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Abstract. In this work we show the existence of coexistence states for a

nonlocal elliptic system arising from the growth of cancer stem cells. For this,

we use the bifurcation method and the theory of the fixed point index in cones.
Moreover, in some cases we study the behaviour of the coexistence region,

depending on the parameters of the problem.

1. Introduction. In this work, we will study the following system −D1∆u = δγF (u+ v)K(u) in Ω,
−D2∆v + αv = (1− δ)γF (u+ v)K(u) + ρF (u+ v)K(v) in Ω,
u = v = 0 on ∂Ω,

(1)

where Ω is a bounded and regular domain of IRN , D1, D2, γ, α, ρ > 0, δ ∈ [0, 1] and
F ∈ C1(IR+) is a decreasing function with F (0) = 1 and F (t) = 0, for t ≥ 1. The
function K(u) : L∞(Ω) −→ L∞(Ω) is given by

K(u)(x) =

∫
Ω

K(x, y)u(y)dy,

where K ∈ C(Ω× Ω) is a non-negative and non-identically zero function.
This system is the stationary counterpart, with homogeneous Dirichlet boundary

conditions, of a model of the dynamic of cancer stem cells (CSCs) and non-stem
tumor cells (TCs) in a certain tissue Ω, proposed in [11]. In that paper, they studied
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a particular population of (CSCs). More precisely, the authors studied the following
time-dependent system

∂u(x, t)

∂t
= D1∆u+ δγ

∫
Ω

K(x, y, p(x, t))u(y, t)dy

∂v(x, t)

∂t
= D2∆v − αv + ρ

∫
Ω

K(x, y, p(x, t))v(y, t)dy

+(1− δ)γ
∫

Ω

K(x, y, p(x, t))u(y, t)dy,

where p(x, t) = u(x, t) + v(x, t), u(x, t) and v(x, t) denote the density, in cells per
unit cell space, of cancer stem cells (CSCs) and non-stem cancer cells (TCs) at
time t and location x, respectively. The kernel K(x, y, p) describes the rate of
progeny contribution to location x from a cell at location y, per cell cycle time.
The constants D1, D2 > 0 are diffusion coefficients of the cells (CSCs) and (TCs),
respectively. The parameters γ, ρ > 0 denote, respectively, the number of cell cycle
times per unit time of (CSCs) and (TCs), and α > 0 denotes the (TCs) death rate.
Moreover, δ ∈ [0, 1] denotes the fraction of (CSCs) divisions that are symmetric,
that is, the probability in which the cells (CSCs) can give rise to two cells (CSCs),
while 1− δ is the fraction of (CSCs) divisions that are not symmetric, that is, the
probability in which the cells (CSCs) can give rise to one cell (CSC) and one cell
(TC). The boundary conditions of the smooth bounded domain Ω ⊂ IRN can be
Dirichlet or Neumann, depending on the tissue Ω. The populations of (CSCs) and
(TCs), modeled by the equations above, belong to the class of birth-jump processes,
as can be seen in [3]. In a birth-jump process the population growth and spatial
spread cannot be decoupled, as is discussed in [15]. These models, of birth-jump
processes, are described by the following integral-differential equation

ut − d∆u =

∫
Ω

S(x, y, u(x, t))β(u(y, t))u(y, t)dy, (2)

where the function S is the redistribution kernel for the newly generated individuals
at y to jump to x, the function β(u) is a proliferation rate at location y. In many
situations,

S(x, y, u(x, t)) = g(u(x, t))K(x, y), (3)

with g a non-negative and non-trivial function, K is a kernel bounded, non-negative,
and depends on x and y just through of the distance |x− y|. For instance,

K(x, y) = ϕ(|x− y|),

where ϕ(t) = Ae−Bt
2

and A, B are positive constants. Observe that, in this case,
we have that K(x, x) > 0, for all x ∈ Ω. We still observe that, in the system (1),
g = F and our choice of K and F is motivated by [12].

Now, we observe that there exist three types of solutions of (1):

(i) the trivial solution (0, 0);
(ii) the semi-trivial solutions (u, 0) and (0, v);

(iii) the solutions with both positive components, the coexistence states (u, v).

The trivial solution always exists. For the existence of semi-trivial solutions, we will
introduce some notations and results given in [8]. Observe that when one group of
cell vanishes, the other one verifies an equation of the following type: −d∆u+ βu = σF (u)

∫
Ω

K(x, y)u(y)dy in Ω,

u = 0 on ∂Ω,
(4)
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with β ≥ 0, σ > 0. The problem (4) is a nonlocal logistic equation and has been
analyzed in [8] when β = 0 and F (u) = (A(x)− up)+, where p ≥ 1 and A ∈ C(Ω),
with A+ 6= 0. In Section 2 we study (4) with F more general using the sub-super
solution method introduced by [8]. Moreover, we study some properties of the
solution, as monotonicity in σ and uniformly convergence on compacts of Ω when
σ → +∞, which will be used throughout this work.

For the coexistence states, we will study their existence just in two cases: δ 6= 1
and δ = 1. Observe that for δ = 0 the system (1) does not have coexistence states,
because in this case (1) is reduced to an equation of the type (4).

For the case δ 6= 1 we use bifurcation arguments, more precisely [5], [18] and
[19], to find an unbounded continuum of coexistence states of (1) emanating from
the specific point (see Section 4). Thus, we have the existence of one curve in the
plane (γ − ρ), denoted by γ = Fδ(ρ) and we obtain the following result:

(a) Assume that δ 6= 1, δ 6= 0 and ρ > 0. If γ > Fδ(ρ), then there exists at least a
coexistence state of (1).

Of course we are assuming by biological sense that ρ 6= 0, but this result still is true
if ρ = 0, as we will see in Section 4 (see Figure 1).

For δ = 1, we use the theory present in [1] and [6] of fixed point index with
respect to the positive cone and we obtain the existence of two curves γ = F1(ρ)
and ρ = G(γ) and show the following results:

(b) Assume that δ = 1, γ > σ1,1 and ρ > σ1,2 (see (9) for more details). Then,
there exists a coexistence states if

(γ −F1(ρ)) · (ρ− G(γ)) > 0.

Depending on relative position of these two curves, we can conclude:

(c) Assume that δ = 1, γ > σ1,1 and ρ > σ1,2. If γ > F1(ρ) and ρ > G(γ), then
there exists at least a coexistence state of (1). Moreover, the sum of the indices
of all coexistence states of (1) is 1 (see Figures 2 and 3).

(d) Assume that δ = 1, γ > σ1,1 and ρ > σ1,2. If γ < F1(ρ) and ρ < G(γ), then
there exists at least a coexistence state of (1). Moreover, the sum of the indices
of all coexistence states of (1) is -1 (see Figures 3 and 4).

An outline of the paper is: in Section 2 we study the existence of semi-trivial
solutions of (1), introducing some notations and results given in [8]. Moreover, we
will study the nonlocal logistic problem (4). In Section 3 we study a priori bounds of
the coexistence states of (1) and prove results of non existence of coexistence states
for (1). In Section 4, we study the existence of coexistence states of (1) in the case
that δ 6= 1, we use the ideas of [10] applying the Crandall-Rabinowitz Theorem and
Theorem 7.2.2 of [19]. In Section 5, we study the existence of coexistence states of
(1) when δ = 1, we use the theory of fixed point index with respect to the positive
cone introduced by [1] and the ideas present in [20]. Finally, in Section 6, we study
the coexistence regions of the solutions of (1) and we analyze in some cases the
relative position of the curves γ = F1(ρ) and ρ = G(γ).

Firstly, let us fix some notations which we will use along this work. For each
u ∈ Lp(Ω), p ∈ [1,+∞], |u|p will denote the usual norm of the space Lp(Ω). For
u ∈ H1

0 (Ω), ||u|| will denotes the usual norm of H1
0 (Ω). We also consider the

following spaces,

X = C1
0 (Ω) =

{
u ∈ C1(Ω); u = 0, in ∂Ω

}
and PX = {u ∈ X; u ≥ 0, in Ω} .
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Observe that

int (PX) =

{
u ∈ PX ; u > 0 in Ω and

∂u

∂η
< 0 in ∂Ω

}
,

where, η denotes the outward unit normal vector to ∂Ω. For u ∈ X, ||u||X will
denote the usual norm of the space X. Moreover, u > 0 means that u ∈ P \ {0}.

2. Principal eigenvalue and nonlocal logistic equation. In this section, we
will study the existence of semi-trivial solutions of (1). Firstly, we will introduce
some notations and results of eigenvalue problem given in [8]. Let us see: for d > 0
and m ∈ L∞(Ω), we will denote by λ1(−d∆ +m(x)) the principal eigenvalue of the
problem {

−d∆u+m(x)u = λu in Ω,
u = 0 on ∂Ω,

and we will consider the operator L defined, in the weak sense, by

Lu = −d∆u+m(x)u−
∫

Ω

K(x, y)u(y)dy, ∀ u ∈ X.

