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Abstract: The construction industry’s high demand for natural resources, combined with the waste
generated by agriculture, creates an opportunity for the circular economy. This experiment used
the CaCO3 found in scallop shells as an ingredient for the manufacture of fire-resistant materials,
replacing gypsum in compositions of 40% and 50% by weight. The mechanical compressive strength
was estimated for both freeze-thaw cycles and acid and sulfate attacks. The cost of disposing of
scallop shell waste in landfills, savings from substitution, and the payback period relative to the
amount of production were determined. The compressive strength of the materials decreased by
80% when subjected to freeze-thaw cycles and sulfate attack. In response to acid attack, they showed
a 100% increase in strength during the first three weeks and a decrease thereafter. The savings
amounted to $46.36 (22.4%) for 40% replacement and $58.93 (28.4%) for 50%. Respectively, return on
investment is achieved at 800- and 630-per-metric ton produced. The difference between the costs of
waste disposal (in aquaculture) and the potential savings from using CaCO3 as a raw material (in
construction) creates an opportunity for commercialization between the two industries, serves as a
reference for decision-makers, and complies with circular economy principles, reducing both inputs
of raw materials and outputs of waste.

Keywords: construction materials; durability; circular economy; aquaculture waste; Argopecten
purpuratus; seashells wastes; freeze-thaw cycles; recycling

1. Introduction

The construction industry has the highest demand for natural resources worldwide:
44% of mineral resources [1], 40% of energy resources [2], 12% of water [3], and also pro-
duces 40% of all waste [3]. Urban expansion and densification can also lead to further soil
degradation and deterioration [4]. According to projections from the United Nations [5], if
there is no change in how the construction sector operates, these impacts will be exacerbated
by the scarcity of material resources, land use changes, and growing populations. In order
to reduce the impacts of construction, the incorporation of waste as a raw material [6,7]
or proposals to improve the mechanical properties of the material or the maintenance of
buildings [8,9] are essential.

Although there is no official record of waste produced by the aquaculture industry,
shells account for approximately 40% to 70% of the total weight of shellfish waste [10].
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Seashells have little to no commercial value and are generally dumped into the sea or
deposited in landfills [11]. Incorrect management of this waste causes:

• Environmental problems: these wastes can produce odors due to the decomposition
of organic matter or of salts contained in the shells, emitting gases such as H2S, NH3
(ammonia) and organic compounds such as amine [11].

• Economic problems: pollution and odors have an economic impact on tourism given
that aquaculture enterprises are located on seashores with heavy tourism [12].

• Health problems: illegal dumping of these wastes attracts biological vectors such as
rats and mosquitoes in nearby populations [13].

• Social problems: currently, there are few economic and effective solutions for managing
shell waste, which has led to the proliferation of illegal waste dumping near populated
areas [14]. The foul odors and contamination from dumping have led to protests and
complaints from neighboring communities [15].

Seashells are primarily composed of CaCO3 [12]. As such, recycling has been widely
studied as a source of CaCO3 or as CaO [16–21]. Seashell wastes were used in 15th-century
Latin America as a raw material for the manufacture of Tabby concrete [22]. Currently,
9% of global seashell waste is recycled as a substitute for limestone in fertilizers and feed
additives in poultry farming [23–25]. There are research studies that have analyzed the
use of CaCO3 and CaO as adsorbents in polluted waters [26–28], as a catalyst in biodiesel
production [29,30], and as polymer fillers [31–33]. In the construction sector, seashell wastes
have been studied for use as fine and/or coarse aggregates in concretes and mortars [34–37],
as a cement substitute [38,39], as a raw material for cement clinker [40,41], and as cement
blocks [42]. Fireproofing materials prevent or retard the passage of extreme heat in order
to protect more important elements, such as steels that lose their mechanical properties at
high temperatures, and prevent the spread of fire throughout the floors of a building. When
heated, such as during a fire, gypsum undergoes endothermic decomposition according to
the reaction:

CaSO4·2H2O→ CaSO4·1/2H2O + 3/2H2O (1)

CaSO4·1/2H2O→ CaSO4 + 1/2H2O (2)

