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1. Introduction

Diffusion is the natural process by which some quantity (for example, heat or mat-
ter) is transported from one part of a system to another as a result of random
molecular motion. As such, diffusion has a prominent role in such distinct fields as
biology, thermodynamics and even economics.

In smooth media (for example, an open region in Euclidean space or a smooth
manifold) classical diffusion models include differential operators such as the Lapla-
cian, and diffusion problems are usually described in terms of partial differential
equations [11]. Since the real world is non-smooth, in the last decade there has
been great effort made in developing and applying similar techniques and struc-
tures from the realm of differential equations to the analysis of diffusion processes
in non-smooth media, including some fractal-like sets (see, for example, [5,20,26]).
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There is another approach, however, that allows one to describe and model diffu-
sion processes by means of non-local models (see, for example, [2]), which we apply
here in smooth and non-smooth media. Assume then that ({2, u) is a measure space
and u(zx,t) is the density of some population at the point z € {2 at time ¢. Also
assume that J(z,y) is a non-negative function defined in {2 x {2 that represents the
density of probability of a member of that population to jump from a location y to
x. Hence, [, J(y,x)dy = 1 for all x € 2. Then [, J(x,y)u(y,t)dy is the rate at
which the individuals arrive at location x from all other locations y € (2. On the
other hand, — [, J(y,z) dyu(z,t) = —u(x,t) is the rate at which the individuals
are leaving from location z to all other locations y € 2. Then the time evolution
of the population u in {2 can be written as

ug(x,t) = /Q J(x,)u(y,t)dy — u(x,t), x € L2,

U((ﬁ,O) = u0($)7 T € Qv

(1.1)

where ug is the initial distribution of the population. This problem and variations of
it have been previously used to model diffusion processes in, for example, [2,8,13,18]
assuming that §2 is an open set in RY. However, non-local diffusion models like (1.1)
can be naturally defined in measure spaces since we just need to consider the density
of probability of jumping from a location z in {2 to a location y in 2, given by the
function J(z, y). This allows us to study diffusion processes in very different types of
spaces like, for example, graphs (which are used to model complicated structures in
chemistry, molecular biology or electronics, or they can also represent basic electric
circuits in digital computers), compact manifolds, multi-structures composed by
several compact sets with different dimensions (for example, a dumbbell domain),
or even some fractal sets such as the Sierpinski gasket [5,21,26]. Some of these
spaces are introduced in § 2.

Since it is always convenient to speak about continuity, in this paper we consider
problems like (1.1) defined in metric measure spaces ({2, i, d), which are defined as
follows. For more information see [24].

DEFINITION 1.1. A metric measure space ({2, u,d) is a metric space (£2,d) with a
o-finite regular and complete Borel measure p in {2 that associates a finite positive
measure with the balls of (2.

In this context, we take X = LP(£2), 1 < p < 00, or X = Cp(f2) and consider
non-local diffusion problems of the form

wi(at) = Kyule,t) = hia)u(e,b), z€ 2, t> 0»} (1.2)

U(IL‘,tO) = UO(x)a (S “Qa

where ug € X, h € L*(£2) or in Cp(£2), and the non-local diffusion operator K yu
is given by

Kyu(z,t) = /QJ(:my)u(y,t) dy.

We will not assume, unless otherwise made explicit, that [, J(x,y)dy = 1. This is
the case, for example, in [1,2, 8], where it was assumed that 2 C RY is an open
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set, J is defined in RV x R with Jen J(2,y)dy = 1 and the diffusion problem can
be set as (1.2) with

h(x):/QJ(z,y)dy.

This is a particular case that we will pay attention to below.