With that, for the following nonlocal and non self-adjoint eigenvalue problem{
Lu = λu in Ω,
u = 0 on ∂Ω,

(5)

we have the next result:

Proposition 1. Assume that K ∈ L∞(Ω×Ω) is a non-negative and non-identically
zero function, m ∈ L∞(Ω) and d > 0. Then, there exists a principal eigenvalue of
(5), that we will denote by

λ1 (−d∆ +m(x);K) ,

which is real, simple, it has an associated positive eigenfunction and it is the unique
eigenvalue of (5) having an associated eigenfunction without change of sign. More-
over, any other eigenvalue λ of (5) satisfies

λ1 (−d∆ +m(x);K) < Re(λ),

the eigenvalue λ1 (−d∆ +m(x);K) is the principal eigenvalue of L∗ (adjoint of L)
and it has the following properties:

(i) Let K1,K2 ∈ L∞(Ω × Ω) be non-negative and non-identically zero functions
and m1,m2 ∈ L∞(Ω). If K1 ≤ K2 in Ω× Ω and m1 ≤ m2 in Ω, then

λ1 (−d∆ +m1(x);K2) ≤ λ1 (−d∆ +m2(x);K1) .

Moreover, if K1 6= K2 in Ω× Ω or m1 6= m2 in Ω, the inequality is strict.
(ii) Let Ω1,Ω2 be regular subdomains of Ω. If Ω1 ⊂ Ω2, then

λΩ2
1 (−d∆ +m(x);K) ≤ λΩ1

1 (−d∆ +m(x);K) .

Moreover, if Ω1 6= Ω2, the inequality is strict. Here, λΩi
1 (−d∆ +m(x);K),

i = 1, 2, denotes the principal eigenvalue of the problem (5) in Ωi.
(iii) Let Kn ∈ L∞(Ω × Ω) be non-negative and non-identically zero functions. If

Kn → K in L∞(Ω× Ω), as n→ +∞, then

λ1 (−d∆ +m(x);Kn)→ λ1 (−d∆ +m(x);K) , as n→ +∞.

Proof. This is proved in Theorem 2.3 and Proposition 2.5 of [8].
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Now, we will consider the following eigenvalue problem: −d∆u+m(x)u = σ

∫
Ω

K(x, y)u(y)dy in Ω,

u = 0 on ∂Ω,
(6)

with σ > 0. Observe that finding an eigenvalue σ1 > 0 of (6) is equivalent to

λ1 (−d∆ +m(x);σ1K) = 0. (7)

We have the next result:

Proposition 2. Assume that m ∈ L∞(Ω) and that λ1(−d∆ +m(x)) > 0. Assume
further that K ∈ C(Ω × Ω) is a non-negative and non-identically zero function.
Then, there exists a unique eigenvalue σ1(d;m(x);K) > 0 of (6). Moreover, the
map σ 7−→ λ1 (−d∆ +m(x);σK) is continuous, decreasing and for all σ > 0, λ1 (−d∆ +m(x);σK) > 0, if σ < σ1 (d;m(x);K) ,

λ1 (−d∆ +m(x);σK) = 0, if σ = σ1 (d;m(x);K) ,
λ1 (−d∆ +m(x);σK) < 0, if σ > σ1 (d;m(x);K) .

(8)

Proof. See Theorem 2.7 and Proposition 2.6 of [8].

The following corollary will be used to study the behaviour of the coexistence
regions of (1). Its proof follows by Propositions 1 and 2.

Corollary 1. (i) Assume that K1,K2 ∈ C(Ω × Ω) are non-negative and non-
identically zero functions, m1,m2 ∈ L∞(Ω) and λ1(−d∆ + m1(x)) > 0. If
K1 ≤ K2 in Ω× Ω and m1 ≤ m2 in Ω, then

σ1 (d;m1(x);K2) ≤ σ1 (d;m2(x);K1) .

Moreover, if K1 6= K2 in Ω× Ω or m1 6= m2 in Ω, the inequality is strict.
(ii) Let Kn ∈ C(Ω × Ω) be non-negative and non-identically zero functions. If

λ1(−d∆ +m(x)) > 0 and Kn → K in C(Ω× Ω), as n→ +∞, then

σ1 (−d;m(x);Kn)→ σ1 (−d;m(x);K) , as n→ +∞.

For simplicity, in what follows we will make the following notations

σ1,1 ≡ σ1 (D1; 0;K) and σ1,2 ≡ σ1 (D2;α;K) . (9)

The next characterization will be useful throughout this work, its proof can found
in Lemma 2.4 of [8].

Lemma 2.1. The following claims are equivalent:

(i) There exists a strict super-solution for (5), that is, there exists a function
u ∈ W 2,p(Ω), with p > N , such that u ≥ 0 in Ω and satisfies, in the weak
sense,

−d∆u+m(x)u−
∫

Ω

K(x, y)u(y)dy ≥ 0 in Ω, u ≥ 0 on ∂Ω,

with some strict inequality;
(ii) (5) verifies the Strong Maximum Principle (SMP );

(iii) λ1 (−d∆ +m(x);K) > 0.

In the following proposition, we will prove some properties of λ1 (−d∆ +m(x);K)
that are not included in [8] and that will be used in this paper.
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Proposition 3. (i) If λ1 (−d∆ +m(x);K) > 0 and f ∈ L2(Ω), then the linear
problem: −∆u+m(x)u−

∫
Ω

K(x, y)u(y)dy = f(x) in Ω,

u = 0 on ∂Ω,
(10)

has unique solution in H1
0 (Ω). Moreover, if f ∈ PX , then u ∈ PX . Conse-

quently, if λ1 (−d∆ +m(x);K) > 0 and u ∈ X satisfies −∆u+m(x)u−
∫

Ω

K(x, y)u(y)dy = 0 in Ω,

u = 0 on ∂Ω,

then u = 0 in Ω.
(ii) If λ1 (−d∆ +m(x);K) 6= 0 and u ∈ PX satisfies −∆u+m(x)u−

∫
Ω

K(x, y)u(y)dy = 0 in Ω,

u = 0 on ∂Ω,

then u = 0 in Ω.

Proof. (i) Consider M > 0 and define the operator T : L2(Ω) −→ L2(Ω) by T (f) =
u, where u ∈ H1

0 (Ω) and

−∆u+ (m(x) +M)u−
∫

Ω

K(x, y)u(y)dy = f.

By Proposition 2.2 of [8], for M > 0 sufficiently large, T is a well defined, linear
and compact operator. Thus, by Fredholm Alternative Theorem, the existence and
uniqueness of solution of (10) is equivalent to show that the problem{

u−MTu = 0 in Ω,
u = 0 on ∂Ω,

(11)

only admits the trivial solution. Since λ1 (−d∆ +m(x);K) > 0, by Lemma 2.1,
(11) only admits the trivial solution. Therefore, (10) has unique solution. Lastly, if
f ∈ PX , the Strong Maximum Principle (see [17]) implies that u ∈ PX .
(ii) By Proposition 1, there exists an eigenfunction ϕ∗1 > 0 of L∗ associated to
λ1 (−d∆ +m(x);K). Hence,

0 = (ϕ∗1, Lu) = (L∗ϕ∗1, u) = λ1 (−d∆ +m(x);K)

∫
Ω

ϕ∗1u.

Since λ1 (−d∆ +m(x);K) 6= 0 and ϕ∗1 > 0, then u = 0 in Ω.

With these notations and results, to search of semi-trivial solutions of (1), we
will study the following non-linear problem: −d∆u+ βu = σF (u)

∫
Ω

K(x, y)u(y)dy in Ω,

u = 0 on ∂Ω,
(12)

with β ≥ 0, σ > 0 and F as in the Introduction. This equation has been analyzed
in [8] when β = 0 and F (u) = (A(x) − up)+, where p ≥ 1 and A ∈ C(Ω), with
A+ 6= 0, but it can be generalized in our case, as we will see in the next proposition.

Proposition 4. The following claims about (12) hold:
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(i) (12) has a unique positive solution in X, denoted by θσ[d;β;K], if and only if
σ > σ1 = σ1(d;β;K). Moreover,

θσ[d;β;K] ≤ 1 in Ω. (13)

(ii) If K1 ≤ K2 in Ω × Ω and σ1 ≤ σ2, then θσ1
[d;β;K1] ≤ θσ2

[d;β;K2] in Ω.
Moreover, the map σ 7−→ θσ[d;β;K] is continuous.

(iii) Denote θσ[d;β;K] simply by θσ. Then, the principal eigenvalue of the problem{
−d∆u+ βu− σF ′(θσ)K(θσ)u− σF (θσ)K(u) = λu in Ω,
u = 0 on ∂Ω,

(14)

is positive, that is,

λ1(−d∆ + β − σF ′(θσ(x))K(θσ)(x);σF (θσ(x))K) > 0. (15)

Proof. (i) Assume first that σ > σ1. We will prove the existence of positive solution
of (12) using the sub-super solutions method (Theorem 3.1 of [8]). Let ϕ1 > 0 be an
eigenfunction associated to λ1(−d∆+β;σK). Then, u = εϕ1, with ε > 0 sufficiently
small, and u = 1 is a pair of sub-super solutions of (12). By Theorem 3.1 of [8],
there exists a positive solution u ∈ X of (12) such that

εϕ1(x) ≤ u(x) ≤ 1 in Ω.

Thus, once proven the uniqueness, (13) follows immediately. Therefore, we will
prove the uniqueness of positive solution of (12). For this, suppose that there exist
two positive solutions of (12), u 6= v in Ω, and let w = u− v. We get, −d∆w +m(x)w − σF (u)

∫
Ω

K(x, y)w(y)dy = 0 in Ω,

w = 0 on ∂Ω,
(16)

where m(x) = β + σh(x)

∫
Ω

K(x, y)v(y)dy and

h(x) =

 −F (u)− F (v)

u− v
if u 6= v,

−F ′(u) if u = v.

