destructors.

Table 1 shows the C++ class operators under study classified by oper-

ator groups or blocks. Each block includes those operators addressing

similar syntactic elements [4, 6]. These mutation operators have been

implemented in the mutation system MuCPP [25]. We should note that

MuCPP has been optimised towards increasing the percentage of valid

mutants (complying with the grammar rules of the language) over the

total number of mutants. Moreover, the system avoids creating some

equivalent and trivial mutants (ie, killed by every test case exercising

the mutation) to enhance the operator effectiveness. This reduction is

achieved through different heuristics, such as the ones proposed by Lee

et al. [23].

2.2 Execution matrix

An execution matrix contains the whole information about mutant exe-

cution, being useful for classifying mutants according to the values in

the matrix [20]. We will resort to execution matrices throughout the

paper to illustrate examples about the used metrics. Being M the set

of mutants and T the set of test cases, the execution matrix with size

|M|×|T| stores the result of running each mutant against each test case.

That result depends on the behaviour of the mutant when compared

with the original program. A mutant x killed by a test case y is repre-

sented with the value 1 in the intersection of the row x and the column y.

On the contrary, the value 0 denotes that the mutation was not revealed

by that test case.

A mutant, represented by a row in the execution matrix, is said to be

• Alive when the row is filled with the value 0.

• Dead when there is at least 1 entry with the value 1 in the row.

TABLE 1 C++ class-level mutation operators under study

Block Oper. Description

IHD Hiding variable deletion

IHI Hiding variable insertion

ISD Base keyword deletion

ISI Base keyword insertion

IOD Overriding method deletion

Inheritance IOP Overriding method calling

position change

IOR Overriding method rename

IPC Explicit call of a parent'

constructor deletion

IMR Multiple inheritance replacement

PVI virtual modifier insertion

PCD Type cast operator deletion

PCI Type cast operator insertion

Polymorphism PCC Cast type change

and dynamic PMD Member variable declaration

binding with parent class type

PPD Parameter variable declaration

with child class type

PNC New method call with child class type

OMD Overloading method deletion

Method OMR Overloading method contents replace

overloading OAN Argument number change

OAO Argument order change

Exception EHC Exception handling change

handling EHR Exception handler removal

Object MCO Member call from another object

and member MCI Member call from another

replacement inherited class

CTD this keyword deletion

CTI this keyword insertion

CID Member variable initialization deletion

Miscellany CDC Default constructor creation

CDD Destructor method deletion

CCA Copy constructor and assignment

operator overloading deletion

Furthermore, Estero-Botaro et al. [26] defined 2 more specific terms

to classify mutants:

• A resistant mutant is killed by a single test case, and is identified as

a row filled with the value 0 except for 1 entry with the value 1. In

Figure 1, the mutant 1 from the operator 1 (m1) is a resistant mutant.

• A resistant hard to kill mutant is killed by a single test case, which

only kills that mutant. In the execution matrix, it is identified as a row

with a single entry y with the value 1 (just as a resistant mutant),

where the rest of the entries in the column y are filled with the value

0. In Figure 1, m1 is resistant but not resistant hard to kill because

the test1, which kills that mutant, also kills the mutants m6 and m7.

The mutant 9 generated by the operator 5 does represent a resistant

hard to kill mutant.

As mentioned in the introduction, a test suite is adequate when it

detects all nonequivalent mutants. The execution matrix can also be

useful to ascertain some properties of a test suite:

• Nonredundant test suite: when none of the test cases in an ade-

quate test suite can be removed without losing the adequacy of the

FIGURE 1 Example of matrix execution with size 10 × 5

test suite. The test suite in Figure 1 is adequate and nonredundant,

as we cannot discard any of the test cases maintaining the same

mutation score.

• Minimal test suite: when a nonredundant test suite is of the min-

imum size, that is, there are no other nonredundant test suites of

smaller size. The test suite in Figure 1 is also a minimal test suite.

We have to note that our concepts of nonredundant and minimal

test suite are called as minimal and minimum test suite respectively by

Amman et al. [27]. Therefore, in our work, we focus on minimal test

suites, which are called minimum test suites by the aforementioned

authors.

3 ASSESSMENT BASED ON MUTANT
REDUNDANCY

In this section, we assess the value of each mutation operator for TSE.

To that end, we first present the addressed research questions fol-

lowed by the evaluation metric, subject case studies, and experiments

performed.

3.1 Research questions

The goal of this section is to answer the following research questions:

• RQ1: What is the degree of redundancy of each mutation opera-

tor? We aim to rank mutation operators on the basis of the num-

ber of their mutants, which are redundant regarding some of the

mutants generated by the rest of operators in the set.

• RQ2: Is a subset of mutants with low degree of redundancy suffi-

cient for TSE? We intend to know the loss of mutation score when

selecting (1) a subset of the top-ranked operators based on the

degree of redundancy and (2) a subset of mutants in which the selec-

tion of mutants from the top-ranked operators is favoured. This fact

would allow us to analyse the trade-off between the reduction in

the number of mutants and the effectiveness of the technique when

evaluating a test suite.

3.2 Evaluation metric

We propose to measure the degree of redundancy of a mutation oper-

ator as the number of redundant mutants generated by the operator

with respect to the mutants generated by the rest of operators. Roughly

speaking, an operator is redundant if all its mutants are killed by test

cases that are necessary to kill mutants from other operators. Formally,

we define the metric operator redundancy to measure the degree of

redundancy of a mutation operator o as follows:

Ro(TMO) =
⎧⎪⎨⎪⎩

|D(TMO∖o)|
|D(TMO)| × 100, Do ≠ ∅

100, Do = ∅
, (1)

where

• Do is the set of dead mutants from operator o.

• MO is the set of mutation operators.

• TMO is an adequate test suite for the set of mutants in MO .

• D(TMO) is the set of dead mutants with TMO.

• D(TMO∖o) is the set of dead mutants when using an adequate and min-

imal test suite derived from TMO without considering the mutants

from operator o (as we will discuss later in this paper, minimal-

ity is desirable to exclude test cases that may cause deviations in

the values).

Equation 1 measures the operator redundancy (Ro) as the percent-

age of mutants killed by an adequate test suite for all the mutants

excluding the mutation operator under evaluation. The lower the value

of Ro, the less number of redundant mutants and therefore the more

valued is that mutation operator. The value of Ro can range from

100 to 0:

• Ro = 100: All the mutants from the mutation operator o are redun-

dant. This happens when the test cases that kill the mutants gener-

ated by o are still necessary to kill the mutants from other operators,

ie, |D(TMO)| = |D(TMO∖o)|. Another possibility is that all the mutants

are equivalent (Do = ∅), as stated in Equation 1.

• Ro = 0: The analysed mutation operator is the only operator in the

set generating nonequivalent mutants (ie, TMO∖o = ∅).

As an example, consider the execution matrix in Figure 2. The set

{test1, test2, test3} is an adequate and nonredundant test suite for the

set of operators{o1, o2, o3} (TMO) because all of those test cases are nec-

essary to kill the mutants from those operators (in this case, it is also

minimal). Then, we can compute the following adequate and minimal

test suites when excluding an operator each time:

• TMO∖o1
= {test3}

• TMO∖o2
= {test1, test2, test3}

• TMO∖o3
= {test1, test2}

The subset {test1, test2} is an adequate and minimal test suite for

TMO∖o3
as this subset kills all the mutants without considering o3

FIGURE 2 Execution matrix to illustrate the metric operator
redundancy

TABLE 2 Features of the case studies used in the experiments

Tcl Rpc Dph Txm Kmy Dom Total

Classes 9 13 13 20 17 11 83

Lines of code 3,228 2,194 3,667 2,620 13,709 2,117 27,535

Avg. Methods 21.1 11.2 16.4 15.6 35.6 23.6 20.6

Mutants 135 127 208 433 284 681 1,868

% Equivalent 14.8 31.5 33.2 21.0 30.6 34.7 29.1

% Undecided 0 0 4.8 7.4 1.4 1.5 3.0

|Original T| 17 26 61 57 241 46 -

|Adequate T| 24(3) 34(5) 70(5) 62(3) 248(10) 56(4) -

|Minimal T| 15 15 22 15 36 25 -

(m1-m4). Once those adequate and minimal test suites are known, we

can calculate the set of dead mutants associated with those test suites:

• D(TMO∖o1
) = {m3,m4,m5,m6}

• D(TMO∖o2
) = {m1,m2,m3,m4,m5,m6}

• D(TMO∖o3
) = {m1,m2,m3,m4,m6}

Finally, the value of the operator redundancy metric for these 3

operators can be calculated as follows (Do ≠ ∅ in all cases):

• Ro1
= (4∕6) × 100 = 66.6

• Ro2
= (6∕6) × 100 = 100

• Ro3
= (5∕6) × 100 = 83.3

Interpreting these results

• The operator o1 presents the lowest redundancy: Only 66.6% of the

mutants (4 out of 6) would be killed with an adequate test suite for

the subset of operators {o2, o3}.

• The mutants from o2 are redundant regarding the mutants created

by o1 and o3 (Ro2
= 100).

• The mutant 5 from o3 is a nonredundant mutant as it would remain

alive after using the subset {test1, test2} (Ro2
= 83.3).

As a conclusion, a mutation operator with a low degree of redun-

dancy increases the probability of losing effectiveness if mutants from

that operator are discarded when following a selective mutation strat-

egy. Therefore, the operators with the lowest Ro should be at the top of

our ranking.

3.3 Case studies and test suites

For the experiments, we applied mutation testing on 6 different real

open-source applications and libraries, namely:

• Matrix TCL Pro (Tcl) [28]: library for performing matrix algebra cal-

culations in C++ programs.

• XmlRpc++ (Rpc) [29]: library implementing the XML-RPC protocol

to incorporate client-server communication through HTTP support

into other C++ programs.

• Dolphin (Dph) [30]: default navigational file manager used by desk-

top applications in KDE.

