
Verifying the manipulation of data objects according to
business process and data models

José Miguel Pérez-Álvarez1 · María Teresa Gómez-López1 · Rik
Eshuis2 · Marco Montali3 · Rafael M. Gasca1

Abstract
Business processes read and write data objects, usually stored in databases. Although data
models and activity-oriented business process models originate from different paradigms,
they need to work together properly. The data object states are transformed during each
process instance by the activities of the process model. It is therefore necessary to verify
whether the states of the data objects are correct according to the process model, and to
discover the states of the stored data objects. This implies determining the relation between the
data objects stored in the database, the data objects involved in the process, and the activities
that within the business process that create the data objects and modify their states. In order to
verify the business process annotated with data states and to reduce the existing gap between
data model and business process model, we propose a methodology that includes enlarging
the capability to describe data states in business processes; verifying the completeness and
consistency of the data states described in accordance with their relation to the business
process model; and discovering the states of the data objects stored in the database according
to the business process model where they are managed. The methodology is supported by
a framework that enables a natural-like language to be employed to describe the states, to
apply the necessary algorithms to verify the consistency and completeness of the model,
and to determine the states of the stored data objects according to the model described. To
validate our proposal, an extension of ActivitiT M has been implemented and applied to a real
example as an illustration of its applicability.

Keywords Business processes · Integration of data and processes · Data object state ·
Object-relational mapping · Data state verification

1 Introduction

Business processes (BPs) and their continuous improvement are fundamental to the
operation of companies. For a wide range of enterprises, business process analytics,
validation, and verification are a key endeavour [1]. The automation of processes offers an
opportunity to

B José Miguel Pérez-Álvarez
josemi@us.es

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-019-01431-5&domain=pdf
http://orcid.org/0000-0002-0067-2662

gain visibility and control over both the execution of processes and the analysis of their
underlying data. Process data in general are stored and manipulated through various systems,
applications, and services, and sometimes shared among several processes and information
systems. In this light, it becomes crucial to simultaneously tackle both the business processes
and their related data [2]. This gives rise to integrated models for processes and data which in
turn opens up the possibility for their analysis and verification [3,4]. Notably, these integrated
models can also be distributed in Big Data environments [5].

Intensive research on data-aware processes has brought forward non-conventional, data-
and artefact-centric models of business processes [6]. At the same time, in spite of the lack
of data awareness of conventional, activity-centric process notations such as BPMN [7], con-
ventional business process management systems (BPMS) all support the enrichment of such
notations with various types of volatile and persistent data. In fact, when the complexity and
quantity of such data are high, contemporary organisations tend to incorporate a commercial
BPMS to support the operation of processes and the management of their corresponding
data. The benefits of employing a BPMS are several [8], and include: (1) the possibility of
choreographing various processes a variety of technologies; (2) the elicitation of domain
knowledge using graphical languages; (3) the support by a business modeller to reduce over-
heads, resulting in less time and/or fewer resources being used to achieve an end result; (4)
the possibility of more effectively detecting process inconsistencies, and handling their opti-
misation; and (5) the possibility to use several tools and technologies that enable business
intelligence on top of the process data.

Virtually every contemporary BPMS provides a way to consistently store the data produced
and manipulated during the execution of processes, typically relying on relational databases.
In this context, a database can be understood as a repository of business data objects that
might be created and modified during process executions. A number of the stored data objects
represent the values involved in past and current business process executions, which had
been included in the database previous to the incorporation of the BPMS. The values of the
stored data represent the states of the business objects obtained from the process execution,
regardless of whether this process was performed by means of the activities of a BPMS,
third-party applications, or direct human updates performed through the information system.
Consequently, there are two main challenges arising from the necessity of combining data
objects and business processes. On the one hand, data models and activity-centric business
process models are usually modelled separately, or integrated within contemporary BPMS
using ad hoc mechanisms [9]. On the other hand, the BPMS may use data that is not created and
manipulated by its enacted processes, but that was created before and exists independently
from the BPMS itself [10]. This brings about the necessity to explicitly incorporate data
objects and their states into the business process model, thereby reducing the existing gap
between the states of the stored business data objects, and how they are modelled, accessed,
and modified in the process model. The capacity to annotate the business processes with
the states of the data object was included in BPMN 2.0 [11], but a substantial linkage is
required between the data and process dimensions going far beyond that which is supported
by the standard. A conceptual alignment between persistently stored data objects and business
processes can also help detect deviations between the expected and realised behaviours, and
to understand whether the enacted processes are aligned with the intended processes.

In this work, we tackle the problem of verifying the overall correctness of data objects and
their lifecycle, according to how process models evolve the states of such business objects.
To verify the correct evolution of the data objects through the workflow, a (DSL) domain-
specific language has been defined to describe the data states in various parts of the process.
The consistency and completeness of the described data states and the business process model

are analysed to ascertain whether the possible evolution of a data object during an instance
can create or update an object erroneously.

In order to support the business processmodel annotatedwith data objects and its automatic
verification, our proposal provides a set of definitions of properties related to consistency
and completeness in the context. Furthermore, a methodology has been defined, supported
by a framework that defines the steps to model the annotated business process, incorporate
the data stored from a legacy database, and to ensure the correctness of the model (i.e. data
model and process model). The framework incorporates a constraint programming solver
to evaluate the consistency and completeness of the model that is being integrated into a
commercial BPMS tool.

In order to facilitate the understanding of our proposal, the rest of the paper is organised as
follows: Sect. 2 introduces the definitions regarding process models and data states; Sect. 3
introduces the proposed definitions regarding consistency, completeness, and data object
correctness; Sect. 4 depicts the algorithms needed to verify the data states in the process
model and the validation of the stored object in a relational repository; Sect. 5 explains the
methodology and the proposed framework for the verification of the correctness according
to the presented definitions, and the details about a domain-specific language (DSL) that
facilitates the description of the data states; Sect. 6 analyses an overview of related work
found in the literature; Sect. 7 marks the limitations and the scope of our proposal; and
finally, conclusions are drawn and future work is depicted in Sect. 8.

2 Data state model and verification

The understanding of the relationships existing between business processes and business
data remains deficient [3], since these two models are disconnected and described using
different languages and software tools. Since these two perspectives are not well-integrated
in the existing process management systems, the verification of their combination remains a
challenge. The necessity to combine data perspective and business process workflow during
a verification process is not a new issue and has been analysed by Sun et al. [12].

This decoupling necessitates verification of the correctness of the combinations of the two
models, because the problem of data verification cannot be reduced to the simple analysis
how single and isolated values traverse a workflow that the existing isolation between stored
data and the business process models that manage them is a recognised problem in the
research community [4]. Significant proposals have been published in recent years on this
issue, including those involving the use of data as the centre of the process model, known as
artefact-centric business process models [13–15]. However the problem to be addressed is
that activities and data have to coexist in the same business process, while sharing and using
information produced in other activities, or even in other processes [16], and the data states
must be consistent with the workflow process that manages them.

Various modelling paradigms are combined: Business Process Modelling, Conceptual
Data Model, and Data Object Life cycle Modelling. In order to understand the difficulty in
verifying the correctness between business processes annotated with the states of the data
objects combined together, the following subsections formalise the different parts of the
problem using a motivating example. The example given to clarify the proposal is related
to the paperwork of the presentation of a thesis described in the current regulations of the
University of Seville as published in [17]. The university uses made-to-measure software that
stores the information about students in a relational database, but no description is provided

St
ud

en
t

De
pa

rt
m

en
t

Apply thesis
project

Send project
documents

Finish thesis
document

Send Thesis
documents

Present
Thesis

[approved
presenta�on]

Study the
thesis project

Inform
student of

project
evalua�on

[denied project]

[approved project]

Deposit the
document

Analyse the
evalua�on
commi�ee

Hold a
department

mee�ng

Inform
student of

thesis
Evalua�on

[thesis denied]

Request the
documenta�on

Payment of
fees

Fig. 1 Thesis paperwork process example

regarding how the object evolves during the process and the relation with the state of thesis
development. Since different paradigms must be combined, various formal languages are
analysed in this paper.

2.1 Business process modelling

BPMN 2.0 [11] is a standard notation that provides an understandable language for all
business users (i.e. business analysts, technical developers, and business people who manage
and monitor those processes). Thus, BPMN creates a standardised bridge for the gap between
the design and implementation of the business process.

The process described using BPMN, shown in Fig. 1, is a simplification of the real process
regarding the presentation of a thesis, but the example includes all the components neces-
sary for the difficulties to be understood. The business process model example includes the
activities developed by Students and Departments. The process begins with the application
of a thesis project by a Student, after which, the project documents are sent to the Depart-
ment, which studies the documentation, and informs the Student about the evaluation. If the
thesis project is rejected, then the Student should start the process again from the beginning,
otherwise the Student should finish the documents and send them to the Department. In a
parallel way, the evaluation committee evaluates the documentation, while the fees are paid
and the deposit is completed. After having completed both activities, a department meeting
is held to evaluate all the theses which have been prepared in the department since the last
department meeting. The Student is then informed about the result of the evaluation and,
if the presentation of the thesis is approved, the Student may present the thesis. In order
to complete the process, the Student formalises the necessary documentation to obtain the
Ph.D. title.

In order to facilitate explanations regarding data states and model verifications, we use the
definition of a process model in BPMN 2.0 as a process graph. This facilitates the explanation
and development of how to traverse business processes and the data states associated with
these processes in order to verify the model correctness. The construction of the process
graph is based on the annotated graph presented in [18], and includes certain differences as
explained in [19], and is enlarged with the data states associated as input and/or output of
each activity node.

Definition 1 (Process Graph) A process graph is a labelled directed graph G = 〈N, E〉, com-
posed of nodes (N) and edges (E). N is the disjoint union of {n0} (start node), N+ (end
nodes), NT (task nodes), NPS (parallel splits), NPJ (parallel joins), NORS (or splits), NORJ

(or joins), NXS (xor splits), and NXJ (xor joins). For n ∈ N, IN(n)/OUT(n) denotes the set of
incoming and outgoing edges of n, respectively.

Each task node n can have an associated data state that represents the states of the data
object before and after this task is executed, S(n)IN and S(n)OUT (States IN and States OUT).

