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Abstract

An extension to the interface finite element with eMbedded Profile for Joint Roughness (MPJR interface finite

element) is herein proposed for solving the frictional contact problem between a rigid indenter of any complex

shape and an elastic body under generic oblique load histories. The actual shape of the indenter is accounted

for as correction of the gap function. A regularised version of the Coulomb friction law is employed for modeling

the tangential contact response, while a penalty approach is introduced in the normal contact direction. The

development of the finite element (FE) formulation stemming from its variational formalism is thoroughly derived

and the model is validated in relation to challenging scenarios for standard (alternative) finite element procedures

and analytical methods, such as the contact with multi-scale rough profiles. The present framework enables the

comprehensive investigation of the system response due to the occurrence of tangential tractions, which are at

the origin of important phenomena such as wear and fretting fatigue, together with the analysis of the effects

of coupling between normal and tangential contact tractions. This scenario is herein investigated in relation to

challenging physical problems involving arbitrary loading histories.

Keywords: coupled problems, contact mechanics, roughness, waviness, friction, finite element method.

1. Introduction

The analysis of the tangential tractions arising during the frictional contacts between a rigid and an elastic

body plays a central role in physics and engineering. Mathematical models based on different friction laws have

been developed during the past years in parallel with the progresses in the field of contact mechanics [1, 2]. In

general, due to the intrinsic characteristics of the frictional contact problem, non uniqueness issues might arise,

depending on the coefficient of friction and the regularisation of the Coulomb law adopted [3, 4, 5, 6].

A rigorous analytical treatment of this problem permits to obtain a solution only in few selected cases, char-

acterised by simple contacting geometries and constitutive behaviours. For example, starting from the general

class of problems addressed in the first paragraph, if the attention is restricted to 2D, small displacements and the

deformable material is elastic and isotropic, the formal problem results in a set of two integral equations, coupled

by the first and second Dundurs’ bimaterial constants α and β, equipped with a proper friction law [7]. If the

attention is further restricted to instances in which the half-plane hypothesis can be invoked, the problem reduces
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to two integral equations coupled by the β parameter only. Under these assumptions, the effect of coupling causes

a vertical pressure to induce also horizontal displacements, thus influencing the tangential tractions distribution

which in its turn modifies the vertical displacements, having so an appreciable effect on the vertical tractions and

the contact area distribution. The half-plane approximation is particularly relevant since, under this assumption,

problems involving also the contact of two elastic bodies can be addressed, via the introduction of ad-hoc elastic

moduli.

Under these hypotheses, the pioneering investigations of Cattaneo [8] and Mindlin [9] are particularly relevant.

These studies seminally concern with the solution of the problem of two contacting elastic spheres. They indepen-

dently showed that the tangential tractions distribution caused by friction could be expressed as a superposition

of two normal tractions distributions. Later, still within the framework of uncoupled approaches, Jäger [10, 11]

and Ciavarella [12, 13] extended Cattaneo-Mindlin results to the contact problem of half-planes with generic non

compact boundaries under oblique loading. In [14], Goodman introduced the hypothesis of semi-coupling, taking

into account only the effect of normal tractions on horizontal displacements, but not vice-versa, allowing the inde-

pendent treatment of the vertical pressures with the usual methods employed for frictionless problems, and then

solving separately for tangential tractions. This framework has been exploited by Nowell et al. [15] who obtained

the analytical solution for the special case of a quadratic indenter acting upon an elastic half-space. In the same

reference, they also developed a numerical scheme based on the inversion of the governing integral equations for

solving the related fully coupled problem with generic tangential loading histories. Under the hypothesis of full

coupling, Spence [16] solved the problem of the indentation of an elastic half-space by an axisymmetric punch for a

monotonic normal load. In particular, he solved the problem for a flat punch and a Hertzian indenter, and proved,

thanks to a property of the governing equations, that the solution for a generic power law profile could be directly

derived from that corresponding to the flat punch. As a consequence, under the same intensity of the normal load,

the extension of the slip area is found to be the same for every indenter with a power-law profile.

More recently, numerical methods have experienced a considerable development in order to overcome the limi-

tations of the analytical approaches. Without the aim of providing an exhausting literature review on this topic,

credit to the main contributions in the development of this subject can be given to Klarbring [17] and Klarbring

and Björkman [18], Kalker [19, 20] and Ahn and Barber [21]. Numerical schemes based on the Boundary Ele-

ment Method (BEM) have been proposed and widely used for the quantitative evaluation of tangential contact

problems under arbitrarily complex contacting geometries. This framework has proved to be very efficient from a

computational point of view, since it only requires the discretisation of the domain boundary, without accounting

for the bulk. Many implementations are available, see e.g Zhao et al. [22], Pohrt and Li [23] and Willner [24]. On

the other hand, BEM-based algorithms are limited by the assumptions of linear elasticity, half-space approxima-

tion and homogeneity of the materials. Their extension to inhomogeneities [25], non-linear interface constitutive

response [26, 27, 28] or finite size geometries [29, 30] are sometimes possible but yet exceptions.

The Finite Element Method (FEM) represents today a suitable modeling tool for overcoming the inherent

shortcomings of BEM, since it can easily account, for example, for geometrical or material non-linearities and

finite-size geometries [31, 32]. A shortcoming of FEM applied to both frictionless and frictional contact problems

is represented by the treatment of complex contacting geometries, since a discretisation of both the interface and

the bulk is requested by the method. In case of very irregular (rough) contact geometries, not only demanding
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computational resources must be employed for their adequate discretisation, but also convergence issues might

arise in standard node-to-segment and segment-to-segment contact strategies, due to corner cases experienced

by the contact search algorithms to detect the points in contact. Therefore, regularisation techniques can be

employed [31, 33], but with the drawback of artificially smoothing out real high-frequency profile features relevant

for the physics of contact.

In this work, a relevant extension of the interface finite element with eMbedded Profile for Joint Roughness

(MPJR) interface finite element introduced in [34] is presented to model the fully coupled frictional contact problem

between a deformable body and a rigid indenter, with a significant simplification of the contacting interface

discretisation, obtained by considering an equivalent smooth interface, instead of explicitly modeling its geometry.