One of the main goals in this paper is to show some similarities and differences
between (1.2) and solutions of the classical heat equation. We will show in particular
that both models share positivity properties such as the strong maximum principle.
However, solutions of (1.2) do not smooth in time, except asymptotically as t —
oo. This lack of smoothing is a major drawback for the analysis of the behaviour
of solutions of (1.2) since if ug belongs to a suitable space X, then u(t) € X
for all times and it is no better. This implies that all possible results become X-
dependent, which is very different to the case of local diffusion (heat-like) models.
For example, even the spectrum of the operator K; — hl could depend on X,
and hence the solutions of (1.2) could as well. Hence, we base our strategy on
exploiting compactness properties of K; (see §3.1.1) to give sufficient conditions
for the spectrum of K ; and K; — hl to be independent of X (see §3.2.1). With this
the asymptotic behaviour of solutions of (1.2) will be analysed in all such spaces X
as if we were working in L?(2), where Hilbertian techniques are available (see §4.3).

The paper is organized as follows. In § 2 we present several metric measure spaces
in which all the analysis carried out in this paper holds. These include open sets of
the Euclidean space, graphs, compact manifolds, multi-structures (sets composed
of several compact sets with different dimensions joined together) and even some
fractal sets.

In §3 we derive a comprehensive study of the linear operator K; — hl. We
will discuss in particular continuity and compactness in different function spaces,
including the case of convolution-type operators. We also study the positivity of
the diffusive operator K ;. Under the assumption that

J(z,y) >0 for all z,y € £2 such that d(x,y) < R, (1.3)

for some R > 0, and the geometric condition that {2 is R-connected (see defini-
tion 3.10), we show that for a non-negative non-trivial function z, the set of points
in {2 where Kz is strictly positive is larger than that of z. This will also allow
us to use the Krein—Rutman theorem (see [22]) to obtain that the spectral radius
in Cp(£2) of the operator K is a positive simple eigenvalue with a strictly positive
eigenfunction associated. Condition (1.3) is also shown to be somehow optimal. In
the last part of §3 we study similar questions for the non-local operator K; — hl,
with h € L*°(£2). In particular, we characterize the spectrum, which is also shown
to be independent of the function space.

In §4 we analyse the solutions of (1.2), as well as the monotonicity properties
of the solutions. In particular, we will show that (1.3) implies that (1.2) has a
strong maximum principle. We then show that although solutions of (1.2) do not
regularize, because they carry the singularities of the initial data, there is a subtle
asymptotic smoothness for large times. In particular, the semigroup S(¢) of (1.2)
is asymptotically smooth as in [16, p. 4]. Finally, using the techniques of Riesz
projections and the fact that the spectrum is independent of the space, we are able
to describe the asymptotic behaviour of the solutions of (1.2).
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2. Examples of metric measure spaces

In the following sections we will consider a general measure metric space ({2, i, d)
as in definition 1.1. Below we enumerate some examples to which we can apply the
theory developed throughout this paper.

2.1. A subset of RN

Let £2 be a Lebesgue measurable set of RY with positive measure. A particular
case is the one in which {2 is an open subset of R, which can even be 2 = RV,
We consider the metric measure space (£2, 1, d), where 2 C RV, 11 is the Lebesgue
measure on RY and d is the Euclidean metric of RY.

2.2. Graphs

We consider a non-empty connected and finite graph in RY defined by G = (V, E),
where V' C RY is the finite set of vertices and the edge set E consists of a collection
of Jordan curves

E={r:[0,1] =R |je{1,2,3,...,n}},

where 7; € C1([0,1]) is injective with m;(0),m;(1) € V. We identify the graph with
its associated network
n n
G=Je=Jm(0,1) cRY
Jj=1 Jj=1
and we assume that any two edges e; # e, satisfy that the intersection e; N ey, is
either empty, one vertex or two vertices.