In order to determine that a business process workflowmodel described by a process graph
is correct, it is required that:

1. For each split node n, |IN(n)| = 1 and |OUT(n)| > 1;
2. For each join node n, |IN(n)| > 1 and |OUT(n)| = 1;
3. For each n ∈ NT, |IN(n)| = 1 and |OUT(n)| = 1;
4. For n0, |IN(n)| = 0 and |OUT(n)| = 1, and vice versa for n ∈ N+;
5. Each node n ∈ N is on a path from the start to an end node;
6. If |IN(n)| = 1, then IN(n) is identified with its single element, and similarly for OUT(n);
7. Every split is closed (joined) in a join or an end node;
8. The outgoing edges of n ∈ {NXS ∪ NORS} have to be labelled with a condition to

describe when this branch is executed;
9. One and only one of the labels for the outgoing edges of a node ∈ NXS can be labelled

as default, or none of them;
10. For each n ∈ NT , |S(n)I N | ≥ 0 and |S(n)OUT | ≥ 0;
11. For each n j and n j+1 ∈ NT , if |OUT(n j))| = 1 and |IN(n j+1)| = 1 then S(n j)OUT =

S(n j+1)I N ;

2.2 Conceptual data model

Variousmodels can be used for the description of datamodels. Since relationalmodels contain
several details about data types and the primary and foreign key relations, we propose the
use of conceptual modelling [20] using unified modelling language (UML) [21] (depicted in
Fig. 2) to enclose the implementation details. The conceptual model presented in the example
describes information regarding the thesis projects, theses, students, Ph.D.s (i.e. supervisors
of each thesis, the members of the evaluation committee for each thesis, the substitution
committee for the presentation), and the meetings held by the department. The thesis project
of a student is the first part of a possible thesis, which is approved for its presentation in a
department meeting. Both thesis and thesis project are evaluated and supervised by Ph.D.
personnel of the University.

2.3 Data object life cycle modelling

BPMN was not originally designed for data modelling, although BPMN 2.0 does include
elements that enable the annotation of the process with the involved Data Object elements.
The Data Objects can include the State of Data Objects at various points in a process [11].
An activity in a process is able to Consume a Data Object, which implies that the activity
might be executed when the Data Object is in a particular state (working as a pre-condition).
When the activity is executed, the object might transit to a new state (an object in a new
state is Produced), and thereby work as a post-condition. Figure 3 represents an example of
accessing the data objects related to Activity A. An edge from a data object to an activity
describes a read access to an instance of the data object (e.g. Data object X), when the state
of the pre-condition is fulfilled. Likewise, an edge from an activity to a data object describes
a write access (e.g. Data object W), which either creates a data object instance if it does not

Fig. 2 Conceptual model of the example

Activity A

[new]
Data

Object W
[State Z]

Data
Object X

III
[State Y]

Data
Object W
[State U]

Activity B

Data
Object W
[State K]

Fig. 3 Example of annotation of business process model

already exist (labelled with [new] as proposed in [22]), or updates the instance if it already
exists. A data flow edge connecting a data object with a sequence flow indicates that the data
object is flowing through that connection, and gives the state of the flowing data object (e.g.
Data Object W in State U in Fig. 3). Data objects can be modelled as a single object or as
a collection of objects (marked by three parallel bars, |||). Only the execution of an activity
can imply the creation of a new object, although it is possible to represent different states of
an object depending on the executed branch. For example, after the execution of the activity
A, an XOR-split is executed, where the data object W in state U flows through the upper
branch, or it follows through the lower branch in state K .

In order to include the evolution of data states during the process execution, it is necessary
to annotate the BPMN model with the object data states, which are supported by BPMN 2.0.
The process annotated with the data objects (Thesis and Thesis Project) and their states is
shown in Fig. 4.

In order to verify the annotated BP Model and the conceptual model, it is necessary
to enrich the description capacity of the data object states, and not only use a label that
determines the state as analysed in [23]. Each class belonging to the conceptual model is
formed of a set of attributes, and a set of allowed values for each attribute. The states are

St
ud

en
t

De
pa

rt
m

en
t

Apply thesis
project

Send project
documents

Finish thesis
document

Send Thesis
documents

Present
thesis

[approved
presentation]

Study the
thesis project

Inform
studient of

project
evaluation

[denied project]

[approved project]

Deposit the
document

Analyse the
evaluation
committee

Hold a
department

meeting

Inform
student of

thesis
evaluation

[thesis denied]

[new]
Thesis

[requested
Project]

Thesis
[requested

Project]

Thesis
[evaluated]

Thesis
[denied
Project]

Thesis
[finished
Project]

Thesis
[approved

Project]

Thesis
[presentation

Approved]

Thesis
[presented]

Thesis
[presentation

Approved]

Thesis
[denied]

Thesis
[evaluatedBy
Department]

Thesis
[finished
Project]

Thesis
[endDeposit]

Thesis
[evaluatedBy

Comision]
Thesis
III

[analysed]

Thesis
[closed]

Request the
documentation

Payment of
fees

s

Thesis
[FeesPaid]

Fig. 4 Thesis process with data description

possible combinations of these values at in different moments of the process instance that
must be described.

Definition 2 (Class State) Let C be a class of the conceptual model with its attributes AC ,
where each attribute a ∈ AC has a domain Da . A state s of C is defined as a set of tuples
of values formed by the attribute of C (AC), in the domain Da . Every possible tuple of s
can be sometimes described in a more compact way by means of a constraint Consts . This
constraint describes the possible values of the tuples related to the attributes involved in the
state description (AConst), where AConst ⊆ AC . Constraints in the representation of the states
can to be stored in constraint databases [24,25].

The grammar to express constraints correspondswith a propositional formula that consists
of atoms and, in addition, the logical operators AND, OR, andNOT [26]. These operators can
create a Boolean combination of constraints that relate numerical variables [27], as defined
below.

In order to illustrate the semantics of the constraints, the constraints that describe the
states “requested project” and “approved project” are shown below. However, as shown in
Sect. 5.1.2, in order to prevent the users from directly defining constraints, a natural-like
language has been also included, to facilitate the description of the data object states.

Requested project:
NOT title = null AND
NOT sendDate = null AND
NOT abstract = null AND
evaluationDate = null AND
reasonOfRejection = null AND
supervisor = null

Approved project:
NOT title = null AND
NOT sendDate = null AND
NOT abstract = null AND
NOT evaluationDate = null AND
reasonOfRejection = null
numSupervisors > 0 AND numSupervisors < 3

3 Verification of annotated business process models with data states

The states of the business data objects can be associated with various activities depending
on the workflow of the process model, as explained in Sect. 2.3. In order to verify the
correctness of the business process control flow and the data states, we define two properties
(i.e. consistency and completeness), analysed in Sects. 3.1 and 3.2. From the point of view
of the data objects, it is necessary to analyse the data correctness and ascertain both the state
of each data object and whether they satisfy any of the states annotated in the process model,
as explained in Sect. 3.3.

3.1 Verification of model correctness

Before explaining the aforementioned definitions, certain other definitionsmust be introduced
regarding the possible relations allowed between the data states and the activities of themodel.
Weuse the convention that each state is relatedwith only one class, and delegate the possibility
of modelling the attributes of different classes in one single state to future work.

Depending on the association of the data state with the activities, and the association
between the activities themselves, we differentiate between the following relationships
between each pair of states:

– Two states are exclusive if the constraints that represent each state are not consistent with
each other, and therefore an object cannot satisfy the constraints of both states at the
same time. This situation occurs if both states are associated with input or output data of
activities that have a sequential or exclusive relation (associated with different branches
of an XOR gateway). This means that these activities or branches cannot be executed
in parallel. For instance, in the example of Fig. 4, [requested] and [evaluated] of Thesis
Project and [approved] and [denied] of Thesis are mutually exclusive.

– Two states are parallel if the constraints that represent each state are consistent with each
other, and therefore an object can satisfy the constraints of both states at the same time.
It implies that they are associated with input or output data of the activities that can be
executed at the same time. For instance, in the example, [evaluatedByCommission] and
[endDeposit] of Thesis are parallel.

– One state is a substate of another state (super-state) if an object that satisfies the con-
straints of the super-state also satisfies the constraint of the substate. The substates are
associatedwith output data of activities, while the super-state is associatedwith input data
of the subsequent activity, and there are no activities between the substates and the super-
states. For instance, [analysed] of Thesis is a super-state of both substates [endDeposit]
and [evaluatedByCommission].
Based on the concepts above, the definitions for their formalisation are:

Definition 3 (Exclusive, Parallel, Substate, Super-State) Let s1 and s2 be two states that
belong to the same class C .

State s1 is exclusive to s2 if there is no tuple t of values of the attributes of class C that
satisfies the constraint Consts1 ∧ Consts2 .

State s1 is parallel to s2 if there is a tuple t of values of the attributes of class C that
satisfies Consts1 ∧ Consts2 .

State s1 is a substate of s2 if the set of tuples that satisfy s1 are included in the set of tuples
that satisfy s2.

If s1 is a substate of s2, then s2 is called the super-state of s1.

Definition 4 (Consistent) Let S(C) be a set of states defined for the class C . Set S(C) is
consistent with respect to a process graph 〈N , E〉 (Definition 1), if and only if:

– For every pair of task nodes na , nb ∈ N of the process graph, where na , nb are either exe-
cuted sequentially or exclusively (but not in parallel), ∀st1,st2 ∈ {S(na)I N ∪ S(na)OUT ∪
S(nb)I N ∪ S(nb)OUT }, st1 and st2 are exclusive states.

– For every pair of nodes na , nb ∈ N of the process graph, where OUT (na) = NPJi
and OUT (nb) = NPJi (the activities located just before an AND-join), S(na)OUT

and S(nb)OUT are parallel states. In an equivalent way, where I N (na) = NPSi and
I N (nb) = NPSi (the activities located just after an AND-split), S(na)I N and S(nb)I N
are parallel states.

– For every pair of nodes na , nb ∈ N of the process graph, where OUT (na) = NPi
and I N (nb) = NPi (the AND-join or AND-Split is located between two activities),
S(na)OUT is a substate of S(nb)I N and S(nb)I N is a super-state of S(na)OUT .

3.2 Verification of themodel completeness

A data object of the database can take any possible combination of values, which means that
the values of their attributes may be very different. If not every combination of attributes
is satisfied by a states, then a data object could be in an unknown state. To ascertain if the
annotated business process can produce this situation, it is necessary to analyse the property
of completeness, as explained below.

Definition 5 (Complete) Let S(C) be a set of states defined on class C . Set S(C) is complete
if and only if, for each possible tuple of values for the attributes AC , there is at least one state
whose constraint is satisfied.