Reaction 1 starts at around 120 ◦C when semi-hydrate gypsum is produced. In reaction 2,
semi-hydrate gypsum is converted to anhydrous gypsum at around 200 ◦C [43–45]. Both
Reactions 1 and 2 are endothermic reactions, in which heat is removed from the environ-
ment. CaCO3 exhibits similar behavior. At high temperatures (600 ◦C and 800 ◦C), CaCO3
undergoes endothermic decomposition (reaction 3):

CaCO3 → CaO + CO2 (3)

The use of aquaculture wastes as inputs for materials from other industries is a
productive strategy that has been developed in recent decades [46–50]. Initially recognized
as recycling strategies and studied through economic or life cycle cost (LCC) analysis, they
are nowadays associated with circular economy strategies and studied using life cycle
assessment (LCA). LCA- and LCC-type economic analyses are very flexible and can be
used for economic evaluation in areas as different as building material reuse [51,52], e.g., as
PET for manufacturing blankets [53], and extending the life of household appliances [54].
Some findings indicate that LCA and LCC economic analyses indicate that high resource
and energy consumption, direct emissions, and the transport of raw materials during
cement production are the main processes contributing to most environmental categories
and economic costs [52,55].

In order to address both environmental and economic impacts, trends in concrete
technology are currently moving towards sourcing sustainable alternative materials for
making concrete to minimize over-reliance on natural resources [56]. In this scenario, the
use of waste from aquaculture, specifically scallop shell waste, appears to be a promising
solution [11,38], capable of bringing about a circular economy between aquaculture and
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construction. However, the implementation of a circular economy between these industries
must address challenges in both accessing capital and strengthening the trade network
between supply and demand, identified as barriers, and in strengthening the organizational
culture of every company [57]. To advance a circular economy, a qualitative estimate has
been conducted in 2021 of the economic benefits of using scallop shell powder as a cement
substitute in the development of blended cements [58], not only to improve sustainability,
but also to reduce production costs. An approach to the utilization of seashell wastes,
specifically scallop (Argopecten purpuratus), as fine and coarse additives in the manufacture
of building materials has been carried out [55]. The authors present these wastes as an
alternative that consumes little energy in recycling compared to raw materials coming from
mining and find that despite the additional cost of substituting scallop shells, the associated
benefits include longer pavement life and better resistance to deformation and humidity.

Looking at the performance of the aquaculture and construction industries in Chile
allows us to identify linear economic models, where scallop shell waste is discarded without
use [46,59] and more than 70% of raw materials for construction materials come from virgin
natural resources [60]. Figure 1 shows both the amount of calcium carbonate and gypsum
extracted to supply the resource demand for the production of construction materials, and
the amount of scallop landings (i.e., muscle and shells). Producers of building materials
make up the demand for natural resources and are identified in green on the central map
among the industries where a circular economy could emerge. The performance of scallop
shells as an ingredient in the fabrication of building materials has been addressed in the
literature, which nonetheless indicates challenges such as the economic evaluation of
substitution [38] and comparison with the production cost of conventional materials [11].
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Figure 1. Geographical distribution in Chile of raw, whole scallops, including shells in metric tons (t)
versus resource demands (t) in the construction industry.

The recycling of mollusk shells into fireproof materials has been evaluated in this
context [46]. However, the durability of building materials using scallop shell waste has
not been evaluated for these applications. In order to contribute to the knowledge of
how to implement a circular economy strategy between the construction and aquaculture
industries, the objectives of this study are: (1) to evaluate the durability properties of
the construction material with gypsum substitution by CaCO3 from scallop (Argopecten
purpuratus) aquaculture waste. (2) The economic performance of the experience was
measured to evaluate the circular economy potential between the two industries.