We define the measure structure of this graph. The edges have the associated
one-dimensional Lebesgue measure. Hence, a set A C e; is measurable if and only
if 771 (A) C [0,1] is measurable, and for any measurable set A C e; we consider the
measure p;, defined as

pla) = [ Imlat
m (A)

In particular, the length of the edge e; is defined as the length of the curve =,

iles) = / ()] dt. (2.1)

Therefore, a set A C G is measurable if and only if A N e; is measurable for every
i€{1,2,3,...,n}, and its measure is given by

pa(A) = pi(Ane;).
i=1

With this, it turns out that a function f: G — R is measurable if and only if
fle; - € — R is measurable if and only if f om;: [0,1] — R is measurable.
For 1 < p < oo we set f € LP(G) =[];_, L?(e;), with norm

£z = D Nflzoe < oo,
=1
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where

o= ( [ )P dt)l/p -(/ 1 If(m(-))l”dui)l/p-

For p = o0, f € L=(G) = [[;-; L*(e;) with norm

£l = max[|fllze(e,) < .

where || fl| Lo (e;) = sup;epo 1y £ (mi(£))]-

We now describe the metric associated with the graph. For v, w € G the geodesic
distance from v to w, dg(v, w), is the length of the shortest path from v to w. This
distance d, defines the metric structure associated with the graph G. Observe that
since the graph is connected, the path from v to w always exists and, since the graph
is finite, the geodesic metric d is equivalent to the Euclidean metric in RYN. With
this, a continuous function f: G — R has a norm || f||¢(¢) = maxi=1,...n || fllc(e,) <
0o, where || fllc(e,) = supsepo,) |f(mi(t))|- Thus, the graph defines a metric measure
space (G, ug,dg)-

2.3. Compact manifolds

Let M C RY be a compact manifold that we define as follows. Let U be an open
bounded set of R, with d < N, and let p: U — RY be an application such that it
defines a diffeomorphism from U onto its image ¢(U). Then we define the compact
manifold as M = ¢(U).

A natural measure in M is the one for which A C M is measurable if and only if
0 1(A) ¢ R? is measurable. Hence, for any measurable set A C M, we define the
measure [ as

ua) = [ o VI (2:2)

where g = det(g;;) and g¢;; = (O¢/0z;, 0p/0x;). Since the compact manifold satis-
fies M = p(U) C RN and U C R?, the measure (2.2) is equal to the d-Hausdorff
measure in RY restricted to M (see [25, p. 48]).

To define a natural metric in M, let £(c) be the length of a curve ¢ in RY defined
as in (2.1). Then we define the geodesic distance between two points p, ¢ in the
manifold M as

dg(p,q) :==inf{l(c) | c: [0,1] = M a smooth curve, ¢(0) =p, ¢(1) = q¢}.

Since M C R¥ is compact, the geodesic metric dg and the Euclidean metric of RV,
d, are equivalent.

Thus, we have the metric measure space (M, H?, d), where H? is the d-dimen-
sional Hausdorff measure in R and dg is the geodesic metric, which is equivalent
to the Euclidean metric of RV,

2.4. Multi-structures

‘We now consider a multi-structure composed of several compact sets with differ-
ent dimensions. For example, we can consider a piece of plane joined to a curve that
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is joined to a sphere in R™V, or we can also consider a dumbbell domain (a domain
consisting of two open disjoint domains, joined by a line segment). Therefore, we are
going to define an appropriate measure and metric for these multi-structures. Con-
sider a collection of metric measure spaces {(X;, p, di)}z‘e{l,...,n} with its respective
measures j; and metrics d; defined as above. Moreover, we assume that the measure

spaces { (X, i1:) }ieqa,....n}y satisfy
pi(Xs N X5) = pi(Xi N X;) =0

fori #jand i,5 € {1,...,n}.
Then we define

x= U x

ie{l,...,n}
and we say that £ C X is measurable if and only if £ N X; is u;-measurable for all
i € {1,...,n}. Moreover, we define the measure px as

px(E) = ZM(E NnX;).

Now let us define the metric that we consider in X. We assume that X; ¢ RY
is compact for all ¢ € {1,...,n}, and the metrics d; associated with each X; are
equivalent to the Euclidean metric in RY. Therefore, the metric d that we consider
for the multi-structure is the Euclidean metric in RV .

Thus, we have the metric measure space (X, ux,d), which is called the direct
sum of metric measure spaces (X, u;,d;), i € {1,...,n}.