The main idea striving the current developments concerns re-casting the original geometry of the contacting profiles

via a macroscopically smooth interface, which enables the generation of a straightforward meshing with linear finite

elements, albeit preserving the actual geometry of the rough profile. This information is stored in terms of its

analytical expression through the correction to the initial gap function with the exploitation of the assumption of a

rigid indenting profile. The mathematical formulation is detailed in Sec. 2. The advantage of the present approach

over alternative meshing methodologies relies on the fact that the shape of the profile, including waviness or even

roughness, does not need to be explicitly modeled by the finite element discretisation. In the proposed scheme, the

exact interface geometry is embedded into a nominally flat interface finite element through an analytical and exact

correction of the normal gap function. In such a way the finite element discretisation and boundary geometry can

be taken as nominally smooth, with a significant advantage in terms of regularity of the boundary and simplified

finite element discretisation, albeit preserving the exact profile shape in the computations. The full derivation of

the proposed finite element is presented in Sec. 3, and has been implemented as a user finite element in the research

finite element analysis program FEAP [35]. The forthcoming contents of the manuscript is arranged as follows. The

validation of the proposed model is carried out in Sec. 4, in reference to a benchmark problem, namely an analytical

solution of a Hertzian contact problem obtained by assuming semi-coupling between the normal and the tangential

directions, under different load scenarios. In Sec. 5, the method is exploited to solve cases for which no analytical

solutions are available, and that are particularly challenging according to standard finite element techniques. In

particular, coupled normal and tangential frictional contact problems with indenters having Weierstrass profiles as

boundaries and increasing number of length scales, representative of multi-scale waviness, are investigated.

2. Variational formulation for frictional contact problems with embedded roughness

In the present section, the variational formulation which governs the normal and tangential contact of two

bodies across a rough interface is presented. First of all, the strong differential formulation is recalled, with the

equations describing the mechanics of the two bodies together, along with the Hertz-Signorini-Moreau conditions

for normal contact and the Coulomb law for tangential contact at the interface. Subsequently, the weak form is

derived, and the contact conditions are treated. A penalty approach is employed for the normal contact, while

a regularised friction law is employed for tangential interactions, in line with finite element procedures [36]. The

weak form provides the starting point for the derivation of the interface finite element, which is then presented

in the following subsection. The current formulation is valid for 2D domains, although the proposed framework

might be extended to 3D in a straightforward way.
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2.1. General framework

Let us assume that two deformable bodies define the domains Bi ∈ R2, i = [1, 2] in the undeformed configuration

defined by the Cartesian reference system Oxy. The boundary ∂B =
⋃

i=1,2

∂Bi of the domain can be split into three

distinct parts, Fig. 1:

(i) a region where displacements are imposed, i.e. the Dirichlet boundary ∂BD
i ;

(ii) a region where tractions are imposed, i.e. the Neumann boundary ∂BN
i ;

(iii) an interface ∂BC, common to the two bodies, where contact might take place, for which specific boundary

conditions must be specified in order to model the stress and deformation fields generated by normal and

tangential contact.

Figure 1: domains Ωi (i = 1, 2), their Dirichlet (∂ΩD
i ) and Neumann (∂ΩN

i ) boundaries, and the contact interface ∂BC.

As customary, a displacement field ui(x, t) = [ui(x, t), vi(x, t)]
T, which maps the displacements of the points

of Bi from the reference to the current configuration is assumed, identifying ui and vi the displacements along x

and y directions, respectively, and recalling continuous and differentiable functions of the position vector x and

time t. Further, a small deformation strain tensor is defined as the symmetric part of the deformation gradient,

ε(u)i := ∇Sui (with ∇S standing for the symmetric part of the gradient operator), which, in standard Voigt

notation, reads εi = [εxx, εyy, γxy]Ti .

At the interface ∂BC, the configuration of the system is described by the relative displacement field, common

for the two bodies, called gap field across the interface, defined as g = ∆u, which is the projection of the relative

displacements of both bodies (u2 − u1) along the tangential and normal directions of the interface defined by

the corresponding unit vectors t and n, respectively. In components, the gap field vector reads g = [gt, gn]T =

[∆ut, ∆un]T.

2.2. Definition of the equivalent contacting geometry

The innovation of the proposed approach lies in the definition of the normal gap gn. In this framework, regardless

of the actual topology, e.g. the one shown in Fig. 2, the contact interface is assumed to be nominally smooth, with

uniquely defined normal and tangential unit vectors, while its exact variation from planarity is analytically taken
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Figure 2: Composite topography of the interface embedding a rough profile

into account as a correction of the normal gap function. First of all, a local coordinate system is introduced for both

the boundaries of the two bodies, being ξi = ξi(x) a curvilinear coordinate defining a point-wise correspondence

with the coordinates of the same point in the global reference system. Tangential and normal unit vectors t1(ξ1)

and n1(ξ1) can also be uniquely defined, the latter pointing outwards B1. If for every point of the contacting

interface the indenter’s profile local curvature radius is negligible with respect to the one of the deformable body,

i.e. R1(ξ1) � R2(ξ2), a smoother line h̄2(ξ2) can be set, parallel to ∂B1,C and passing through the lowest point

of elevation of ∂B2,C, Fig. 2. A roughness function h∗(ξ2) is then used to account for the actual profile elevation

from the reference datum set in correspondence of h̄2(ξ2). Therefore, the actual profile elevations are described,

in the local curvilinear reference system, by the elevation function e2(ξ2) = h̄2(ξ2) +h∗(ξ2). The smoothing line is

parallel to ∂B1,C, and a set of unit vectors t2 and n2 can now be defined, equal and opposite to their counterparts

characterised by index 1. With this transformation, a zero thickness interface ∂B∗C is introduced. It is defined

Figure 3: Zero-thickness interface model defining the equivalent interface ∂B∗C.