Hence, (16) implies that there exists j0 ≥ 1 such that

λj0 (−∆ +m(x);σF (u(x))K) = 0. (17)

On the other hand, observe that v is a strict super-solution for (16). Indeed, it
suffices to prove that

− d∆v +m(x)v − σF (u)

∫
Ω

K(x, y)v(y)dy > 0 in Ω. (18)

Note that

−∆v +m(x)v = σ

[
F (v)

∫
Ω

K(x, y)v(y)dy + h(x)v

∫
Ω

K(x, y)v(y)dy

]
= σ(F (v) + h(x)v)

∫
Ω

K(x, y)v(y)dy.

Thus, (18) is equivalent to show

σ

[
(F (v) + h(x)v − F (u))

∫
Ω

K(x, y)v(y)dy

]
> 0 in Ω,
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that is, we must prove that

F (v) + h(x)v − F (u) > 0 in Ω. (19)

To prove (19), we will see the three possible cases:

(a) For the set {x ∈ Ω;u(x) > v(x)}, we have that

u > v ⇒ F (v) > F (u)

⇒ −F (u)u+ F (v)u > 0

⇒ (F (v)− F (u))(u− v)− F (u)v + F (v)v > 0

⇒ F (v)− F (u)− F (v)

u− v
· v − F (u) > 0

⇒ F (v) + h(x)v − F (u) > 0,

which proves (19).
(b) Similarly to (a), we obtain (19) for the set {x ∈ Ω;u(x) < v(x)}.
(c) For {x ∈ Ω;u(x) = v(x)}, we have

F ′(u) < 0⇒ −F ′(u) > 0⇒ F (v)− F ′(u)v − F (u) > 0,

which proves (19) in this case.

Hence, (18) is true and, from Lemma 2.1, we have that

λ1 (−∆ +m(x);σF (u(x))K) > 0.

But this is a contradiction because (17) and Proposition 1 imply that

0 < λ1 (−∆ +m(x);σF (u(x))K) ≤ Re(λj0 (−∆ +m(x);σF (u(x))K)) = 0.

Therefore, u = v in Ω. Finally, we show that, if u ∈ X is a positive solution of (12),
then σ > σ1. Observe that, from Proposition 1, we get

λ1(−d∆ + β;σ1K) = 0 = λ1(−d∆ + β;σF (u(x))K) > λ1(−d∆ + β;σK),

because u is positive and consequently F (u) < 1. From equation (8) in Proposi-
tion 2, we have that σ > σ1.
(ii) Note that θσ1 [d;β;K1] is a sub-solution of (12) for K = K2 and σ = σ2. Since
u = C, with C > 0 sufficiently large, is a super-solution of (12), (ii) follows by (i).
The continuity of the map σ 7−→ θσ[d;β;K] follows by (13) and by uniqueness of
positive solution for (12).
(iii) Since F is decreasing, then θσ is a strict super-solution of the problem (14).
Indeed, observe that

−d∆θσ + βθσ − σF ′(θσ)K(θσ)θσ − σF (θσ)K(θσ) = −σF ′(θσ)K(θσ)θσ > 0 in Ω.

Therefore, (iii) follows by Lemma 2.1.

In the next proposition, we show that θσ[d;β;K] converges uniformly to 1, on
compacts of Ω, when σ → +∞. For this, we will suppose that, further of the
assumptions above, K satisfies also that,

K(x, x) > 0 for all x ∈ Ω. (20)

Proposition 5. Assume (20). The following claim holds:

lim
σ→+∞

θσ[d;β;K] = 1, uniformly on compacts of Ω. (21)
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Proof. In this proposition, we will follow the ideas presented in [9], see also [13].
Again we will denote θσ[d;β;K] simply by θσ. To prove (21) we must show that
for each compact subset of A ⊂ Ω and ε > 0, there exists σ = σ(A, ε) > 0 such that

σ > σ(A, ε)⇒ 1− ε < θσ < 1 + ε in A.

First, observe that by (13), θσ ≤ 1 in Ω. Thus, it suffices to prove that

σ > σ(A, ε)⇒ θσ > 1− ε in A. (22)

Since A is compact, to show (22) it suffices to show that, given x0 ∈ A, there exists
a neighborhood of x0, U0 ⊂ Ω, and a σ1 = σ1(x0) > 0 such that

σ > σ1 ⇒ θσ > 1− ε in U0.

Let R > 0 such that B0 = BR(x0) ⊂ Ω. By Proposition 4(i), for σ > 0 sufficiently
large, the problem −d∆u+ βu = σF (u)

∫
Ω∩B0

K(x, y)u(y)dy in B0,

u = 0 on ∂B0,
(23)

has unique positive solution in X, because K(x0, x0) > 0. This solution will be
denoted by θB0

σ . Since θσ is a strict super-solution of (23), then

θB0
σ ≤ θσ in B0.

Thus, it suffices to show that there exists σ1 = σ1(x0) > 0 such that

σ > σ1 ⇒ θB0
σ > 1− ε in BR1

(x0),

with R1 ≤ R. Let ϕB0
1 > 0 be eigenfunction associated to λB0

1 (−d∆ + β) such that

|ϕB0
1 |∞ = 1 and ϕB0

1 (x0) = 1. Since K(x0, x0) > 0, if δ ∈ (0, 1), σ > 0 is sufficiently

large and u = δϕB0
1 , then we have that

λB0
1 (−d∆ + β)ϕB0

1 ≤ σF (δϕB0
1 )

∫
Ω

K(x, y)ϕB0
1 (y)dy in B0,

that is, u is a sub-solution of (23). Therefore, since ϕB0
1 (x0) = 1 and u = 1 is a

super-solution of (23), given ε > 0 there exist σ1(x0) > 0 and R1 ≤ R such that,
for σ > σ1

θB0
σ ≥ u > 1− ε in BR1

(x0),

which finishes the proof.

Now, we can study the existence of semi-trivial solution of (1). This study will
be divided in two cases: δ 6= 1 and δ = 1. For the case δ 6= 1, we have the following
result:

Proposition 6. Assume that δ 6= 1. Then:

(i) (1) does not have semi-trivial solution of the form (u, 0), with u > 0 in Ω.
(ii) (1) has semi-trivial solution of the form (0, θρ) if and only if ρ > σ1,2, where

θρ ≡ θρ[D2;α;K]. (24)

Proof. (i) Suppose that u > 0 in Ω. Then,

v = 0 in Ω⇒ 0 = (1− δ)γF (u)

∫
Ω

K(x, y)u(y)dy ⇒ F (u) = 0⇒ u ≥ 1 in Ω,
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that is, u 6= 0 on ∂Ω. Thus, (u, 0) is not semi-trivial solution of (1).
(ii) If u = 0, the system (1) has the form −D2∆v + αv = ρF (v)

∫
Ω

K(x, y)v(y)dy in Ω,

v = 0 on ∂Ω.
(25)

By Proposition 4, (25) has unique solution, θρ[D2;α;K], if and only if ρ > σ1,2.
Hence, the system (1) has semi-trivial solution of the form (0, θρ), for each ρ > σ1,2,
with θρ ≡ θρ[D2;α;K].

For the case δ = 1, we have the following result:

Proposition 7. Assume that δ = 1. For each γ > σ1,1, (1) has semi-trivial
solutions of the form (θγ , 0), where

θγ ≡ θγ [D1; 0;K]. (26)

Moreover, for each ρ > σ1,2, (1) has semi-trivial solutions of the form (0, θρ), where
θρ is as (24).

Proof. If u = 0, (1) has the form (25), that is, the system (1) has semi-trivial
solution of the form (0, θρ), for each ρ > σ1,2. If v = 0, (1) has the form −D1∆u = γF (u)

∫
Ω

K(x, y)u(y)dy in Ω,

u = 0 on ∂Ω.

By Proposition 4, this problem has unique solution, θγ [D1; 0;K], if and only if
γ > σ1,1. Hence, the system (1) has semi-trivial solution of the form (θγ , 0), for
each γ > σ1,1, where the result follows.

Finally, we conclude this section by studying the following perturbation of the
problem (12) which will be used in the next section: −d∆u+ βu = B(x) + σF (u)

∫
Ω

K(x, y)u(y)dy in Ω,

u = 0 on ∂Ω,
(27)

with B ∈ C(Ω) a non-negative and non-identically zero function. We have the next
proposition:

Proposition 8. Suppose that B ∈ C(Ω) is a non-negative and non-identically
zero function. Then, (27) has a unique positive solution, which will be denoted by
Θσ[d;β;B;K], for all σ ≥ 0.

Proof. The existence follows similarly to item (i) of Proposition 4, with u = 0 and
u = Ce, where e > 0 is the unique solution of the problem{

−d∆u+ βu = 1 in Ω̃,

u = 0 on ∂Ω̃,

Ω̃ ⊂ IRN is a regular domain, with Ω ⊂ Ω̃, and C > 0 is sufficiently large such that

C

(
1− σF (Ce)

∫
Ω

K(x, y)e(y)dy

)
≥ B(x) in Ω.
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For the uniqueness, suppose that there exist two positive solutions of (27), u 6= v
in Ω, and let w = u− v. Hence, −d∆w + βw − σF (u)

∫
Ω

K(x, y)w(y)dy = 0 in Ω,

w = 0 on ∂Ω,

where m(x) = β + σh(x)

∫
Ω

K(x, y)v(y)dy and

h(x) =

 −F (u)− F (v)

u− v
if u 6= v,

−F ′(u) if u = v,

that is, the uniqueness also follows similarly to item (i) of Proposition 4.

