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ABSTRACT. This article studies a new procedure to test for the equality of k regression curves in
a fully non-parametric context. The test is based on the comparison of empirical estimators of the
characteristic functions of the regression residuals in each population. The asymptotic behaviour of
the test statistic is studied in detail. It is shown that under the null hypothesis, the distribution of the
test statistic converges to a finite combination of independent chi-squared random variables with
one degree of freedom. The coefficients in this linear combination can be consistently estimated.
The proposed test is able to detect contiguous alternatives converging to the null at the rate n�1=2.
The practical performance of the test based on the asymptotic null distribution is investigated by
means of simulations.

Key words: comparison of regression curves, empirical characteristic function, non-parametric
regression, regression residuals

1. Introduction

Testing for the equality of the means of k populations .k � 2/ is a classical problem in Statistics.
When the populations are assumed to follow a normal distribution with equal variance, then
the ANOVA F -test is the classical way to perform the test.

In this paper, we consider a more general setting. We assume that in each population
along with the response variable, Y , we observe another variable, X , the covariate, so that the
mean and the variance of the response variable depend on the values of the covariate. More
specifically, let .Xj ; Yj /; 1 � j � k, be k-independent random vectors satisfying general
non-parametric regression models

Yj D mj .Xj /C �j .Xj /"j ; (1)

where mj .x/ D E.Yj j Xj D x/ is the regression function, �2
j
.x/ D Var.Yj j Xj D x/

is the conditional variance function and "j is the regression error, which is assumed to be
independent of Xj . Note that by construction, E."j / D 0 and Var."j /=1. The covariate Xj
is continuous with density function fj . The regression functions, the variance functions, the
distribution of the errors and the distribution of the covariates are unknown, and no parametric
models are assumed for them. Under this framework, our approach is fully non-parametric.

In this conditional setting, the hypothesis of equality of means is stated in terms of the
conditional means or regression functions

H0 W m1 D m2 D : : : D mk ;
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198 J. C. Pardo-Fernández et al. Scand J Statist 42

or in other words, the mean effect of the covariates over the responses is equal in the k popula-
tions. Because the objective is to compare the regression curves, it is reasonable to assume that
the covariates have common support. The alternative hypothesis is

H1 W H0 is not true:

Note that this testing problem contains the simpler case described in the first paragraph as a
particular case by only eliminating the covariates in the models.

The problem of testing for the equality of regression curves in non-parametric settings has
been previously treated in the statistical literature. The majority of the available papers either
are devoted to the comparison of only two curves or impose some restrictive assumptions such
as fixed design, equal sample sizes, identical design points and homoscedasticity of the residu-
als. Examples of such works include Delgado (1993), Kulasekera (1995), Munk & Dette (1998),
Neumeyer & Pardo-Fernández (2009) and Srihera & Stute (2010), among many others. To the
best of our knowledge, the most related works to ours are the papers of Neumeyer & Dette
(2003) and of Pardo-Fernández et al. (2007). These papers proposed and studied a procedure
to test the hypothesis of equality of k.k � 2/ regression functions based on the comparison of
marked empirical processes of the residuals for the former and the comparison of distribution
functions of the residuals for the latter.

In this work, we investigate a new test procedure based on a weighted process generated by
the characteristic functions (CFs) of the residuals. Compared with the competitors, the main
advantages of the proposed method are the following. First, the test is universally consistent for
any fixed alternative without any restrictions on the weight function involved in the definition
of the test statistic (except for the fact that it should be positive) and without any restrictions
on the distribution of the regression errors. Thus, the method can be applied when the dis-
tributions of the errors are arbitrary: continuous, discrete or mixed. This is illustrated in the
simulation study where an example with errors having a mixed distribution is given. Second,
the test can be used to check the equality of any number of regression curves and can detect
local alternatives converging to the null at the rate n�1=2. Third, the critical values or the p-
values can be obtained from the asymptotic null distribution of the proposed test statistic. This
is not the case for most of the existing methods, which typically rely on bootstrap. In our case,
although we study a bootstrap version of our test statistic in order to perform a comparison
with other methods, the bootstrap is not needed because we are able to obtain the desired level
and a good power even for moderate sample sizes by using the asymptotic null distribution.
This is clearly shown for many scenarios considered in the simulation study.

Our approach is based on comparing the CFs of the regression errors. More specifically, let
"j D ¹Yj �mj .Xj /º=�j .Xj / be the regression error in population j . Let m0 be the common
regression curve under the null hypothesis and define

"0j D ¹Yj �m0.Xj /º=�j .Xj / D "j C ¹mj .Xj / �m0.Xj /º=�j .Xj /; (2)

1 � j � k. It turns out that the null hypothesis H0 is true if and only if, for all 1 � j � k, the
random variables "j and "0j have the same distribution (see theorem 1 in Pardo-Fernández
et al., 2007). This assessment can be interpreted in terms of the cumulative distribution func-
tion (CDF) or in terms of any other function characterizing the probability law of the errors.
Pardo-Fernández et al. (2007) restricted their attention to the CDF.

The probability law of any random variable X is also characterized by its CF, '.t/ D
E¹exp.itX/º. Recent years have witnessed an increasing number of proposals for hypothe-
sis testing whose test statistics measure deviations between the empirical CF (ECF) of the

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 An ANOVA-type test for regression curves 199

available data and an estimator of the CF under the null hypothesis. In the line of the set-
ting considered in this paper, that is, by assuming that the data are generated by regression
models, are the papers by Jiménez-Gamero et al. (2005) and Hušková & Meintanis (2007,
2010), for testing goodness of fit for the errors, and Hušková & Meintanis (2009) for testing
goodness of fit of the regression function to a parametric function. An advantage of the CF
approach over the one based on the CDF, as observed in Hušková & Meintanis (2009), is that
the former usually requires less stringent assumptions for its validity. In addition, from the
simulation results that can be found in the literature (see, for example, Hušková & Meintanis,
2010), the tests based on the ECF compete very satisfactorily with those based on the empirical
CDF (ECDF).