• Tinyxml2 (Txm) [31]: lightweight and efficient XML parser that can

be integrated into C++ applications.

• KMyMoney (Kmy) [32]: the personal finance manager by KDE.

• QtDom (Dom) [33]: Qt module that provides a C++ implementation

of the DOM standard.

The test suites accompanying these programs were used and com-

pleted with additional test cases designed by hand until reaching an

adequate test suite. This is a laborious task because a mutant may

require complex scenarios involving different classes to be killed. In the

process of generating new test cases, surviving mutants must be exam-

ined, taking often a long time to distinguish equivalent mutants from

those whose semantic is very similar to the original program. There

is an intrinsic bias in determining equivalence, as not always a tester

can establish this state with high confidence. To minimise this threat in

the calculations, we opted for classifying as undecided the mutants for

which we were not sure whether they are equivalent or not, as Segura

et al. [24] proposed in a previous study. In this regard, the concept of

undecided mutant prevents skewing of results in the experiments.

For these experiments, we used the random adequate and minimal

test suite generated by the exact algorithm that Estero-Botaro et al.

[20] used in their study. Any metric is dependent on the test suite. Thus,

we make use of minimal test suites because that property prevents the

results from being distorted by unproductive test cases, as pointed by

Estero-Botaro et al. [26].

Table 2 depicts several metrics about the aforementioned case stud-

ies: number of classes, lines of code, mean of methods in the analysed

classes, the total of mutants, and the percentage of equivalent and

undecided mutants. The size of the original test suite, adequate test

suite after adding new test cases (between parentheses, the number of

test cases additionally modified), and minimal test suite are also shown.

Finally, Table 3 shows a breakdown of the total number of mutants

and their classification into dead (D) and equivalent (E) for each case

study and mutation operator. In Total, the number of undecided mutants

corresponds to the cases where the sum of dead and equivalent

mutants is not equal to the number of mutants (M).

3.4 Experiment 1: Ranking mutation operators

In this experiment, we measure the operator redundancy as described

in Section 3.2 for each of the studied mutation operators.

3.4.1 Setup

We first determined an adequate and minimal test suite for the set of

mutants (see Section 3.3). Then, the following process was performed

for each mutation operator o generating at least 1 dead mutant:

TABLE 3 Mutants generated in each case study by operator

Tcl Rpc Dph Txm Kmy Dom Total

Oper. D E D E D E D E D E D E M D E

IHD 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0

IHI 0 0 2 2 0 0 41 6 8 15 21 25 120 72 48

ISD 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

ISI 0 0 2 1 9 2 0 0 0 3 1 1 19 12 7

IOD 0 0 1 2 15 3 24 1 1 0 28 2 79 69 8

IOP 0 0 0 0 0 0 8 0 0 0 0 2 10 8 2

IOR 0 0 0 15 3 27 10 1 0 0 0 1 57 13 44

IPC 0 0 1 0 2 3 0 0 12 6 8 0 32 23 9

PCI 0 0 2 1 0 0 138 20 14 1 293 155 659 447 177

PMD 0 0 0 0 0 0 0 3 0 1 0 4 8 0 8

PPD 0 0 0 1 0 0 5 2 4 14 2 12 42 11 29

PNC 0 0 0 0 0 0 0 0 0 0 2 0 2 2 0

OMD 38 8 9 1 2 1 23 14 9 4 16 6 131 97 34

OMR 33 1 10 0 5 1 0 0 32 0 16 0 98 96 2

OAN 0 0 0 0 0 0 0 0 3 4 0 0 7 3 4

MCO 3 0 38 10 68 7 18 1 76 7 36 7 285 239 32

MCI 0 0 0 0 0 0 13 26 0 0 0 0 39 13 26

EHC 0 0 1 1 0 0 0 0 1 5 0 0 8 2 6

CTD 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

CTI 0 0 0 0 2 0 0 0 0 0 1 0 3 3 0

CID 38 2 14 3 23 18 24 10 26 22 6 9 196 131 64

CDC 0 0 2 0 0 0 3 0 4 1 0 0 10 9 1

CDD 0 2 2 3 0 2 3 3 2 2 0 4 23 7 16

CCA 3 7 2 0 0 5 0 4 0 2 4 8 37 9 26

Total 115 20 87 40 129 69 310 91 193 87 435 236 1,868 1,269 543

Note. M, mutants; D, dead; E, equivalent.

1. Remove from the execution matrix the mutants generated by the

mutation operator o (MO ∖ o).

2. Compute an adequate and minimal test suite for the remaining

operators (TMO∖o).

3. Include again in the execution matrix the mutants generated by the

mutation operator o.

4. Remove from the execution matrix the columns of the test cases,

which were not in the computed adequate and minimal test suite.

5. Calculate the operator redundancy of o (Ro(TMO)).

This procedure was conducted for each of the case studies, and then

a mean was calculated with the values obtained for each operator.

Finally, a ranking was prepared in descending order of Ro.

3.4.2 Results

The results of the operator redundancy metric of each operator and

case study appear in Table 4. The mean calculated per operator is used

to form the ranking, where MCO is the most valued operator on aver-

age. The standard deviation (SD) has also been included to show how

much the metric varies among PUTs. The operators at the bottom of the

table (Ro = 100) do not affect the TSE process when excluding one of

them from the set of operators. The figures marked with “*” represent

operators only producing equivalent mutants in that case study.

As illustrated, although 10 operators have an operator redundancy

of 100, the rest of operators show a redundancy degree between 89.67

and 99.92. The operator redundancy on average for all the mutation

operators is high: 18 out of 24 mutation operators present a value

over 99. This is explained by a test case usually reveals the muta-

tions injected by different operators, so removing an operator does not

always lead to a reduction in the number of test cases. These high val-

ues have also been observed in similar works when only 1 operator is

removed [34].

The top 4 ranked operators are the ones producing the highest num-

ber of mutants (see Table 3); it seems unlikely that removing a great

quantity of mutants does not lead to a decrease in the number of nec-

essary test cases. However, IHI is the fifth most prevalent operator and

ranks at number 13 out of 24 operators. We run the Spearman corre-

lation test to know how the number of mutants influences this metric.

The results in each of the programs range from -0.56 in Rpc to -0.73 in

Kmy (95% confidence level except for Tcl). These results suggest that

indeed there is an inverse correlation between the number of mutants

generated by the operators and the value that the redundancy metric

(TSE) assigns them, but the correlation is not very strong, which means

that the operator redundancy does not depend only on the number of

mutants generated by each operator. The top 5 operators are from dif-

ferent operator groups (see Table 1). “Exception handling” is the only

block not represented in that top 5. This fact suggests that the opera-

tors at the top of the ranking partially subsume the rest of operators in

the same group. It also suggests that each operator block tackles differ-

ent features, so it is less probable that operators from different groups

are redundant among them.

TABLE 4 Ranking of mutation operators based on mutant redundancy

Operator Tcl Rpc Dph Txm Kmy Dom Mean SD

MCO 100 83.90 91.47 100 64.76 97.93 89.67 13.70

PCI 100 94.83 97.92 80.22 93.24 8.94

OMD 89.56 98.85 100 100 97.92 99.76 97.68 4.06

CID 100 97.70 96.12 98.06 96.89 100 98.13 1.60

IOD 100 96.12 98.70 99.48 98.62 98.58 1.49

OAN 98.96 98.96 -

MCI 99.03 99.03 -

IPC 100 99.22 97.92 100 99.28 0.98

OMR 98.26 100 100 98.96 100 99.44 0.80

CDC 98.85 100 100 99.62 0.66

EHC 100 99.48 99.74 0.37

CDD *100 98.85 *100 100 100 *100 *99.81 0.47

IHI 100 100 99.48 100 99.87 0.26

IOR *100 100 99.67 *100 *99.92 0.17

IHD 100 100.00 -

ISD 100 100.00 -

PNC 100 100.00 -

CTD 100 100.00 -

CTI 100 100 100.00 0.00

ISI 100 100 *100 100 *100.00 0.00

IOP 100 *100 *100.00 0.00

PMD *100 *100 *100 *100.00 0.00

PPD *100 100 100 100 *100.00 0.00

CCA 100 100 *100 *100 *100 100 *100.00 0.00

*Operators only producing equivalent mutants.

3.5 Experiment 2: Selective mutation based on

the ranking

This second experiment aims to leverage the ranking of mutation

operators obtained in the previous experiment to undertake selective

mutation. The goal is to observe the loss in the mutation adequacy score

when some of the mutants are not included for TSE.

3.5.1 Setup

In the first step, we grouped together the operators with a similar rate

into 5 categories. We set the following ranges with a view to balance

the number of operators in each category (see Table 4):

Category 1: 98 > Ro

Category 2: 99 > Ro ⩾ 98

Category 3: 99.5 > Ro ⩾ 99

Category 4: 100 > Ro ⩾ 99.5

Category 5: Ro = 100

Once defined these categories, we applied 2 different selective

mutation strategies:

Operator-based selection. We performed the following steps for each

case study from i = 4 to i = 1 (being i a variable to refer to a category*):

1. Select from the execution matrix the operators encompassed within

categories [1...i] (MO[1...i]).

*The operators classified in the category 5 are removed in the first loop as we select the
categories 1-4.

2. Compute an adequate and minimal test suite for the selected oper-

ators (TMO[1...i]
).

3. Include again in the execution matrix the mutants from the opera-

tors that were not in MO[1...i].

4. Calculate the mutation score associated with the test suite TMO[1...i]

and the reduction in the number of mutants.

Rank-basedmutant selection. In this strategy, we follow a similar

approach to the 2-round random selection technique proposed by

Zhang et al. [11]. While in the 2-round random technique the number

of mutants selected from each operator is probabilistically speaking

about the same, in rank-based mutant selection, we seek to generate

more mutants from the top-ranked operators than from the opera-

tors at the bottom of the ranking based on mutant redundancy. Our

rank-based mutant selection comprises 2 steps:

1. Operator selection: The probability of being selected for an opera-

tor is proportional to its position in the ranking. As an example for

3 operators, the first operator in the ranking will be selected with

probability 3∕6, the second with 2∕6, and the third with 1∕6.