3. A priori bounds and non-existence results. In this section, we will study
a priori bounds of the coexistence states of (1) and prove non-existence results of
coexistence states for (1). Let us start with a priori bounds.

Proposition 9. Assume that δγ > σ1,1 and ρ > σ1,2. If (u, v) ∈ X × X is a
coexistence state of (1), then

u ≤ θδγ [D1; 0;K] in Ω, (28)

and {
v ≤ θρ in Ω if δ = 1,
v ≤ Θρ[D2;α;B;K] in Ω if δ 6= 1,

(29)

where B(x) = (1− δ)γK(θδγ [D1; 0;K]).

Proof. For (28) it suffices to note that

−D1∆u = δγF (u+ v)K(u) ≤ δγF (u)K(u),

that is, u is sub-solution of the problem −D1∆u = γδF (u)

∫
Ω

K(x, y)u(y)dy in Ω,

u = 0 on ∂Ω.
(30)

Since u = 1 is a super-solution of (30), then (28) follows by Proposition 4(ii). On
the other hand, by (28) we have

−D2∆v + αv = (1− δ)γF (u+ v)K(u) + ρF (u+ v)K(v)

≤ (1− δ)γF (u)K(u) + ρF (v)K(v)

≤ (1− δ)γK(θδγ [D1; 0;K]) + ρF (v)K(v).

Hence, (29) follows similarly to (28), using Proposition 8 and equation (25).

We have the following results about non-existence of coexistence states of (1),
which follows immediately of Proposition 4(i).

Proposition 10. (i) If δγ ≤ σ1,1, then (1) does not have coexistence states.
(ii) If δ = 1 and ρ ≤ σ1,2, then (1) does not have coexistence states.
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4. Coexistence states for the case δ 6= 1. In this section, we will study the
existence of coexistence states of (1) in the case that δ 6= 1. Observe that if δ = 0
then (1) implies that u = 0. Hence, in this case, (1) does not have coexistence
states. Thus, in this section, we assume that δ 6= 0.

We are going to apply the bifurcation method in this section. Let us point
out some important remarks in the application of the bifurcation results to elliptic
systems:

1. In order to apply the classical Rabinowitz’s Theorem [22] we need to write
our system (1) in the form

U = λKU +N(λ,U) in E, (31)

where U = (u, v) ∈ E := E1 × E2, Ei Banach spaces, K is a compact linear
operator in E, N(λ,U) a continuos operator, compact on bounded sets, such
that N(λ,U) = o(‖U‖) as U → 0 uniformly in any compact interval of IR and
λ ∈ IR the bifurcation parameter. However, our system can not be written in
this way, because we have different parameters in our equations.

2. Observe that if we could apply the Rabinowitz’s Theorem, the continuum of
nontrivial solutions emanating from the trivial solution could be a semi-trivial
solution (u, 0) or (0, v), i. e., it might not contain coexistence states.

3. To overcome these difficulties Blat and Brown [2] act of the following way:
Fix the parameter ρ, bifurcate from the semi-trivial solution (0, θρ) and con-
sider γ as bifurcation parameter. Following this strategy, in [19] an abstract
theory is developed to show the existence of a continuum of coexistence states
emanating from a semi-trivial solution.

4. First, we localize a value of γ, γ0, such that the fixed point index of (0, θρ)
changes sign as γ crosses γ0. Mainly, we apply the Crandall-Rabinowitz The-
orem to find the value of γ0 = σ1(D1; 0; δF (θρ(x))K).

5. As consequence of this change of index, there exists a continuum Σ of nontri-
vial solutions, which possesses a subcontinuum Σ+ such that in a neighbor-
hood of (γ0, 0, θρ) are coexistence states. Let C+ denote the subcomponent of
Σ+ satisfying

C+ ⊂ IR× int(P1)× int(P2),

where Pi is the positive cone of Ei.
6. This continuum has two possibilities: or it is unbounded in IR×E1×E2 or it

leaves int(P1)× int(P2). If the second option occurs, then:
(a) or it leaves int(P1)× int(P2) across ∂P1, in such case there exists γ1 such

that (γ1, 0, vγ1) ∈ cl(C+), where cl(C+) denotes the closure of the set C+;
(b) or it leaves int(P1)× int(P2) across ∂P2, in such case there exists γ2 such

that (γ2, uγ2 , 0) ∈ cl(C+);
(c) or there exists γ3 such that (γ3, 0, 0) ∈ cl(C+).

7. We have to decide which possibility occurs.

Remark 1. By Proposition 4, for 0 < ρ ≤ σ1,2, we have θρ ≡ 0. Thus,

σ1(D1; 0; δF (θρ(x))K) =
σ1,1

δ
, if 0 < ρ ≤ σ1,2.

We will use this in the next result.

Theorem 4.1. Assume that δ 6= 1 and δ 6= 0. If

ρ > 0 and γ > σ1(D1; 0; δF (θρ(x))K), (32)
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then there exists at least a coexistence state of (1).

Proof. We will apply the Crandall-Rabinowitz Theorem (see [5]) considering γ as
bifurcation parameter and we will prove the existence of a value of γ, γ0, which
determines a bifurcation point from the semi-trivial solution (0, θρ) for each ρ > σ1,2

and from the trivial solution (0, 0) for 0 < ρ < σ1,2, the case ρ = σ1,2 will result by
approximation. First, we will introduce some notation given in [19]. Denote by e1

and e2, respectively, the unique positive solutions of the following linear problems:{
−D1∆e1 = 1 in Ω,
e1 = 0 on ∂Ω,

(33)

and {
−D2∆e2 + αe2 = 1 in Ω,
e2 = 0 on ∂Ω.

(34)

Observe that ei ∈ X are strictly positive functions, for i = 1, 2. Let Ei, i = 1, 2,
denote the Banach space consisting of all functions w ∈ C(Ω) for which there exists
β = β(w) > 0 such that

− βei < w < βei, (35)

endowed with the norm

||w||Ei
:= inf {β > 0; −βei < w < βei} .

Then Ei is an ordered Banach space whose positive cone, denoted by Pi, is normal
and has a nonempty interior. Moreover, Ei ↪→ C(Ω) (see [1] and [19] for more
details). Now, we will study each case said above. Let us see:
Case ρ > σ1,2: Consider the operator

F : IR× E1 × E2 −→ E1 × E2

defined by

F(γ, u, v) =

(
u− L1 [δγF (u+ v)K(u)]

v − L2 [(1− δ)γF (u+ v)K(u) + ρF (u+ v)K(v)]

)
,

where L1 = (−D1∆)−1 and L2 = (−D2∆ + α)−1 under homogeneous Dirichlet
boundary conditions. We have that the operator F is well defined and

D(u,v)F(γ, 0, θρ) =

(
D(u,v)F(γ, 0, θρ)1

D(u,v)F(γ, 0, θρ)2

)
,

where

D(u,v)F(γ, 0, θρ)1(ξ, η)t = ξ − L1[δγF (θρ)K(ξ)]

and

D(u,v)F(γ, 0, θρ)2(ξ, η)t = η − L2[(1− δ)γF (θρ)K(ξ)

+ρK(θρ) (F ′(θρ)ξ + F ′(θρ)η)

+ρF (θρ)K(η)].

We claim that, for γ0 = σ1(D1; 0; δF (θρ(x))K),

dim
(
Ker[D(u,v)F(γ0, 0, θρ)]

)
= 1.

To prove this, let us consider ϕ1 eigenfunction associated to γ0. Observe that by
Proposition 3(i) and Proposition 4(iii), the linear problem{

D(u,v)F(γ0, 0, θρ)2(ϕ1, η)t = 0 in Ω,
η = 0 on ∂Ω,

(36)
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has a unique solution, because

λ1(−D2∆ + α− ρF ′(θρ(x))K(θρ)(x); ρF (θρ(x))K) > 0.

This solution will be denoted by ϕ2. Observe also that

D(u,v)F(γ, 0, θρ)1(ξ, η)t = 0⇒ ξ = ϕ1. (37)

Therefore, by (37) and (36), we have

Ker[D(u,v)F(γ0, 0, θρ)] = span {(ϕ1, ϕ2)} .

On the other hand, differentiating with respect to γ, we obtain

Dγ(u,v)F(γ, 0, θρ)(ξ, η)t =

(
−L1[δF (θρ)K(ξ)]

−L2[(1− δ)F (θρ)K(ξ)]

)
.

We must show that

Dγ(u,v)F(γ0, 0, θρ)(ϕ1, ϕ2)t /∈ R(D(u,v)F(γ, 0, θρ)). (38)

For this, suppose that there exists (ξ, η) ∈ X ×X such that

−D1∆ξ − δγ0F (θρ)

∫
Ω

K(x, y)ξ(y)dy = −δF (θρ)

∫
Ω

K(x, y)ϕ1(y)dy.

Let L̂∗ be the adjoint of the operator L̂ : X → X defined by

L̂u = −D1∆u− δγ0F (θρ)

∫
Ω

K(x, y)u(y)dy.