Having in mind the reasons earlier, the purpose of the present paper is to test H0 by com-
paring consistent estimators of the CFs of the random variables "j and "0j , say O'j .t/ and
O'0j .t/, respectively, 1 � j � k. To measure deviations between these estimators, we consider a
Cramér–von Mises type test statistic. In order to derive the asymptotic null distribution of the
test statistic, we first give a stochastic expansion for the differences O'j .t/ � O'0j .t/. As a con-
sequence of this expansion, it is shown that the test statistic converges in law to a finite linear
combination of independent chi-squared variables. Moreover, under certain weak conditions
on the distributions of the errors and the covariates, the asymptotic null distribution is propor-
tional to a �2

k�1
distribution. We provide consistent estimators of the coefficients appearing

in this linear combination, which allow us to propose a consistent estimator of the asymptotic
null distribution. The behaviour of the test under fixed and local alternatives is also studied.
Specifically, it is shown that the proposed test is able to detect any fixed alternative and con-
tiguous alternatives converging to the null at the rate n�1=2, where n denotes the total sample
size. In contrast to the procedure in Pardo-Fernández et al. (2007), to derive these properties,
we do not require further assumptions on the distribution on the errors, such as that they have
a probability density. For finite sample, the quality of the proposed approximation of the null
distribution of the test statistic and the power are investigated numerically. From this numerical
study, we conclude that the proposed approximation of the null distribution works adequately
for moderate sample sizes, and in terms of power, the proposed test competes very satisfactorily
with those based on the ECDF.

The paper is organized as follows. Section 2 introduces the test statistic and also provides
an alternative expression, which is useful from a computational point of view. The asymp-
totic null distribution of the test statistic and the behaviour of the test under fixed and local
alternatives are studied in Section 3. Section 4 reports a summary of a numerical study con-
ducted to study the practical performance of the test and to compare it with other existing
methods. Section 5 concludes the paper. All proofs of the theoretical results are deferred to the
Supporting information.

The following notation will be used along the paper: P0 denotes probability assuming that
H0 is true;E0 denotes expectation assuming thatH0 is true; P� denotes the conditional proba-

bility law, given the data; all limits in this paper are taken when n!1I
L
! denotes convergence

in distribution;
P
! denotes convergence in probability;

a:s:
! denotes the almost sure convergence;

if x 2 R
k , with x0 D .x1; : : : ; xk/, then diag.x/ is the k � k diagonal matrix whose .i; i/ entry

is xi ; 1 � i � k; for any complex number ´ D a C ib;Re.´/ D a is its real part, Ń D a � ib
is its conjugate and j´j is its modulus; Nk.�;†/ denotes the multivariate normal distribution
with mean vector � and variance-covariance matrix†; an unspecified integral denotes integra-
tion over the whole real line R; for a given non-negative real-valued function w and for any

complex-valued measurable function g, we denote kgkw D
�R
jg.t/j2w.t/dt

�1=2
to the norm

in the Hilbert space L2.R; w/.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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200 J. C. Pardo-Fernández et al. Scand J Statist 42

2. The test statistic

Let .Xjl ; Yjl /; 1 � l � nj be independent and identically distributed observations from
.Xj ; Yj /; 1 � j � k. Let fj .x/ be the probability density function (PDF) of Xj ; n DPk
jD1 nj , and let fmix.x/ D

Pk
jD1 pjfj .x/ be the PDF of the mixture of covariates

according to the weights p1; : : : ; pk , where pj D limnj =n. In order to estimate the errors,
we first need to estimate the regression functions, mj .x/ D E.Yj jXj D x/, the variance
functions, �2

j
.x/ D E

�
¹Yj �mj .x/º

2jXj D x
�
, and the common regression function under

H0; m0.x/ D
Pk
jD1 pj ¹fj .x/=fmix.x/ºmj .x/. With this aim, we use non-parametric estima-

tors on the basis of kernel smoothing techniques. Let K denote a non-negative kernel function
defined on R, and let 0 < hn � h ! 0 be the bandwidth or smoothing parameter and
Kh.x/ D h

�1K.x=h/. We use the following estimators for the functions mj ; �2j and m0:

Omj .x/ D

njX
lD1

wjl .x/Yjl ; O�2j .x/ D

njX
lD1

wjl .x/Y
2
jl � Om

2
j .x/;

Om0.x/ D

kX
jD1

nj

n

Ofj .x/

Ofmix.x/
Omj .x/;

where

Ofj .x/ D n
�1
j

njX
lD1

Kh.x �Xjl /; Ofmix.x/ D

kX
jD1

nj

n
Ofj .x/;

1 � j � k. The quantities wjl are either the local-linear weights given by

wjl .x/ D
Kh.Xjl � x/

®
S2;nj .x/ � .Xjl � x/S1;nj

¯
S0;nj .x/S2;nj .x/ � S

2
1;nj

.x/
;

with Sk;nj .x/ D
Pnj

lD1
.Xjl � x/

kKh.Xjl � x/; k D 0; 1; 2, or the Nadaraya–Watson weights

wjl .x/ D
Kh.Xjl � x/Pnj
vD1

Kh.Xjv � x/
:

Both are particular cases of local-polynomial weighting (Fan & Gijbels, 1996). Under the
model assumptions that will be stated in the next section, the results in this article are valid for
local-linear and for Nadaraya–Watson (local-constant) estimators.

On the basis of these estimators, for each population j; 1 � j � k, we construct two samples
of residuals:

O"jl D
Yjl � Omj .Xjl /

O�j .Xjl /
and O"0jl D

Yjl � Om0.Xjl /

O�j .Xjl /
;

1 � l � nj , whose ECFs are

O'j .t/ D
1

nj

njX
lD1

exp.it O"jl / and O'0j .t/ D
1

nj

njX
lD1

exp
�
it O"0jl

�
;

respectively. These ECFs are nothing but (consistent) kernel-based non-parametric estimators
of the population CFs 'j .t/ D E¹exp.it "j /º and '0j .t/ D E¹exp.it "0j /º, respectively, where
"0j is as defined in (2). The testing procedure consists of comparing O'j .t/ and O'0j .t/, 1 � j �

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 An ANOVA-type test for regression curves 201

k, using a weighted L2-distance. More precisely, following the work of Hušková & Meintanis
(2007, 2009, 2010), we define the test statistic

T1n � T1n.w/ D

kX
jD1

nj

n
k O'j .t/ � O'0j .t/k

2
w ;

wherew is any given non-negative weight function with finite integral,
R
w.t/dt <1. The pres-

ence of the weight function w in the integrals appearing in the expression of T1n is necessary in
order to ensure their finiteness, because k O'j .t/ � O'0j .t/k

2
w � 4

R
w.t/dt , for all j .