by two distinct lines which at the initial time t = 0 are perfectly overlapping, and both defined by the function

e1(ξ). A relative displacement field ∆u can be defined based on the smooth interface of Fig. 3, given by the relative

displacements of matching points projected along the normal and tangential direction, e.g. points (b) and (c) of the

same figure. The normal gap function ∆un defined in this way does not account for the actual complex geometry

of the indenter. Its original morphology is stored in the function h∗(ξ), which can be combined to ∆un with the

aim of reconstructing the actual separation between the interfaces, such that it reads:

g =

gt

gn

 =

 ∆ut

∆un + max
ξ

[h∗(ξ)]− h∗(ξ)

 . (1)

This operation can be performed thanks to the hypothesis of assuming the second body’s material to be rigid, thus

guaranteeing that its geometry is kept undeformed and can only undergo rigid body motion. If both the bodies

are deformable, the error induced by the present approximation relies in two aspects: (i) the elastic contribution at

the interface is locally affected by the geometry regularisation, which has however an average negligible effect for a
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nominally flat surface where valleys compensate peaks; (ii) the pointwise change in h∗(ξ) due to local deformation

is not accounted for unless an update in the geometry along with the deformation process is considered. Therefore

the proposed methodology is expected to provide relatively good engineering approximations to the solution of

the contact problem even in the most complex case where both materials are deformable. The real portion of the

boundary in contact is now determined by the value of the modified function gn, in accordance with the condition

that contact occurs where gn = 0. For example, this condition is recovered at t = 0 assuming that the two profiles

make contact only in correspondence of the highest asperity (point (a) of Fig. 3). At the present stage, a negative

value for gn is not admissible since it would imply material compenetration.

2.3. Composite topography

If the contacting bodies can be approximated as half-planes, e.g if the contact area is small compared to the

bulks, the same formulation, i.e. rigid indenter over deformable body, can be interpreted as the solution of a

contact problem involving two dissimilar elastic bodies, both potentially characterised by a geometrically complex

interface. This problem can be re-cast in the already proposed framework by defining for the deformable body the

composite elastic parameters E∗ and ν, respectively given by:

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
, ν =

1− 2β

2(1− β)
, (2)

in which Ei and νi are the original Young’s moduli and Poisson’s ratios, and β is the second Dundurs’ constant. A

composite topography can be defined [37, 38], combining the geometries of the two contacting boundaries. Again

two sets of curvilinear coordinates ξi = ξi(x) can be defined, together with normal and tangential unit vectors ti(ξi)

and ni(ξi), the latter pointing outwards Bi. For each of the two profiles, a smoother line h̄i(ξi) is set, parallel to

the average height of the original distribution and passing through its lowest point of elevation. Finally, the actual

elevation of ∂B1 is flattened out, so that we have e1(ξ1) ≡ h̄1(ξ1), while the elevation of the indenter is defined

as e2(ξ) = h̄2(ξ) + h∗(ξ), where now h∗(ξ) = max
ξ

[h1(ξ) + h2(ξ)] − [h1(ξ) + h2(ξ)], and hi(ξi) are the elevations

measured from the respective datum, as shown in Fig. 4. The common coordinate ξ, which is coincident with ξ1

is here introduced, thus recovering the original case of Fig. 2.

Figure 4: Parametrisation of two rough profiles composing an interface ΓC.

2.4. Governing equations and strong form

The linear momentum balance equation for both B1 and B2, along with Dirichlet and Neumann boundary

conditions on ∂BD
i and ∂BN

i , can now be recalled for obtaining the strong form of equilibrium for the contacting

bodies, enhanced by the conditions for normal contact on ∂B∗C, and the classic Coulomb friction law for tangential

contact, which determines its further partition as ∂B∗C = ∂B∗C,st ∪ ∂B∗C,sl, where the subscripts st and sl stand,
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respectively for the stick zone, where no tangential relative displacements between the two bodies occur, and the

slip zone, where irreversible tangential displacements, i.e. gross slip or sliding, take place [36]:

∇ · σi = 0 inBi, (3a)

ui = u on ∂BD
i , (3b)

σi · n = T on ∂BN
i , (3c)

gn = 0, pn < 0 on ∂B∗C (3d)

gt = 0, |pt| ≤ µpn on ∂B∗C,st (3e)

pt = −µ|pn|
ġt

|ġt|
, |pt| > µpn on ∂B∗C,sl (3f)

where u denotes the imposed displacement and T the traction vector.

2.5. Interface constitutive response

Since not only stick occurs at the interface level, a single penalty approach cannot be used for both normal and

tangential responses, thus requiring a distinction for the two different directions. In the normal one, a standard

penalty approach has been used, which is characterised by a penalty parameter εn chosen high enough to reduce

compenetration at the minimum. In the tangential direction, a regularisation of the Coulomb’s law is introduced,

as in [36]. Given that, the two components of the interface traction vector p = [pt, pn]T are:

pn =

εngn, if gn < 0,

0, if gn ≥ 0,

(4a)

pt = µ|pn| tanh
ġt

εt
. (4b)

Equation (4b) is one of the possible regularisations of Coulomb’s friction law which enables a smooth transition

from stick to slip condition. Correspondingly, if, on the one hand, it does not lead to a sharp transition from stick

to slip domains, it has the great advantage of resolving the continuity issue of the Coulomb’s law at the onset of

slip. Finally, the presence of the regularisation variable εt allows tuning the curve in order to reproduce as closely

as possible the real trend of the classic law. It must be remarked that even with a regularised law, the introduction

of friction at the interface level is still a source of non linearity for the problem, since tractions do depend on the

displacements and therefore on the corresponding solution of the problem.