By Proposition 1 there exists ϕ∗1 ∈ X∗ an positive eigenfunction of L̂∗ associated
to γ0. Since λ1(−D1∆; δσ1(D1; 0; δF (θρ(x))K)F (θρ(x))K) = 0, we have that

0 = (L̂∗ϕ∗1, ξ) = (ϕ∗1, L̂ξ) = −δ
∫

Ω

(∫
Ω

K(x, y)ϕ1(y)dy

)
F (θρ(x))ϕ∗1(x)dx < 0,

a contradiction, which proves (38). By the Crandall-Rabinowitz Theorem, the point
(γ0, 0, θρ) is a bifurcation point from the semi-trivial solution (0, θρ).

Now, we will use the arguments present in the book [19] to study the global
behaviour of the solutions of (1) that bifurcates of (γ0, 0, θρ). According to The-
orem 4.2.3 of [19], γ0 is a nonlinear eigenvalue of D(u,v)F(γ, 0, θρ) with algebraic
multiplicities 1 and by Theorem 5.6.2 of [19] the local index of (0, θρ) changes sign
as γ crosses γ0. Moreover, from Propositions 3(ii) and 4(iii) we have that (ρ, θρ)
is a nondegenerate positive solution of (25). Since D(u,v)F(γ, 0, θρ) is a Fredholm
operator with index zero, because it is a compact perturbation of the identity map,
we can apply a slight variant of Theorem 7.2.2 of [19]. Indeed, although our pro-
blem (1) has not exactly the structure of the problem analysed in [19], a change of
the local index of (0, θρ) occurs when γ crosses γ0, which it is what is really needed
to apply Theorem 7.2.2 of [19]. Hence, we conclude that there exists a continuum
C+ ⊂ IR× E1×E2 of coexistence states of (1) emanating from the point (γ0, 0, θρ)
such that either:

(i) C+ is unbounded in IR× E1 × E2; or
(ii) there exist γ1 ∈ IR and uγ1

6= 0 such that (γ1, uγ1
, 0) ∈ cl(C+); or

(iii) there exist γ2 ∈ IR, with δγ2 6= γ0, and vγ2
such that (γ2, 0, vγ2

) ∈ cl(C+); or
(iv) there exists γ3 ∈ IR such that (γ3, 0, 0) ∈ cl(C+),
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We will show that each of the last three items can not occur:
(ii) Suppose that there exists (γn, un, vn) ∈ C+ such that

(γn, un, vn)→ (γ1, uγ1
, 0) in C+.

Since uγ1
6= 0, the first equation of (1), the elliptic regularity and Proposition 4

implies that δγ1 > σ1,1 and uγ1
= θδγ1

[D1; 0;K]. But the second equation of (1)
implies that

0 = (1− δ)γ1F (θδγ1
[D1; 0;K])K(θδγ1

[D1; 0;K]),

that is, uγ1
≥ 1 in Ω. This is a contradiction, because θδγ1

[D1; 0;K] = 0 on ∂Ω.
(iii) Suppose that there exists (γn, un, vn) ∈ C+ such that

(γn, un, vn)→ (γ2, 0, vγ2
) in C+.

As above, if vγ2
6= 0, the second equation of (1) implies that vγ2

= θρ. Take
wn = un/|un|∞, by the elliptic regularity we have that wn → w in X, with w ∈ PX
satisfying

−D1∆w = δγ2F (θρ)K(w),

that is, δγ2 = γ0, which is a contradiction.
(iv) Suppose that there exists (γn, un, vn) ∈ C+ such that

(γn, un, vn)→ (γ3, 0, 0) in C+.

Consider
ξn =

un
|un|∞ + |vn|∞

and ηn =
vn

|un|∞ + |vn|∞
.

As above, there exist ξ, η ∈ PX such that

ξn → ξ and ηn → η, in X.

If δγ3 6= σ1,1, the first equation of (1) implies that ξ = 0. On the other hand, ξ = 0
and the second equation of (1) implies that η = 0, because ρ > σ1,2. But this is

impossible because |ξ|∞ + |η|∞ = 1. If δγ3 = σ1,1, then ξ 6= 0 and the second
equation of (1) implies that

−D2∆η + αη = (1− δ)γ3K(ξ) + ρK(η),

that is,
−D2∆η + αη − ρK(η) = (1− δ)γ3K(ξ) > 0.

From Lemma 2.1, we have that ρ < σ1,2, a contradiction. Hence, (iv) can not occur.
Therefore, C+ is unbounded in IR×E1×E2. By Proposition 9 there exists a constant
C > 0 such that, for any coexistence states (u, v) ∈ C+, we have

|u|∞ ≤ C and |v|∞ ≤ C.
By elliptic regularity, there exists a constant C1 > 0 such that

||u||E1 ≤ C1 and ||v||E2 ≤ C1.

Moreover, by Proposition 10, (1) does not have coexistence states if δγ ≤ σ1,1.
Hence, (γ0,+∞) ⊂ Proj(C+), with Proj(C+) denoting the projection of the set C+

on IR, from where the proof concludes for this case.
Case 0 < ρ < σ1,2: In this case we claim that there exists a unbounded continuum

C+ ⊂ IR× E1 × E2 of coexistence states of (1) emanating from the point (γ0, 0, 0),
where γ0 =

σ1,1

δ . Indeed, observe that

D(u,v)F(γ, 0, 0)(ξ, η)t =

(
ξ − L1[δγK(ξ)]

η − L2[(1− δ)γK(ξ) + ρK(η)].

)
.
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Thus,
dim

(
Ker[D(u,v)F(γ0, 0, 0)]

)
= 1,

because ρ < σ1,2 implies that

λ1(−D2∆ + α; ρK) > 0.

Hence, the linear problem{
−D2∆η + αη = (1− δ)γK(ϕ1) in Ω,
η = 0 on ∂Ω,

has unique solution, where ϕ1 is an eigenfunction associated to γ0. Moreover, since
ρ < σ1,2 Proposition 2 implies that (ρ, θρ) is a nondegenerate positive solution of
(6). Thus, similarly to case ρ > σ1,2, we can use Theorem 7.2.2 of [19] and conclude
that there exists a unbounded continuum C+ ⊂ IR× E1 ×E2 of coexistence states
of (1) emanating from the point (γ0, 0, θρ) such that (γ0,+∞) ⊂ Proj(C+).
Case ρ = σ1,2: We will study this case by approximation. For this, consider the

pair (γ, σ1,2), with δγ > σ1,1. By previous cases, there exists a sequence ρn > σ1,2

such that ρn → σ1,2 and there exists solutions (un, vn) ∈ X × X of (1) for the
parameter γ and ρn such that un → u and vn → v in X. We must show that
u, v > 0. Let

ξn =
un
|un|∞

and ηn =
vn
|vn|∞

.

Observe that |ξn|∞ = |ηn|∞ = 1. Thus, there exist ξ, η ∈ PX such that

ξn → ξ and ηn → η, in X.

Suppose that u = 0. Then,
−D1∆ξ = δγK(ξ).

Since δγ > σ1,1, we have that ξ = 0, a contradiction, because |ξn|∞ = 1. Similar
to item (ii) above, we can not have v = 0, which concludes the proof of the
Theorem.

Remark 2. Although we are assuming that ρ > 0 by biological meaning, the above
theorem is true if ρ = 0.

5. Coexistence states for the case δ = 1. In this section, we will study the
existence of coexistence states of (1) for δ = 1. In this case the system (1) simply is −D1∆u = γF (u+ v)K(u) in Ω,

−D2∆v + αv = ρF (u+ v)K(v) in Ω,
u = v = 0 on ∂Ω.

(39)

Observe that by Proposition 7, for each γ > σ1,1 and ρ > σ1,2, system (39) has the
semi-trivial solutions

y1 = (θγ , 0) and y2 = (0, θρ).

For this case, the a priori bounds given in Proposition 9 do not allow us to use
bifurcation results again. Thus, we will compute the index of these semi-trivial
solutions and of the trivial solution using the theory of fixed point index with
respect to the positive cone (see [1], [6] and [20] for more details). For this, we need
some notations and results. First, let us consider the sets:

N1 = {u ∈ PX ;u ≤ |θγ |∞ + 1 in Ω} , N2 = {u ∈ PX ;u ≤ |θρ|∞ + 1 in Ω}
and

N = N1 ×N2.
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Let M > 0 be sufficiently large and define the homotopy H : [0, 1]×N −→ X ×X
by

H(t, u, v) = (L1[Mu+ γF (u+ tv)K(u)], L2[Mv + ρF (tu+ v)K(v)]) ,

where L1 = (−D1∆+M)−1 and L2 = (−D2∆+α+M)−1, both under homogeneous
Dirichlet boundary conditions. Observe that, by choice of N1 and N2 the homotopy
H is well defined and admissible. Indeed, if there exists (u0, v0) ∈ ∂N such that
H(t, u0, v0) = (u0, v0), for some t ∈ [0, 1], then

−∆u0 = γF (u0 + tv0)K(u0) ≤ γF (u0)K(u0),

and, as in Proposition 9, we get u0 ≤ θγ in Ω, which is a contradiction, because
(u0, v0) ∈ ∂N . Define

E = X ×X and W = PX × PX .
We will consider also the following sets:

Wy = {x ∈ E; y + tx ∈W, for some t > 0} and Sy =
{
x ∈Wy;−x ∈Wy

}
.

For y1 = (θγ , 0) and y2 = (0, θρ), we have

Wy1 = X × PX ,Wy2 = PX ×X and Sy1 = X × {0} , Sy2 = {0} ×X.
Lastly, let My1 = {0}×X, My2 = X ×{0} and consider the continuous projections
Py1 : E −→My1 and Py2 : E −→My2 , given by

Py1(u, v) = (0, v) and Py2(u, v) = (u, 0).