2. Materials and Methods
2.1. Materials

Our study used Chilean scallops (Argopecten purpuratus) produced using aquaculture,
hereinafter scallops (S), from Invertec, located in Tongoy (Coquimbo Region) and commer-
cial gypsum (G) in accordance with European Standard EN 13279-1 [61]. The scallop shells
were washed in a tank to remove salt from their surface, using 1.5 L of water per kg of
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scallop shells to be treated. Subsequently, organic matter was eliminated using an electric
oven at 300 ◦C for 3 h. The scallop shells were crushed using a jaw crusher and sieved to
600 µm. Figure 2 shows the particle-size distribution of scallop shells and gypsum.
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The chemical compositions of the scallop shells and gypsum were determined accord-
ing to American standards, ASTM D3682 [62], using an absorption spectrometer (Model
3100, Perkin-Elmer, Waltham, Massachusetts). The specific gravity of the materials used in
this study was determined according to American standards, ASTMD854 [63]. As seen in
Table 1, the majority component of the scallop shells was CaCO3. Losses due to calcination
were high, mainly because CaCO3 decomposes due to reaction 1, which is represented in
the table as loss on ignition (LOI). Commercial gypsum is primarily composed of CaSO4.
The average scallop shell particle size was almost 72 times larger than the average gypsum
particle size. Furthermore, the specific gravities of scallop shells and gypsum were similar.

Table 1. Chemical composition (weight), average particle size (µm) and specific gravity (g/cm3).

S (%) (1) G (%) (2)

SiO2 N.D. (3) 0.88
Al2O3 N.D. (3) 0.18
Fe2O3 N.D. (3) N.D. (3)

MnO N.D. (3) 0.02
MgO N.D. (3) N.D. (3)

CaO 54.76 40.56
Na2O 0.57 0.07
K2O N.D. (3) N.D. (3)

TiO2 N.D. (3) N.D. (3)

P2O5 0.13 N.D.
SO3 0.32 45.56
PC 44.42 12.52

Median size (µm) 180 25
Specific gravity (g/cm3) 2.76 2.77

Note: (1) S: scallop shells, (2) G: gypsum, (3) N.D: not detectable.

Product samples were fabricated following a simple, low-cost method under standard
laboratory conditions (temperature: 25 ◦C and 45% humidity). To prepare the samples, the
solid components were weighed in compositions of 40% scallop shells and 60% gypsum
(40% S), 50% scallop shells and 50% gypsum (50% S), and the control sample, 100% gypsum
(0% S). The technical feasibility of using shells in these compositions for this application was
shown in [46]. All solids were mixed into a homogeneous mixture using a mixer, and water
was added at a water/solid ratio equal to 0.5. The water ratio was kept constant for the



Sustainability 2022, 14, 8383 5 of 16

fabrication of all samples [44]. It was mixed again until a homogeneous paste was obtained.
All the flame retardant materials were removed from their molds after 24 h and cured at
room temperature (20 ◦C on average) with constant humidity (45% relative humidity on
average) for an additional 28 days. The specimens were created using cylindrical molds
with a diameter of 34 mm and a height of 40 mm.

2.2. Methods
2.2.1. Product Durability Tests

The durability of the material was determined using three aspects: resistance to acid
attack, resistance to sulfate attack, and resistance to freeze-thaw cycles. Compressive
strength was analyzed each week for 10 weeks total. Before undergoing durability tests,
the manufactured materials (0% S, 40% S, 50% S) were measured for compressive strength
and bulk density. The compressive strength (Sc) of the samples was determined using
a compression testing machine (Controls, 65-L28F12, 300 kN), in accordance with the
European standard, EN 13279-2, [64]. The method described in the American standard,
ASTM E 605 [65], was used to measure density (d). For compressive strength and bulk
density, 3 tests were performed for each composition. Compressive strength and bulk
density were the arithmetic mean of 3 specimens tested. For each of the compositions and
properties (compressive strength and bulk density), the standard deviation was determined.

• Resistance to Acid Attack

Resistance to acid attack (Ra) was determined using the procedure detailed in previous
studies [66]. The specimens were first cured for 28 days. Half of the fabricated samples were
immersed in water (reference samples) (Figure 3a) and the other half in 1 N sulfuric acid
(Figure 3b). As shown in Equation (4), the compressive strength of the attacked samples
was measured each week and compared with the compressive strength of the reference
samples. Resistance to acid attack was sampled in three specimens each week for 10 weeks.