2.6. Weak form

The normal and tangential contact conditions on ∂B∗C , which modify the strong form expressed by Eq. (3)

with respect to the classic elastostatic set of equations, also determine the modification of the variational equality

representing the weak form of the problem, resulting into the following variational inequality:

2∑
γ=1

[∫
Bγ
σγ(uγ) : εγ(vγ) dVγ −

∫
∂BN

γ

t̄ · vγ dAγ

]
≥ 0, (5)

which is derived from the application of the principle of virtual work together with the application of the contact

constraints. In Eq. (5), vγ is the test function (virtual displacement field) for bodies 1 and 2, which fulfills the

condition vγ = 0 on ∂BD
γ . Since body 2 is rigid, its contribution to the integral could be omitted, however it has
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been taken into account for considering also the more general case of two dissimilar elastic bodies, easily recovering

the limiting condition of body 2 being rigid simply setting, in the practical application, a suitable ratio of their

respective Young’s moduli. If the contact status is known, e.g if the contact problem is conformal or an active set

strategy has been implemented for identifying the contact domain, then Eq. (5) can be recast in the form of an

equality by adding the terms related to the normal and tangential contact constraints:

2∑
γ=1

[∫
Bγ
σγ(uγ) : εγ(vγ) dVγ −

∫
∂BN

γ

t̄ · vγ dAγ

]
−Cn − Ct = 0 (6)

where, given the interface constitutive response chosen, the contributions related to normal contact, Cn, and to

friction, Ct, read:

Cn =

∫
∂B∗

C

pn(u)δgn(v) dA,

Ct =

∫
∂B∗

C

pt(u)δgt(v) dA.
(7)

The displacement field ui solution of the weak form Eq.(6) is such that it corresponds to the minimum of the

energy for any choice of the test functions vi.

3. Interface finite element with eMbedded Profile for Joint Roughness (MPJR interface finite ele-

ment) for frictional contact

The numerical solution of the variational problem described by Eq. (6) in the framework of the finite ele-

ment method requires the geometrical approximation of the two bulks, Bh
γ , and of the interface, ∂B∗C, and their

discretisation into finite elements:

Bγ ≈ Bh
γ =

nΩ⋃
e=1

Ωγ,e, (8a)

∂B∗C ≈ ∂B∗C,h =

nΓ⋃
e=1

Γe. (8b)

The bulk has been modeled using standard linear quadrilateral isoparametric finite elements [35], even though

there is no restriction on the finite element topology, provided that it is consistent with that of the MPJR interface

finite element used.

If the contact deformation is small, a conforming discretisation of the bulk and the interface is enough to

guarantee the presence of pairs of nodes which are expected to come into contact. This assumption holds also in

case of friction and relative tangential displacements, since slip will be infinitesimal too. Given that, a four nodes

interface finite element Γe can be introduced, as a special case of a collapsed 4 nodes quadrilateral element. Its

kinematics is borrowed from the formulation common in non-linear fracture mechanics for cohesive crack growth,

see [39, 40, 41, 42, 43] and then specialised in the present case of frictional contact for the presence of complex

surfaces. The interface element is defined by 4 nodes, each pair belonging to the boundary of one of the two bodies:

1 and 2 to ∂B∗1,C and 3 and 4 to ∂B∗2,C, see Fig. 5. The contribution of the interface to the weak form is expressed
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(a) discretisation of the interface.

(b) Interface finite element.

Figure 5: FEM approximation of the interface.

by Eq. (7), whose geometrical approximation, together with the finite element discretisation, reads:∫
∂B∗

C

pn(u)δgn(v) dA ≈
∫
∂B∗

C,h

pn(u)δgn(v) dAh =

nΓ⋃
e=1

∫
Γe

pn(ûe)δgn(v̂e) dΓe, (9a)

∫
∂B∗

C

pt(u)δgt(v) dA ≈
∫
∂B∗

C,h

pt(u)δgt(v) dAh =

nΓ⋃
e=1

∫
Γe

pt(ûe)δgt(v̂e) dΓe. (9b)

In the equations above, the symbol (̂·) denotes, as customary, the difference between the exact displacement and

its finite element approximation, while the subscript e spans through the total number of elements nΓ employed

for the interface discretisation.

The normal gap gn and the tangential gap gt are stored in the local gap vector gl = [gt, gn]T. To eval-

uate them at every point of the interface element, the nodal displacement vector is introduced, defined as

ûe = [u1, v1, . . . , u4, v4]T, being ui and vi the respective horizontal and vertical displacements of the four nodes.

A linear matrix operator L is deputed to evaluate the relative displacement ∆ûe = [∆ue,t, ∆ue,n]T between nodes

1 and 4, and 2 and 3 respectively. A linear interpolation is then performed by the matrix multiplication with

N(ξ), which collects the shape functions N1(ξ) and N2(ξ). The final step consists in the multiplication by the

rotation matrix Q, for moving from the global to the local reference system, centred in, and aligned to, the interface

element. In formulae, it results:

∆ûe = QNLûe, (10)
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and the matrix operators take the form:

Q =

 tx ty

nx ny

 ,
N =

N1(ξ) 0 N2(ξ) 0

0 N1(ξ) 0 N2(ξ)

 ,

L =


−1 0 0 0 0 0 +1 0

0 −1 0 0 0 0 0 +1

0 0 −1 0 +1 0 0 0

0 0 0 −1 0 +1 0 0

 ,

ûe =
[
u1 v1 u2 v2 u3 v3 u4 v4

]
,

being tx, ty and nx, ny the components of the unit vectors normal and perpendicular to the local reference

system t1 and n1. The final tangential gap directly corresponds to ∆ûe,t, the final normal gap is given by

gn = ∆ûe,n + max
ξ

[h∗(ξ)]− h∗(ξ), a correction which accounts for the actual complex surface of the rigid indenter.

It has to be remarked that the normal gap is evaluated at every Gauss point, so two times for every interface

element. In the discretisation of the contact zone, the number of interface element employed should be high

enough in order to adequately sample and reproduce the elevation profile of the embedded contacting shapes. As

a rule of thumb, in the case that low order elements are employed, at least 10 elements should be employed for the

accurate modeling of each asperity [44].