3.3 Verification of data object correctness

If an annotated business process isComplete, then it is possible to guarantee that every stored
data object satisfies a state. In the opposite way, it is necessary to analyse every data object
to ascertain whether it is correct or not.

Definition 6 (Correct Data Object) Let c be an instantiated object of the class C , whereby c
is correct if and only if c satisfies at least one state constraint. If c satisfies more than one
state, then all of these states must be parallel.

When the constraint associated with a state is satisfied for the values of the attributes of a
data object, the state of the data object is known.

4 Algorithms to verify the annotated process models with data object
states

In order to verify the annotated business model, it is necessary to verify the consistency
(Definition 4) and the completeness (Definition 3.2) of the model, and the correctness of the
data objects according to the constraints that describe the states. We tackle the achievement
of these objectives using constraint programming combined with certain made-to-measure
algorithms. In Sect. 4.1, the constraint programming aspects necessary to understand the
solution are presented. The BPMN model represented as a graph (Definition 1) is employed
to discover the state relationships, as given in Sect. 4.2. Sections 4.3 and 4.4 analyse the
consistency and the completeness of the states according to the business process model.
Finally in Sect. 4.5, the correctness of the stored objects is studied according to the data
states and the business process model.

4.1 Introduction to constraint satisfaction problems

A constraint satisfaction problem (CSP) represents a reasoning framework consisting of
variables, domains, and constraints. Formally, it is defined as a tuple 〈X, D, C〉, where X=
{x1, x2, . . ., xn} is a finite set of variables,D = {d(x1), d(x2), . . ., d(xn)} is a set of domains
of the values of the variables, and C = {C1, C2, . . ., Cm} is a set of constraints. Each
constraint Ci is defined as a relation R on a subset of variables V = {xi , x j , . . ., xl}, called
the constraint scope. The relation R may be represented as a subset of the Cartesian product
d(xi) × d(x j) × . . . × d(xl). A constraintCi = (Vi ,Ri) simultaneously specifies the possible
values of the variables in V that satisfy R. Let Vk = {xk1 , xk2 , . . ., xkl } be a subset of X ,
and an l-tuple (xk1 , xk2 , . . ., xkl) from d(xk1), d(xk2), . . ., d(xkl) can therefore be called an
instantiation of the variables in Vk . An instantiation is a solution if and only if it satisfies the
constraints C.

In order to solve a CSP, a combination of search and consistency techniques is commonly
used [28], and depending on whether a solution for a CSP can be found, certain deductions
can be made. For example, in order to ascertain whether a pair of states are exclusive, it is
necessary to determine the existence of a tuple of values that satisfy the constraints of both
states. If a tuple of values is found when the CSP is solved, it means that these states are not
exclusive.

4.2 Structure to analyse the business process model and data state descriptions

In order to determine the Exclusive, Sub, Super and Parallel relationships, it is necessary to
traverse the Process Graph to detect the relationships between the activities and the states of
the objects that are read and written during the process execution.

By using the introduced definition of Process Graph, and supposing that the
business process workflow model is correct, a number of methods have been developed
in the Process Graph to facilitate the implementation used in the following algorithms. The
methods are:

– Node getStartEvent() returns the start event of the graph.
– List〈Node〉 getNeighbours(Node n) returns the list of neighbour nodes of n, whereby

there is a directed edge from n to these nodes.
– List〈Node〉 getAllNodes() returns the list with every node of the graph.

– Constraint getInState(Node n) returns the constraint that represents the state of an object
before the node n is executed.

– Constraint getOutState(Node n) returns the constraint that represents the state of an object
after the node n is executed.

– Boolean isActivity(Node n) returns true if n represents an activity.
– Boolean isSplitControlFlow(Node n) returns true if n represents a split control flow.
– Boolean isJoinControlFlow(Node n) returns true if n represents a join control flow.
– List〈Node〉 getAllAndSplitControlFlows() returns a list with all the AND-split control

flows of the process graph.
– List〈Node〉 getAllANDJoinControlFlows() returns a list with all the AND-join control

flows of the process graph.
– List〈Node〉 getPreviousOf(Node n) returns a list with all the nodes n1 . . . nm , if there

exists a directed edge from each ni ∈ {n1 . . . nm} to n.

As explained in the definitions above, the consistency and completeness are related to the
solution that constraints of the states share with other states. To ascertain this solution, we
propose the creation of a constraint satisfaction problem that provides us with information
about the properties of the states. To create and solve the CSP, a Solver class is defined, which
contains the following methods:

– solver (Constraint c) is the Constructor to create a Solver variable that represents a
Constraint Satisfaction Problem with the constraint c.

– Constraint createOrConstraint (List〈Constraint〉 l) returns a constraint formed by an OR
combination of the constraints that form the list l: {l1 ∨ . . . ∨ ln}.

– Constraint createGreaterThanOneConstraint (List〈Constraint〉 l) returns a constraint to
indicate whether more than one of the constraints of the list l can be satisfiable at the same
time (l1 + . . . + ln > 1). The assignation of a numerical value of a constraint involves
indicating whether this constraint is satisfiable or not. If there exists a tuple of values
that satisfies this constraint, then the value associated with the constraint is 1 (true), 0
otherwise.

– void solve() is a method of the class Solver that resolves the Constraint Satisfaction
Problem.

– Boolean hasSolution() indicates the existence of a tuple of values that satisfies the CSP.

4.3 Verification of consistent property

The CSPs created in each case explained in Definition 4 are presented below.

4.3.1 Exclusive state property

The consistency of a model implies that every pair of input and output data states of activities
that are either executed sequentially or exclusively (but not in parallel) must be exclusive.
This demonstrates that the constraints of two exclusive states cannot be satisfied at the same
time. The idea of the CSP is to model a combination of constraints in order to ascertain the
existence of a tuple of values that satisfies more than one exclusive Class State. For this
reason, the CSP is formed of a list of OR (∨) constraints: C1 ∨ C2 ∨ . . . ∨ Cn , where each
C j represents a summation of the constraints of the exclusive states (l1 + . . . + ln > 1 using
createGreaterThenOneConstraint method). If the solver (using the solver method) finds a
tuple of values that makes it possible that more than one constraint is true (l1 + . . . + ln >

1), then two exclusive states can be satisfiable at the same time, and the consistency fails.

For example, [requested Project], [evaluated Project], [approved Project] and
[denied Project] are exclusive states for the workflow data relation, but if two of these
states could be satisfiable at the same time (whereby the sum of their true values are greater
than 1), then the workflow model is not consistent according to the constraint description
of the data states. For the example of Fig. 4, the following CSP is created to verify the
consistency concerning exclusive property:

(Constrequested Project + Constevaluated + ConstapprovedProject + Constdenied Project

+Const f inishedProject + (ConstFeesPaid ∨ ConstendDeposi t ∨ ConstevaluatedByCommission)

+Constanalysed + ConstevaluatedByDepartment + ConstpresentationApproved

+ConstevaluationDenied + Constpresented + Constclose > 1)
∨
(ConstFeesPaid + ConstendDeposi t) > 1

In order to create the CSPs automatically, we have developed a recursive algorithm for
exclusive state verification (Algorithm 2), whose complexity is linear for the number of
nodes, since each node is analysed only once. The input parameters of Algorithm 2 specify
the graph to traverse following the structure introduced in Sect. 4.2, the node employed to start
the algorithm, and the input/output data states obtained from the execution of the algorithm.
The output of the recursive function consists of the subsequent node analysed in the process
of traversing.

Starting with the whole graph, Algorithm 1 is employed to initiate the recursive process
with the start event. The list is used for the collection of the C1 ∨ C2 ∨ . . . ∨ Cn constraints
for the main process (mainStates), and of the OR relations found in the nested control-flow
structures of the BPMN graph (nestedStates). Algorithm 1 initialises the call to the recursive
Algorithm 2, which returns the two lists (mainStates and nestedStates) with the exclusive
relations of the states. The CSP is created with an OR relation between the constraints of
the lists, as explained above (C1 ∨ C2 ∨ . . . ∨ Cn). When a solution is found (with the
method hasSolution()) for the various OR relations, it means that certain exclusive states can
be satisfied at the same time. If no solution is found, then the exclusive states are verified
according to the workflow of the process model.

Algorithm 1 Algorithm for Exclusive State Verification
1: function ExclusiveStateVerification(Graph g)
2: List<Constraint> mainStates = new List<Constraint>();
3: List<Constraint> nestedStates = new List<Constraint>();
4: Node n = g.getNeighbours(g.getStartEvent());
5: ExclusiveStateVerification(g, n, mainStates, nestedStates);
6: Solver s = new Solver(createOrConstraint(nestedStates) OR createGreaterThanOneCon-

straint(mainStates));
7: s.solve();
8: if s.hasSolution() then
9: Print("Error in the verification: Some exclusive states can be satisfied at the same time.");
10: else
11: Print("Exclusive states are correct and they cannot be satisfiable at the same time.");
12: end if
13: end function

Algorithm 2 traverses the process graph g from the node n, to find the exclusive relation
between the states, and to collect the list of constraints. The algorithm includes the following:

– From line 2 to 6 The states of the sequential activities are included in the mainStates list
in order to compose the set of constraints whose summatory (true-value) is compared
with 1. For this reason, when no branches are found in the traverse of the graph, the input
and output data states are included, and a recursive call is performed in order to continue
with the subsequent neighbour node of the activities.

– From line 8 to 25 If a split control flow is found, it means that the exclusive relations
between the activities of each branch can exist. For this reason, two lists are created
(localMain and localNested) to recursively call to each branch as a smaller recursive
problem. For each branch (line 12), the two lists obtained are incorporated into the
general lists of lists (allLocalMain and allLocalNested) that will be incorporated to the
general lists (line 23 and 24). The traverse of the algorithm follows on with the neighbour
of the join control flow of the split process (line 17 and 18).

– From line 26 to 28When an end event or a join gateway is found, it indicates that a nested
call has finished, and the execution then returns to the point where the recursive call was
made.