2. Mutant selection: A mutant is randomly selected from the operator

previously selected.

We performed the following steps for each case study from i = 4 to

i = 1 (being i a variable to refer to a category):

1. Select using rank-based mutant selection with all operators as

many mutants from D (set of dead mutants) as dead mutants are

TABLE 5 Mutation score when performing operator-based selective mutation based on the ranking of mutant
redundancy

Category Operators Tcl Rpc Dph Txm Kmy Dom Mean SD

1 MCO-PCI-OMD 93.0 92.0 89.1 94.8 79.3 94.9 90.52 5.89

2 CID-IOD-OAN 98.3 97.7 99.2 98.7 91.7 97.7 97.22 2.76

3 MCI-IPC-OMR 100 97.7 100 99.7 99.0 100 99.40 0.92

4 CDC-EHC-CDD-IHI-IOR 100 100 100 100 100 100 100 0

5
IHD-ISD-PNC-CTD-CTI 100 100 100 100 100 100 100 0

ISI-IOP-PMD-PPD-CCA

TABLE 6 Reduction in the number of mutants by categories when applying
operator-based selective mutation based on the ranking of mutant redundancy

Category Tcl Rpc Dph Txm Kmy Dom Mean SD

1 63.7 52.0 69.6 46.6 60.4 23.5 52.63 16.47

2 34.1 36.2 30.8 31.9 40.4 16.8 31.70 8.06

3 8.9 27.6 25.3 22.2 22.5 13.3 20.00 7.28

4 7.4 5.5 9.1 5.5 8.9 5.7 7.02 1.70

5 0 0 0 0 0 0 0 0

TABLE 7 Rank-based selection results based on the ranking of mutant redundancy

1 2 3 4

PUT M SD M SD M SD M SD

Tcl 92.3 2.88 98.4 1.80 100 0 100 0

Rpc 95.1 3.61 98.8 1.86 99.8 0.42 99.9 0.58

Dph 93.1 2.57 98.2 1.39 99.1 0.97 99.3 0.75

Txm 99.8 0.49 100 0 100 0 100 0

Kmy 95.0 1.91 97.9 1.45 99.6 0.49 100 0.13

Dom 100 0 100 0 100 0 100 0

Total 95.89 3.30 98.87 0.92 99.77 0.35 99.87 0.27

contained in the operators encompassed within categories [1...i]

(|DMO[1...i]
|)†. We call the set of selected mutants MR from now on.

2. Compute an adequate and minimal test suite for the selected

mutants (TMR
).

3. Include again in the execution matrix the mutants that were not in

MR.

4. Calculate the mutation score associated with the test suite TMR
.

We applied the above process 30 times‡ with different seeds and

computed the average.

3.5.2 Results

Table 5 classifies mutation operators into the 5 categories enumer-

ated in Section 3.5.1 and presents the mutation score after performing

the experimental procedure explained in that section. Each value of

this table is the result of removing the operators within the categories

under that row. As an example, only the operators MCO, PCI and OMD

were applied to compute the mutation scores shown in the first row

(category 1). Using these 3 operators, we achieved a mutation score

over 90% in 4 out of 6 case studies. The second row presents the results

† We select the same number of mutants in both selective strategies to compare them later on
in this paper.
‡ According to the guide by Arcuri and Briand [35], this is a common number of runs when
assessing randomised algorithms.

FIGURE 3 Comparison of the mutation score when using
operator-based and mutant-based (rank-based) selection for the
categories 1-4

of selecting the operators within category 1 and 2 (MCO, PCI, OMD,

CID, IOD and OAN), where the mutation score was greater than 90%

for all the case studies. We should note that the last row shows the data

for the whole set of operators (the mutation score is therefore 100%

because the test suite is adequate). We computed the mean (M) and the

SD of the results in all the case studies.

Table 6 shows the reduction in the percentage of generated mutants

because of the operators removed in each step, as well as the Mean and

the SD. As illustrated, applying the 3 operators in category 1, we achieve

over 90% of the original mutation score with a reduction of more than

half of the mutants (52.63%). Analogously, using the 6 operators from

the categories 1 and 2 results in a mutation score of 97.22% on average

(the SD is 2.76) with a reduction in the number of mutants of 31.7% (SD:

8.06). The mutation score gradually decreases when removing each of

the categories, except for the operators in category 5. In this latter case,

there is no lost of mutation score accuracy while achieving an average

reduction in the number of mutants of 7.02%.

Table 7 contains the results of the rank-based mutant selection tech-

nique. The mean mutation score (M) in each of the categories and the

SD are shown. As an example of the meaning of the values in this table,

the average in Rpc in category 2 (98.8%) is the mutation score when

selecting the same number of dead mutants as dead mutants are gener-

ated by the operators included in the categories 1 and 2. In this way, the

effectiveness of this strategy is comparable to the effectiveness of the

operator-based strategy (97.7%) for the same case study and category

(see Table 5). As remarkable results, we can observe that in category 2,

we achieve the full mutation score in 2 case studies and a total aver-

age score of 98.87%. The mutation score declines by 3% (95.89%) in

category 1, but it is over 92% for all case studies. A comparison of the

average results of the operator-based and rank-based strategy can be

graphically seen in Figure 3 for each of the categories.

4 ASSESSMENT BASED ON TEST QUALITY

This section presents an evaluation of mutation operators for TSR anal-

ogous to the assessment undertaken for TSE in Section 3. In this regard,

research questions, evaluation metric, and experiments conducted are

tackled.

4.1 Research questions

In this section, we intend to answer the following research questions:

• RQ3: What is the potential of each mutation operator for inducing

the creation of high-quality test cases? We aim at ranking muta-

tion operators through their ability to generate hard-to-kill mutants,

that is, mutants killed by few test cases, which in turn kill few other

mutants.

• RQ4: Is a subset of mutants with a high potential to induce the

generation of high-quality test cases sufficient for TSR? We intend

to know the loss in the number of test cases in the test suite when

selecting (1) a subset of the top-ranked operators based on test qual-

ity and (2) a subset of mutants in which the selection of mutants

from the top-ranked operators is favoured. This fact would allow us

to analyse the trade-off between the reduction in the number of

mutants and the effectiveness of the technique when refining a test

suite.

4.2 Evaluation metric

Nonequivalent mutants that remain alive require additional test cases

to be killed. However, a single test case could suffice to kill all of

those surviving mutants if they model faults that are not difficult to

reveal. Indeed, it is known that the more effective the test cases, the

less effective the mutants [5]. The mutants offering resistance to be

killed should be the most valued when determining a classification of

operators for TSR. Therefore, giving a greater value to resistant and

resistant hard-to-kill mutants (see Section 2.2) over other kinds of

mutants seems a suitable approach to generate high-quality test cases.

Estero-Botaro et al. [20] transformed this textual description into a

mathematical formula. In this way, the formula is used to compute a

quality metric, which favours both resistant and resistant hard-to-kill

mutants (see Equation 2). The use of an adequate, nonredundant and

minimal test suite ensures that the calculation of the metric Qm is not

affected by the size of the test suite [20].

Qm =
⎧⎪⎨⎪⎩

0, m ∈ E

1 − 1
(|M| − |E|) · |T|

∑
t∈Km

|Ct|, m ∈ D , (2)

where

• M is the set of valid mutants.

• E is the set of equivalent mutants.

• D is the set of dead mutants.

• T is an adequate and minimal test suite.

• Km is the set of test cases that kill the mutant m.

• Ct is the set of mutants killed by the test case t.

This metric takes into account not only the number of test cases

killing the mutant but also the number of mutants killed by those test

cases at the same time. This is a desirable property because the fewer

the mutants a test case detects, the more specific is that test case, and

therefore, the fewer the mutants can induce the design of that test

case. As a consequence, this metric seeks that the mutants killed by

few test cases that in turn kill few other mutants are included in the

subset of selected mutants: This will increase the probability that the

more specific test cases are designed through the inspection of those

mutants.

While resistant and resistant hard-to-kill mutants provide us with

2 clear examples of profitable mutants according to this metric, it is

important to note that the rest of the mutants also receive a mark

between 0 and 1 depending on the number of test cases and mutants

killed by those test cases: The lower the number of test cases killing the

mutant, the better the mutant. In the same line, the lower the number

of mutants killed by those test cases, the better the mutant.

On this basis, they defined the quality metric of a particular mutation

operator as the mean of the quality metric of the mutants generated

with that mutation operator (see Equation 3).

Qo = 1
|Mo|

∑
m∈Mo

Qm, (3)

where Mo is the set of mutants generated by the operator o.

The metric Qo can be used as a means to rate operators by their

potential to help the tester to enhance the fault detection power of the

test suite. The operators with the highest quality metric should be the

most valued. Notice that this quality metric penalises the existence of

equivalent mutants (Qm = 0, as stated in Equation 2); this metric can be

computed even when the operator only generates equivalent mutants

(in that case, Qo = 0).