At this point it is possible to evaluate tractions pn and pt from Eqs. (4a) and (4b), respectively. The contribution

of a single interface element to Eq. (6) can now be evaluated. Recalling the traction vector p = [pt, pn]T, it is

possible to condense Eq. (7), which for a single interface element read:

δΠe =

∫
Γe

δg(v̂e)Tp(ûe) dΓe, (11)

where the variation of the local gap is given, in matrix notation, by:

δg(v̂e) =
∂g

∂v̂e
δv̂e = QNLδv̂e (12)

finally, the variation can be set to vanish, and the residual vector can be obtained:

δΠe = δv̂T
e

∫
Γe

LTNTQTp(ûe) dΓe = 0, (13)

which gives:

R(ûe) =

∫
Γe

LTNTQTp(ûe) dΓe = 0. (14)

A Newton-Cotes integration formula is exploited for evaluating the integral in R, which requires the sampling of

the integrand at points which coincide to the abscissae of nodes 1 and 2, obtaining:∫
Γe

LTNTQTp(ûe) dΓe =

2∑
k=1

wkL
TNT

kQ
Tpk(ûe)je(ξk), (15)

being wk the weights and je(ξ) the determinant of the transformation mapping the change of coordinate from the

global to the natural reference system. To light up the notation, hereinafter the vector of nodal displacement ûe

will be replaced by u.
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Given the constitutive laws employed, Eq. (14) represents a set of non-linear transient equations. A full

Newton Raphson iterative-incremental scheme is used to solve the system resulting from the discretisation of the

rate problem relative to the bulk and the interface. The problem to be solved is therefore the following:

R(u, u̇) = 0, (16)

The residual vector is linearised introducing the tangent matrix, and the resulting set of linear equations reads:

S(i)du(i) = −R(i) (17)

where the superscript i denotes the iteration inside a Newton Raphson loop and S is the tangent matrix defined

as:

S = −∂R
∂u
− ∂R

∂u̇

∂u̇

∂u
= c1K + c2C, (18)

being K the stiffness matrix, C the damping matrix and c1 and c2 scalar coefficients that involve the time step ∆t

and the parameters of the selected time integration scheme. For every cycle, the solution is updated:

u(i+1) = u(i) + du(i), (19)

until the convergence criterion du(i) · R(i) < ε is met. The stiffness and damping matrix resulting from the

linearisation of the residual vector for a given iteration i read:

K(i) =

2∑
k=1

wkL
TNT

kQ
TKkQNk L je(ξk), (20a)

C(i) =

2∑
k=1

wkL
TNT

kQ
TCkQNk L je(ξk) (20b)

where K and C are the linearised interface constitutive matrices:

K =


∂pt

∂gt

∂pt

∂gn
∂pn

∂gt

∂pn

∂gn

 , C =


∂pt

∂ġt

∂pt

∂ġn
∂pn

∂ġt

∂pn

∂ġn

 . (21a)

K and C are derived by analytical differentiation if contact is detected, while on the other hand, every term of the

matrices is set equal to zero if a positive gn, i.e. an open gap, is detected.

The application of the proposed approach offers advantages compared to standard FEM discretisation tech-

niques. In particular, there is no need to discretise the interface geometry, since the deviation from planarity can

be stored nodal-wise with a one-to-one correspondence between the original profile and the equivalent interface.

This has a two-fold advantage: (i) convergence problems of contact search algorithms in case of spiky profiles can

be avoided; (ii) the number of finite elements near the boundary can be significantly reduced.

As an illustrative example, let us consider the problem of an elastic block with a wavy boundary, pressed against

a rigid flat plane, see Fig 6a. The boundary has been modeled as a Weierstrass profile made of two sinusoidal

terms (nw = 2), see Sec. 5 for details. The equivalent FEM discretisation resulting from the application of the

MPJR approach is shown in Fig. 6b. In both cases, the same finite element mesh grading as been used, with a

characteristic fine mesh size hf/b = 4 × 10−3 in correspondence of the rough boundary, and a coarse mesh size

hc/b = 4× 10−1 on the opposite side, being b the overall height of the block. The finite element meshes have been

generated using the open source mesh generator GMSH [45].
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(a) Standard FEM discretisation of a contact problem with

a wavy or rough boundary.

(b) MPJR FEM discretisation of the same problem of Fig. 6(a).

Figure 6: Comparison between the standard approach, Fig. 6(a) and the MPJR approach Fig. 6(b). The MPJR interface finite

elements are shown in red in Fig. 6(b). In both cases a grading has been used such that hf/b = 4 × 10−3 at the interface

and hc/b = 4 × 10−1 on the opposite side, being b the height of the blocks and hf and hc the characteristic mesh sizes in

correspondence of the interface and the lower side, respectively.

The use of the proposed approach is suitable to reduce the number of FEM nodes. At this regard, the reader

is referred to the comparison presented in Tab. 1, where rougher profiles with an increasing number of sinusoidal

terms have been considered. The gain is due to the fact that the MPJR discretisation does not need to exactly

follow the wavy or rough profile as for the standard FEM discretisation, since it embeds the information about the

rough topology as a correction to the gap function.

nw method nnodes

1
standard discr. 1068

MPJR 898

2
standard discr. 3136

MPJR 2641

3
standard discr. 9552

MPJR 7794

4
standard discr. 30621

MPJR 23312

5
standard discr. 103198

MPJR 69730

Table 1: Comparison in terms of number of finite element nodes (nnodes) for a standard FEM discretisation, which explicitly models

roughness, and for the proposed MPJR discretisation. The parameter nw denotes the number of terms of the Weierstrass

profile, see Sec. 5. The side plot shows the relative percentage difference δ% in the number of nodes required by the two

different approaches, which grows together with the profile’s complexity.
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4. Model validation

4.1. Frictional Hertzian contact problem between a cylinder and a half-plane under a monotonic normal load

A semi-coupled1 Hertz contact problem is used for validating the model, Fig. 7. This benchmark is found

to be particularly suitable for testing the validity of the proposed implementation for two specific reasons. The

first underlying motivation, already thoroughly explained in [34], is that in spite of its simplicity, the solution of

this problem via a standard FEM discretisation of the curved geometry requires very refined meshes, specially at

the edges of the contact strips. The second reason is that the present problem yields to a closed solution, thus

providing an easy to implement and fast way of comparison and verification. Under the assumptions of purely

normal monotonic load and neglecting the influence of tangential tractions qx(x) on the normal contact traction

distribution pz(x), the solution can be written as [15]:

qx(x) =
µp0

K(c)