Ra =
CSacid

CSwater
(4)

where, CSacid is compressive strength of samples attacked by acid and CSwater is Compres-
sive strength of samples attacked by water.
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• Resistance to Sulfate Attack

Resistance to sulfate attack was determined in accordance with the American stan-
dard, ASTM C 1012-13 [67]. The samples were immersed in a dilution of Na2SO4 at a
concentration of 50 g/L of Na2SO4 (Figure 4). Each week, three specimens were tested for
compressive strength over a period of 10 weeks.
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• Resistance to Freeze-Thaw Cycles

Resistance to freeze-thaw was determined in accordance with the European standard,
EN 12390-9 [68]. The samples were subjected to freezing phases at −18 ± 3 ◦C for 8 h
during the day and thawing phases at 20 ± 2 ◦C for 16 h. Three specimens were tested for
compressive strength each week over a period of 10 weeks.

2.2.2. Economic Analysis

• Benefits/Savings Related to The Use of CaCO3—Construction

The economic analysis was carried out to determine both the costs (e.g., scallop shell
conditioning, construction material manufacturing) and benefits (e.g., revenue, savings)
of using scallop shells to substitute gypsum [46]. For the economic analysis, two different
compositions, by weight, of gypsum and calcium carbonate from scallop shells were used:
the first composition was 40% scallop shells and 60% gypsum (40% S), and the second
composition was 50% scallop shells and 50% gypsum (50% S), which were compared with
the commercial material (gypsum, 0% S). Scallop shell pre-treatment accounted for the
costs incurred for the consumption of wash water required for removing impurities and the
energy costs required for both the milling process and the calcination of the scallop shells.
Costs were calculated based on one metric ton of material. The average exchange rate
used was 792 Chilean pesos for each US dollar ($) [69]. The analysis does not incorporate
transportation costs or other costs that may be associated with shell availability.

To calculate the benefits/savings related to the replacement of gypsum with CaCO3,
the manufacturing costs of construction materials were determined, including both raw
materials (gypsum and calcium carbonate) and inputs (energy and water). Given the
absence of a market to commercialize building materials with added calcium carbonate
from scallop shells, the benefits (e.g., savings) were defined as the difference between the
total cost value of building material production and those achieved with the different
compositions produced.

• Scallop Shell Generation Potential and Disposal Cost—Aquaculture

The landings data for Chile were collected from the annual statistical reports of
Sernapesca (National Fisheries and Aquaculture Service). Landings of scallop shells were
differentiated by fishery (extraction) and aquaculture (farming). To calculate scallop shell
availability, the Condition Index (CI) ratio was used, which allows for differentiating the



Sustainability 2022, 14, 8383 7 of 16

meat and shell weight of bivalve mollusks [70]. The CI varies according to inherent factors
such as gonad weight and muscle growth and other environmental factors that influence
the reproductive stage and feed supply. Due to the small number of producers (large-,
medium-, and small-scale), the final costs of scallop shell disposal (waste) were collected in
a semi-structured interview. The selected producers are located in the region of Coquimbo,
where most of Chile’s production is concentrated (Figure 1).

• Modified Payback Period

The payback period is a financial indicator to determine the time it takes for invest-
ments to pay off, i.e., the time it takes for revenue to cover costs. The shorter the payback
period, the lower the return on investment. However, given the difficulty of establishing
production times, we worked with the modified payback indicator, which contrasts sav-
ings versus production, thus quantifying the amount of construction material required
to recover the amount of the initial investment. Laboratory adjustments and the acquisi-
tion of equipment were considered as initial investments and amounted to $36,995. The
performance of the quantity produced versus the savings obtained was graphed.

• Circular Economy—Construction and Aquaculture

The economic evaluation was complemented by determining the function that cal-
culates the cost of final disposal of scallop shells (given their waste condition). For the
construction industry, savings from the addition of scallop shell as a raw material were eval-
uated. The savings scenarios of 40% S and 50% S scallop shell substitution were graphed
individually against aquaculture waste disposal costs.