To compute the total index over N and the index of trivial solution (0, 0), we will
use the following lemma. In this lemma, we will consider P ρ = ρB ∩ PX , where B
is the open unit ball of X, and its proof can be found in [1]:

Lemma 5.1. Let f : P ρ −→ PX be a compact map such that f(0) = 0. Suppose
that f has a right derivative f ′+(0) at zero such that 1 is not an eigenvalue of f ′+(0)
to a positive eigenvector. Then, there exists a constant σ0 ∈ (0, ρ] such that for
every σ ∈ (0, σ0],

(i) iW (f, Pσ) = 1 if f ′+(0) has no positive eigenvector for an eigenvalue greater
than one;

(ii) iW (f, Pσ) = 0 if f ′+(0) possesses a positive eigenvector for an eigenvalue
greater than one.

Remark 3. iW (f, Pρ) denotes the index of f over Pρ with respect to W . More
generality, we will denote by iW (T,Z) the index of the operator T over Z with
respect to the set Z. Moreover, for an isolated fixed point y of the operator T ,
iW (T, y) will denote the local index of T at y (see [1] for more details).

The next lemma will be used to compute the index of semi-trivial solutions. Its
proof can be found in [6]:

Lemma 5.2. (i) If I−DxH(1, y) is an invertible operator on E and the spectral
radius of PyDxH(1, y)|My , denoted by Spr (PyDxH(1, y)|My ), is greater than
one, then iW (H(1, ·), y) = 0.

(ii) If I−DxH(1, y) is an invertible operator on E and Spr (PyDxH(1, y)|My
) < 1,

then iW (H(1, ·), y) = (−1)χ, where χ is the sum of the multiplicities of the all
eigenvalues of DxH(1, y) greater than one.

(iii) If I−DxH(1, y) is an invertible on Wy instead of E and there is some w ∈Wy

such that the equation (I − DxH(1, y))x = w has no solution x ∈ Wy, then
iW (H(1, ·), y) = 0.



1784 M. DELGADO, I. B. M. DUARTE AND A. SUÁREZ FERNÁNDEZ

We use several times the following lemma:

Lemma 5.3. Assume that T is a compact and strongly positive linear operator on

an ordered Banach space X̃, with int (PX̃) 6= ∅. Let u > 0 be a positive element of

X̃. We have the following conclusions:

(i) If Tu > u, then Spr T > 1.
(ii) If Tu < u, then Spr T < 1.

(iii) If Tu = u, then Spr T = 1.

Proof. We will prove the item (i). Assume that u− Tu < 0. Since T is a strongly
positive linear operator, then T is a positive irreducible operator. Moreover, T is a
compact and int (PX̃) 6= ∅. It follows by the Theorem 12.3 of [7] that r(T ) = Spr T
is a simple eigenvalue of T ∗ with a strictly positive eigenfunction associated. Then,

0 > (u, u∗)− (Tu, u∗) = (u, u∗)− (u, Tu∗) = (u, u∗)− r(T )(u, u∗),

where we deduce that Spr T = r(T ) > 1, because (u, u∗) > 0. The items (ii) and
(iii) follow analogously.

Remark 4. A similar result has been proved in [16] assuming that PX̃ is a normal
cone and int (PX̃) 6= ∅ because the classical Krein-Rutman Theorem is used (see

[1]). However, we are going to use the result for the space C1
0 (Ω) where the cone is

not normal (see [1]).

With these considerations, we have the following result:

Theorem 5.4. Assume that γ > σ1,1 and ρ > σ1,2, then the following claims are
verified:

(i) iW (H(1, ·, ·), N) = 1;
(ii) (0, 0) is an isolated solution of H(1, ·, ·), moreover, iW (H(1, ·, ·), (0, 0)) = 0;

(iii) iW (H(1, ·, ·), (0, θρ)) = 0, if γ > σ1(D1; 0;F (θρ(x))K);
(iv) iW (H(1, ·, ·), (0, θρ)) = 1, if γ < σ1(D1; 0;F (θρ(x))K);
(v) iW (H(1, ·, ·), (θγ , 0)) = 0, if ρ > σ1(D2;α;F (θγ(x))K);

(vi) iW (H(1, ·, ·), (θγ , 0)) = 1, if ρ < σ1(D2;α;F (θγ(x))K).

Proof. (i) From the properties of index,

iW (H(1, ·, ·), N) = iW (H(0, ·, ·), N) =

2∏
j=1

iPX
(Hj , Nj),

where iPX
(Hj , Nj) is the index of Hj over Nj with respect to PX and

H1(u) = L1[Mu+ γF (u)K(u)] and H2(v) = L2[Mv + ρF (v)K(v)].

We will show that

iPX
(H1, N1) = iPX

(H2, N2) = 1.

For this, we fix M > 0 and we define the homotopies

G1(t, u) = L1 (Mu+ tγF (u)K(u)) ,

G2(t, v) = L2 (Mv + tρF (v)K(v)) ,

for each (t, u, v) ∈ [0, 1]×N . From the homotopy invariance property, we get

iPX
(Hj , Nj) = iPX

(Gj(1, ·), Nj) = iPX
(Gj(0, ·), Nj) = iPX

(Gj(0, ·), 0),
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for j = 1, 2. Now, observe that Spr G1(0, ·) < 1 and Spr G2(0, ·) < 1. Indeed, for
instance, if r ∈ IR is such that G1(0, u) = ru, with u ∈ N1 and u 6= 0, then

−D1∆u = M

(
1

r
− 1

)
u.

Since λ1(−D1∆) > 0, then r < 1. Similarly for G2(0, ·), because α > 0. Hence, (i)
follows by Lemma 5.1.
(ii) Observe that

D(u,v)H(1, 0, 0)(u, v) =

(
L1(Mu+ γK(u))
L2(Mv + ρK(v))

)
.

Since γ > σ1,1 and ρ > σ1,2, the operator I − D(u,v)H(1, 0, 0) is invertible on W ,
that is, 1 is not eigenvalue of D(u,v)H(1, 0, 0) with a positive eigenfunction. We will
show that the operator T : PX → PX defined by Tu = L1(Mu+γK(u)) has spectral
radius greater than one. For this, observe that since M > 0 is sufficiently large, we
can use the arguments in Proposition 3(i) and the Strong Maximum Principle of [17]
and conclude that the operator T is a compact and strongly positive linear operator.
On the other hand, since γ > σ1,1, by Proposition 2, there exists µ ∈ (σ1,1, γ)
such that λ1(−D1∆;µK) < 0. Let ϕ1 > 0 be an eigenfunction associated to
λ1(−D1∆;µK), then Tϕ1 > ϕ1. Indeed, we have that

Tϕ1 > ϕ1 ⇔ L1(Mϕ1 + γK(ϕ1)) > ϕ1

⇔ γK(ϕ1) > λ1(−D1∆;µK)ϕ1 + µK(ϕ1)

⇔ (γ − µ)K(ϕ1) > λ1(−D1∆;µK)ϕ1.

Since λ1(−D1∆;µK) < 0 and γ > µ, then Tϕ1 > ϕ1. By Lemma 5.3, we have that

r1 = Spr T > 1.

Let Ψ1 > 0 be an eigenfunction associated to r1. Then,

D(u,v)H(1, 0, 0)(Ψ1, 0) = r1(Ψ1, 0),

where (ii) follows by Lemma 5.1.
(v) Observe that once proven (v), (iii) follows by symmetry. Thus, we will prove
only (v). We have that

D(u,v)H(1, θγ , 0)(u, v) =

(
L1[Mu+ γF ′(θγ)K(θγ)(u+ v) + γF (θγ)K(u)]

L2[Mv + ρF (θγ)K(v)]

)
.

By the Maximum Principle of [17], the operator D(u,v)H(1, θγ , 0) maps Wy1 into
Wy1 . We will show that I − D(u,v)H(1, θγ , 0) is invertible on Wy1 . For this, let
(u, v) ∈Wy1 such that

(I −D(u,v)H(1, θγ , 0))(u, v) = (0, 0).

Since ρ > σ1(D2;α;F (θγ(x))K), Proposition 3(iii) implies that v = 0. Hence,

−D1∆u− γF ′(θγ)K(θγ)u− γF (θγ)K(u) = 0.

On the other hand, from Proposition 4(iii)

λ1(−D1∆− γF ′(θγ(x))K(θγ)(x); γF (θγ(x))K) > 0.

Thus, by Proposition 3(i) we have that u = 0. Hence, I − D(u,v)H(1, θγ , 0) is
invertible on Wy1 . Now, from the Lemma 5.2 it suffices to prove that the operator
I − D(u,v)H(1, θγ , 0) does not have full rank. Suppose that the operator has full
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rank. Then, take v0 ∈ PX \ {0} such that L2v0 ∈ PX , then there exists v ∈ PX and
f ∈ X satisfying

(I −D(u,v)H(1, θγ , 0))(u, v) = (f, L2v0),

that is,

−D2∆v + αv − ρF (θγ)

∫
Ω

K(x, y)v(y)dy = v0 > 0.