The motivation behind the test statistic T1n is the following: T1n converges in probability to
(theorem 3)

T1 � T1.w/ D

kX
jD1

pj k'j .t/ � '0j .t/k
2
w : (3)

Under H0; 'j .t/ D '0j .t/ for all t and for 1 � j � k, and thus T1 vanishes. As a conse-
quence, under H0; T1n should be ‘very small’. We then conclude that any value of T1n, which
is ‘significantly large’, should lead to the rejection of H0. In practice, given a significance level,
a threshold value above which H0 is rejected needs to be established. To this end, we need to
study the null distribution of T1n. Because this distribution is unknown, as an approximation
to it, we derive the asymptotic null distribution. This will be carried out in the next section.

Remark 2.1. From lemma 1 in Alba-Fernández et al. (2008), an alternative expression for T1n,
which is useful from a computational point of view, is given by

nT1n D

kX
jD1

1

nj

8<
:

njX
l;sD1

Iw
�
O"jl � O"js

�
C

njX
l;sD1

Iw
�
O"0jl�O"0js

�
�2

njX
l;sD1

Iw
�
O"jl�O"0js

�9=;;
where Iw.t/ D

R
cos.tx/w.x/dx. If w is a PDF with CF 'w then Iw.t/ D Re¹'w.t/º, which

clearly coincides with 'w when w is a symmetric PDF.

3. Asymptotics

In order to study the limit behaviour of the test statistic T1n, we first need to introduce some
assumptions on the models (1) and on the available data. Recall that we are assuming that
¹.Xjl ; Yjl /; 1 � l � nj º are independent and identically distributed observations from
.Xj ; Yj / and the sets ¹.X1l ; Y1l /; 1 � l � n1º; : : : ; ¹.Xjk ; Yjk/; 1 � l � nkº are independent.

Assumption (A):

(A.1) For 1 � j � k: (i) Xj has a compact support R. (ii) fj ; mj and �j are two times
continuously differentiable on R. (iii) infx2R fj .x/ > 0 and infx2R �j .x/ > 0.

(A.2) For 1 � j � k: the sample sizes satisfy limnj =n D pj , where 0 < pj < 1.
(A.3) K is a twice continuously differentiable symmetric PDF with compact support.
(A.4) The weight function satisfies w.t/ � 0, for all t 2 R, and

R
t4w.t/dt <1.

(A.5) nh4n ! 0 and nh2n= lnn!1.

These assumptions are mainly needed to guarantee the uniform consistency of the kernel esti-
mators Ofj ; O�j ; Omj and Om0. Unlike the methods based on the ECDF, observe that we do not
impose any restriction on the distribution of the errors, like the existence of a PDF. So the

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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202 J. C. Pardo-Fernández et al. Scand J Statist 42

results in this paper could be used to compare two or more regression functions when the dis-
tributions of the errors are arbitrary: continuous, discrete or mixed. An example with errors
having a mixed distribution is given in Section 4.

3.1. Asymptotic null distribution

The following theorem gives an asymptotic approximation for
p
nj ¹ O'j .t/ � O'0j .t/º; 1 � j �

nj , which will allow us to derive the asymptotic null distribution of the test statistic T1n, given
in the subsequent corollary. Let † D .�jv/1�j;v�k be the matrix whose elements are

�jj D 1 � 2pjE

²
fj .Xj /

fmix.Xj /

³
C pj

kX
rD1

prE

´
�2r .Xr /

�2
j
.Xr /

f 2
j
.Xr /

f 2
mix

.Xr /

μ
;

�jv D
p
pjpv

kX
rD1

prE

´
�2r .Xr /

�j .Xr /�v.Xr /

fj .Xr /fv.Xr /

f 2
mix

.Xr /

μ

�
p
pjpvE

²
�v.Xv/

�j .Xv/

fj .Xv/

fmix.Xv/
C
�j .Xj /

�v.Xj /

fv.Xj /

fmix.Xj /

³
; j ¤ v:

(4)

Theorem 1. Under assumptions (A.1)–(A.3) and (A.5), if H0 is true, then

p
nj ¹ O'j .t/ � O'0j .t/º D it'j .t/Zj C tR1j .t/C t

2R2j .t/;

where supt jRsj .t/j D op.1/; s D 1; 2 and Z WD .Z1; : : : ; Zk/0 � Nk.0;†/.

Define the diagonal matrix A D diag.a1; : : : ; ak/, where aj D kt'j .t/k2w; 1 � j � k.
The results in the theorems and the corollaries in the succeeding text will hold whenever
trace.A†/ > 0. Before stating the results, we briefly discuss this condition. Observe that

trace.A†/ D
kX
jD1

aj �jj > 0 if and only if aj > 0 and �jj > 0 for some j; 1 � j � k:

The quantities �jj in (4) can be also expressed as

�jj D pj

kX
lD1

plE

"
�2
l
.Xl /

�2
j
.Xl /

²
fj .Xl /

fmix.Xl /
�
I.l D j /

pl

³2#
;

where I.A/ denotes the indicator function of the set A. From assumptions (A.1)(iii) and (A.2),
it follows that �jj > 0 for all j . Thus, to ensure trace.A†/ > 0, we only need to ensure
that aj > 0 for some j . An easy way to obtain aj > 0 is by taking w.t/ > 0, for t in a
neighbourhood of the origin.

The following assumption will appear in the statement of some of the results in the
succeeding text.

Assumption (B): aj > 0 for some 1 � j � k.

Corollary 1. Under assumptions (A) and (B), if H0 is true, then nT1n
L
�! W1 D Z

0AZ, where
Z is as in theorem 1.