3. Results and Discussion
3.1. Durability
3.1.1. Initial Properties

As can be seen in Table 2, the density and compressive strength (Sc) of the materials
decrease with the addition of scallop shell waste. Density decreased because the waste
has a higher particle size distribution than gypsum, increasing the porosity between
particles. Regardless of their proportion, and in accordance with the European standard,
EN 13279-1 [61], all materials would have a compressive strength greater than 2.0 MPa and,
therefore, all mortars produced met this requirement. According to the European standard,
EN 12859 [71], all materials were classified as high density.

Table 2. Compressive strength and density.

Density (kg/m3) Compressive Strength (MPa)

0% S 1528.16 ± 2.10 13.51 ± 1.37
40% S 1474.00 ± 12.54 13.10 ± 1.53
50% S 1468.15 ± 16.01 10.88 ± 0.54

Note: 0% S: 100% gypsum, 40% S: 40% scallop and 60% gypsum and 50% S: 50% scallop and 50% gypsum.

3.1.2. Acid Attack

During the first 3 weeks, in the materials with scallop shells (40% S and 50% S)
subjected to acid immersion, the compressive strengths were reduced to 6.1 MPa. However,
in the case of the materials subjected to water immersion, the compressive strengths were
reduced to 2.2 MPa. After week 3, at 40% S and 50% S, the compressive strengths of the
materials subjected to acid immersion dropped drastically to 2.5 MPa. As shown in Figure 5,
as the amount of waste increases in the 40% S (40% scallop and 60% gypsum) and 50% S
(50% scallop and 50% gypsum) samples, resistance to acid attack (Ra) increases and remains
above 1 until week 5. This is because, in an acidic medium, part of the calcium in the scallop
shells dissolves in water as Ca2+ and reacts with SO4

2-, producing CaSO4 (gypsum), as
shown in Figure 6. The gypsum that forms around the material has a compressive strength
of 5 MPa [44]. However, after week 3, resistance to acid attack (Ra) begins to decrease, and
by week 5, Ra is less than 1. As shown in Figure 6c, this is because the fabricated gypsum
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produces a volumetric expansion of the material and leads to spalling of the surface layers
and, consequently, a decrease in compressive strength [72].
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Figure 6. (a) 0% S (gypsum), (b) 40% S (40% Scallop and 60% gypsum), 50% S after two weeks of acid
immersion and (c) 40% S after five weeks of acid immersion.

3.1.3. Sulfate Attack

Sulfate attack is one of the most important aggressive risks to construction materials,
causing losses in mechanical properties [73]. As shown in Figure 7, the compressive
strength of 40% S and 50% S suffered a drop of almost 80% compared to 0% S (gypsum),
which dropped 70%. After the first week, the mechanical strengths decreased further,
and the 40% S and 50% S samples broke completely in the sixth week. During the first
3 weeks, the compressive strength was between 2.3 and 2.5 MPa. From the fourth week,
the compressive strength was reduced below 2 MPa (minimum compressive strength
required [61]). The deterioration seems to be related to the sedimentation of the products of
physical crystallization, causing a higher pressure in the open pores of the material [74]. As
shown in Figure 2, the scallop shells had a larger particle size, causing greater porosity [75].
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Figure 7. Variation of compressive strength against sulfate attack. Note: 0% S: 100% gypsum, 40% S:
40% scallop and 60% gypsum and 50% S: 50% scallop and 50% gypsum.

3.1.4. Resistance to Freeze-Thaw

All the mixtures exhibited a decrease in compressive strength after freezing and
thawing (Figure 8). The 40% S and 50% S samples suffered a 70% decrease as of cycle 28
(week 4). After the first week of freeze-thaw cycles, the mechanical strengths of the scallop
shell materials (40% S and 50% S) were reduced to 10.5 MPa for 40% S and 8.5 MPa for
50% S. In the fourth week, the compressive strengths of the materials with scallop shells
(40% S and 50% S) were reduced below 2 MPa. However, in the case of gypsum (0% S),
the compressive strength decreased more slowly. After the tenth week, the compressive
strength of the gypsum remained above 2 MPa. This was because the scallop shells had
a larger particle size, as shown in Figure 2, causing greater porosity. Therefore, the water
permeated more when frozen, and as a consequence, generated microcracks [76].
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3.2. Economic Analysis
3.2.1. Benefits/Savings Related to the Use of CaCO3—Construction