(√
1− x2

a2
F (θ, c)− x

2b
log

1−
√

1− x2/b2

1 +
√

1− x2/b2

)
, b ≤|x| ≤ a (22)

where p0 is the maximum value of the vertical tractions, a and b are the extension of the contact radius and slip

zone respectively, c = b/a, sin(θ) = x/b and K(c) and F (θ, c) are the first complete and incomplete elliptic integral

of the first kind, respectively. The extent of the slip zone can be evaluated using Spence’s relation [16], which is

valid for every initial contact gap defined by a power law relation, and is given by:

µK(c) = βK(
√

1− c2), (23)

where β is the second Dundurs’ constant. This parameter governs the level of coupling of the system: for β = 0,

the problem is uncoupled, while its maximum admissible value is 0.5. In the limiting case of a contact problem

involving a rigid parabolic profile indenting an elastic half-plane, we have β = (1 − 2ν)/[2(1 − ν)], being ν the

Poisson’s ratio of the half-plane. A value of 0.29 is herein chosen, which corresponds to ν = 0.3. While this value

is kept constant, four different values for the friction coefficient have been used to investigate the accuracy of the

model predictions. The comparison has been carried out in terms of normal and tangential tractions exploiting

Eq. (22), comparing our fully coupled numerical approach with the semi-coupled analytical solution.

4.2. FEM implementation and results

In the present framework, the actual shape of the contacting profile is embedded in the MPJR interface finite

element. The profile elevation is given by its analytical form and evaluated at every Newton-Cotes integration

point. Since one of the contacting profile, i.e. Γ1, is flat, the topography exposed in Sec. 2 simply reduces to the

one of Γ2: e2(ξ) = h̄2(ξ)− ξ2/2R and we have a normal gap in the initial undeformed condition which is given by

gn = ∆un + ξ2/2R, being R the radius of the cylinder. We analyse the problem under plane strain assumptions.

The mesh is structured based on three different levels:

• the lower models B1, which in the present setting is a half-space, approximated by a circular sector clamped

along the curved side and free to undergo vertical displacements in correspondence of the vertical side. An

1Hereinafter, the label semi-coupled will be referred to a system in which the effect of the tangential tractions over the vertical pressure

is neglected, but not the opposite. This hypothesis has been introduced by Goodman [14].
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(a) Actual geometry. (b) Finite element model.

Figure 7: Actual geometry of the benchmark contact problem (a), and its finite element model set up with the present approach based

on the MPJR interface finite element (b). In this figure, the model is characterised by a lower number of interface finite

elements for clarity purposes, while the actual model employed for the validation has been discretised with a number of

elements in accordance with Sec. 4.2.

extension of its radius of 2R has been found to be enough for mimicking the elastic properties of a semi-infinite

half-plane, under plane strain assumptions. A Young’s modulus E1 = 100 and a Poisson’s ratio ν1 = 0.3 has

been assigned to the standard quadrilateral linear finite elements employed for the bulk discretisation;

• the interface ∂B∗C is modeled using a single layer of MPJR elements, discretised using nΓ = 100 elements;

The penalty stiffness has been set to εn = 102E1/R, that can be considered as sufficiently high in order to

avoid material interpenetration.

• finally, the geometry of the indenting cylinder which represents B2 can be replaced by a regular array of

quadrilateral linear finite elements, with an assigned elastic modulus E2 = 103E1; Neumann boundary

conditions are applied as a uniform distribution of vertical pressure p0 resulting in a unitary vertical force

Pz.

The results of the simulations are shown in Fig. 8a for β = 0.29, in terms of dimensionless vertical tractions

a0pz(x)/Pz (red curves) and dimensionless tangential tractions a0qx(x)/µPz (black curves), being a0 the radius of

contact related to the semi-coupled case and Pz the vertical force applied. For both the analytical semi-coupled

and the FEM model, five different values of the coefficient of friction, µ = [0.1, 0.2, 0.3, 0.4, 0.5] are applied.

In the semi-coupled case, the distribution of vertical tractions is coincident regardless the coefficient of friction

employed, and is highlighted by circle markers, while when coupling is considered, slight differences in the normal

tractions can be observed. For what concerns the tangential tractions, an excellent accordance can be observed

for all the values of the coefficient of friction employed. The coupling effect observed in the curve related to the

numerical approach is in line with the theory, which predicts a stiffening effect that results into an increase of

the maximum value of the vertical tractions, compensated by a slight decrease of the contact radius. The slight
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(a) Normal and tangential contact tractions. (b) Ratio between slip and stick contact strips width.

Figure 8: benchmark test with low values of coupling, β = 0.29.

deviation between the two sets of qx(x) that can be observed in Fig. 8a can be again ascribed to coupling. In

fact, the FEM model predicts smaller values for the ratio b/a with respect to the semi-coupled approach and the

effect can be quantitatively analysed, with results shown in Fig. 8b. In this figure, the black solid curve represents

the values of b/a for the semi-coupled case, as expressed by Eq. (23), corresponding to the dashed black curves of

Fig. 8a; the red stars are the values for the coupled case, evaluated using an asymptotic solution provided in [15]

and the blue circles the outcomes of the simulation. A very good accordance is found between the slip/contact strip

width ratio calculated in the fully coupled case and the one obtained by the numerical simulation; the deviation

between the tangential tractions of Fig. 8a can be justified in this way. The importance of the outcome of Fig. 8a

lies in the fact that, for some specific instances, care should be taken in neglecting coupling effects, since this could

lead to underestimating the magnitude of tractions. As a final remark, it can be noticed that even if a regularised

friction law has been used, an adequate choice of the stiffness parameter εt guarantees results that are very close

to the solution based on the Coulomb friction law, which has been exploited by the semi-analytical model.