In other words, the limiting distribution of nT1n under H0 is a finite linear combination of
independent chi-squared variables,

Pk
jD1 ˇj�

2
1;j

, where �2
1;1
; : : : ; �2

1;k
are independent chi-

squared random variates with one degree of freedom and ˇ1; : : : ; ˇk are the eigenvalues of

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 An ANOVA-type test for regression curves 203

A†. Unfortunately, the quantities ˇj in this linear combination are unknown. They depend on
the distribution of the errors through the a1; : : : ; ak and on the distribution of the covariates
through † D .�jv/1�j;v�k . They also depend on the unknown design densities, fj , and the
conditional variance functions, �2

j
. So to use theorem 1 in practice, one first needs to find a

consistent estimator, say Ǒj , for every ˇj ; 1 � j � k. This can be easily carried out via plug-in
method using the estimators defined earlier instead of the unknown functions 'j ; fj ; fmix and
�2
j

. In order to perform the test, we also need to approximate the distribution of
Pk
jD1

Ǒ
j�
2
1;j

,
which can be carried out via Monte Carlo method or some numerical method (see, for example,
Kotz et al., 1967, Castaño-Martínez & López-Blázquez, 2005). With such a distribution, we
can finally obtain the critical value and/or the p-value for the test based on T1n. The next result
states the validity of this procedure.

To estimate aj , we replace 'j .t/ by O'j .t/ in its expression obtaining

Qaj D

Z
t2 j O'j .t/j

2 w.t/dt D
1

n2
j

njX
r;sD1

Z
t2 cos

®
t
�
O"jr � O"js

�¯
w.t/dt

D
nj � 1

nj
Oaj C

1

nj

Z
t2w.t/dt;

where

Oaj D
�1 
nj

2

! X
1�r<s�nj

D2Iw
�
O"jr � O"js

�
; 1 � j � k; (5)

D2Iw.t/ D
@2

@t2
Iw.t/ D �

R
t2 cos.tu/w.u/du and Iw is as defined in Remark 2.1. BecauseR

t2w.t/dt is a constant term, we estimate aj by Oaj , which resembles a U -statistic. Let OA D
diag . Oa1; : : : ; Oak/ and O† D

�
O�jv

�
1�j;v�k

, with O�jj D 1�2 Opj O�j C Opj
Pk
rD1 Opr O�jjr ; O�jv Dp

Opj Opv
Pk
rD1 Opr O�jvr �

p
Opj Opv

�
O�jv C O�vj

�
; j ¤ v,

Opj D
nj

n
; O�j D

1

nj

njX
lD1

Ofj .Xjl /

Ofmix.Xjl /
; O�jv D

1

nv

nvX
lD1

O�v.Xvl /

O�j .Xvl /

Ofj .Xvl /

Ofmix.Xvl /
;

O�jvr D
1

nr

nrX
lD1

O�2r .Xrl /

O�j .Xrl / O�v.Xrl /

Ofj .Xrl / Ofv.Xrl /

Of 2
mix

.Xrl /
;

1 � j; v; r � k.
Let W1n D

Pk
jD1

Ǒ
j�
2
1j

, where �2
11
; : : : ; �2

1k
are independent chi-squared variables with

one degree of freedom and Ǒ1; : : : ; Ǒk are the eigenvalues of OA O†.

Theorem 2. Under assumptions (A) and (B),

sup
x
jP0¹nT1n � xº � P�.W1n � x/j

P
�! 0:

Remark 3.1. If all the covariates have the same distribution, f1 D : : : D fk , and all variance
functions are equal, �1 D : : : D �k , then

† D Ik � pp
0; p0 D

�p
p1; : : : ;

p
pk
�
: (6)

In this case, it is easy to see that † has two different eigenvalues: 0, with multiplicity 1, and 1,
with multiplicity k � 1. Therefore, if it is also assumed that the laws of the errors are such that

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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204 J. C. Pardo-Fernández et al. Scand J Statist 42

a D a1 D : : : D ak (for instance, if they also have the same distribution), then a�1nT1n.w/
L
!Pk�1

jD1 �
2
1j
D �2

k�1
, which coincides with the null distribution of the classical ANOVA test for

comparing means. To obtain a consistent null distribution estimator of nT1n.w/ in this case, it
suffices to have a consistent estimator of a.

Corollary 2. Suppose that assumptions (A) and (B) hold. If all covariates have the same distribu-
tion, all variance functions are equal and the laws of the errors are such that a D a1 D : : : D ak ,
then

sup
x
jP0¹nT1n � xº � P�.W01n � x/j

P
�! 0;

where W01n D Oa�2k�1, with Oa D
Pk
jD1 Opj Oaj , and Oaj is as defined by (5).

The result in corollary 1 tells us that nT1n D OP .1/. As a decision rule for testingH0 against
H1, we propose to use ‰1;˛ D I.nT1n > t1;˛/, where t1;˛ is the 1 � ˛ percentile of the null
distribution of nT1n or any consistent estimator of it.

3.2. Consistency

In this section, we study the test statistic T1n when the alternative hypothesis is fixed. The
following theorem shows that with probability tending to 1; T1n behaves (asymptotically) like
T1, see (3). This will allow us to derive the consistency of the test �1;˛ .

Theorem 3. Suppose that assumption (A) holds. Then, T1n D T1Cop.1/, where T1 is as defined
in (3).

As an immediate consequence of the above theorem and corollary 1, we conclude that the
test ‰1;˛ is consistent against all fixed alternatives. This property is formally stated in the
following corollary.

Corollary 3. Suppose that assumption (A) and the alternative hypothesis H1 hold. If w.t/ > 0,
for all t 2 R, then limn!1 P.‰1;˛ D 1/ D 1, for any 0 < ˛ < 1.