Algorithm 2 Recursive Algorithm for Exclusive State Verification
1: function ExclusiveStateVerification(Graph g, Node n, List<Constraint> mainStates,

List<Constraint> nestedStates)
2: if g.isActivity(n) then
3: � An activity has only one neighbour
4: Node neighbour = g.getNeighbours(n).get(0);
5: mainStates.add(g.getInConstraint(n));
6: mainStates.add(g.getOutConstraint(n));
7: return (ExclusiveStateVerification(g, neighbour, mainStates, nestedStates))
8: else if g.isSplitControlFlow() then
9: List<Node> neighbours = g.getNeighbours(n);
10: List<List<Constraint>> allLocalMain = new List<List<Constraint>>();
11: List<List<Constraint>> allLocalNested = new List<List<Constraint>>();
12: Node final−nodel = null;
13: for neighbour in neighbours do
14: List<Constraint> localMain = new List<Constraint>();
15: List<Constraint> localNested = new List<Constraint>();
16: Nodel local−end = ExclusiveStateVerification(g, neighbour, localMain, localNested);
17: if g.isJoinControlFlow(local−end) then
18: final−nodel = local−end
19: end if
20: allLocalMain.add(createOrConstraint(localMain));
21: allLocalNested.add(createGreaterThanOneConstraint(localNested));
22: end for
23: mainState.add(createOrConstraint(allLocalMain));
24: nestedState.add(createOrConstraint(allLocalNested));
25: Node neighbour = g.getNeighbours(final−nodel).get(0);
26: return ExclusiveStateVerification(g,neighbour,mainState,nestedState)
27: else
28: return n
29: end if
30: end function

4.3.2 Parallel state property

Following Definition 4, the consistency of a model also implies that every pair of states of
data output of the activities located immediately before an AND-join must be parallel, if
they exist. This means that both states can be satisfiable at the same time, since an object
can belong to both states at the same time. Formally, state si is parallel to s j if ∀ tuple t
that satisfies Constsi , ∃ another tuple t ′ that satisfies Consts j , where ∀ attributes a ∈ Asi ,
the values in the tuples t and t ′ are equal, and ∀ a ∈ As j , the values in the tuples t and t ′ are
equal.

In order to ascertain whether this property is satisfiable or not, for each possible pair of
states Constsi and Consts j , a CSP is created as: {ConstSi ∧ ConstSj}. If a solution cannot
be found, then the states cannot be parallel.

The CSP created for the example is:

ConstendDeposi t ∧ ConstevaluatedByCommision

We have developed the ParallelStateVerificationAlgorithm (Algorithm 3) that creates and
solves every CSP needed in order to ascertain whether the parallel states are correct. The
algorithm studies every And-Join gateway (line 2). For each of these control flows, a CSP
is created with every constraint of the output data of the activities that are joined in each
control flow (lines 5 to 10). These constraints are related in the CSP with an AND Boolean
operator. If a solution is found, then these constraints can be satisfiable in parallel, and the
parallel objects are verified. If a solution is not found, then the data model is not consistent
with the workflow according to the parallel property.

Algorithm 3 Algorithm to Analyse the parallel states
1: function ParallelStateVerification(Graph g)
2: List<Node> andControlFlowList = g.getAllANDJoinControlFlows(); � List of And Joing nodes
3: for n in andControlFlowList do
4: Constraint c = new Constraint();
5: List<Node> parallelList = g.getPreviousOf(n);
6: for p in parallelList do
7: c.add(g.getOutConstraint(p));
8: end for
9: Solver s = new Solver(c);
10: s.solve();
11: if s.hasSolution then
12: Print(“The output states before the AND node ” + n + “ are parallel”);
13: else
14: Print(“The output states before the AND node ” + n + “ are NOT parallel, and hence the consistent

property is not satisfiable”);
15:
16: end if
17: end for
18: end function

4.3.3 Substate and super-state property

Following Definition 4, the consistency of a model also implies that every state of data output
of the activities located immediately before an AND-join are substates of the input data state
(super-state) of the first activity after the AND-join, if this subsequent activity exists.

If A is a subclass of B, Si is the state of data output of A, and S j is the state of the data
input of B, then both states are consistent if � a tuple t that satisfies Si and not S j . We propose
building a CSP to ascertain whether the opposite exists:

∃ a tuple t � ConstSi ∧ ¬ConstS j .
The CSP created for the example is:

ConstevaluatedByCommission ∧ ¬Constanalysed

∨
ConstendDeposi t ∧ ¬Constanalysed

If a solution is found for the CSP, then the model is not consistent in terms of the substate
and super-state property.

4.3.4 Algorithm to obtain the CSP for the verification of substate and super-state
relations in the consistent property

Sub&Super-StateVerification Algorithm (4) creates and solves the CSP needed to verify the
consistency of the substate and super-state relations. The algorithmanalyses every join control
flow (AND, OR, or XOR) (line 2), and includes a set of constraints related by means of OR
Boolean operator (∨) in the CSP. Each of these constraints constitute an AND combination
between the constraints of the output data of the substates, and the input data of the super-
state (Constsubstate ∧ ¬Constsuper−state) (lines 5 to 10). If a solution is found for the CSP
(line 11), then the model is not correct according to the substate and super-state consistency
property. Otherwise, the model is consistent for this property.

Algorithm 4 Algorithm to Analyse the Substate and Super-states
1: function Sub&SuperStateStateVerification(Graph g)
2: List<Node> andControlFlowList = g.getAllJoinControlFlows(); � List of And Joing nodes
3: for n in andControlFlowList do
4: Constraint c = new Constraint();
5: List<Node> parallelList = g.getPreviousOf(n);
6: for p in parallelList do
7: c.or(g.getOutState(p) ∧ ¬ g.getInState(n));
8: end for
9: Solver s = new Solver(c);
10: s.solve();
11: if s.hasSolution() then
12: Print("The model is NOT correct according to Substate and Super-State Consistency Property");
13: else
14: Print("The model is correct according to Substate and Super-state Consistency Property");
15: end if
16: end for
17: end function

4.4 Verification of completeness property

The completeness of a data object model is satisfied if every possible value of the attributes
of a Class corresponds with at least one modelled state. This prevents the existence of a
business data object in the database that does not correspond to a modelled state, or to satisfy
a constraint that describes an incorrect behaviour. It implies that ∀ tuple t of values of a class
C , ∃ a state of C whose constraint is satisfied by t .

The CSP created to verify the completeness incorporates the negation (¬) of the
modelled state constraints. If a solution is found for the CSP, it means that the model is
not complete since there exists a tuple where no state is satisfiable. For the example, the CSP
has the form:

¬Constrequested Project ∧ ¬Constevaluated ∧ ¬Constdenied Project ∧ ¬ConstapprovedProject

∧¬Const f inishedProject ∧ ¬ConstevaluatedByCommision ∧ ¬ConstendDeposi t∧
¬Constanalysed ∧ ¬Constevaluated ∧ ¬Const f eesPaid ∧ ¬ConstapprovedPresentation

∧¬Constdenied Presentation ∧ ¬Constpresented ∧ ¬Constclose

If a solution is found for the CSP, then the model is not consistent for the completeness
property.CompletenessStateVerificationAlgorithm (Algorithm 5) creates and solves the CSP
needed to ascertain whether the data model description is complete. The algorithm creates a
CSP with an ANDBoolean relation (∧) of every constraint of the states of the model for each
class (line 2). The input and output constraints are included with a negation (¬) (line 5). If a
solution is found, then the model is not complete, according to the completeness consistency
property.

Algorithm 5 Algorithm to Analyse the property of completeness
1: function CompletenessStateVerification(Graph g)
2: List<Node> allnodes = g.getAllNodes(); � List of every node
3: Constraint c = new Constraint();
4: for n in allnodes do
5: c.and(¬g.getInState(n) ∧ ¬g.getOutState(n));
6: end for
7: Solver s = new Solver(c);
8: s.solve();
9: if s.hasSolution() then
10: Print("The model is NOT correct according to the Completeness Consistency Property");
11: else
12: Print("The model is correct according to the Completeness Consistency Property");
13: end if
14: end function

4.5 Data object correctness: discovering the States of stored data objects

Although the model of a business process is correct according to its business data states, it is
necessary to analyse whether the objects stored in the database are correct with respect to the
designed process model. This implies ascertaining whether every stored object is in one of
the described states, or, in an equivalent way, whether there is an object that is not in any state.
This situation could arise since the objects can follow legacy models or business rules of the
past, which are not supported by the current business process model. This analysis ensures that

Pr
oc

es
s

Datos
database

Task A

Task B

1

2

3
states

….

….

check

check

Annotated process
verification

Discovery of Object
States

as
so

ci
at

io
ns

5

4

Fig. 5 Steps of the methodology

every object is correct or detects the incorrect objects. As mentioned earlier, an object can be
in more than one state (parallel states), and hence Algorithm CorrectnessObjectVerification
(6) ascertains whether the objects are in at least one state, and either reports the states of the
object, or returns NONE otherwise (lines 6 and 7).

Algorithm 6 Algorithm to Analyse the property of correctness of the stored Objects
1: function CorrectnessObjectVerification(<Type> DataObject)
2: Iterator iter = session.createQuery("from" + DataObject).iterate();
3: for iter.hasNext() do
4: <Type> t = (<Type>) iter.next();
5: t.calculateState(); � Method of Figure 6
6: if t.getState()==NONE then
7: Print("The object " + t + " is not in a correct state.");
8: else
9: Print("The object " + t + " has the State " + t.getState());
10: end if
11: end for
12: end function

5 Methodology and framework for annotated business Process
verification and discovery of object states

The proposed methodology has been developed with a framework whose implementation
details are explained in the following subsections. The methodology devises the steps shown
in Fig. 5, which include:

1. To describe the business data objects involved in the business process in accordance
with the conceptual model of the database Since the relational model is highly detailed
and is difficult to understand and query by non-expert users, we propose the use of
a conceptual model managed by means of an object-relational mapping (ORM) to
facilitate the description and management of the business data objects. This conceptual
model is also employed to describe the data states according to the attributes and
associations of the model. This step must be developed by an IT expert since technical
knowledge is necessary.

2. To describe the state of each business data object in terms of the value of its attributes
In order to bring the experts and the state descriptions closer, it is necessary to pro-
vide a natural language to describe why one business data object is in one state or
another. Knowledge of the different states of the business object is held by the business
experts. Therefore, we have implemented a domain-specific language (sold out in fol-
lowing Subsections) within the business process modeller (ActivitiT M in our proposal)
to facilitate the business expert task concerning the data state description.

3. To allocate the data state description in the business process model The importance of
our proposal lies in its capacity to combine the data state and the workflow of themodel.
The third step is based on the location of the data states related to the activities executed
at eachmoment. This enables the specification ofwhich data objects are read, andwhich
states are obtained after an activity execution to be incorporated into the workflow. This
step can be developed by a business expert since no technical knowledge is necessary.