FIGURE 4 Execution matrix to illustrate the quality metric

As an example of this metric, consider the execution matrix in

Figure 4. Being To an adequate and minimal test suite for the mutation

operator o, we can compute the following adequate and minimal test

suites for each mutation operator:

• To1
= {test1, test2}

• To2
= {test3}

To1
is formed by {test1, test2} because the test cases test1 and test2

can be used to kill the 3 mutants from operator o1 (m1, m2, m3). Then,

the value of the quality metric for these 2 operators is:

1. Quality of operator o1 (|Mo1
| = 3, |Eo1

| = 0, |To1
| = 2,

Ctest1
= {m2,m3}, Ctest2

= {m1}):

• Qm1
= 1 − 1∕((3 − 0) · 2) = 0.83 where Km1

= {test2}
• Qm2

= 1 − 2∕((3 − 0) · 2) = 0.67 where Km2
= {test1}

• Qm3
= 1 − 2∕((3 − 0) · 2) = 0.67 where Km3

= {test1}

Qo1
= (0.83 + 0.67 + 0.67)∕3 = 0.72

2. Quality of operator o2 (|Mo2
| = 3, |Eo2

| = 1, |To2
| = 1,

Ctest3
= {m5,m6}):

• Qm4
= 0 (equivalent)

• Qm5
= 1 − 2∕((3 − 1) · 1) = 0 where Km5

= {test3}
• Qm6

= 1 − 2∕((3 − 1) · 1) = 0 where Km6
= {test3}

Qo2
= (0 + 0 + 0)∕3 = 0

Interpreting these results, the operator o1 is more valued than o2

with this metric (Qo1
= 0.72 > Qo2

= 0) because of the following facts:

• The operator o2 generates an equivalent mutant (m4), which is

penalised by the metric.

• Both m5 and m6 (o2) can be killed with a single test case (test3), which

always results in Qm = 0.

• As test3 suffices to kill the mutants generated by o3, test1 and test2

may not be generated without considering o1. Furthermore, test2

would be generated only after analysing the first mutant (m1) from

o1, as m1 is the only mutant killed by test2.

As a conclusion, a mutation operator with a high value of Qo increases

the probability of missing some test cases when performing a selec-

tive mutation strategy without mutants generated by that operator.

Therefore, the operators with the highest Qo should be at the top of the

ranking.

4.3 Experiment 1: Ranking mutation operators

This first experiment aims to apply the quality metric described in

Section 4.2 to each mutation operator.

4.3.1 Setup

The same case studies and adequate test suites presented in Section

3.3 were used in this experiment. We should note that in the experi-

ments conducted by Estero-Botaro et al. [20], the metric was measured

only for operators generating at least 4 mutants. Despite class opera-

tors are known to generate fewer mutants than traditional operators,

we have maintained this condition in our experiments. We calculated

the quality metric of the operators for each case study (as explained

by Estero-Botaro et al. [20]) and computed a mean with the values

obtained for each operator. Finally, a ranking was prepared in ascending

order of Qo.

4.3.2 Results

Table 8 shows the results of applying the quality metric for each opera-

tor and case study, where operators are sorted by the mean in our case

studies (the SD is also calculated). The IOD (0.82) is the most valued

operator on average, followed by MCO (0.77), and OMR (0.73). On the

contrary, the operators IOP, PMD and EHC present the lowest quality

metric, so they are at the bottom of the classification. Mutation opera-

tors that could not be rated with this metric in a case study are marked

with “-” (as aforementioned, the threshold is set in operators generat-

ing at least 4 mutants). We should remark that 5 operators (IHD, ISD,

PNC, CTD and CTI) are not shown in the table as they did not generate

more than 3 valid mutants in any of the case studies (see Table 3). The

mutation operator OMR, ranked third, was the only operator obtaining

values over 0.9 in some of the subject programs. The quality metric in

the rest of operators with Qo > 0 range from 0.07 to 0.71, with varying

SDs across the ranking. Note that mutants from operators with Qo = 0

in a case study are either equivalent or all the mutants are killed by all

the test cases in the adequate and minimal test suite for the operator,

as shown in the example in Section 4.2.

TABLE 8 Ranking of mutation operators based on test quality

Operator Tcl Rpc Dph Txm Kmy Dom Mean SD

IOD - 0.80 0.78 - 0.89 0.82 0.06

MCO - 0.74 0.79 0.72 0.89 0.73 0.77 0.07

OMR 0.88 0.92 0 0.98 0.89 0.73 0.41

OMD 0.80 0.82 - 0.52 0.68 0.71 0.71 0.12

IPC - 0.30 0.65 0.79 0.58 0.25

CID 0.83 0.74 0.52 0.58 0.52 0.29 0.58 0.19

ISI - 0.57 - - 0.57 -

CDC - - 0.47 0.47 -

PCI - 0.71 0 0.60 0.44 0.38

OAN 0.38 0.38 -

IHI 0 0.72 0.29 0.39 0.35 0.30

MCI 0.30 0.30 -

IOR 0 0.07 0.65 - 0.24 0.36

PPD - 0 0.17 0.11 0.14 0.09

CCA 0.17 - 0 0 - 0.25 0.10 0.13

CDD - 0.30 - 0 0 0 0.07 0.15

IOP 0 - 0 -

PMD - - 0 0 -

EHC - 0 0 -

-Mutation operators that could not be rated with the metric in a case study.

TABLE 9 Percentage of test cases loss when performing operator-based selective mutation based on the
ranking of test quality

Category Operators Tcl Rpc Dph Txm Kmy Dom Mean SD

1 IOD-MCO-OMR-OMD 0 20.0 18.2 53.3 30.6 20.0 23.68 17.57

2 IPC-CID-ISI 0 13.3 0 33.3 13.9 20.0 13.42 12.65

3 CDC-PCI-OAN-IHI-MCI 0 6.7 0 6.7 2.8 0 2.70 3.28

4 IOR-PPD-CCA-CDD 0 0 0 0 2.8 0 0.47 1.10

5
IOP-PMD-EHC 0 0 0 0 0 0 0 0

IHD-ISD-PNC-CTD-CTI

4.4 Experiment 2: Selective mutation based on the

ranking

As explained in Section 3.5.1, in the second experiment, we perform

selective mutation using the ranking obtained in the previous experi-

ment (see Section 4.3). The goal is to observe the loss in the number

of test cases in an adequate and minimal test suite for the full set of

mutants when applying operator-based and rank-based mutant selec-

tion for TSR. Recall that the quality metric favours the mutants killed by

few test cases, which kill few mutants at the same time. It is expected

that the mutants produced by the best-valued operators help design

test cases that kill few mutants, that is, high-quality test cases. There-

fore, the mutation score will not be representative of the full set of

mutants in this case, yet we will be retaining test cases, which are not

easy to design.

4.4.1 Setup

We gathered the operators with a similar quality metric into 5 cat-

egories but also trying to balance the number of operators in each

category (see Table 8):

1. 0.70 < Qo

2. 0.50 < Qo ⩽ 0.70

3. 0.25 < Qo ⩽ 0.50

4. 0.00 < Qo ⩽ 0.25

5. Qo = 0.00

The 5 mutation operators that could not be assessed are included

in the fifth category, as they are not supposed to have a significant

influence on the results.

Operator-based selection. Once defined these categories, we per-

formed the following steps for each case study from i = 4 to i = 1 (being

i a variable to refer to a category):

1. Select from the execution matrix the operators encompassed within

categories [1...i] (MO[1...i]).

2. Compute an adequate and minimal test suite for the selected oper-

ators (TMO[1...i]
).

3. Calculate the loss of test cases with respect to the original adequate

and minimal test suite, |TMO| − |TMO[1...i]
|, and the reduction in the

number of mutants.

Rank-basedmutant selection. As in Section 3.5.1, we executed 30 times

the following steps for each case study from i = 4 to i = 1 (being i a

variable to refer to a category) and computed the average:

TABLE 10 Reduction in the number of mutants by categories when
applying operator-based selective mutation based on the ranking of
test quality

Category Tcl Rpc Dph Txm Kmy Dom Mean SD

1 38.5 44.1 48.5 79.8 53.9 83.5 58.05 19.01

2 8.9 27.6 19.7 71.3 29.3 79.7 39.42 28.99

3 8.9 20.5 19.7 9.7 11.4 6.1 13.20 5.96

4 0 2.4 1 2.7 2.9 1.5 1.75 1.13

5 0 0 0 0 0 0 0 0

TABLE 11 Rank-based selection results based on the ranking of test
quality

1 2 3 4

PUT M SD M SD M SD M SD

Tcl 9.6 5.7 0 0 0 0 0 0

Rpc 8.9 7.1 1.6 2.9 0.2 1.2 0 0

Dph 10.9 6.4 1.5 3.0 1.5 3.0 0.5 1.4

Txm 28.0 8.1 19.1 5.7 0 0 0 0

Kmy 6.0 2.4 0.6 1.2 0 0 0 0

Dom 15.5 4.4 11.5 5.2 0 0 0 0

Total 13.14 7.91 5.72 7.82 0.29 0.61 0.08 0.19

FIGURE 5 Comparison of the percentage of test cases loss when
using operator-based and mutant-based (rank-based) selection for the
categories 1-4

1. Select with the rank-based technique the same size of dead mutants

from all operators as mutants of this kind are contained in the oper-

ators encompassed within categories [1...i] (|DMO[1...i]
|). Recall, MR

represents the set of selected mutants.

2. Compute an adequate and minimal test suite for the selected

mutants (TMR
).

3. Calculate the loss of test cases with respect to the original adequate

and minimal test suite: |TMO| − |TMR
|.

4.4.2 Results

Table 9 classifies mutation operators into the 5 categories (C) enumer-

ated in Section 4.4.1. This table shows the percentage of loss in the

number of test cases from the original adequate and minimal test suite

as a consequence of removing the mutants from the operators under

that category. Again, we obtained the Mean as well as the SD of the

results of each case study. Table 10 depicts the percentage of reduction

in the number of mutants by not considering the operators removed in

each step.

From Table 9, we can observe an increasing drop in the number of test

cases in the adequate and minimal test suite, from 0.47% after remov-

ing the operators within category 5 to 23.68% only using the operators

within category 1. Considering the 16 operators with Qo > 0 (from cat-

egory 1 to 4), the same number of test cases remains in the adequate

and minimal test suite, except for a loss of 1 test case in Kmy (2.8%). The

reduction in the number of mutants is not very relevant when removing

the operators within categories 4 and 5, but meaningful when selecting

the first 7 operators in the ranking (39.42%). In that case, we assume a

loss of 13.42% of test cases. We should note an increasing SD because

of dissimilar results among case studies, especially Tcl and Txm in the

categories 1 and 2. In addition, the number of test cases in the minimal

test suite is not very high in most case studies (from 15 to 36 test cases,

as can be seen in Table 2), so the reduction of each test case implies a

great percentage.