It is known that two distinct CFs can be equal in a finite interval (see, for example, Feller,
1971, p. 479). In order to ensure that T1 > 0 whenever mr ¤ ms , for some 1 � r; s � k; r ¤ s,
we made the assumption that w > 0. It is important to note that this assumption does not
involve any characteristic of the underlying data-generating procedure. For instance, taking w
to be the PDF of, for example, a normal law guarantees the universal consistency of our test.
In opposition, some existing works made rather restrictive assumptions that exclude certain
type of alternatives. For example, the test of Srihera & Stute (2010) may not be able to detect a
difference between two crossing curves.

3.3. Local alternatives

In this section, we study the limiting behaviour of the test statistic under local alternatives
converging to the null hypothesis at the rate n�1=2. Specifically, let us consider the following
local alternative hypothesis

H1;n W mj D m00 C n
�1=2rj ; 1 � j � k;

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 An ANOVA-type test for regression curves 205

where m00 is assumed to be two times continuously differentiable and the functions rj satisfy

E
°
r2j .Xl /

±
<1; 1 � j; l � k: (7)

Theorem 4. Under assumption (A) and the alternative hypothesis H1;n, if (7) holds, then

p
nj ¹ O'j .t/ � O'0j .t/º D it'j .t/

�
Zj C

p
pj�j

�
CRj .t/;

where kRj kw D op.1/; Z D .Z1; : : : ; Zk/0 is as in theorem 1 and

�j D

kX
vD1

pvE

²
fv.Xj /rv.Xj /

fmix.Xj /�j .Xj /

³
�E

²
rj .Xj /

�j .Xj /

³
; 1 � j � k:

Corollary 4. Under assumption (A) and the alternative hypothesis H1;n, if (7) holds, then

nT1n
L
�! .Z C �/0A.Z C �/, where Z is as defined in theorem 1 and �0 D

�p
p1�1; : : : ;

p
pk�k

�
.

We conclude that although the test based on the rule‰1;˛ is fully non-parametric, it is able to
detect local alternatives converging to the null hypothesis at the rate n�1=2 whenever �0A ¤ 0.

3.4. A second test statistic

The paper by Pardo-Fernández et al. (2007) studies two Kolmogorov–Smirnov and two
Cramér–von Mises type statistics for testing H0 based on the ECDF of the residuals. Our test
statistic T1n can be seen as the CF analogue of their first Cramér–von Mises type statistic. An
ECF version of their second Cramér–von Mises type statistic is

T2n D k O'.t/ � O'0.t/k
2
w ;

where O'.t/ D
Pk
jD1

nj
n
O'j .t/ and O'0.t/ D

Pk
jD1

nj
n
O'0j .t/, which are consistent estimators

of '.t/ D
Pk
jD1 pj'j .t/ and '0.t/ D

Pk
jD1 pj'0j .t/, respectively. The motivation of this

statistic is that the equality of '.t/ and '0.t/ also characterizes the null hypothesis.
The same steps followed in the analysis of T1n can be used to study T2n. In particular, T2n

can be computed as (Remark 2.1)

n2T2n D

kX
j;vD1

njX
lD1

nvX
sD1

®
Iw

�
O"jl � O"vs

�
C Iw

�
O"0jl � O"0vs

�
� 2Iw

�
O"jl � O"0vs

�¯
:

The asymptotic null distribution of T2n is given in the following result, which is analogous to
corollary 1.

Corollary 5. Let B D diag.p/Cdiag.p/, where p is as defined in (6) and C D .cjv/1�j;v�k is
the matrix with elements

cjv D

Z
t2Re

°
'j .t/'v.t/

±
w.t/dt; 1 � j; v;� k:

Under assumption (A), if H0 is true and trace.B†/ > 0, then nT2n
L
�! W2 D Z0BZ, where Z

is as in theorem 1.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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206 J. C. Pardo-Fernández et al. Scand J Statist 42

In contrast to the case of T1n, there is no easy way of ensuring that trace.B†/ > 0. To
see this fact, consider, for example, the case with f1 D : : : D fk and �1 D : : : D �k . In
this situation, we saw that † has the expression (6); if in addition the errors are such that
c D cjv; 1 � j; v � k, then trace.B†/ D 0, and thus, the distribution of nT2n is degenerate for
any choice of the weight function w.

The asymptotic distribution of T2n under H0 depends on certain properties of the popula-
tions, which are typically unknown, and it can be summarized as

nT2n D

´
Op.1/ if trace.B†/ > 0;
op.1/ if trace.B†/ D 0:

In the first case .trace.B†/ > 0/, the asymptotic null distribution of T2n is analogous to the
distribution of T1n, that is, a combination of chi-squared random variables multiplied by the
eigenvalues of B†, which can be estimated as in theorem 2. In the second case .trace.B†/ D 0/,
a deeper analysis of the asymptotic distribution is required. However, from a practical point of
view, this analysis is somehow useless because the practitioner would not know which one of
the two situations apply for a given data set. Because of these reasons, we have focused on the
test statistic T1n.

4. Numerical results

In this section, we report the results of an experiment carried out to study the practi-
cal behaviour of the proposed testing procedure by means of simulations. We investigate
the approximation given in theorem 2 and also the bootstrap approximation used in
Pardo-Fernández et al. (2007) in order to compare their tests with ours. In all cases, the tables
display the observed proportion of rejections in 1000 simulated data sets.

Firstly, in a two-population .k D 2/ framework, the following regression models are
considered:

(i) m1.x/ D m2.x/ D 1;
(ii) m1.x/ D m2.x/ D x;

(iii) m1.x/ D m2.x/ D sin.2�x/;
(iv) m1.x/ D m2.x/ D exp.x/;
(v) m1.x/ D x;m2.x/ D 1C x;

(vi) m1.x/ D exp.x/;m2.x/ D exp.x/C x;
(vii) m1.x/ D sin.2�x/;m2.x/ D sin.2�x/C x;

(viii) m1.x/ D 1;m2.x/ D 1C sin.2�x/.

Models (i)–(iv) are under the null hypothesis, and models (v)–(viii) are under the alternative.
For the scale functions, in each case, we study a homoscedastic and a heteroscedastic scenarios:

Homoscedastic models (S1): �1.x/ D 0:50I �2.x/ D
p
0:50.

Heteroscedastic models (S2): �1.x/ D 7
6
0:50x C 1

2
0:50I �2.x/ D

7
8

p
0:50x C 1

2

p
0:50.