The conditioning treatment for scallop shells to be used as ingredients to manufacture
building materials results in production costs [11]. Pretreatment includes costs such as wash
water for the removal of impurities and the energy expended in grinding and calcination.
Table 3 shows the details of the costs for 40% S and 50% S compositions of scallop shell
substitution for gypsum. It also shows that the pre-treatment cost is mainly determined
by propane gas consumption and that the total cost increases as the composition of the
pre-treated shell increases.
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Table 3. Pre-treatment costs (US$) of scallop shells (S) by composition.

Pre-Treatment
Cost (US$)

0% S 40% S 50% S

Wash water 0 2.12 2.70
Propane consumption 0 25.23 32.07

Grinding energy 0 0.60 0.76
Pre-treatment cost 0 27.95 35.53

Note: 0% S: 100% gypsum, 40% S: 40% scallop and 60% gypsum and 50% S: 50% scallop and 50% gypsum.

The addition of calcium carbonate from scallop shells generates savings in the man-
ufacture of building materials compared to the cost of materials with only gypsum. The
breakdown of material production costs (Table 4) shows that, although pretreatment of the
scallop shells entails costs, they are lower than the use of gypsum alone. For a composition
of 40% S, the pretreatment cost was $27.95, a cost that was covered by the savings, which in
total amounted to $46.36 (22.4% of the cost without adding shells). For compositions of
50% S, the cost of pretreatment increases to $35.53, and savings increase to $58.93 (28.4% of
the cost without adding shells). Table 4 also shows that water and energy consumption
costs are negligible in relation to the total cost. The total production cost decreases inversely
proportional to the addition of scallop shell [46], due to the reduced cost of pretreating them.
The reduced energy consumption responds to the challenges indicated by Hass et al. [77].
However, it does not provide a solution to the demand for fossil fuels in the pretreatment
of scallop shells.

Table 4. Construction material manufacturing costs by the composition of scallop shells (US$).

Construction Material
Manufacturing Cost (US$)

0% S 40% S 50% S

Gypsum 206.77 132.43 112.27
Pre-treated scallop shell 0.0 27.95 35.53

Water 0.39 0.41 0.41
Energy 0.12 0.12 0.12

Total production costs 207.28 160.92 148.35
Note: 0% S. 100% gypsum, 40% S: 40% scallop and 60% gypsum and 50% S: 50% scallop and 50% gypsum.

3.2.2. Scallop Shell Generation Potential and Disposal Cost—Aquaculture

From the view of current research, the availability of scallop shells as waste from the
extraction and cultivation of bivalve mollusks (aquaculture) creates a business opportunity
to use them in the manufacture of various materials [48,50]. The availability of shells in a
circular economy model creates a supply of raw materials and, at the same time, provides
environmental relief by eliminating the need to dispose of scallop shells in landfills or
dumps [78,79]. Table 5 shows the availability of scallop shells in Chile according to their
geographic distribution. The calculation made for the year 2019 was based on the meat
yield, which represents the difference calculated from the proportion of the weight of the
hydrobiological resource and the fresh meat it contains. In addition, it was established that
the amount of shells produced differs from the amount of scallop shells available due to
the fact that the marketing of scallop shells arranges the meat on the half shell [59]. Scallop
shell generation coincides with the region of extraction because it occurs in plants located
close to farming centers. Small-scale fisheries (SSF) do not contribute to the generation of
scallop shells due to the closure that prohibits extraction from natural habitats, allowing
only aquaculture [80–82].

Waste management for the scallop industry is limited to final disposal in dumps or
landfills. The main incentives for this waste management are the limited options for using
this waste, the ease of access to these waste management units, and the relatively low
cost of their use, a situation that differs from waste management in Europe, where taxes
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discourage disposal in landfills [56]. In addition, waste management costs also depend on
the distance between where the waste is generated and the location of the landfill, which
averages 45 km in the region of Coquimbo. Table 6 shows the individual costs of disposing
of scallop waste and gives a value of $30.30 per metric ton.