Table 11 shows the results of the rank-based mutant selection. By

using the same size of mutants as in the operators within categories 1

and 2, we assume a mean loss of test cases of 5.72% with an SD of 7.82.

This percentage increases to 13.14% as a consequence of discarding

the number of dead mutants generated by the operators in category 2.

Overall, we can also observe that the SDs progressively increase from

category 4 to 1: The fewer the mutants selected, the more varied are

the results in the different executions. As in the previous section for

TSE, we show in Figure 5 the average results for operator-based and

rank-based selection together.

5 DISCUSSION

5.1 Validation of operator-based selection results

As a sanity check, we compared our operator-based selection results

with 3 new rankings of operators. We conducted operator-based selec-

tive mutation by establishing categories of operators with these new

rankings, as done in Section 3.5.1 and Section 4.4.1. To this end, we

followed classical approaches to selective mutation:

• Random: random sort of mutation operators. For a direct compar-

ison between categories with the same number of operators, we

maintained the same sizes of the categories from the original exper-

imental results (see Section 3.5.2 and Section 4.4.2).

• Number of mutants (size): sort of mutation operators by the num-

ber of mutants [7, 15], where the most prolific operators are at the

bottom of the ranking.

To retain a significant number of mutants at all times, the cate-

gory size is proportional to the number of mutants generated in the

analysed programs (see Table 3). Thus, we divided the total number

of mutants (1,868) by 5 categories, which results in 374 mutants

per category. Then, we included as many operators as needed to

complete 374 mutants, which depends on the mutants produced by

each operator. As an example, PCI (the most prolific operator) is the

only operator in the category 5 as it generates 659 mutants, which

suffices to reach the number of mutants set for a category.

• Operator type (block): mutation operators of the same operator

block are grouped together [12] (see Table 1). These blocks are

sorted by the number of operators that they contain. The block with

more operators (“inheritance”) is at the top of the ranking.

The category size in this ranking depends on the number of oper-

ators within each group. In this regard, we only counted operators

creating at least 1 mutant in our case studies. For instance, 3 out of 4

operators from the “method overloading” block were applied (OMD,

OMR and OAN). Because of the few operators, the groups “exception

handling” and “object and member replacement” were gathered in a

category.

The final arrangement of these 3 rankings and their classification into

categories is depicted in Table 12. We should remark that the categories

for TSE and TSR are different in the case of random because their cate-

gory size is related to the number of operators within each category in

the original experiments.

For each ranking, Table 13 shows the mutation score achieved by

the operators of each category following the selective mutation pro-

cedure described in Section 3.5.1. Analogously, Table 14 presents the

percentage of reduction in the number of test cases in the adequate

and minimal test suite. The column original illustrates the Mean and

the SD obtained in our original rankings (see column M and SD in

Table 5 and 9).

The results of the original rankings on average are clearly better than

the results of the rankings random, size, and block. The ranking ran-

dom shows the worst performance in general in both the calculations of

the mutation score and the loss in the percentage of test cases, except

when removing the first turn of operators. The ranking size gets bet-

ter results than block in both selective strategies in 7 out of 8 cases

(4 categories for TSE plus other 4 categories for TSR). On few occasions,

the rankings random and size match the outcome of our original results

in a pair ‘(case study and category)’, but the averaged results are still very

far from the ones achieved with the original rankings. As an exception,

we have to note that the ranking block is able to surpass the ranking

based on test quality for Txm when selecting the operators from cate-

gory 1 and the operators from the categories 1 and 2. Nevertheless, the

high SDs in these 3 rankings suggest that they are not consistent.

5.2 Validation of rank-based mutant selection

results

Similarly to the previous sanity check, we aim to compare our

rank-based mutant selection results with other strategies for the selec-

tion of mutants [11]:

TABLE 12 Arrangement of the rankings random, size, and block classified into categories for TSE
and TSR

Category RandomTSE RandomTSR SizeTSE,TSR BlockTSE,TSR

1 IPC, OMR, ISD IPC, OMR, CTD, ISD, IHD, PNC, IHD, IHI, ISD,

ISD, ISI CTI, OAN, EHC, PMD, ISI, IOD, IOP,

CDC, IOP, ISI, CDD, IOR, IPC

IPC, CCA, MCI, PPD,

IOR

2 ISI, CCA, OMD CCA, OMD, IOD, IHI, CTD, CTI, CID,

CTI OMR, OMD CDC, CDD, CCA

3 CTI, PNC, MCI PNC, MCI, IOD, CID PCI, PMD, PPD,

MCO, IOP PNC

4 IOD, MCO, IOP, CDC, PCI, MCO OMD, OMR,

CDC, PCI CID, PMD OAN

5 CID, PMD, IOR, IOR, IHD, IHI, PCI MCO, MCI, EHC

IHD, IHI, CTD, CTD, CDD,

CDD, OAN, OAN, EHC,

EHC, PPD PPD

Abbreviations: TSE, test suite evaluation; TSR, test suite refinement.

TABLE 13 Comparison of the mutation score when using operator-based selective
mutation testing for test suite evaluation with the rankings random, size, and block

Original Random Size Block

Category M SD M SD M SD M SD

1 90.52 5.89 48.89 29.90 56.02 21.47 53.70 31.09

2 97.22 2.76 74.66 14.10 82.76 13.52 78.15 14.77

3 99.40 0.92 78.17 13.94 85.18 13.48 84.36 15.62

4 100 0 97.54 2.12 95.50 7.75 89.43 13.75

TABLE 14 Comparison of the percentage of test cases loss when using operator-based
selective mutation testing for test suite refinement with the rankings random, size, and
block

Original Random Size Block

Category M SD M SD M SD M SD

1 23.68 17.57 66.71 19.38 66.97 11.76 64.46 22.17

2 13.42 12.65 48.09 23.73 26.56 11.45 37.68 12.38

3 2.68 3.28 19.31 12.98 17.69 9.81 30.79 17.92

4 0.45 1.10 4.07 4.75 5.35 7.34 13.92 10.51

• One-round random (1-round): random selection of mutants from all

the operators (equal probability of selecting each of the mutants).

• Two-round random (2-round): In the first round, 1 operator is

selected randomly; in the second round, 1 mutant is selected ran-

domly from the operator selected in the first step (equal probability

of selecting a mutant from each of the operators).

In both strategies, we select the same number of mutants in each cat-

egory for TSE and TSR as in the rank-based mutant selection. Figures 6

and 7 show graphically the comparative performances of the strategies

for TSE and TSR, respectively (M and SD).

The original rank-based mutant selection based on the operator clas-

sification for TSE and TSR outperforms in all the cases the 1-round

strategy on average. One-round also shows a worse performance than

2-round. While 1-round was able to obtain a better result in TSE for

the 2 first categories when analysing Dph, the original strategy was

better in the rest of the cases except for a few ties (with a remarkable

difference of 2.6% in the pair ‘(Kmy and category 2)’). Regarding TSR,

we can find a noteworthy gap between the 2 strategies in ‘(Dom and

category 1)’ 18.1% for rank-based selection and 30.6% for 1-round.

As for 2-round, the original strategy gets better results in 6 out of

8 cases on average and the gap between the 2 selective approaches

widens as the number of mutants selected decreases. This outcome is

quite interesting as that means that the operator rankings work bet-

ter for large reductions of mutants. If we focus on the first category,

while in TSE the rank-based strategy surpasses 2-round by 0.3% on

average (note that the margins are narrow because of the nature of the

mutation score), the difference is more notable when measuring the

percentage of test cases lost (1.85%). The SD in 2-round is also higher

than in the original strategy for both evaluations in that category, which

means that the former strategy is less stable than the latter when few

mutants are selected. Regarding the individual programs, 2-round only

produces better results overall in Dph. There are relevant differences

in favour of rank-based mutant selection in several cases, like in the pair

‘(Txm and category 1)’ with a difference of 6.6% in the percentage of test

cases lost.

FIGURE 6 Comparison of the mutation score when using rank-based selective mutation testing for test suite evaluation with the rankings
1-round and 2-round

FIGURE 7 Comparison of the percentage of test cases loss when using rank-based selective mutation testing for test suite refinement with the
rankings 1-round and 2-round

5.3 Answer to research questions

Answer to RQ1: What is the degree of redundancy of each mutation

operator?

Results show that 14 out of 24 operators generate nonredundant

mutants with the test suite used in the experiments (see Table 4). The

most prolific operators are generally the operators with the lowest

degree of redundancy. Moreover, it is interesting to observe that all

operator blocks but “exception handling” are represented in the top 5 of

the ranking. This fact conveys that each operator block indeed targets

different object-oriented features, that is, these groups are not redun-

dant among them. We should note that the operators IMR, PVI, PCD,

PCC, OAO and EHR produce no valid mutants in these case studies, so

we cannot calculate the operator redundancy for them.

Answer to RQ2: Is a subset of mutants with low degree of redun-

dancy sufficient for TSE?

Yes. Results reveal that (1) using the top 6 operators (MCO, PCI,

OMD, CID, IOD and OAN) allows us to reduce the number of mutants

(31.7%) with an acceptable measurement of the overall mutation score

(97.22%), as can be seen from Tables 5 and 6, and (2) favouring the

selection of mutants from the top-ranked operators leads to an aver-

age mutation score of 98.87% with the same number of mutants

(see Table 7). Different approaches to selective mutation report worse

results on average in all cases (see Table 13 and Figure 6), which sup-

ports that the operator redundancy is a good indicator for TSE when

performing a selective strategy.

Answer to RQ3: What is the potential of each mutation operator

for inducing the creation of high-quality test cases?