The covariatesX1 andX2 have distributionsBeta.1:5; 2/ andBeta.2; 1:5/, respectively. This
choice of the distributions of the covariates motivates the models of the scale functions in the
heteroscedastic case, as they verify that EŒ�1.X1/� D 0:50 and EŒ�2.X2/� D

p
0:50, so the

homoscedastic case and the heteroscedastic case are somehow comparable. If not mentioned
otherwise, the regression errors "1 and "2 are N.0; 1/, although other distributions will also be
considered in Section 4.3.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 An ANOVA-type test for regression curves 207

Non-parametric estimation of the regression functions is performed by the local-linear esti-
mator. For the estimation of the variance functions, we prefer the local-constant estimator
(Nadaraya–Watson), because the local-linear may produce negative values. In both cases, the
kernel function is the kernel of Epanechnikov K.u/ D 0:75.1 � u2/I.�1 < u < 1/, which
have some optimal properties. In the next section, we will discuss the choice of the smoothing
parameter.

4.1. The choice of the smoothing parameter

The choice of the smoothing parameter or bandwidth is certainly a delicate issue in any non-
parametric procedure. For estimation purposes, it is well known that the bandwidth controls
the trade-off between bias and variance of the estimator. In the context of testing, this problem
has not been studied in detail yet. González-Manteiga & Crujeiras (2013) gave a very recent
review about goodness-of-fit problems in non-parametric regression, including the comparison
of regression curves. In the discussion of the paper, the authors say that the bandwidth selection
for tests based on smoothing is a ‘really tough problem’ and ‘it is far from being solved’. This
conclusion was also raised by several discussants of the paper (see, for example, the discussions
of Sperlich (2013) and de Uña-Álvarez (2013) to the aforementioned article). We also share
that opinion.

Although a detailed study on this topic is still missing, in the context of comparing regression
curves several practical proposals have been made, sometimes explicitly, sometimes implicitly.
We will review here three of relatively recent and relevant papers on the topic. (i) In Neumeyer
& Dette (2003), the proposed methodology allows for the use of the optimal bandwidth for esti-
mation (of order n�1=5) and bandwidths based on the classical rule of the thumb are employed.
(ii) In Pardo-Fernández et al. (2007), the theory does not allow for the use of the optimal band-
width in estimation (which is also the case in the current piece of research), but some practical
recommendations are suggested: first, when estimating the regression curves to be compared, it
is recommended to use a common bandwidth; second, in practical applications, the test can be
performed for a reasonable range of bandwidths, and the obtained p-values can be analysed.
(iii) In Srihera & Stute (2010), nearest-neighbour estimators are used, and the optimal smooth-
ing parameters for estimation are also excluded by the theory; in simulations, fixed values
are used.

In a recent paper about testing for the distribution of the regression error, Heuchenne &
Van Keilegom (2010) suggested several possibilities for the choice of the smoothing parameter
based on cross-validation techniques. We have checked the practical performance of one of their
proposal in our context (the one referred as method f, which is the one recommended by the
authors). A summary of the obtained results is given in Table 1, which shows the approximation
of the level of the test based on T1n for models (i)–(iv) with sample sizes n1 D n2 D 100. The
weight function, w, is the PDF of a standard normal (see the discussion about the role of the
weight function in the next section). The critical values are obtained from the approximation
of the asymptotic distribution given in theorem 2. The level approximation is good for model
(iv) but not correct for models (i) and (iii). Besides, we have observed that the proposed cross-
validation procedure tends to pick very large bandwidths (often, the largest value in the allowed
interval). Although the use of cross-validation bandwidths might be a reasonable choice in
some cases, we are not sure that they offer a global solution to the problem because their
practical performance is not always satisfactory.

In the simulations contained in the rest of this section, we essay to study the general
behaviour of the proposed test, and therefore, we prefer to consider non-data dependent band-
widths. We take a bandwidth depending on the sample size of the form hn D Cn

a. According

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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208 J. C. Pardo-Fernández et al. Scand J Statist 42

Table 1. Empirical level of the test based on the asymptotic distribution of T1n for
homoscedastic and heteroscedastic models and smoothing parameters chosen by cross-
validation with n1 D n2 D 100

Homoscedastic models Heteroscedastic models

Model ˛ W 0.100 0.050 0.010 0.100 0.050 0.010

(i) 0.154 0.064 0.018 0.148 0.062 0.012
(ii) 0.136 0.052 0.012 0.124 0.052 0.010
(iii) 0.152 0.088 0.016 0.152 0.086 0.012
(iv) 0.106 0.048 0.010 0.106 0.046 0.010

to assumption (A.5), the allowed values for a are �0:5 < a < �0:25. We choose to take the
exponent in the middle of the interval of allowed values, a D �0:375, and then several values
of the constant C are taken into account.

4.2. The weight function

In the present section, we discuss the role of the weight functionw. For our test to be consistent,
it is only needed a positivew satisfying

R
t4w.t/dt <1. However, from the results in Section 3,

it is clear that the choice of the weight function affects the power. In fact, from corollary 4, the
asymptotic power of the test ‰1;˛ is given by

P
�
.Z C �/0A.Z C �/ > t1;˛

�
: (8)

This probability depends on w through A D diag.a1; : : : ; ak/, where aj DR
t2j'j .t/j

2w.t/dt; 1 � j � k. Clearly, the optimal weight (the one that maximizes the power)
depends on the CFs '1; : : : ; 'k and on �1; : : : ; �k . Because all these quantities are unknown
and involve the unobservable residuals, formula (8) is of little help in practice.