Thus, by Lemma 2.1, we have

ρ < σ1(D2;α;F (θγ(x))K),

a contradiction. Therefore, I − D(u,v)H(1, θγ , 0) does not have full rank, and (v)
follows by Lemma 5.2.
(vi) Observe that once proven (vi), (iv) follows by symmetry. Thus, we will prove
only (vi). We have that the operator I−D(u,v)H(1, θγ , 0) is invertible on E. Indeed,
let (u, v) ∈ E such that

(I −D(u,v)H(1, θγ , 0))(u, v) = (0, 0).

Once again by Proposition 3(iii) we have that v = 0 and

−D1∆u− γF ′(θγ)K(θγ)u− γF (θγ)K(u) = 0⇒ u = 0.

Now, we will show that

Spr
(
Py1

(
D(u,v)H(1, θγ , 0)

)
|My1

)
< 1.

This is equivalent to show that the operator T : X → X defined by

Tv = L2(Mv + ρF (θγ)K(v))

has spectral radius less than 1. For this, observe that again T is a compact and
strongly positive linear operator. On the other hand, since ρ < σ1(D2;α;F (θγ(x))K),
there exists

µ ∈ (ρ, σ1(D2;α;F (θγ(x))K))

such that λ1(−D2∆+α;µF (θγ(x))K) > 0. If ϕ1 > 0 is an eigenfunction associated
λ1(−D2∆ + α;µF (θγ(x))K), then Tϕ1 < ϕ1. Indeed, we have that

Tϕ1 < ϕ1 ⇔ L2(Mϕ1 + ρF (θγ)K(ϕ1)) < ϕ1

⇔ Mϕ1 + ρF (θγ)K(ϕ1) < −D2∆ϕ1 + αϕ1 +Mϕ1

⇔ (ρ− µ)F (θγ)K(ϕ1) < λ1(−D2∆ + α;µF (θγ(x))K)ϕ1.

Since λ1(−D2∆ + α;µF (θγ(x))K) > 0 and ρ < µ, then Tϕ1 < ϕ1. Hence, by
Lemma 5.3, we have that

Spr Py1
(
D(u,v)H(1, θγ , 0)

)
|My1

< 1.

Lastly, we will show that χ = 0, where χ is the sum of the multiplicities of the
all eigenvalues of D(u,v)H(1, θγ , 0) greater than one. Let λ be an eigenvalue of
D(u,v)H(1, θγ , 0) with eigenfunction (u0, v0). We have two alternatives, v0 6= 0 or
v0 = 0. For v0 6= 0, λ is an eigenvalue of

Py1
(
D(u,v)H(1, θγ , 0)

)
|My1

.

Since Py1
(
D(u,v)H(1, θγ , 0)

)
|My1

has spectral radius less than 1, we get λ < 1 and
χ=0, in this case. For v0 = 0, we have u0 6= 0. Hence,

L1 (Mu0 + γF ′(θγ)K(θγ)u0 + γF (θγ)K(u0)) = λu0.
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It suffices to show that the spectral radius of the operator T : X −→ X, defined by

T (u) = L1 (Mu+ γF ′(θγ)K(θγ)u+ γF (θγ)K(u)) ,

is less than 1. For this, consider m : Ω −→ IR defined by

m(x) = −γF ′(θγ)

∫
Ω

K(x, y)θγ(y)dy.

Observe that the operator T is strongly positive. Indeed, let f ∈ PX and u = T (f),
we get

(−D1∆ +M)u = (M −m(x))f(x) + γF (θγ)

∫
Ω

K(x, y)f(y)dy.

Since M > 0 is sufficiently large, the Maximum Principle of [17] gives us that
T (f) = u ∈ int PX , that is, T is strongly positive. Moreover, T is a compact and
linear operator. On the other hand, if ϕ1 > 0 is an eigenfunction associated to
λ1(−D1∆ +m(x); γF (θγ(x))K). Observe that

(−D1∆ +M)ϕ1 = λ1(−D1∆ +m(x); γF (θγ)(x)K)ϕ1 + (M −m(x))ϕ1

+γF (θγ)

∫
Ω

K(x, y)ϕ1(y)dy

> Mϕ1 −m(x)ϕ1 + γF (θγ)

∫
Ω

K(x, y)ϕ1(y)dy,

that is, ϕ1 > T (ϕ1). By Lemma 5.3, we have that Spr T < 1, hence, λ < 1 and
χ=0, also in this case. Therefore, (v) follows by Lemma 5.2.

As consequence of Theorem 5.4, we have the following results:

Theorem 5.5. Assume that δ = 1, γ > σ1,1 and ρ > σ1,2. If

(γ − σ1(D1; 0;F (θρ(x))K)) · (ρ− σ1(D2;α;F (θγ(x))K)) > 0, (40)

then there exists at least a coexistence state of (39).

Corollary 2. Assume that δ = 1, γ > σ1,1 and ρ > σ1,2. If

γ > σ1(D1; 0;F (θρ(x))K) and ρ > σ1(D2;α;F (θγ(x))K),

then there exists at least a coexistence state of (39). Moreover, the sum of the index
of all coexistence states of (39) is 1.

Corollary 3. Assume that δ = 1, γ > σ1,1 and ρ > σ1,2. If

γ < σ1(D1; 0;F (θρ(x))K) and ρ < σ1(D2;α;F (θγ(x))K),

then there exists at least a coexistence state of (39). Moreover, the sum of the index
of all coexistence states of (39) is -1.

Remark 5. 1. Recall that when an isolated solution has index 1 (resp. -1), it
is generically stable (resp. unstable) with respect to its associated parabolic
problem, see for instance [14].

2. Observe that, in all the results of Sections 5 and 6, the compactness of some
operators has been essential. Hence, we need the coefficients D1 and D2 are
both positive. When D1 and/or D2 vanish, the integral term is in fact a
nonlocal diffusion term (see Remark 2.2 in [12]) and it is a very interesting
problem to study the stationary solutions in such case.
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6. Coexistence regions. In this section, we analyze the coexistence regions of
(1), that is, the region of the plane (γ−ρ) ⊂ IR2 defined by (32) when δ 6= 1 and by
(40) when δ = 1. For this, we need to suppose again that K satisfies (20), that is,

K(x, x) > 0 for all x ∈ Ω.

Firstly, let us see the following result of convergence:

Proposition 11. The following limit holds

lim
σ→+∞

σ1(d;β;F (θσ[d;β;K](x))K) = +∞.

Proof. We will denote θσ[d;β;K] simply by θσ. Suppose that there exists M > 0
such that

σn = σ1(−d∆ + β;F (θn(x))K) ≤M, for all n > σ1(d;β;K).

Since F ≤ 1, we have

0 = λ1(−d∆ + β;σnF (θn(x))K)

≥ λ1(−d∆ + β;MF (θn(x))K)

≥ λ1(−d∆ + β;MK).

Thus, the sequence {λ1(−d∆ + β;MF (θn(x))K)}n∈IN is bounded. Let ϕn > 0 be
eigenfunction associated to λ1(−d∆ + β;MF (θn(x))K), with |ϕn|2 = 1. Then, for
each ϕ ∈ C∞0 (Ω), we get

d

∫
Ω

∇ϕn · ∇ϕ+ β

∫
Ω

ϕnϕ = λ1(−d∆ + β;MF (θn(x))K)

∫
Ω

ϕnϕ

−
∫

Ω

MF (θn(x))

(∫
Ω

K(x, y)ϕn(y)dy

)
ϕ(x)dx.

Taking ϕ = ϕn we have that {ϕn} is bounded in H1
0 (Ω). Thus, making

λn = λ1(−d∆ + β;MF (θn(x))K),

up to a subsequence if necessary, λn → λ∗1, in IR
ϕn ⇀ ϕ∗, in H1

0 (Ω)
ϕn → ϕ∗, in L2(Ω),

with ϕ∗1 ≥ 0 in Ω and |ϕ∗1|2 = 1. By Proposition 5, θn → 1 uniformly on each
compact subset of A ⊂ Ω, as n → +∞. Thus, F (θn) → 0 uniformly on each
compact subset of A ⊂ Ω, as n→ +∞. Hence, for all ϕ ∈ C∞0 (Ω), we have∫

Ω

MF (θn(x))

(∫
Ω

K(x, y)ϕn(y)dy

)
ϕ(x)dx→ 0, as n→ +∞,

which implies, taking limit in the last equation, that

d

∫
Ω

∇ϕ∗ · ∇ϕ+ β

∫
Ω

ϕ∗ϕ = λ∗1

∫
Ω

ϕ∗ϕ, ∀ ϕ ∈ C∞0 (Ω).

Since C∞0 (Ω) is dense in H1
0 (Ω), we have

d

∫
Ω

∇ϕ∗ · ∇ϕ+ β

∫
Ω

ϕ∗ϕ = λ∗1

∫
Ω

ϕ∗ϕ, ∀ ϕ ∈ H1
0 (Ω).

Therefore, λ∗1 = λ1(−d∆ + β) > 0. But, this is a contradiction, because λn → λ∗1
and

λn = λ1(−d∆ + β;MF (θn(x))K) ≤ 0,
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which concludes the proof.

Now, consider δ 6= 1 and the function Fδ : [σ1,2,+∞)→ [
σ1,1

δ ,+∞) defined by

Fδ(ρ) = σ1(D1; 0; δF (θρ(x))K).

The function Fδ has the following properties:

Proposition 12. The following claims hold:

(i) Fδ(σ1,2) =
σ1,1

δ
;

(ii) The map ρ→ Fδ(ρ) is continuous and increasing;
(iii) lim

ρ→+∞
Fδ(ρ) = +∞;

(iv) lim
δ→1
Fδ(ρ) = F1(ρ), if ρ ∈ Λ, with Λ ⊂ IR compact subset;

(v) Fδ(ρ) > F1(ρ), for all ρ ∈ [σ1,2,+∞) and δ < 1.