The potential of 19 mutation operators for TSR with high-quality test

cases is presented in Table 8. In addition to the operators generating

no valid mutants, 5 operators are not evaluated (IHD, ISD, PNC, CTD

and CTI) and other 3 operators obtain the lowest value (IOP, PMD and

EHC). The existence of several mutation operators with the lowest met-

ric in different case studies matches with the few mutants generated

by class-level operators and the high-equivalence percentage that they

usually present. Unlike the ranking based on mutant redundancy, none

of the operators from the “polymorphism and dynamic binding” group

is in the top 5 of the ranking based on test quality, finding the first one

(PCI) in the ninth position.

Answer to RQ4: Is a subset of mutants with a high potential to

induce the generation of high-quality test cases sufficient for TSR?

Yes. (1) Using the top 12-rated operators (see Table 9), 2.7% of the

test cases are not included in the adequate and minimal test suite

on average, with a reduction of 13.2% in the number of mutants (see

Table 10). When cutting out also the 5 operators within category 3, we

should assume a decrease of 13.42% of test cases while 39.42% of the

mutants are not examined; (2) using rank-based selection of mutants,

we observe a smaller decrease (13.14%) with just the same number of

mutants as in the 4 operators in category 1 (see Table 11). As in the

answer to RQ2, the outcome when applying selective mutation follow-

ing other strategies (see Table 14 and Figure 7) shows that the quality

metric is a good indicator for TSR when performing a selective strategy.

5.4 Comparison between rankings

In this section, we compare the rankings arranged in Section 3.4.2 and

4.3.2, discussing similarities and differences to know whether there is a

connection between the rankings based on mutant redundancy for TSE

and test quality for TSR.

An overall view of these rankings allows us to observe a patent simi-

larity between them. It can be observed from the 2 rankings that MCO,

OMD and IOD are fruitful class mutation operators because these

operators occupy the first positions in both classifications, whereas

PMD and IOP are not so useful because they are at the bottom of these

2 rankings. This fact suggests that the most suitable mutation operators

for TSE are also the most appropriate in TSR.

However, looking at the assessments of each operator more care-

fully, we can notice some discordant results between both rankings. The

PCI falls from second in the ranking based on operator redundancy (see

Table 4) to ninth in the ranking related to test quality (see Table 8). As a

conclusion, while PCI shows a low-operator redundancy, test cases are

quite effective with the mutants from this operator, so PCI is not such

a useful operator to generate many new test cases not considered yet.

On the contrary, OMR climbs 6 positions (from ninth in Table 4 to third

in Table 8) and ISI 8 positions (from 15th to seventh). The EHC, CDD,

IOD, OAN and MCI also exhibit a significant change in their positions.

These differences between the rankings validate the need to under-

take a separate study of mutation operators as the one accomplished

in this paper.

Finally, regarding the class operators specifically designed for

C++ [6], only CDD and CCA generated mutants in our experiments. The

CDD is in the 12th and 16th position in the ranking for TSE and TSR,

respectively, while CCA is placed the last and the 15th. Consequently, as

these 2 operators occupy low positions in both rankings, their mutants

are candidates to be discarded in most selective processes regardless

of the goal when applying mutation testing.

5.5 Comparison between selective mutation

strategies

Comparing the results reported by operator-based and rank-based

mutant selection is the goal of this section. We study this aspect sepa-

rately for the 2 evaluations:

• TSE: While operator-based selection obtains 100% in the mutation

score when removing the operators at the bottom of the ranking, the

rank-based mutant selection offers better performance in the other

3 categories, especially in category 1 where the gap is over 5% on

average (90.52% vs 95.89%).

• TSR: Rank-based mutant selection gets much better results in all of

the categories. Interestingly, the average result of the rank-based

strategy in the first category not only outperforms the result of

operator-based selection in the same category but also in the second

category (13.42% vs 13.14%).

In general, rank-based mutant selection also seems a more stable

strategy when we analyse the SDs in the different categories. Surpris-

ingly, a simple random selection of mutants also turned out to be better

than operator-based selection except for the fourth category in both

TSE and TSR evaluations (see Section 5.2). We presume that this fact is

related with the aforementioned conclusion that each operator block

addresses different object-oriented features (see Section 3.4.2). Unlike

traditional operators, we suspect that several of these class opera-

tors are hardly redundant among them because they target completely

different parts of the code. For instance, CDD addresses destructor

methods whereas EHC tackles exceptions. The fact that 2-round ran-

dom outperforms 1-round random also supports this idea. As a con-

sequence, we might be reducing the coverage of the test suite when

removing some of the class operators, which can diminish the bene-

fits of selective mutation. Therefore, even though the operator-based

selection results are acceptable, a strategy for the selection of mutants

from all operators seems more suitable when it comes to class-level

mutation.

5.6 Threats to validity

There are several aspects that pose a threat to the validity of the results

reported in this paper.

Number of mutants. Although we selected 6 different libraries and

applications, some of the operators were never applied or only pro-

duced few mutants in few case studies. As stated, the appearance of

mutants at the class level depends on the object-oriented features used

by the programmer, and these operators are less prolific than traditional

operators. As a result, by maintaining the threshold in the number of

mutants to apply the quality metric used by Estero-Botaro et al. [20],

the metric could not be computed for several operators (notably in Xml-

Rpc++, where Qo could not be measured for 8 operators). Altogether,

the number of mutants supposes a threat to the generalization of the

results as some operators could not be appropriately evaluated.

Mutant equivalence. Equivalence is an undecidable problem, thus

judging a mutant to be equivalent is an error-prone task, especially

when analysing third-party applications for which it is not trivial to

acquire a full insight into the source code. To counter this threat, we

used the concept of undecided so that the mutants of uncertain condi-

tion were not recorded as equivalent.

Test suites. To the best of our knowledge, there is no an available

test case generator for object-oriented programs in C++, which tries

to produce new test cases specifically with the target of killing surviv-

ing mutants as EvoSuite does for Java [36]. Test cases were therefore

manually designed with a view to kill nonequivalent mutants remain-

ing alive, but we proceeded with the utmost care to develop consistent

test cases. Nonetheless, the metrics used in these experiments, and

consequently the results, are subject to the test suite.

Comparison results. Finally, to check that the results when conduct-

ing the selective strategy based on the rankings are not coincidental, we

prepared 3 combinations of operators following traditional approaches

to operator-based selective mutation and executed other 2 strategies

for random mutant selection. These strategies yielded worse results,

but new combinations could be arranged to confirm the observed ten-

dency. We should note that we have compared the techniques under

the same number of nonequivalent mutants, as done by Zhang et al.

[11]. However, the rank-based strategy will select a variable num-

ber of equivalent mutants in practice, which might impact the results.

Recently, Papadakis et al. [37] provided evidence that mutation-based

assessments comparing test techniques are vulnerable to a potential

threat to validity: the presence of redundant mutants. Future eval-

uations should remove as many redundant mutants as possible and

observe if the same results hold.

6 RELATED WORK

6.1 Selective mutation testing

Operator-based selective mutation was first conceived by Mathur

[38] for the purpose of reducing the large computation expenses. The

approach of removing some of the mutation operators has been inves-

tigated since then by many researchers [7, 12, 13, 15, 16, 17, 39]. In this

regard, Wong and Mathur [15] limited mutation testing to the use of

2 Fortran operators (ABS and ROR), as they can achieve similar results

than the 22 operators included in Mothra. Offutt et al. [7] performed

selective mutation omitting the N most commonly applied operators.

Among other results, by excluding the 6 operators that engendered

more mutants, adequate test suites for the remaining mutants (around

40% of the complete set of mutants) maintain a high correlation with

the full mutation score (99.71%). Shortly after that, they experimented

with selective mutation by excluding all the operators that belong to

the same operator block instead [12]. On the basis of the experimental

results, they determined that only 5 mutation operators (those mutat-

ing operators within expressions) suffice to obtain an average effective-

ness value of 99.5%. Offutt et al. [7] defined the operator strength as

the number of mutants killed by a test suite generated only to kill the

mutants of that operator. In our paper, we take a different approach by

defining the operator redundancy to count the number of mutants that

remain alive when the test suite is generated for all the operators apart

from that operator.

Mresa and Bottaci [17] also changed the traditional approach so far

by evaluating operators regarding 2 factors: mutation score and cost

information about test data generation as well as equivalent mutant

identification. In their experiments considering these cost factors, they

found that operator-based selection is a preferable option when com-

pared with random selection of mutants but only if low mutation scores

are required. They used effective and nonredundant test cases in their

empirical procedure. In the experiments conducted in this paper, the

operators are assessed separately for TSE and TSR regarding redun-

dancy and test quality, respectively. Moreover, we go a step further by

imposing minimality to the test suites, as encouraged by Estero-Botaro

et al. [20].

The statistical analysis procedure defined by Namin et al. [16] identi-

fied 28 operators among 128 implemented in Proteum as sufficient for

an accurate measurement of the mutation score for all the operators.

The results of their approach to select a subset of operators execut-

ing a large set of mutants and test cases do not support the intuition

that 1 operator from each operator group should be selected, as in the

guidelines proposed by Barbosa et al. [13]. In our experiments, 5 out

of 6 operator blocks are represented in the top 5 ranked operators for

TSE, but only 3 in the case of TSR. The 10 mutation operators selected

by Barbosa et al. [13] showed effectiveness values between 95.8% and

100% when applied to 27 cases studies. Delamaro et al. [39] proposed

to use a greedy algorithm for choosing a reduced set of C mutation

operators, successively adding the operators that increased the over-

all score the most. They concluded that the high redundancy among

the operators makes difficult to establish a single way to select the best

operators. The study directed by Zhang et al. [40] showed that selective

mutation scales regarding the size of the PUT.