Table 5. Availability of scallop shells in metric tons (t) by region.

Scallop Landings (t) Scallop Shells (t)

Region SSF Aquaculture Generation Availability

Antofagasta - 28 16.8 8.4
Atacama - 595 357 178.5

Coquimbo - 10.690 6.414 3.207
Total - 11,313 6787.8 3393.9

Table 6. Costs of final scallop shell disposal in landfill sites using a 10 metric ton volumetric capacity
waste transport system.

Description Units Value

Cost associated with waste transport US$ 101.01
Cost of landfill disposal US$/kg 0.02

Total cost US$ 303.03

3.2.3. Modified Payback Period

The accumulation of savings per metric ton of building material with gypsum substi-
tution by CaCO3 from scallop shell recovery is presented in Figure 9. The starts of both
savings functions (40% S and 50% S substitution) are at $36,995, which corresponds to the
amount of the initial investment. Cost functions were constructed as savings were recorded.
A return on investment for the 40% S strategy of replacing gypsum with scallop shell is
reached at 800 metric tons produced, while an earlier return on investment is envisioned
for the 50% S strategy, which is projected at 630 metric tons produced. The establishment
of a market for construction materials from aquaculture waste in the future will allow for
revenues to be determined (necessary to establish the economic balance between costs and
benefits), as well as generate a circular economy framework between the construction and
aquaculture industries.
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3.2.4. Benefits/Savings Related to the Use of CaCO3—Construction

A circular economy arrangement requires modifying a linear model of production to a
circular one, where waste is reused as a raw material, and minimizing over-reliance on nat-
ural resources [56]. Adding value to scallop shell waste [83], makes it possible to establish
the alternative potential of a circular economy between the aquaculture and construction
industries, establishing a space for commercialization between both industries. This space
for commercialization is open due to the difference between the cost of disposing of the
aquaculture waste and the savings obtained by the construction industry by replacing gyp-
sum with calcium carbonate from scallop shells. Figures 10 and 11 connect the cost/savings
functions of the quantities generated/required for the different aquaculture/construction
industries. The area opened between the costs and savings curves represents the marketing
space between the construction and aquaculture industries. As production/requirement
increases, the space for negotiation expands. The prices of commercialization will depend
on each industry’s supply chain, the elasticity of each savings/cost function, and the for-
ward/backward integration capability of each industry. Entrepreneurial initiatives to reuse
construction waste in new buildings present high-profit potential, even without incentives
from the government [51,52].
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4. Conclusions

Regarding the durability of materials with 40% and 50% scallop shell waste against
acid attacks, resistance to acid attacks increased in the first few weeks. After the fourth
week, the resistance to acid attacks begins to decrease. On the other hand, the durability of
materials with 40% and 50% scallop shell waste had a greater deterioration of compressive
strength (up to 80% less compared to gypsum) after sulfate attacks and freeze-thaw cycles.
Materials with 40% and 50% scallop shell waste present lower mechanical properties than
commercial standards during sulfate attacks and freeze-thaw cycles.

The replacement of gypsum with calcium carbonate is economically feasible for both
40% S and 50% S ingredient substitution. There is a direct relationship between the per-
centage of shell substitution and the savings generated. The difference between disposing
of scallop shells as aquaculture waste and the potential savings from the use of calcium
carbonate as an ingredient in the fabrication of construction materials creates a space that
allows for commercialization between both industries and complies with the principles of
the circular economy, reducing both inputs of virgin materials and outputs of waste.

These findings offer an encouraging scenario for projecting the replacement of seashells
in larger scale prototype production and thus assessing the performance of the equipment
to establish the exact payback time. Other future challenges that emerge from the present
research are to determine the characteristics such as thermal insulation and to evaluate the
durability of using seashells from the different species of seashell (mussel, clam, oyster).
In addition, it is necessary to establish mechanisms that facilitate different resource flows
from linear to circular models by both public and private decision-makers.
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