4. To verify the model correctness The states of the objects associated with the activities
of the model need to be consistent with respect to the workflow. The possible states that
an object can satisfy, and where it is read or written must be analysed. Algorithms 4 and
5 are used in this step to analyse the process model correctness in an automatic way.

5. To discover the stored business objects The model is created to work with the stored
business objects. Algorithm 6 is used to verify whether every business object satisfies
any state. This is an automatic task developed by our system using the ORM framework
to be iterated in the objects of the database.

5.1 Framework to support themethodology

In order to validate our proposal, a tool that supports the methodology has been developed by
using a set ofmature technologies. Note that this is just one ofmany possible implementations
and others with different technologies are also possible. The parts that must be supported
include: the data store that contains the involved data objects; the editor to describe the states
in a friendly language; the connection between the commercial business process and the
stored objects; the implementation of the algorithms to verify the correctness of the model;
and the setting for the analysis of every stored object to ascertain the state of each object.
An Eclipse (RCP) Rich Client Platform application has been developed to include all these
elements in the same environment.

5.1.1 Business data model description: object-relational mapping to represent
business data objects

Facilitating the state description also implies managing the information represented by means
of the conceptual model. It is the object-relational mapping (ORM) that is employed to
manage the relational model by means of the conceptual model that represents it.

Table 1 DSL transformations for the class state grammar

{ClassName}{ public class {ClassName}{}

static final int {State1}=0

. . .

@PostLoad

@PostUpdate

private void calculateState()

�[{State1}] if(java code transformation)

//Boolean combinations of comparisons state = {State1};

.

�[{StateN}] if(java code transformation)

//Boolean combinations of comparisons state = {StateN};

.

} }

Although most software applications use relational databases to store their data, object-
oriented language is employed tomanage the information. This implies the mapping from the
primary and foreign key relations to an object-oriented paradigm and vice versa. In our case,
this introduced the needed for the use of a conceptual model instead of the relational model,
which tends to be solved using data access object (DAO) patterns. Common data access object
(DAO) implementations are provided by object-relational mapping (ORM). ORM [29] is a
programming technique for the conversion of data between systems of incompatible types
in object-oriented programming languages. The use of ORM brings major benefits, such as
database independence, low coupling between business and persistence, and fast software
development. HowORMcan be used in this context and how the example should be annotated
is detailed in [23].

5.1.2 Business data state description: a natural-like language to describe the data
object states

In order to describe the Class State following the grammar presented above, we have created
a domain-specific language (DSL) to help the business expert in the description of the data
states. The proposed DSL follows the grammar below:

list−Of−Classes := Class list−Of−Classes
| Class

Class := ’{’ClassName’}’{’list−Of−States’}’
list−Of−States := State list−Of−States

| State
State := ’#’[StateName] Constraint

Several examples of how the sentences of the language are transformed automatically
into Java code are shown in Table 1. The Constraint term of the grammar corresponds
to the Constraint grammar described in Definition 2 (Class State). However, in order to
provide a natural-like language, a set of natural expressions are created to refer to the tokens
PREDICATE and FUNCTION-SYMBOL, as described in Table 2.

Ta
bl
e
2

D
SL

pa
tte
rn

tr
an
sf
or
m
at
io
n
fo
r
th
e
C
on
st
ra
in
tG

ra
m
m
ar

To
ke
n

D
SL

pa
tte
rn

Ja
va

co
de

pa
tte
rn

E
xa
m
pl
e

=
nu
ll

{a
ttr
ib
ut
e}

IS
E
M
PT

Y
ge
t{
A
ttr
ib
ut
e}
()
=
=
nu
ll

pr
es
en
ta
tio

nD
at
e
is
em

pt
y

<
>

nu
ll

{a
ttr
ib
ut
e}

IS
N
O
T
E
M
PT

Y
ge
t{
A
ttr
ib
ut
e}
()
!=
nu
ll

pr
es
en
ta
tio

nD
at
e
is
no
te
m
pt
y

C
ou
nt

T
H
E
N
U
M
B
E
R
O
F
{a
ttr
ib
ut
eS
et
}

ge
t{
A
ttr
ib
ut
eS
et
}(
).
si
ze
()

th
e
nu
m
be
r
of

ev
a-

=
IS

{n
um

be
r}

==
{n
um

be
r}

lu
at
io
n
co
m
itt
ee

is
5

C
ou
nt

T
H
E
N
U
M
B
E
R
O
F
{a
ttr
ib
ut
eS
et
}

ge
t{
A
ttr
ib
ut
eS
et
}(
).
si
ze
()

th
e
nu
m
be
r
of

ev
a-

<
>

IS
D
IF
FE

R
E
N
T
T
O
{n
um

be
r}

!=
{n
um

be
r}

lu
at
io
n
co
m
m
itt
ee

is
di
ff
er
en
tt
o
5

=
{a
ttr
ib
ut
e}

IS
E
Q
U
A
L
T
O

ge
t{
A
ttr
ib
ut
e}
()

M
ar
k
is
eq
ua
l

{v
al
ue
}

=
=
{v
al
ue
}

to
’F
A
IL
’

<
>

{a
ttr
ib
ut
e}

IS
D
IF
FE

R
E
N
T
T
O

ge
t{
A
ttr
ib
ut
e}
()
!=
{v
al
ue
}

Q
ua
lifi

ca
tio

n
is

{v
al
ue
}

di
ff
er
en
tt
o
’P
A
SS

’

<
{a
ttr
ib
ut
e}

IS
L
E
SS

T
H
A
N

ge
t{
A
ttr
ib
ut
e}
()
<
{v
al
ue
}

D
ep
os
itD

at
e
is

{v
al
ue
}

le
ss

th
an

cu
rr
en
tD
ay

≤
{a
ttr
ib
ut
e}

IS
L
E
SS

T
H
A
N
O
R

ge
t{
A
ttr
ib
ut
e}
()
<

={
va
lu
e}

D
ep
os
itD

at
e
is
le
ss

th
an

E
Q
U
A
L
T
O
{v
al
ue
}

or
eq
ua
lt
o
cu
rr
en
tD

ay

>
{a
ttr
ib
ut
e}

IS
G
R
E
A
T
E
R
T
H
A
N

ge
t{
A
ttr
ib
ut
e}
()
>
{v
al
ue
}

E
va
lu
at
io
nD

at
e
is

{v
al
ue
}

gr
ea
te
r
th
an

se
nd
D
ay

≥
{a
ttr
ib
ut
e}

IS
G
R
E
A
T
E
R
T
H
A
N

ge
t{
A
ttr
ib
ut
e}
()
>

={
va
lu
e}

E
va
lu
at
io
nD

at
e
is

O
R
E
Q
U
A
L
T
O
{v
al
ue
}

gr
ea
te
r
th
an

or
eq
ua
lt
o
se
nd
D
ay

null

null

null

Thesis{
#[RequestedProject]

Title is not empty AND sentDate is not empty AND
Abstract is not empty AND Evalua�on�me is
empty AND reasonOfRejec�on is empty AND the
number of supervisors is 1 or the number of
supersivors is 2

#[ApprovedProject]
Title is not empty and sentDate is not empty AND
Abstract is not empty AND Evalua�on�me is not
empty AND ReasonOfRejec�on is empty

#[DeniedProject]
Title is not empty and sentDate is not empty AND
Abstract is not empty AND Evalua�on�me is not
empty AND ReasonOfRejec�on is not empty

}

@En�ty
public class Thesis{
sta�c final int REQUESTEDPROJECT = 0;
…..
@PostLoad
@PostUpdate
private void calculateState(){
 if(getTitle()!=null && getsentDate()!=null && getAbstract()!=null

&& getEvalua�on�me()==null &&
getReasonOfRejec�on()==null &&
(getSupervisors().size==1 || getSupervisors().size==2)){

state=CREATED;
}

 if(getTitle()!=null && getsentDate()!=null && getAbstract()!=null
&& getEvalua�on�me()!=null &&
getReasonOfRejec�on()==null){

state=APPROVEDPROJECT;
}

 if(getTitle()!=null && getsentDate()!=null && getAbstract()!=null
&& getEvalua�on�me()!=null &&
getReasonOfRejec�on()!=null){

state=DENIEDPROJECT;
}

}

Fig. 6 Example of mapping between the DSL and Java code

As mentioned earlier, it is not always possible to link the state of the data object as a string
within a column of the corresponding table in the legacy database. Moreover, the state is a
characteristic of the object, and it is not mandatory to be stored as one of the stored attributes.
For this reason, the state is presented as the attribute @Transient of the mapping classes.
The attributes annotated with @Transient represent those that are part of the entity but
are not required to be persistent, since they do not belong to the database. When the object
is loaded with the information of the database or updated by means of the setting methods,
the state needs to be updated in terms of the values of the remaining attributes. In Hibernate,
there exist call-back methods that should be prefixed by annotations that dictate when these
methods have to be executed. Since the change of the state occurs when the object is loaded or
updated, @PostUpdate and @PostLoad annotations are used. Those two annotations
represent, respectively, that the method calculateState()must be invoked for an entity after a
constructor or that the update operation is executed. How the states are represented in the Java
code and how the annotation the classes of the ORM framework are annotated are detailed
in [23].

5.1.3 DSL transformation into Java code

The transformation of this description into executable code is also necessary to enable the
automatic evaluation of the model and the validation of every object of the database to find
the states at each moment.

In Fig. 6, a transformation is shown from a description of the states of the Thesis class
(RequestedProject, ApprovedProject, DeniedProject...), to the Java code included automati-
cally into the ORM classes. When an object is loaded or updated, the state of the data object
is updated, and therefore the activity that is being executed for each data object can be ascer-
tained. The DSL patterns can be combined by means of Boolean connectors (AND, OR,
NOT) to create states with greater complexity.

Project
Business Data

States
Description

BPMN annotatted
with data states

Elements to
create the

BPMN

Fig. 7 ActivitiT M extension view for BP annotation

5.2 Annotate the business process model with data states: implementation of a tool
to support the proposal

In order to integrate every part of the model into a same environment, an implementation has
been developed as an extension of ActivitiT M [30]. ActivitiT M is a light-weight workflow and
Business Process Management Platform targeted at business people, developers, and system
administrations. This is an open-source distribution that offers the business expert a friendly
interface to model the process using BPMN elements. Since the data state description and
management is not included in Activiti, an extension of Eclipse IDE-based Activiti Designer
has been developed to support new graphical elements.