4.3. Hertzian contact problem between a cylinder and a half-plane under constant normal loading and cyclic tan-

gential loading

As compared to the previous test problem, now a downward displacement is imposed on the cylinder, starting

from zero and linearly increasing up to a maximum value of ∆z,0. At this point, the vertical displacement is

held constant and a tangential load is applied, in terms of a horizontal far field displacement which harmonically

oscillates with amplitude ∆x,0 = 0.8µ∆z,0. A normalised load history plot is shown in Fig. 9a, together with the

corresponding values of total normal load Pz and tangential load Qx, evaluated as the resultant of the interface

tractions. The imposed displacements are also plotted in the load space ∆x −∆z, in which the black solid curve

represents the variation of the tangential load with respect to the normal one, while the blue dashed curves represent

the limit of gross sliding. In the present case the load path consists in a curve which is a straight line lying on

the horizontal axis, from the origin to point (a) and then becomes a collapsed ellipse with the major axis passing

through the points (b) and (c), Fig. 9b. The results in term of traction distributions are shown in Fig. 10. In
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(a) Load in the t−∆ space. (b) Load in the ∆z −∆x space.

Figure 9: tangential cycling load history.

Fig. 10a, the normal load is linearly increased from zero to its maximum value, and a self-similar symmetric central

stick area encompassed by two regions of forward slip (positive tangential tractions) and backward slip (negative

tangential tractions) develops. Then, Fig. 10b, the tangential load is applied (point (a) of Fig. 9a and 9b), which

results in:

(i) an increase in the tangential tractions at the leading edge;

(ii) a reduction of the tangential tractions at the trailing edge;

(iii) an instantaneous violation of the Coulomb law, which leads to a sudden change from backward slip to stick

at the trailing edge, from which tractions start increasing again, but with opposite sign. At the same time,

the stick zone shrinks, reaching its minimum at the point (b) of the loading history.

If now the load is reversed, an instantaneous stick zone is created again, which shrinks to a minimum value in

correspondence to point (c), Fig. 10c. The system reaches a stationary state condition after point (d), but with a

steady state value of the stick area which is, for a positive load, sensibly different from the one related to the first

application of the load, Fig. 10d. In particular, it retains almost the same extension, but it is shifted towards the

center of the contact zone. As a final remark, the system maintains a significant difference between the positive

and negative stick areas, even though the steady state is reached after one cycle of loading. It can be noticed that

this is directly related to the level of coupling. The current results are obtained with a high level of coupling,

corresponding to β = 0.50. The same load history, applied to a system with β = 0.29 shows greater similarity

between the positive and negative steady stick area, Fig. 11, showing again that the degree of coupling has an

important effect on the contact response.
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Figure 10: tangential cycling load history for high values of coupling, β = 0.50.
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Figure 11: tangential cycling load history for low values of coupling, β = 0.29.
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5. Contact between a rough profile and an elastic layer

As shown in [34], the strength of the formulation is particularly evident in the case of contact between a rough

profile and an elastic layer. In spite of the fact that any kind of elevation field might be taken into consideration in

the computational framework, without any restriction, even numerically generated, a Weierstrass profile is herein

used as a possible example. The height field is generated by Eq. (24):

z(x) = g0

∞∑
n=0

γ(D−2)n cos

(
2π
γnx

λ0

)
, (24)

where in practical applications the summation is carried on up to a certain nw, thus obtaining a pre-fractal

profile [46, 47] which consists of the superposition of nw sinusoidal functions, each of them presenting a decreasing

wavelength λn = λ0/γ
n and amplitude gn = g0γ

(D−2)n, where γ and D are parameters chosen such that γ > 1

and 1 ≤ D ≤ 2.

In this section, three different indentation problems are solved, in which the contacting profiles exhibit such

heights distribution. Each of them is tested against a rectangular elastic block with a height-to-width ratio

t/λ0 = 0.5. Such block presents the same elastic parameters employed for the model validation of Sec. 4, i.e.

E1 = 100 and ν1 = 0.3. Each indenter profile can be considered rigid, and is made of the superposition of one, two,

or three terms respectively, according to Eq. (24), shown in Fig. 12. As in the previous section, the lower boundary,

i.e. ∂BC,1, is flat, and the elevation field reduces to the one of ∂BC,2: e2(ξ) = h̄2(ξ)− z(ξ), with an initial normal

gap in the undeformed condition given by gn = ∆un + z(ξ). To obtain an adequate sample of the profile heights

field, decreasing characteristics interface mesh sizes have been employed, in accordance with the profiles’ shortest

wavelength employed from time to time, given as λ0/γ
n. Following the guidelines of Sec. 3 results in a number of

interface finite elements to be employed, depending on the number of terms of the series of z(x), of nΓ = d20γnwe.

Finally, in order to simulate a contact problem which is indefinite in the x−direction, periodic boundary

conditions have been applied to both the vertical edges of the mesh, at a distance of λ0. A classical ironing-type

load history is applied for solving the contact problem. First, a purely normal far-field displacement ∆z is imposed,

starting from zero up to 5g0. Then, a horizontal tangential displacement ∆x is applied, linearly varying from zero

to 3 times the maximum value of ∆x, which is the value that guarantees an incipient gross slip for the single

harmonics profile. A full parametric study of the problem should involve a thorough evaluation of the sensitivity

of the system with respect to the main governing physical parameters, such as β, µ, λ0/t, g0, γ, ∆x and ∆z, but

Figure 12: Weierstrass multi-scale profile.
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this is left for further investigation, since the main purpose is to show the feasibility of treating complex interface

problems within the present finite element framework.

5.1. Single harmonics profile in full contact

The case of nw = 0 is shown in Fig. 13. The main difference with the results obtained for the previous test

problems is that now we are dealing with an infinitely long profile which makes contact at an infinite set of spots.