Random mutant selection, also known as mutant sampling, was pro-

posed by Budd [14] and Acree [41], where they showed that just sam-

pling 10% of the mutants is sufficient to predict the mutation score

for all the mutants with high accuracy. Despite the particular atten-

tion received by operator-based selection in the literature, a growing

body of research in recent years gives evidence that it is not superior

to random mutant selection [11, 42, 43]. This conclusion was drawn by

Zhang et al. [11] when comparing random selection of mutants with

several sufficient sets of operators in the literature (5 operators in

Offutt et al [12], 10 operators in Barbosa et al. [13], and 28 operators

in Namin et al. [16]). The experiments by Gopinath et al. [43] also sug-

gest that removing operators could offer limited benefit in comparison

with random mutant selection. Finally, Zhang et al. [42] applied 8 dif-

ferent random strategies for the selection of mutants, concluding that

operator-based and random mutant selection can be combined to fur-

ther reduce the cost. We also study both selective techniques when

used with class-level operators. Mutant-based selection and especially

a rank-based strategy results in more representative results of the full

set of mutants in this case.

6.2 Object orientation

Selective mutation testing applied to class mutation operators has been

previously studied for other object-oriented languages. Derezińska

and Rudnik [18] conducted their experiments with C# on 18 class oper-

ators and 8 standard operators at the same time using 3 case stud-

ies. The results evidence that, even with a considerable reduction of

object-oriented mutants (using 74% of the mutants) still 93% of the

original mutation score can be achieved.

Likewise, Ma et al. [22] explored the elimination of some unneces-

sary class operators in Java that generated very few mutants. Bluemke

and Kulesza [19] performed a selective reduction of mutants gener-

ated by Java operators, including class-level operators. In their experi-

ments, they showed that the strategy can significantly reduce the cost

(between 40% and 60% of mutants) while preserving an acceptable

mutation score and code coverage. In our work, by using rank-based

mutant selection, over 30% of the mutants can be excluded but declin-

ing less than 1.2% the mutation score. In the same way, almost 40% of

the mutants can be saved but losing 5.72% of test cases.

In previous work using class operators for C++ [6], the mutation

score was calculated around 2 case studies and the test suites dis-

tributed with them, showing which operators spawned more mutants

that remained undetected. Several improvement rules for these

operators where proposed later, analysing their impact in the resources

required to generate and execute the mutants for 5 applications [25].

In addition, that paper studied how useful class operators are by com-

paring them with a set of traditional operators. However, in this paper,

we evaluate class operators by their usefulness for TSE and TSR using 6

different programs with adequate test suites, and finally, we conducted

a selective strategy in the light of the results.

6.3 Other related works

Most of the approaches to decrease the overall cost of mutation testing

have been collected in the survey by Jia and Harman [44]. In addition

to selective mutation, many authors have concentrated their efforts on

reducing the number of mutants produced. Some helpful techniques

are high-order mutation [9], mutant clustering [10], and evolutionary

mutation testing [45].

While the work in this paper aims to obtain a classification of

mutation operators generalizable for every PUT, the mutation tool

MuRanker [46] ranks mutants depending on a prediction about the dif-

ficulty to create a test case to kill them. The ranking displayed with

this tool is thereby particular for each PUT. Javalanche [47] remarks

the mutants with a high impact (they are less likely to be equivalent)

as those mutants that can really help to improve a test suite because

they are easier to assess by a tester. That mutation tool takes a different

approach to the quality metric by Estero-Botaro et al. [20], where the

most difficult to kill mutants are the most valued. Kusano and Wang [48]

developed the mutation tool CCMutator for C++, similar to MuCPP, but

they focus on the generation of mutants for concurrency constructs in

multithreaded applications.

Moghadam and Babamir [49] recently proposed to estimate the

mutation adequacy score taking into account several object-oriented

metrics, which capture the structural complexity of the analysed

program. Another related work was undertaken by Just et al. [50],

analysing how redundancy affects both the efficiency and effective-

ness of mutation testing. Wright et al. [51] use the term redundant

mutant in a broad sense, also considering as redundant as those muta-

tions, which may be produced by different operators. This type of

ineffective mutants should be removed to avoid consuming resources

unnecessarily.

Yao et al. [52] defined a nonequivalent mutant as stubborn when it is

not killed by a branch adequate test suite. Thus, stubborn mutants are

theoretically more difficult to kill than resistant mutants given that a

resistant mutation may not have been executed by the test suite before

adding the test case to detect that mutation. A resistant hard-to-kill

mutant requires that the test case killing it does not kill any other

mutants, and this double perspective is not contemplated by stubborn

mutants. Ammann et al. [27] proposed using minimal sets of mutants to

avoid redundancy and its impact when interpreting the mutation score.

Resistant mutants, despite being killed by a single test case, may turn

out to be redundant; this does not hold in resistant hard-to-kill mutants,

so they would be included in a minimal set of mutants.

7 CONCLUSION

In this paper, we presented an evaluation of class mutation opera-

tors for the C++ programming language. To that purpose, mutation

operators were separately assessed on the basis of their usefulness

during TSE and TSR. In particular, mutation operators were classified

into 2 rankings ordered by the redundancy of their mutants, and the

quality of the tests they help to produce, respectively. These 2 rank-

ings share commonalities but also differences, which support this novel

2-fold evaluation. Additionally, both rankings were used as the basis

for a selective mutation study showing the trade-off between removing

some of the mutants and the loss in the effectiveness of the technique.

In practice, the tester might want to select a subset of mutants depend-

ing on (1) the goal (evaluation or refinement of the test suite) and (2) the

exhaustiveness required in the testing process.

The evaluation results on 6 open-source applications show that both

rankings serve as an accurate reference of the value of each muta-

tion operator. Thus, just using 6 operators led to an average decrease

in the number of mutants of 31.7% without a significant loss of muta-

tion score (2.78%). Similarly, only 7 operators were necessary to retain

almost 87% of the test cases contained in the adequate and minimal

test suite constructed for the full set of mutants (reduction of 39.42%

in the number of mutants). Rank-based mutant selection (favouring the

analysis of the mutants from the top-ranked operators) reported even

better results for both evaluations with the same number of mutants:

98.87% (mutation score) and 5.72% (percentage of test cases loss).

Therefore, in the case of class mutation operators, selection of mutants

in a rank-based manner from all mutation operators has shown to be

more beneficial than operator-based selective mutation. The proposed

rank-based strategy also outperformed the random technique for the

selection of mutants.

The ongoing work includes the definition of new evaluation metrics

derived from the ones proposed by Estero-Botaro et al. [20]. When

computing the quality metric of a mutant, it would be interesting to

know how many mutants from other operators are killed by the test

cases killing that mutant (ie, measure the operator quality in the con-

text of the complete set of mutation operators and not only using the

mutants from that operator). Also, including which mutants are covered

by which test cases as an additional source of information in the met-

ric can allow for a more accurate assessment. This evaluation applied

to other programming languages can provide insights about the use-

fulness of each mutation operator. In addition, we aim at devising an

evolutionary approach to better estimate the trade-off between a loss

in the mutation score or test cases and the reduction of the cost of

applying mutation testing, including expenses of equivalent mutant

detection.

ACKNOWLEDGEMENTS

This paper was partially funded by the research scholarship

PU-EPIF-FPI-PPI-BC 2012-037 of the University of Cádiz and par-

tially supported by the European Commission (FEDER), Spanish

Government projects DArDOS (TIN2015-65845-C3-3-R), SEBASEnet

(TIN2015-71841-REDT) and CICYT BELI (TIN2015-70560-R), and

the Andalusian Government projects THEOS (TIC-5906) and COPAS

(P12-TIC-1867). We also thank Francisco Palomo-Lozano for allowing

us to use his algorithm to find minimal test suites and his version of

Knuth's algorithm S to select mutants randomly.

REFERENCES

1. A. J. Offutt and R. H. Untch, Mutation 2000: uniting the orthogonal,
Mutation Testing for the New Century, The Springer International Series
on Advances in Database Systems, W Wong, (ed.), Vol. 24, Springer, US,
2001, pp. 34–44.

2. K. N. King and A. J. Offutt, A Fortran language system for mutation-based
software testing, Softw Pract Exper 21 (1991), no. 7, 685–718.

3. H. Agrawal, R. DeMillo, B. Hathaway et al. Design of mutant opera-
tors for the C programming language. SERC-TR-41-P. Software Engi-
neering Research Center, Purdue University, West Lafayette, Indiana,
Mar 1989.

4. Y. S. Ma, Y. R. Kwon, and A. J. Offutt, in Inter-class mutation opera-
tors for Java, Proceedings of XIII International Symposium on Software
Reliability Engineering Edited by S Kawada, IEEE Computer Society,
Annapolis (Maryland), 2002, pp. 352–363.

5. A. Derezińska, in Quality assessment of mutation operators dedicated
for C# programs, Proceedings of VI International Conference on Qual-
ity Software Edited by P Kellenberger, IEEE Computer Society, Beijing
(China), 2006, pp. 227–234.

6. P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez, A
García-Domínguez, and F Palomo-Lozano, Class mutation operators
for C++ object-oriented systems, Ann Telecommun 70 (2015), no. 3-4,
137–148.

7. A. J. Offutt, G. Rothermel, and C. Zapf, in An experimental evaluation of
selective mutation, Proceedings of 15th International Conference on
Software Engineering, 1993, Baltimore, MD, USA, 1993, pp. 100–107.

8. T. A. Budd and D. Angluin, Two notions of correctness and their relation to
testing, Acta Inf 18 (1982), no. 1, 31–45.

9. Y. Jia and M. Harman, Higher order mutation testing, Inf Softw Technol 51
(2009), no. 10, 1379–1393.

10. S. Hussain, Mutation clustering, Master's Thesis, King's College Lon-
don, 2008.

11. L. Zhang, S. S. Hou, J. J. Hu, T. Xie, and H. Mei, in Is operator-based
mutant selection superior to random mutant selection?, Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineer-
ing, ICSE '10, Vol. 1, ACM, New York, NY, USA, 2010, pp. 435–444.

12. A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, An experimen-
tal determination of sufficient mutant operators, ACM Trans Softw Eng
Methodol 5 (1996), no. 2, 99–118.