Our implemented ActivitiT M framework supports the development of the five steps pre-
sented in the methodology. This extension enables modellers to work in two different views:
for Information Technology (IT) experts, and for Business Experts (BE). IT experts can
include and describe the database connection and the ORM classes to carry out Step 1. The
view for the BEs enables, Steps 2 and 3 to be carried out easily. The ORM classes annotated
with @BusinessData are involved in the verification and validation processes (Steps 4 and
5).

As mentioned earlier, in order to facilitate the description of the states by the BE, we
have developed a DSL using xText [31], which is an open-source framework for the devel-
opment of programming languages and domain-specific languages. To develop this analysis,
Java reflection API has been used. Figure 7 shows the components involved in the work-
flow creation, data states description, and the Hibernate project to incorporate the relational
database.

Once the states are defined and managed entities have been annotated, xTend is used to
derive an aspect for the calculation of the state of managed entities, according to the states
defined by the BE with the grammar.

Having completed the process modelling, the BE must include the data object states in
the model by using the new graphical elements developed to annotate the BPMN (as shown

Fig. 8 ActivitiT M extension view for process validation

in Fig. 7). Since the ActivitiT M tool is developed by using Graphiti (https://eclipse.org/
graphiti/), then the new elements for the annotation and validation have also been extended
by using this framework.

5.3 Verification of themodel and data state discovery

The verification algorithms presented in previous sections create the aforementioned CSPs,
and they are solved by using ChocoT M solver [32], although it is able to be adapted to
another solver [33]. The code of Algorithm 6, included automatically in the HibernateT M

class for each modelled business data object, analyses every object with the iterator and
informs whether any object has no state. This extension includes the classes that contain the
code for the verification of model and the data states, as is envisioned in Fig. 8.

A set of videos, where the five steps are presented for the example, can be found in http://
www.idea.us.es/data-object-verification/.

In summary, the advantages of the implemented tool include:

1. The data object description has been included in ActivitiT M commercial tool, as a
BPMN 2.0 extension.

2. The ORM code derived from the data object, described in the first step, has been
automatically created to facilitate the tasks of the Information Technology experts.

3. The DSL has been included in the framework using aspect-oriented programming to
validate the syntax and semantics of the data states during the business process design.

4. The necessary formalisations for the verification have been included. The automatic
verification has been designed by means of a set of algorithms that use the constraint
programming paradigm. All these algorithms have been included in the extension of
ActivitiT M .

5. The automatic validation has been implemented and included in the extension of
ActivitiT M .

https://eclipse.org/graphiti/
https://eclipse.org/graphiti/
http://www.idea.us.es/data-object-verification/
http://www.idea.us.es/data-object-verification/

Table 3 Evaluation times

Model correctness Number of constraints Number of variables Evaluation time (ms)

Consistency Exclusive 379 620 234

Parallel 224 372 3

Substate 141 239 11

5.4 Evaluation time

The analysis of the completeness and correctness of the data stored, according to the business
process model, can present major difficulties. This involves an off-line analysis, since a swift
evaluation is not essential. In this section, the evaluation times of the completeness and
consistency of the process model and data, and the state discovery of the data objects are
shown. We have used the real example presented in Fig. 4, which has been described for the
personnel of the University of Seville according to the normative procedures. The relational
database employed to store the objects is that of MySQL.

The analysis times for correctness (completeness and consistency) are shown in Table 3.As
can be observed, three types of analysis haven been carried out: model consistency (exclusive,
parallel, and substate analysis), model completeness and objects correctness. Regarding the
model correctness, we have considered it interesting to include the size is of the constraint
satisfaction problems created and solved. This size is described by means of the number of
constraints that form the CSP and the number of variables.

In the case of the analysis of the correctness of the stored objects (Thesis and Thesis
Project), the average evaluation time for Thesis objects is 1.58ms, while the average of
evaluation time for Thesis Project objects in 1.67 ms. All the measures are presented in
milliseconds and have been obtained by using a 2.2 GHz Intel Core i7 processor and 8 GB
1600 MHz DDR3 RAM.

6 Related work

Much research in BPM has been devoted to the verification of control flow in process models
[34–36] in order to detect logical errors before the models are deployed in a workflow engine.
This research has been extended to deal with the analysis of process models that contain both
control flow and data flow [12,37,38]. The aim of such analysis is to detect logical errors
resulting from inconsistencies between control flow and data flow. The errors identified are
at a conceptual level; implementation issues are disregarded in these studies. Moreover,
the process models use variables rather than data object states. Consequently, the data is
represented implicitly, using pre- and post-conditions.

Process models expressed in industrial languages, such as BPMN [7] and UML activity
diagrams [39], can use object states. Such process models can contain different states for the
same object. These different states implicitly specify the life cycle of that object. The life
cycle can be explicitly specified with state machines [39]. Reggio et al. [40] define a more
precise version of UML activity diagrams with object states and they empirically validate the
level of comprehension. However, these authors fail to consider data persistence, and hence
no integration with databases is discussed.

Several papers study how to derive process models from existing object life cycles [41,42],
while other papers study how to derive object life cycles from such process models [43–

45]. Meyer and Weske [16,46] discuss the relations between object life cycles and process
models. None of these papers consider verification aspects. Instead, they study consistency
and transformation between a process model and an object life cycle model that both specify
behaviour of the same object. Furthermore, these papers remain at the conceptual level and
fail to discuss data persistence and, therefore, the relation with databases.

Cruz et al. [47] define an approach to derive a data model from a BPMN model. The data
model does not address different states of the same objects. Moreover, data persistence is not
addressed.

While none of these papers considers data persistence, a recent paper [22] proposes an
extension of BPMN data objects to facilitate an integration with SQL databases. These
authors add annotations to data object states to manage data dependencies and differentiate
between instances. These annotations are sometimes very low-level representations (e.g.
primary key and foreign key) that have significance only at the database level, not at the
conceptual business level. Therefore these annotations are difficult to understand for business
stakeholders. Moreover, each state of a data object in the BPMN model is represented by a
simple string, which has limited semantic value. In order to increase the semantic value in
our proposal, the states are represented by constraints. More importantly, Meyer et al. [22]
advocate a top-down design approach, where data persistence is handled in the last stage.
Our approach is, in fact, bottom-up, since the data object definitions are derived from the
legacy database, which already exists before the process model has been specified.

In a similar top-down fashion, [48] proposes a specific view as a solution for the problem
of accessing data of business processes. The data access object (DAO) repository view offers
a fast and efficient management of DAOs. In follow-up work [49], the authors have proposed
using data access services (DAS) instead of DAOs for the data access. Although these studies
are very interesting, their objectives are related to the design of an efficient solution for man-
aging data into processes, whereas we study how to integrate legacy databases in processes;
therefore data management is already handled by the legacy databases. In [17], the necessity
of including the data stored in the persistent layer is detected and modelled, but the solution
is not object-oriented, and it does not support the model and data verification. The stored
data verification is studied in [27], and the detection of possible faults and the diagnosis of
the incorrect data are developed at run-time. The main difference with the current proposal is
that the model and data verification is not performed, and the necessity to include the legacy
databases in the validation process is omitted.

Since the incorporation of data aspects in process models has drawn great interest in
research, several advanced modelling techniques have been proposed to describe processes
and data in an integrated fashion [50]. Important examples include artefacts-centric BPM
[51,52] and data-driven BPM [53]. The verification of artefacts-centric models has been
studied in the previous work [14,54,55]. The orientations towards the artefacts-centric pro-
posal fail in the disconnection between the activities of the BPMN and the change of states
described in the artefacts, since these proposals advocate different modelling techniques to
that of BPMN. However, these modelling approaches have yet to be adopted widely in indus-
try, in contrast to BPMN. Our proposal leverages the use of BPMN for the specification of
processes supported by legacy databases.

Sun et al. [56] propose a formal approach for the integration of artefacts-centric process
models with databases. These authors focus on specifying data mappings between models
at both levels and on analysing different properties. The main difference with our approach
is that we verify the data state according to the workflow structure, while their approach is
based on the comparison between different instances.

To sum up, the main contribution of this paper is the verification of the business process
model where business data states and workflow design are combined, and the analysis of the
consistency of the stored object read and written during the process execution is included.
Moreover, the combined description of the business process annotated with data has been
improved to facilitate the task.

7 Discussion of the proposal

Despite the advantageous findings presented in this paper, we have to discuss the results
from the perspective of limitations and the scope of application of our proposal should also
be discussed.

– Grammar of the state description We use a specific grammar and the equivalent DSL to
represent the data states. If the stored objects and the states that need to be considered
could not be described with the grammar, our proposal could not be used. The limitation
of the data domain and of the operations that can be used is established by the solver
used for the constraint programming problems. Most of the commercial solvers maintain
the capacity to include float, integer, sets, and Boolean variables in the model, thereby
making it possible to cover a significant number of problems and their data object states.

– Non-informative relational database Our approach is based on the idea that the legacy
database has sufficient information stored on the data obtained in the past, and that this
data will be used after the incorporation of the new BPMS into the company’s daily
work. If the legacy database does not have the same data objects that correspond to the
annotated BPMN, our proposal holds no interest for the business experts.

– Data objects used in different business process models The algorithms and methodology
of our proposal work with a single business process, where the whole data life cycle
evolves. If the data objects are modified in different business processes, then our proposal
needs to be adapted and enlarged to support it. New adaptations will also be necessary if
collections of objects are included in the model.

– Data Objects affected by external processes The relational databases can be affected by
others tools outside of the business process model under verification. External modifica-
tions do not contradict both the model and data object correctness proposed in the paper.
Our methodology determines that the model is correct (Complete and Consistent), where
the life cycle of the object in the process model is correct. Regarding the stored objects,
it is possible to ascertain which objects are or are not in a known state according to the
process model. However, our methodology is unable to determine whether there are not
more data object states or incorrect modifications thereof carried out by other processes.