Proof. To prove (i) observe that, for ρ = σ1,2, Proposition 4(i) implies that θρ = 0.
Hence, F (θρ) = 1 and

Fδ(σ1,2) = σ1(D1; 0; δK) =
σ1,1

δ
.

Item (ii) is proven in Proposition 4(ii). Moreover, (iii) follows immediately from
Proposition 11. The items (iv) and (v) follow by Corollary 1.

Hence, for the case δ 6= 1, we have the coexistence region of (1) given in the
Figure 1.

ρ

σ1,2

σ1,1

δ

γ = ℱδ(ρ)

γ 

Figure 1. Coexistence region of (1) for δ 6= 1.

For δ = 1, we will consider the function G : [σ1,1,+∞)→ [σ1,2,+∞) defined by

G(γ) = σ1(D2;α;F (θγ(x))K).

Similarly to Proposition 12, the function G has the following properties:

Proposition 13. The following claims hold:

(i) G(σ1,1) = σ1,2;
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(ii) The map γ → G(γ) is continuous and increasing;
(iii) lim

γ→+∞
G(γ) = +∞.

Remark 6. We can also study the dependence of the above functions Fδ(ρ) and
G(γ) with respect to the parameter α. With a similar proof to Proposition 12, we
can show:

1. σ1,2 is a continuous and increasing function on α and σ1,2 →∞ as α→∞.
2. Fix δ ∈ [0, 1] and ρ > σ1,2, then Fδ(ρ) decreases as α increases, and Fδ(ρ) =
σ1,1/δ for α large.

3. Fix γ > σ1,1, then G(γ) increases as α increases, and G(γ)→ +∞ as α→ +∞.

Hence, for δ = 1, we have the following possible coexistence regions of (1) in the
Figures 2, 3 and 4.

ρ

σ1,2

σ1,1

γ = ℱ1(ρ)

γ 

ρ = 𝒢(γ)

Figure 2. Possible coexistence region of (1) for δ = 1. In this case
the sum of the index of the coexistence states of (1) is 1.

Remark 7. We will analyze the coexistence regions of (1). Denote by Cδ and C1

the coexistence regions of (1) (Theorem 4.1 and Theorem 5.5) for 0 < δ < 1 and
δ = 1, respectively, that is,

Cδ =
{

(γ, ρ) ∈ IR2; ρ > 0 and γ > Fδ(ρ))
}

and C1 =
{

(γ, ρ) ∈ IR2; (γ −F1(ρ)) · (ρ− G(γ)) > 0
}
.

Moreover, denote by Eδ and E1 the extinction sets of (1) (Proposition 10):

Eδ =
{

(γ, ρ) ∈ IR2; γ ≤ σ1,1

δ

}
, for δ 6= 1

and E1 =
{

(γ, ρ) ∈ IR2; γ ≤ σ1,1 and ρ ≤ σ1,2

}
, for δ = 1.

In Figure 1 we have represented Cδ and in Figures 2, 3 and 4 different possibilities
of C1.

We will first analyze the case 0 < δ < 1. Observe that Eδ → IR2 as δ → 0
(see Figure 5), hence for any γ > 0 and ρ > 0 there exists δ0 such that if δ ≤ δ0
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ρ

σ1,2

σ1,1

γ = ℱ1(ρ)

γ 

ρ = 𝒢(γ)

Figure 3. Possible coexistence region of (1) for δ = 1. In this case
the sum of the index of the coexistence states of (1) is -1.

ρ

σ1,2

σ1,1

γ = ℱ1(ρ)

γ 

ρ = 𝒢(γ)

Figure 4. Possible coexistence region of (1) for δ = 1. In this
case, there are regions where the sum of the index of the coexistence
states of (1) is 1 (when F1 is above G) and others where the sum
is -1 (when G is above F1).

both species do not coexist. Thus, only the trivial solution (u, v) = (0, 0) and the
semi-trivial solution (u, v) = (0, θρ) exist for (1) (this last solution if ρ > σ1,2). This
is a logical sense: if δ is small the cells (CSCs) divide in one cell (CSC) and one
cell (TC), and then (CSCs) is driven to the extinction. However, fixed γ > 0, for
δγ > σ1,1 there exists coexistence states for ρ ∈ (0, ρ0(δ)), where γ = Fδ(ρ0(δ)) (see
Figure 1). For the δ = 1, in this case the cell (CSCs) divide in two cells (CSCs),
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nevertheless if γ ≤ σ1,1 again there exist only the trivial solution (0, 0) and the
semi-trivial solution (0, θρ) for (1), the last if ρ > σ1,2. If γ > σ1,1 then there exist
ρ1, ρ2 > σ1,2 such that ρ1 = G(γ), γ = F1(ρ2) and (1) has coexistence states for
ρ ∈ J , where J = (min {ρ1, ρ2} ,max {ρ1, ρ2}) (see Figures 2, 3 and 4). Note still
that J can be eventually an empty set (see Figure 4). Finally, observe that Cδ 9 C1

as δ → 1 (see Figure 6), this drastic change of behavior of the coexistence region is
due to the absence of semi-trivial solution of the form (u, 0) when δ 6= 1.

ρ

σ1,2

σ1,1

δ

γ = ℱδ(ρ)

γ 

σ1,1

γ = ℱ1(ρ)

ρ = 𝒢(γ)

C1

Cδ

Figure 5. Coexistence regions of (1) for δ close to 0.

ρ

σ1,2

σ1,1

δ

γ = ℱδ(ρ)

γ 
σ1,1

γ = ℱ1(ρ)

ρ = 𝒢(γ)
C1

Cδ

Figure 6. Coexistence regions of (1) for δ close to 1.
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As stated above, in general it is not an easy task to ascertain the relative position
of the curves γ = F1(ρ) and ρ = G(γ) (see [13] and [4] for the classical Lotka-
Volterra competition model). In the below lemma we will study a particular case
of the relative position of these curves, which ensures that both curves are in the
region {

(γ, ρ) ∈ IR2; ρ ≥ γ
}
.

Lemma 6.1. Assume that D2 ≥ D1. Then,

γ < G(γ) and F1(ρ) < ρ. (41)

Proof. We prove the first inequality of (41), the second one follows similarly. We
recall that

G(γ) = σ1(D2;α;F (θγ(x))K)⇐⇒ λ1(−D2∆ + α;G(γ)F (θγ(x))K) = 0.

Hence, to prove that γ < G(γ) we have to show that

λ1(−D2∆ + α; γF (θγ(x))K) > 0.

By Lemma 1, we need to find a super-solution u of the above problem. Taking
u = θγ , we have

−D2∆θγ + αθγ = γ

(
D2

D1
− 1

)
F (θγ)

∫
Ω

K(x, y)θγ(y)dy + αθγ

+γF (θγ)

∫
Ω

K(x, y)θγ(y)dy.

Hence,

−D2∆θγ + αθγ − γF (θγ)

∫
Ω

K(x, y)θγ(y)dy > 0,

whence the result follows.

7. Conclusion. In this paper we have studied the existence of semi-trivial solutions
and coexistence states for a nonlocal elliptic system arising from the growth of cancer
stem cells. The model considers the dynamic of cancer stem cells (CSCs) and the
non-stem tumor cells (TCs) while are competing for space and resources. In [11]
a simplified version (in fact an ode) of this model (the progeny placement depends
only on the density at the destination and the density of the cells is uniform)
was proposed to investigate the “tumor growth paradox”, that means that “an
increasing rate of spontaneous cell death in (TCs) shortens the waiting time for
(CSCs) proliferation and migration, and thus facilitates tumor progression”. In
that paper, the authors show that the unique steady states are (0, 0), (0, v0) (both
unstable) and (u0, 0) globally stable. Hence, the (TCs) tend to die and the system
converges to the pure stem-cell state. Moreover, the authors compare different sizes
of the tumor changing α, and they show that the tumor increases as α increases:
these results confirm the observations of the tumor growth paradox. As conclusion,
they assert that a successful therapy must eradicate cancer stem cells.

In this paper, we consider the general model proposed in [11] (including diffusion,
non-uniform population densities and progeny contribution depending on the origin
and the destination). We have given results concerning to the existence of semi-
trivial solutions and coexistence states based on the parameters of the model. From
our results, we can conclude:

1. Unlike the simplified model in [11], in our model the coexistence states (both
components positive) exist.
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2. Assume that δ 6= 1 and fix the growth rates of (CSCs) and (TCs), then:
(a) If the competition between (CSCs) and (TCs) is reduced (increasing the

death rate α of (TCs)), then both populations coexist.
(b) However, if we fix α, and δ is small, the only population that can persist

is (TCs). Recall that δ small means that each (CSC) cell gives rise a
(CSC) cell and a (TC) cell.

(c) A combination of both mechanics (α large and δ small) results in the
extinction of both populations, and thus the elimination of the tumor.

3. Assume δ = 1 (remember that in this case all the cells (CSCs) give rise two
(CSCs)) and fix again the growth rates of (CSCs) and (TCs), then:
(d) If the competition is reduced, then (CSCs) drive to (TCs) to extinction,

and then a liberation of the (CSCs) occurs which can lead to an increase
in tumor size.
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