Under purely normal loading, the vertical tractions pz(x) present two axes of symmetry, highlighted by dash-

dotted lines in the figure, which corresponds to axes of anti-symmetry for the shearing tractions qx(x). Since in

this condition shearing tractions must be strictly null in each of these points, they result in having a lower intensity,

and the absence of the characteristic backward and forward slip zones which are typical of the Hertzian problem.

Tangential tractions grow in intensity and extension until the full contact condition is reached, corresponding

to a value of pz(x) which is highlighted by the blue dashed curve in Fig. 13a. After that point, since a full stick

condition holds, qx(x) remains constant until the maximum value of the vertical far-field displacement is reached.

After that point, the horizontal far field displacement is applied, and the horizontal tractions grow until a condition

of partial slip is reached, again blue dashed line in Fig. 13b. As expected, the last point of the interface coming

into contact is also the first one which undergoes partial slip. After this point, the state of the system is such

that there is an alternation of shrinking stick islands bordered by increasing zones of full slip. When the transient

regime ends, a perfect overlapping between µpz(x) and qx(x) is observed.

5.2. Multiple harmonics profile contact

The addition of a length-scale in the Weierstrass function has the immediate effect of increasing the peak values

of the normal tractions, which are localised in correspondence of the local maxima of the profile, and of reducing

the contact area for a given level of the external load: the full contact condition is still achieved, but after a higher

number of time steps, see Fig. 14a. The same considerations on the distribution of the tangential tractions can be

made also in this case, with the difference that now the contact domain is no longer compact.
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(a) Purely normal load stage.
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(b) Constant normal load, increasing tangential load stage.

Figure 13: ironing test, single harmonic profile.
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In this case, an approximated study of qx(x) and of the extension of the stick and slip areas can still be possible,

exploiting, e.g the Ciavarella-Jäger theorem, but under the limiting assumptions of uncoupling and equality of the

Green functions in x and z directions. An interesting feature that could be appreciated thanks to having taken

into account coupling effects is that, still under purely normal loading, if two asperities, each of them generating

a separate contact island, are characterised by a severe gradient in terms of vertical tractions, the less pressed one

might experience a horizontal traction distribution which is very far from the one typical of an isolated asperity,

i.e. anti-symmetric. If the vertical tractions in the leading asperity are high enough, the horizontal displacements

generated by them might be so high as compared to the ones generated by the secondary asperity that the latter

are negligible, thus resulting in horizontal tractions which are all negative or positive valued from the beginning.

With suitable boundary conditions or values of µ, there might also be a condition of gross slip from the beginning

of the contact process. At the same time, when the second asperity comes into contact, it exerts a stiffening effect

on the bulk, which reflects in a decrease of the magnitude of the increment rate of the horizontal displacements

towards the high asperity, which in the final place determines a relaxing of the tangential tractions at the level of

the leading asperity. This characteristics is depicted in Fig. 15a and 15b. The tangential tractions over the leading

asperity, green dash-dotted curves, increase in extension and magnitude as long as the second asperity comes into

contact, where they reach their maximum value, blue dashed line. After that moment, they continue growing in

extension, since the contact area is still increasing, but they decrease in magnitude, due to the interaction between

the different contact islands. Finally, when also the tangential far field displacement is applied, they start growing

in magnitude again, gross slip starts, and the transition between full stick and full slip takes place, see Fig. 14b.

The same trend can be observed also for the profile characterised by nw = 2, Fig. 16, where the same comments

apply as well for the increase in vertical tractions, the reduction of the contact area and the evolution of the stick

and slip zones.
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(b) Constant normal load, increasing tangential load stage.

Figure 14: ironing test for double harmonics profile.
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Figure 15: Evolution of contact tractions.
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Figure 16: ironing test for a triple harmonics profile.

6. Discussion and conclusion

The proposed formulation provides a way to overcome the shortcomings and the difficulties which are en-

countered during the solution of contact problem between rough or generically complex profiles, when friction is

considered. A standard approach of explicitly modeling the geometry of the interface using higher order interpo-

lation schemes such as Bezier curves, adaptive mesh refinement, or NURBS, is more suitable when the interface

consists of regular and smooth profiles, while it can be difficult to exploit or it could be very expensive from a

computational point of view when rough profiles have to be analysed.

In this work, the comprehensive and challenging extension to frictional contact problem of the framework which

has been set up in [34] (denominated as eMbedded Profile for Joint Roughness (MPJR interface finite element)) has

been proposed. The fundamental idea was to re-cast the original geometry of the contacting profiles, obtaining a
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macroscopically smooth interface which allows for a straightforward meshing with linear finite elements, while the

actual geometry is stored in terms of its analytical expression and passed to the system as a correction to the initial

gap function, thanks to the assumption of having a rigid indenting profile. The major advantages obtained by

exploiting this approach are the use of a low order finite element interpolation scheme, with a significant reduction

of nodal degrees of freedom and save of computational time.

The classical benchmark tests which are usually employed for testing the capability of higher order interpolation

schemes have been used for validating the model, with excellent results obtained even for relatively coarse interface

discretisations. Finally, the method has been successfully tested in relation to more complex scenarios of contact

problems involving a Weierstrass profile with multiple harmonics, resulting in a useful tool for the investigation

of the behavior of idealised 2D fractal rough surfaces under the non trivial assumption of full coupling between

normal and tangential traction fields.

The natural development of the presented interface element, which by itself stems from [34], includes its

extension to three dimensions and possibly the inclusion of other interface phenomena which could be much more

difficult to be analyzed using standard FEM or BEM approaches, such as the interplay of friction and adhesion, or

friction and plasticity. The presented implementation also allows for the possibility of more complex friction laws

to be used, as, for example, the ones employed in [48].

Results have highlighted the important role of coupling between normal and tangential contact problems, with

a special focus on rough surfaces, which is an open research topic also for precision engineering applications.

Finally, forthcoming studies would encompass the corresponding formulation to geometrically nonlinear effects

and prospective coupling of contact-induced fracture events. Such developments are beyond the scope of the

present investigation, deserving a careful attention.
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