– CSP complexity The complexity of the algorithms developed to analyse the process
correctness are linear with respect to the number of nodes of the BPMNGraph, therefore
the verification time of themodel is linked to the complexity of the resolution of the CSPs.
The CSPs complexity has been analysed in great depth over recent decades [57], and
depends on two parameters: the width of the graph that relates variables and constraints,
and the order parameter.
In our case, the created CSPs depend on: (1) the type of data state constraints; (2) the
number of data states; and (3) the number of data objects involved. Concerning the
types of BDCs, it is possible to carry out an analysis on the complexity of the NP-
complete problem resolution, since it is determined by the CSPs. The identification
of tractable classes of CSPs is convenient for a scalability analysis. The complexity

of resolution of CSPs depends on the number of possible solutions of the problem,
and whether it is neither under-constrained nor over-constrained. For these reasons, no
affirmation regarding the efficiency or scalability can be given in a generic way by our
proposal, since our framework permits any type or number of data constraint states with
numerical and Boolean variables, and therefore the evaluation time will depends on the
specific problem.

8 Conclusions and future work

The business process combination with data objects is a recognised problem in the research
community. In this paper, we go one step further towards the verification of the integration
of the two models. The verification consists of the completeness and compliance of the data
states associated with the process workflow, and of the discovery the states of the stored
data objects. Furthermore, we provide a methodology to facilitate the automatic analysis,
which is fully implemented by an extension of a commercial BPMS. In order to bring the
methodology closer to the business expert, the proposed DSL provides a natural language
to define the state of each class, and this description can be employed to evaluate the stored
object according to the ORM that defines the database. The proposed methodology has been
implemented with a set of technologies applied to a real example.

Related to this work, there are significant lines of research that can be analysed in further
depth. These include: extension of the DSL to enrich the capacities to describe the data
object states; simulation of the execution of the instances for the business process migration;
analysis of the correct data transition in the business process model; and the inclusion of
an analysis of the relation between various classes with different cardinalities in the same
verification process.

Acknowledgements This work has been partially funded by theMinistry of Science and Technology of Spain
(ECLIPSE project), the European Regional Development Fund (METAMORFOSIS project), and the Free
University of Bozen-Bolzano (through the CRC projects KENDO and REKAP).

References

1. El-Qurna J,YahyaouiH,AlmullaM (2017)Anew framework for the verification of service trust behaviors.
Knowl Based Syst 121:7–22. https://doi.org/10.1016/j.knosys.2017.01.011

2. Pérez-Álvarez JM, Maté A, López MTG, Trujillo J (2018) Tactical business-process-decision support
based on KPIs monitoring and validation. Comput Ind 102:23–39

3. Reichert M (2012) Process and data: two sides of the same coin? In: On the Move to Meaningful Internet
Systems: OTM 2012, confederated international conferences: CoopIS, DOA–SVI, and ODBASE 2012,
Rome, 10–14 September 2012. Proceedings, Part I, pp 2–19. https://doi.org/10.1007/978-3-642-33606-
5_2

4. Calvanese D, De Giacomo G, Montali M (2013) Foundations of data-aware process analysis: a database
theory perspective. In: Proceedings of the 32nd symposium on principles of database systems, PODS ’13,
ACM, New York, pp 1–12. https://doi.org/10.1145/2463664.2467796

5. Beheshti SMR, Benatallah B, Sakr S, Grigori D, Motahari-Nezhad HR, Barukh MC, Gater A, Ryu SH
(2016) Process Analytics—Concepts and Techniques for Querying andAnalyzing Process Data. Springer,
New York. https://doi.org/10.1007/978-3-319-25037-3

6. Meyer A, Smirnov S, Weske M (2011) Data in business processes. EMISA. Forum 31(3):5–31
7. BPMN Task Force (2011) Business Process Model and Notation (BPMN) Version 2.0. Object Manage-

ment Group. OMG Document Number formal, 03 January 2011
8. Weske M (2007) Business Process Management: Concepts, Languages, Architectures. Springer, New

York

https://doi.org/10.1016/j.knosys.2017.01.011
https://doi.org/10.1007/978-3-642-33606-5_2
https://doi.org/10.1007/978-3-642-33606-5_2
https://doi.org/10.1145/2463664.2467796
https://doi.org/10.1007/978-3-319-25037-3

9. De Masellis R, Di Francescomarino C, Ghidini C, Montali M, Tessaris S (2017) Add data into business
process verification: bridging the gap between theory and practice. In: Proceedings of the 31st AAAI
conference on artificial intelligence (AAAI 2017). AAAI Press, San Francisco

10. ParodyL,Gómez-LópezMT,Varela-VacaÁJ,GascaRM(2018)Business process configuration according
to data dependency specification. Appl Sci 8:10. https://doi.org/10.3390/app8102008

11. OMG: Object Management Group, Business Process Model and Notation (BPMN) Version 2.0. OMG
Standard (2011)

12. Sun SX, Zhao JL, Nunamaker JF, Sheng ORL (2006) Formulating the data-flow perspective for business
process management. Inf Syst Res 17(4):374–391

13. Hull, R.: Artifact-centric business process models: brief survey of research results and challenges. In:
Proceedings of the OTM 2008 confederated international conferences, CoopIS, DOA, GADA, IS, and
ODBASE 2008. Part II on the move to meaningful internet systems, OTM ’08, pp 1152–1163. Springer,
Monterrey (2008). https://doi.org/10.1007/978-3-540-88873-4_17

14. Borrego D, Gasca RM, Gómez-López MT (2015) Automating correctness verification of artifact-centric
business process models. Inf Softw Technol 62:187–197. https://doi.org/10.1016/j.infsof.2015.02.010

15. Calvanese D, Montali M, Estañol M, Teniente E (2014) Verifiable UML artifact-centric business process
models. In: Proceedings of the 23rd ACM international conference on conference on information and
knowledge management, CIKM 2014, Shanghai 3–7 November 2014, pp 1289–1298. https://doi.org/10.
1145/2661829.2662050

16. Meyer A, Pufahl L, Batoulis K, Fahland D, Weske M (2015) Automating data exchange in process
choreographies. Inf Syst 53:296–329. https://doi.org/10.1016/j.is.2015.03.008

17. Gómez-LópezMT, Gasca RM (2010) Run-timemonitoring and auditing for business processes data using
constraints. International Workshop on Business Process Intelligence, BPI 2010. Springer, Hoboken, pp
15–25

18. Weber I, Hoffmann J, Mendling J (2008) Semantic business process validation. In: 3rd international
workshop on Semantic Business Process Management

19. Gómez-López MT, Gasca RM, Pérez-Álvarez JM (2014) Decision-making support for the correctness of
input data at runtime in business processes. Int J Coop Inf Syst 23(2):29

20. Cabot J, Gómez C, Sancho M, Teniente E (2017) 30 years of contributions to conceptual modeling.
Conceptual Modeling Perspectives. Springer, New York, pp 7–23

21. Group OM (2015) Unified modeling language reference manual, Version 2.5. OMG Standard
22. Meyer A, Pufahl L, Fahland D, Weske M (2013) Modeling and enacting complex data dependencies in

business processes. In: BPM, pp 171–186
23. Gómez-López MT, Borrego D, Gasca RM (2014) Data state description for the migration to activity-

centric business process model maintaining legacy databases. In: Business information systems–17th
international conference, BIS 2014, Larnaca, 22–23 May 2014. Proceedings, pp 86–97. https://doi.org/
10.1007/978-3-319-06695-0_8

24. Revesz P (2010) Introduction to databases
25. Gómez-López MT, Gasca RM (2014) Using constraint programming in selection operators for constraint

databases. Expert Syst Appl 41(15):6773–6785. https://doi.org/10.1016/j.eswa.2014.04.047
26. Rossi F, Pv Beek, Walsh T (2006) Handbook of Constraint Programming. Foundations of Artificial

Intelligence. Elsevier Science Inc., New York
27. Gómez-LópezMT,Gasca RM, Pérez-Álvarez JM (2015) Compliance validation and diagnosis of business

data constraints in business processes at runtime. Inf Syst 48:26–43. https://doi.org/10.1016/j.is.2014.07.
007

28. Dechter R (2003) Constraint Processing. TheMorgan Kaufmann Series in Artificial Intelligence. Morgan
Kaufmann, San Francisco

29. Vennam S, Dezhgosha K (2009) Application development with object relational mapping framework-
hibernate. In: International conference on internet computing, pp 166–169. CSREA Press, Athens

30. Rademakers T (2015) Activiti Documentation http://activiti.org/
31. xText Documentation (2015). https://www.eclipse.org/Xtext/
32. Prud’homme C, Fages JG, Lorca X (2014) Choco3 Documentation. TASC, INRIA Rennes, LINA CNRS

UMR 6241, COSLING S.A.S. http://www.choco-solver.org
33. Gómez-López MT, Reina-Quintero A, Gasca R (2011) Model-driven engineering for constraint database

query evaluation. In: First workshop model-driven engineering, Logic and Optimization: Friends or Foes
34. Sadiq W, Orlowska M (2000) Analyzing process models using graph reduction techniques. Inf Syst

25(2):117–134
35. van der Aalst WMP, van Hee KM, ter Hofstede AHM, Sidorova N, Verbeek HMW, Voorhoeve M, Wynn

MT (2011) Soundness of workflow nets: classification, decidability, and analysis. Form Asp Comput
23(3):333–363. https://doi.org/10.1007/s00165-010-0161-4

https://doi.org/10.3390/app8102008
https://doi.org/10.1007/978-3-540-88873-4_17
https://doi.org/10.1016/j.infsof.2015.02.010
https://doi.org/10.1145/2661829.2662050
https://doi.org/10.1145/2661829.2662050
https://doi.org/10.1016/j.is.2015.03.008
https://doi.org/10.1007/978-3-319-06695-0_8
https://doi.org/10.1007/978-3-319-06695-0_8
https://doi.org/10.1016/j.eswa.2014.04.047
https://doi.org/10.1016/j.is.2014.07.007
https://doi.org/10.1016/j.is.2014.07.007
http://activiti.org/
https://www.eclipse.org/Xtext/
http://www.choco-solver.org
https://doi.org/10.1007/s00165-010-0161-4

36. Eshuis R, Kumar A (2010) An integer programming based approach for verification and diagnosis of
workflows. Data Knowl Eng 69:816–835

37. Sidorova N, Stahl C, Trcka N (2011) Soundness verification for conceptual workflow nets with data: early
detection of errors with the most precision possible. Inf Syst 36(7):1026–1043. https://doi.org/10.1016/
j.is.2011.04.004

38. BorregoD, Eshuis R, Gómez-LópezMT, Gasca RM (2013) Diagnosing correctness of semantic workflow
models. Data Knowl Eng 87:167–184