13. E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, Toward the determi-
nation of sufficient mutant operators for C, Software Testing, Verification
and Reliability 11 (2001), no. 2, 113–136.

14. T. A. Budd, Mutation analysis of program test data, PhD Thesis, 1980.

15. W. E. Wong and A. P. Mathur: Reducing the cost of mutation testing: an
empirical study. Purdue University, West Lafayette, Indiana, 1993.

16. A. S. Namin, J. H. Andrews, and D. J. Murdoch, in Sufficient mutation
operators for measuring test effectiveness, ACM/IEEE 30th Interna-
tional Conference on Software Engineering, 2008, ICSE '08, Leipzig,
Germany, 2008, pp. 351–360.

17. E. S. Mresa and L. Bottaci, Efficiency of mutation operators and selective
mutation strategies: an empirical study, Software Testing, Verification and
Reliability 9 (1999), no. 4, 205–232.

18. A. Derezińska and M. Rudnik, Quality evaluation of object-oriented
and standard mutation operators applied to C# programs, Objects,
Models, Components, Patterns, C Furia and S Nanz, (eds.), Lecture Notes
in Computer Science, Vol. 7304, Springer Berlin Heidelberg, Berlin,
2012, pp. 42–57.

19. I. Bluemke and K. Kulesza, in Reduction in mutation testing of
Java classes, 9th International Conference on Software Engineer-
ing and Applications (ICSOFT-EA), 2014, Vienna, Austria, 2014,
pp. 297–304.

20. A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J.
Domínguez-Jiménez, and A García-Domínguez, Quality metrics for
mutation testing with applications to WS-BPEL compositions. Software

Testing, Verification and Reliability 25 (2015), no. 5-7, 536–571. doi:
10.1002/stvr.1528.

21. S. Kim, J. A. Clark, and J. A. McDermid, in The rigorous generation
of Java mutation operators using HAZOP, Proceedings of the 12th
International Cofference Software and Systems Engineering and their
Applications (ICSSEA 99), Paris, France, 1999.

22. Y. S. Ma, Y. R. Kwon, and S. W. Kim, Statistical investigation on class muta-
tion operators, ETRI J 31 (2009), no. 2, 140–150.

23. H. J. Lee, Y. S. Ma, and Y. R. Kwon, in Empirical evaluation of orthogo-
nality of class mutation operators, Software Engineering Conference,
2004. 11th Asia-Pacific, Busan, Korea, 2004, pp. 512–518.

24. S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés, Mutation
testing on an object-oriented framework: an experience report, Inf Softw
Technol 53 (2011), no. 10, 1124–1136.

25. P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A.
García-Domínguez, and J. J. Domínguez-Jiménez, Assessment of class
mutation operators for C++ with the MuCPP mutation system, Inf Softw
Technol 81 (2017), 169–184. doi: 10.1016/j.infsof.2016.07.002.

26. A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo, Third Inter-
national Conference on Software Testing, Verification, and Validation
Workshops (ICSTW), 2010. Quantitative evaluation of mutation oper-
ators for WSBPEL compositions, Paris, France, 2010, pp. 142–150.

27. P. Ammann, M. E. Delamaro, and J. Offutt, in Establishing theoretical
minimal sets of mutants, Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, ICST '14,
IEEE Computer Society, Washington, DC, USA, 2014, pp. 21–30.

28. Matrix TCL Pro, version 2.2, available from: http://www.techsoftpl.
com/matrix/download.php. Accessed on 14-July-2016.

29. XmlRPC, version 0.7, available from: http://xmlrpcpp.sourceforge.net/.
Accessed on 14-July-2016.

30. Dolphin, Available from: https://www.kde.org/applications/system/
dolphin. Accessed on 14-July-2016.

31. Tinyxml2, Available from: https://github.com/leethomason/tinyxml2.
Accessed on 14-July-2016.

32. KMyMoney version 4.6.4. available from: https://sourceforge.net/
projects/kmymoney2/. Accessed on 14- July-2016.

33. QtDOM, Available from: https://github.com/qtproject/qtbase/tree/
dev/src/xml/dom. Accessed on 14-July-2016.

34. I. Bluemke and K. Kulesza, Proceedings of the Ninth International Con-
ference on Dependability and Complex Systems DepCoS-RELCOMEX.
June 30 –July 4, 2014, Brunów, Poland, Reductions of Operators in
Java Mutation Testing, Springer International Publishing, Cham, 2014,
pp. 93–102.

35. A. Arcuri and L. Briand, A Hitchhiker's guide to statistical tests for assessing
randomized algorithms in software engineering, Software Testing, Verifi-
cation and Reliability 24 (2014), no. 3, 219–250.

36. G. Fraser and A. Arcuri, in EvoSuite: automatic test suite generation
for object-oriented software, Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of
Software Engineering, ESEC/FSE '11, ACM, New York, NY, USA, 2011,
pp. 416–419.

37. M. Papadakis, C. Henard, M. Harman, Y. Jia, and Y. Le Traon, in Threats
to the validity of mutation-based test assessment, Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, ACM, New York, NY, USA, 2016, pp. 354–365.

38. A. P. Mathur, in Performance, effectiveness, and reliability issues in
software testing, Computer Software and Applications Conference,
1991. COMPSAC '91, Proceedings of the Fifteenth Annual Interna-
tional, Tokyo, Japan, 1991, pp. 604–605.

39. M. E. Delamaro, L. Deng, N. Li, V. H. S. Durelli, and A. J. Offutt, in Growing
a reduced set of mutation operators, Brazilian Symposium on Software
Engineering (SBES), 2014, Maceio, Alagoas, Brazil, 2014, pp. 81–90.

40. J. Zhang, M. Zhu, D. Hao, and L. Zhang, in An empirical study on the scal-
ability of selective mutation testing, IEEE 25th International Sympo-

http://www.techsoftpl.com/matrix/download.php.
http://www.techsoftpl.com/matrix/download.php.
http://xmlrpcpp.sourceforge.net/.
https://www.kde.org/applications/system/dolphin.
https://www.kde.org/applications/system/dolphin.
https://github.com/leethomason/tinyxml2.
https://sourceforge.net/projects/kmymoney2/.
https://sourceforge.net/projects/kmymoney2/.
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom.
https://github.com/qtproject/qtbase/tree/dev/src/xml/dom.

sium on Software Reliability Engineering (ISSRE), 2014, Naples, Italy,
2014, pp. 277–287.

41. ATJr. Acree, On mutation, PhD Thesis, Atlanta, GA, USA, 1980.

42. L. Zhang, M. Gligoric, D. Marinov, and S. Khurshid, in Operator-based
and random mutant selection: better together, 2013 IEEE/ACM 28th
International Conference on Automated Software Engineering (ASE),
Palo Alto, California, USA, 2013, pp. 92–102.

43. R. Gopinath, M. A. Alipour, I. Ahmed, C. Jensen, and A. Groce, in On the
limits of mutation reduction strategies, Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE '16, ACM, New
York, NY, USA, 2016, pp. 511–522.

44. Y. Jia and M. Harman, An analysis and survey of the development of muta-
tion testing, IEEE Trans Softw Eng 37 (2011), no. 5, 649–678.

45. J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-Domínguez, and
I. Medina-Bulo, Evolutionary mutation testing, Inf Softw Technol 53
(2011), no. 10, 1108–1123.

46. A. S. Namin, X. Xue, O. Rosas, and P. Sharma, MuRanker: a mutant rank-
ing tool, Software Testing, Verification and Reliability 25 (2015), no. 5-7,
572–604.

47. D. Schuler and A. Zeller, in Javalanche: efficient mutation testing for
Java, Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ESEC/FSE '09, ACM, New York,
NY, USA, 2009, pp. 297–298.

48. M. Kusano and C. Wang, in CCmutator: a mutation generator for con-
currency constructs in multithreaded C/C++ applications, IEEE/ACM
28th International Conference on Automated Software Engineering
(ASE), 2013, IEEE, Palo Alto, California, USA, 2013, pp. 722–725.

49. M. Moghadam and S. Babamir, in Mutation score evaluation in terms
of object-oriented metrics, 4th International eConference on Com-
puter and Knowledge Engineering (ICCKE), 2014, Mashhad, Iran 2014,
pp. 775–780.

50. R. Just, G. Kapfhammer, and F. Schweiggert, in Do redundant mutants
affect the effectiveness and efficiency of mutation analysis? IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion (ICST), 2012, Montreal, QC, Canada, 2012, pp. 720–725.

51. C. Wright, G. Kapfhammer, and P. McMinn, in The impact of equivalent,
redundant and quasi mutants on database schema mutation analy-
sis, 14th International Conference on Quality Software (QSIC), 2014,
Boston, USA, 2014, pp. 57–66.

52. X. Yao, M. Harman, and Y. Jia, in A study of equivalent and stubborn
mutation operators using human analysis of equivalence, Proceedings
of the 36th International Conference on Software Engineering, ICSE
2014, ACM, New York, NY, USA, 2014, pp. 919–930.

https://doi.org/10.1002/stvr.1630

	Assessment of C++ object-oriented mutation operators: A selective mutation approach
	Abstract
	Introduction
	Background
	Mutation operators for C++ object-oriented programs
	Execution matrix

	Assessment Based on Mutant Redundancy
	Research questions
	Evaluation metric
	Case studies and test suites
	Experiment 1: Ranking mutation operators
	Setup
	Results

	Experiment 2: Selective mutation based on the ranking
	Setup
	Results

	Assessment Based on Test Quality
	Research questions
	Evaluation metric
	Experiment 1: Ranking mutation operators
	Setup
	Results

	Experiment 2: Selective mutation based on the ranking
	Setup
	Results

	Discussion
	Validation of operator-based selection results
	Validation of rank-based mutant selection results
	Answer to research questions
	Comparison between rankings
	Comparison between selective mutation strategies
	Threats to validity

	Related Work
	Selective mutation testing
	Object orientation
	Other related works

	Conclusion
	References