An alternative approach is to use different weight functions w1; : : : ; wk for the different
populations. This leads to the following test statistic:

kX
jD1

nj

n
k O'j .t/ � O'0j .t/k

2
wj
:

By theorem 1, this quantity has the same asymptotic properties as T1n. In fact, one only
needs to replace aj D kt'j .t/k2w by Naj D kt'j .t/k2wj for the results given in Section 3
to continue to hold. Following the guidelines in Epps & Pulley (1983) (see also Epps, 2005,
Jiménez-Gamero et al., 2009, and Hušková & Meintanis, 2010), a reasonable choice forwj .t/ is
j'j .t/j

2. This choice attempts to give high weight where the statistic O'j .t/ is a relatively precise
estimator of 'j .t/. The problem is that 'j .t/ is unknown and needs to be estimated. Taking
wj .t/ / j O'j .t/j

2 is not possible because
R
j O'j .t/j

2 dt D 1, since O'j .t/ is a periodic function.
To overcome this difficulty, we could consider a kernel smoothing estimator, but its application
requires to assume rather strong assumptions on the distribution of the errors.

A more practical method avoiding the aforementioned difficulties is to use a parametric den-
sity function as a weight. The density function should put most of the weight near the origin,
because the ECF estimates more accurately the population CF around t D 0. This approach is
connected with the comparison of kernel density estimators as follows. Let S be a PDF symmet-
ric around the origin, and let w be such that w1=2.x/ D .2�/�1=2

R
exp.itx/S.t/dt . Lemma

2.1 in Fan (1998) (see also Anderson et al., 1994, Henze et al., 2005, Hušková & Meintanis,
2012, and Meintanis, 2013) shows that

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 42 An ANOVA-type test for regression curves 209

Z
j O'j .t/ � O'0j .t/j

2 wj .t/dt D

Z °
Ofj .t/ � Of0j .t/

±2
dt;

where

Ofj .t/ D
1

n

njX
lD1

S
�
t � O"jl

�
; Of0j .t/ D

1

n

njX
lD1

S
�
t � O"0jl

�
;

that is to say, for adequate choices of the weight function wj , the quantity k O'j � O'0j k
2
w coin-

cides with the integral of the squared of the difference between kernel estimators of the PDF of
the errors, both estimated with bandwidth � D 1. This bandwidth can be taken arbitrarily by
considering S�.x/ D ��1S.x=�/ instead of S D S1.

The aforementioned observation does not narrow down the spectrum of possibilities. So fur-
ther criteria must be taken into account. From a practical point of view, the ease of computation
of T1n (also T2n) is closely related to the choice of w. This is specially appealing if instead of
using the approximation given in theorem 2, one wishes to employ a bootstrap approximation,
which requires to evaluate the test statistic in a high number of artificial samples. In this sense,
a good choice isw.t/ / exp

®
�t2=2�2w

¯
, which is tantamount to estimate the PDF of the errors

by using the normal kernel and bandwidth �w . Nevertheless, at this point, we must say that
the choice of �w cannot be guided by standard results on kernel density estimation, because
in such a case the asymptotic results in this paper are no longer true. A theoretical study of
the optimal choice of �w in terms of Bahadur slopes can be found in Tenreiro (2009) for the
problem of testing goodness-of-fit for the normal distribution. The results in the cited paper
show that the optimal choice of �w depends on the alternative, which is unknown in practice.
Because of this reason, we did not pursue this line. Neither too large, nor too small, values of
�w are appropriate because, proceeding as in Henze et al. (2005), we obtain

lim
�w!0

��2w T1n D

kX
jD1

nj

n

�
NO"j � NO"0j

�2
; (9)

with NO"j D 1
nj

Pnj

jD1
O"jl ; NO"0j D

1
nj

Pnj

jD1
O"0jl ; 1 � j � k. The right-side of (9) estimates

	 D
Pk
jD1 pj ¹E."j / � E."0j /º

2. In certain situations, 	 might be zero, even when H0 is not
true, and therefore, the resulting test based on small �w would not be consistent against all
fixed alternatives. A similar phenomenon occurs when �w !1.

In the context of testing goodness of fit for the distribution of the errors in non-parametric
regression models, the simulations in Hušková & Meintanis (2010) reveal that taking �w D 1

gives good results. We have also investigated numerically the effect of changing the parameter
�w in models (iv) (level approximation) and (vi) (power) when the critical values are approx-
imated from the asymptotic distribution of T1n as explained in theorem 2. Table 2 (which is
just a part of a larger simulation study) summarizes the obtained results. It can be seen that the
results are quite homogeneous with slightly better level with �w D 1, which is the value that we
will consider in the rest of the simulations.

4.3. Results of the test based on the asymptotic null distribution

In this section, we present the results of the test based on the approximation of the asymptotic
null distribution of T1n as given in theorem 2. Table S1 (homoscedastic models; see Support-
ing information) and Table S2 (heteroscedastic models; see Supporting information) display
the results for bandwidths of the form h D Cn�0:375, with C D 1; 1:5; 2, which provide rea-
sonable values for the considered setups. The level—models (i)–(iv)—is slightly overestimated

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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210 J. C. Pardo-Fernández et al. Scand J Statist 42

Table 2. Observed rejection proportions of the test based on the asymptotic distribution of T1n for
homoscedastic models (iv) and (vi) and for different choices of the parameter �w with n1 D n2 D 100

˛: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
Model �w C : 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0

(iv) 0.50 0.100 0.082 0.078 0.046 0.041 0.039 0.012 0.009 0.007
0.75 0.111 0.090 0.083 0.049 0.043 0.039 0.012 0.009 0.008
1.00 0.122 0.097 0.084 0.052 0.046 0.041 0.012 0.009 0.008
1.25 0.133 0.100 0.086 0.056 0.047 0.042 0.012 0.010 0.008
1.50 0.138 0.109 0.093 0.065 0.051 0.044 0.013 0.010 0.008

(vi) 0.50 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.996
0.75 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997
1.00 1.000 1.000 1.000 1.000 1.000 1.000 0.996 0.997 0.997
1.25 1.000 1.000 1.000 1.000 1.000 1.000 0.997 0.997 0.997
1.50 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997 0.997

Table 3. Observed rejection proportions of the test based on the asymptotic distribution of T1n for different
error distribution with n1 D n2 D 100

Error ˛: 0.100 0.100 0.100 0.050 0.050 0.050 0.010 0.010 0.010
distribution Model C : 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0