39. UML Revision Taskforce: OMG Unified Modeling Language. Object Management Group
40. Reggio G, Ricca F, Scanniello G, Cerbo FD, Dodero G (2015) On the comprehension of workflows

modeled with a precise style: results from a family of controlled experiments. Softw Syst Model
14(4):1481–1504. https://doi.org/10.1007/s10270-013-0386-9

41. Küster JM, Ryndina K, Gall H (2007) Generation of business process models for object life cycle com-
pliance. In: Proc. BPM, pp 165–181

42. Redding G, Dumas M, ter Hofstede AHM, Iordachescu A (2008) Generating business process models
from object behavior models. IS Manag 25(4):319–331. https://doi.org/10.1080/10580530802384324

43. Eshuis R, Gorp PV (2016) Synthesizing object life cycles from business process models. Softw Syst
Model 15(1):281–302. https://doi.org/10.1007/s10270-014-0406-4

44. Kunchala J, Yu J, Sheng QZ, Han Y, Yongchareon S (2015) Synthesis of artifact lifecycles from activity-
centric process models. In: Hallé S, Mayer W, Ghose AK, Grossmann G (eds.) 19th IEEE international
enterprise distributed object computing conference, EDOC 2015, Adelaide, 21–25 September 2015, pp
29–37. IEEE Computer Society

45. LiuR,WuFY,Kumaran S (2010) Transforming activity-centric business processmodels into information-
centric models for soa solutions. J Database Manag 21(4):14–34

46. Meyer A, Weske M (2014) Activity-centric and artifact-centric process model roundtrip. In: Lohmann N,
Song M, Wohed P (eds.) Proceedings business process management workshops 2013, Revised Papers,
Lecture Notes in Business Information Processing, vol 171, pp 167–181. Springer, Berlin

47. Cruz EF, Machado RJ, Santos MY (2012) From business process modeling to data model: a systematic
approach. In: Faria JP, da Silva AR, Machado RJ (eds.) 8th International conference on the quality of
information and communications technology, QUATIC 2012, Lisbon, Portugal, 2–6 September 2012,
Proceedings, pp 205–210. https://doi.org/10.1109/QUATIC.2012.31

48. Mayr C, Zdun U, Dustdar S (2008) Model-driven integration and management of data access objects
in process-driven soas. In: Mähönen P, Pohl K, Priol T (eds) ServiceWave, vol 5377. Lecture Notes in
Computer Science. Springer, Berlin, pp 62–73

49. Mayr C, Zdun U, Dustdar S (2011) View-based model-driven architecture for enhancing maintainability
of data access services. Data Knowl Eng 70(9):794–819

50. Valencia-Parra A, Varela-Vaca ÁJ, López MTG, Ceravolo P (2019) Chamaleon: Framework to improve
data wrangling with complex data. In: International conference on information systems ICIS 2019,
Munich, 15–18 December 2019

51. Nigam A, Caswell NS (2003) Business artifacts: an approach to operational specification. IBM Syst J
42(3):428–445. https://doi.org/10.1147/sj.423.0428

52. Cohn D, Hull R (2009) Business artifacts: a data-centric approach to modeling business operations and
processes. IEEE Data Eng Bull 32(3):3–9

53. Künzle V, Reichert M (2011) Philharmonicflows: towards a framework for object-aware process man-
agement. J Softw Maint 23(4):205–244

54. N, L (2011) Compliance by design for artifact-centric business processes. In: BPM 2011 LNCS vol 6896
Springer, Berlin, pp 99–115

55. Estañol M, Sancho M, Teniente E (2015) Verification and validation of UML artifact-centric business
process models. CAiSE 2015:434–449

56. Sun Y, Su J, Wu B, Yang J (2014) Modeling data for business processes. In: Cruz IF, Ferrari E, Tao Y,
Bertino E, Trajcevski G (eds.) IEEE 30th international conference on data engineering, Chicago, ICDE
2014, March 31–April 4, 2014, pp 1048–1059. https://doi.org/10.1109/ICDE.2014.6816722

57. Cheeseman P, Kanefsky B, Taylor WM (1991) Where the really hard problems are. In: Proceedings of
the 12th international joint conference on Artificial intelligence-Vol 1, IJCAI’91, pp 331–337. Morgan
Kaufmann Publishers Inc., San Francisco

https://doi.org/10.1016/j.is.2011.04.004
https://doi.org/10.1016/j.is.2011.04.004
https://doi.org/10.1007/s10270-013-0386-9
https://doi.org/10.1080/10580530802384324
https://doi.org/10.1007/s10270-014-0406-4
https://doi.org/10.1109/QUATIC.2012.31
https://doi.org/10.1147/sj.423.0428
https://doi.org/10.1109/ICDE.2014.6816722

José Miguel Pérez-Álvarez received the degree in computer engineer-
ing minoring in systems engineering from the Universidad de Sevilla,
Spain, in 2010, the M.Sc. degree in software engineering and technol-
ogy in 2011, and the Ph.D. degree from the Universidad de Sevilla in
2018. He also received a Master of Business Administration (MBA)
from EOI Business School in 2013. He is Research Scientist with the
Systemic AI group of Naver Labs Europe. Currently, he is also a col-
laborator of the IDEA Research Group. He has participated in several
private and public research projects. He has published several high-
impact papers.

María Teresa Gómez-López is a Lecturer at the University of Seville
and the head of the IDEA Research Group. Her research areas include
business processes and data management, improving the business pro-
cess models including better decisions and enriching the model with
data perspectives. She has led several private and public research
projects and has published more than 25 papers in citation index jour-
nals and relevant conferences. She was nominated as a member of
several program committees and as a reviewer of international journals.
She has given keynotes or was an invited speaker at the IV Workshop
on Data & Artifact Centric BPM, 5th International Workshop on Deci-
sion Mining & Modelling for Business Processes BPM, the X National
Conference of BPM, the 28th IBIMA Conference, the biannual Inter-
national Summer School on Fault Diagnosis of Complex Systems or
Summer Program in Cybersecurity and Entrepreneurship at the Univer-
sity of Virginia, WISE.

Rik Eshuis works as an Assistant Professor of Information Systems at
Eindhoven University of Technology, The Netherlands. He received
an M.Sc. degree with distinction (1998) and a Ph.D. degree (2002) in
Computer Science from the University of Twente. He has been a visit-
ing researcher at IBM Thomas J. Watson Research Centre in New York
and at CRP Henri Tudor in Luxembourg. He is and has been involved
in several national and EU research projects together with industry
focusing on developing advanced, flexible business process support. He
was the General Chair of the IEEE European Conference on Web Ser-
vices (ECOWS) in 2009 and Programme Co-chair of IEEE ECOWS
2008 and IEEE EDOC 2020. His main research interest is in business
process management for knowledge-intensive processes. He is a mem-
ber of the IEEE, the IEEE Computer Society, and the ACM.

Marco Montali is an Associate Professor in the Faculty of Computer
Science, Free University of Bozen-Bolzano, Italy. He coordinates the
PRISM research group, which devises foundational and applied tech-
niques grounded in artificial intelligence and formal methods for the
intelligent management of dynamic systems operating over data, with
a specific focus on business process management and multiagent sys-
tems. On these topics, he authored more than 170 publications, many
of which appeared in top-tier journals and conferences in the areas
of artificial intelligence, business process management, and informa-
tion systems. He is recipient of seven best paper awards. In 2015, he
received the “Marco Somalvico” 2015 Prize from the Italian Associa-
tion for Artificial Intelligence, as the best under-35 Italian researcher
who autonomously contributed to advance the state of the art in Artifi-
cial Intelligence. He is a steering committee member of the IEEE Task
Force on Process Mining.

Rafael M. Gasca received the Ph.D. degree in computer science from
the Universidad de Sevilla, Spain. Since 2000, he has been leading
the Quivir Research Group. Since 2015, he has been a member of the
IDEA Research Group, Universidad de Sevilla. Since 2018, he has
been a Full Professor. He is the leader of different public and private
research projects and has directed 12 Ph.D. dissertations. He has pub-
lished ten dozens of papers in high-impact-factor journals, including
the IEEE COMPUTING, IEEE Communications Magazine, Informa-
tion and Software Technology, Journal System and Software, Infor-
mation Systems, Information and Software Technology, and Data and
Knowledge Engineering. He is a reviewer for relevant security con-
ferences and journals. He is an organizer of artificial intelligence con-
ferences and an International Summer School on Fault Diagnosis of
Complex Systems.

Affiliations

José Miguel Pérez-Álvarez1 · María Teresa Gómez-López1 · Rik Eshuis2 ·
Marco Montali3 · Rafael M. Gasca1

María Teresa Gómez-López
maytegomez@us.es

Rik Eshuis
h.eshuis@tue.nl

Marco Montali
montali@inf.unibz.it

Rafael M. Gasca
gasca@us.es

1 Universidad de Sevilla, Sevilla, Spain
2 School of Industrial Engineering, Eindhoven University of Technology, Eindhoven, The

Netherlands
3 Free University of Bozen-Bolzano, Bolzano, Italy

http://orcid.org/0000-0002-0067-2662

	Verifying the manipulation of data objects according to business process and data models
	Abstract
	1 Introduction
	2 Data state model and verification
	2.1 Business process modelling
	2.2 Conceptual data model
	2.3 Data object life cycle modelling

	3 Verification of annotated business process models with data states
	3.1 Verification of model correctness
	3.2 Verification of the model completeness
	3.3 Verification of data object correctness

	4 Algorithms to verify the annotated process models with data object states
	4.1 Introduction to constraint satisfaction problems
	4.2 Structure to analyse the business process model and data state descriptions
	4.3 Verification of consistent property
	4.3.1 Exclusive state property
	4.3.2 Parallel state property
	4.3.3 Substate and super-state property
	4.3.4 Algorithm to obtain the CSP for the verification of substate and super-state relations in the consistent property

	4.4 Verification of completeness property
	4.5 Data object correctness: discovering the States of stored data objects

	5 Methodology and framework for annotated business Process verification and discovery of object states
	5.1 Framework to support the methodology
	5.1.1 Business data model description: object-relational mapping to represent business data objects
	5.1.2 Business data state description: a natural-like language to describe the data object states
	5.1.3 DSL transformation into Java code

	5.2 Annotate the business process model with data states: implementation of a tool to support the proposal
	5.3 Verification of the model and data state discovery
	5.4 Evaluation time

	6 Related work
	7 Discussion of the proposal
	8 Conclusions and future work
	Acknowledgements
	References