Mixed (ii) 0.104 0.094 0.093 0.051 0.050 0.047 0.010 0.007 0.008
(iv) 0.105 0.090 0.083 0.049 0.046 0.044 0.011 0.008 0.007
(vi) 0.996 1.000 0.999 0.992 0.998 0.998 0.985 0.993 0.990

(viii) 0.989 0.997 0.994 0.987 0.992 0.985 0.950 0.917 0.836

Exponential (ii) 0.149 0.125 0.115 0.076 0.063 0.055 0.015 0.014 0.010
(iv) 0.146 0.115 0.105 0.077 0.061 0.046 0.015 0.012 0.008
(vi) 0.997 0.999 0.999 0.997 0.999 0.998 0.992 0.990 0.988

(viii) 0.998 1.000 0.995 0.995 0.990 0.981 0.948 0.904 0.812

The models are for heteroscedastic.

for small sample sizes, but the approximation improves as the sample sizes increase, reaching a
good approximation for .n1; n2/ D .100; 100/. The test also reaches good power, both in the
homoscedastic case and in the heteroscedastic case.

We have also run simulations with error distributions different from the normal distribution.
In particular, we have considered two cases: (a) errors with mixed distribution of the form

"j D

´
0 with probability 0:5;
N.0;

p
2/ with probability 0:5;

j D 1; 2, which in practice could model a case where the observations come from two devices,
one of them with no measurement error; and (b) errors with a recentred exponential distribu-
tion, that is, "j C 1 � Exponential.1/, for j D 1; 2. Table 3 displays a brief summary of the
obtained results for models (ii), (iv), (vi) and (viii) under heteroscedasticity and sample sizes
n1 D n2 D 100. In the case of the mixed distribution, the approximation of the level is very
good. In the case on the exponential distribution, we observe an overestimation of the level,
probably caused by a bad approximation of the asymptotic null distribution due to the asym-
metry of the error distribution (although not shown in the table, better approximations are
achieved for larger sample sizes). Both cases show good power. The same kind of conclusions
can be established for the rest of the models, which are not shown here.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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4.4. Results based on a bootstrap approximation

The aim of this subsection is to compare the power of the test proposed in this paper with those
in Pardo-Fernández et al. (2007). To approximate the null distribution of their test statistics,
Pardo-Fernández et al. (2007) employed a bootstrap procedure based on smoothed residu-
als (see also Neumeyer, 2009, for a theoretical justification). Of course, the same bootstrap
procedure could be used to approximate the null distribution of nT1n. Nevertheless, from a
computational point of view, the estimators in theorem 2 and corollary 2 are less time con-
suming. In order to establish a fair comparison, we have also estimated the null distribution of
the test proposed in this paper by using the bootstrap algorithm defined in the aforementioned
paper. Besides, we have also incorporated here the test statistic T2n, for which the asymp-
totic null distribution is difficult to approximate. Table S3 (Supporting information) shows the
results of the tests based on T1n and T2n, and the four tests proposed in Pardo-Fernández et
al. (2007), which are denoted by T 1

KS
; T 2
KS

; T 1
CM

and T 2
CM

. For the sake of brevity of the
presentation of the table, we restrict ourselves to the significance level ˛ D 0:05 and band-
width with C D 1 (similar results have been obtained for other significance levels and other
specifications of the bandwidth). In terms of level approximation, we can see that it is good
for all test statistics, except for T 2

KS
. Compared with the asymptotic approximation, the boot-

strap approximation improves the behaviour of the test statistic T1n for small sample sizes. For
models (v)–(vii), the highest power is achieved by the test based on the ECF, T1n. For model
(viii), the highest power is achieved by T2n, which is also based on the ECF. Note that in this
model, T1n reaches reasonable power and it is much better than its ECDF-based analogue
T 1
CM

. Summarizing, for the models considered, the test based on T1n presents, as a whole, the
best behaviour.

4.5. The case of three populations

We have also investigated the test based on the estimated asymptotic null distribution of T1n in
the case of three populations .k D 3/. Now the regression models are as follows:

(ix) m1.x/ D m2.x/ D m3.x/ D 1.
(x) m1.x/ D m2.x/ D m3.x/ D x.
(xi) m1.x/ D x;m2.x/ D x C 0:2;m3.x/ D x C 0:4.
(xii) m1.x/ D x;m2.x/ D x;m3.x/ D x C 0:25.
(xiii) m1.x/ D 0:5;m2.x/ D x;m3.x/ D 1 � x.
(xiv) m1.x/ D 0;m2.x/ D sin.2�x/;m3.x/ D � sin.2�x/.

Models (ix)–(x) are under the null hypothesis, and models (xi)–(xiv) are under the alterna-
tive. We only consider homoscedastic models with scale functions �1.x/ D

p
0:25; �2.x/ Dp

0:25 and �3.x/ D
p
0:50. The covariates X1; X2 and X3 are Beta.1:5; 2/; Beta.2; 1:5/ and

Beta.2; 2/, respectively, and all regression errors are N.0; 1/. As in the previous cases, a band-
width of the form h D Cn�0:375 is chosen, but now the C D 2; 2:5; 3 are displayed. Other
choices for C were also tried, but better results were obtained for these values. The results
are shown in Table S4 (Supporting information). As in Tables S1 and S2, the level is well
approximated for large sample sizes, and the behaviour in terms of power is correct.

5. Conclusions

A test for the comparison of k regression functions has been proposed and studied under a
totally non-parametric setting. The test statistic compares the ECF of the residuals in each
population with the ECF of the residuals under the null hypothesis. For adequate choices of

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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the weight function involved in the definition of the test statistic, the resulting test is consistent
against any fixed alternative and is able to detect contiguous alternatives converging to the
null at a rate n�1=2. To derive these properties, we have assumed certain assumptions, which
are weaker than those required by those based on the ECDF. Specifically, no requirement is
imposed on the distributions of the errors. An estimation of the asymptotic null distribution
has been proposed as an estimator of the null distribution of the test statistic. In the cases
tried in our numerical experiments, it is observed that this approximation works, in the sense of
providing type I errors close to the nominal values, specially when the sample sizes are at least
100. For smaller sample sizes, it is recommended to approximate the null distribution through
a bootstrap mechanism.
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