2.5. Spaces with finite Hausdorff measure and geodesic distance

There exist examples of compact sets F© C R of Hausdorff dimension Hgip, (F) =
s < N and finite s-Hausdorff measure, i.e. H*(F) < oo, which are pathwise con-
nected, with finite length paths. Some of these sets can be constructed as self-similar
affine fractal sets, and such an example is provided by the Sierpinski gasket; see,
for example, [9,21,23].

For such sets, we can consider the metric measure space (F,H®, dg), where dg is
the geodesic metric, which may not be equivalent to the Euclidean metric in RY.

3. The linear non-local diffusion operator

Let (£2,p,d) be a metric measure space (not necessarily of finite measure) and
consider a linear non-local diffusion operator of the form

Kpula) = [ Iag)u(s)dy.
where the function J is defined in (2 by
N3z J(x,-)>0.

Hereafter, for 1 < p < oo we denote by p’ its conjugate exponent, that is, satisfy-
ing 1 = 1/p+1/p’. Note that the dual space of LP(£2) is given by (L?(£2))' = L¥'(£2)
for 1 < p < oo, and by (L>®(£2))" = M(£2) for p = oo, where M(£2) is the space of
Radon measures. For more information see [14, ch. 7].
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Figure 1. Sierpinski gasket.

3.1. Properties of the operator K j
We begin with the following result.

ProrosiTION 3.1.

(i) Assume that 1 < p,q < oo and that J € L1(2, L? (2)). Then we have K; €
L(LP($2),L9(12)), the mapping J — Ky is linear and continuous, and

1Kl cr2),pa2) < Nl Lo, (0) (3.1)

(i) Assume that 1 < p < oo, that J € L=(2, LP (2)) and for any measurable set
D C 02 satisfying p(D) < oo,

lim J(x,y) dyz/ J(xo,y)dy Vo € £2. (3.2)
D

T—rTo D

Then we have Kj; € L(LP(£2),Cp(12)), the mapping J — K is linear and
continuous, and

1Kl cr2).c2) < Lo (0,00 (2))- (3.3)
In particular, if J € Cy(2, L¥' (2)), then K € L(LP(£2),Cy(£2)) and

1Kl czr2).co2) < 1 le, 0,0 (2))-

(iii) Assume that 2 C RN is open, that 1 < p,q < oo and J € Wh4(£2, LP' (2)).
Then we have K € L(LP(2),Wh4($2)), the mapping J + K is linear and
continuous, and

1Kl ccre2)wra) < 1 lwia, v (2))- (3.4)
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Proof. (i) Thanks to Holder’s inequality we have, for 1 < ¢ < co and 1 < p <

q
dx

Kl = [ | [ St

<l | G 04

= ||UHLP(Q)HJ”Lq(Q,LP’(O))'

For ¢ = 00 and 1 < p < o0, for each x € §2,

) = | [ It ay] <l 196,

and taking the supremum in = € {2, we obtain the result.
(ii) Note that since J € L°°(£2, L? (2)), from part (i) with ¢ = oo, we have that
Ky e L(LP(£2),L>(£2)). Also note that hypothesis (3.2) can be written as

lim J(:C,y)xp(y)dy:/ J(xo,y)xp(y)dy Vo € 12,
0

Tr—xTo 0

where x p is the characteristic function of D C 2 with pu(D) < oo, which means that
K;(xp) is continuous and bounded in 2. Since u(D) < oo, we have xp € LP(£2)
for 1 < p < co. Moreover, the space

V =span[xp; D C 2 with u(D) < 0]
is dense in LP(£2) for 1 < oo and Kj: V — C,(£2), and then
Ky (LP(2) = K;(V) € K;(V) € Co(£2)

and we get (3.3). In particular, if J € Cy(£2,L” (£2)), then hypothesis (3.2) is
satisfied.

(iii) As a consequence of Fubini’s theorem, and since {2 is open, we have that for
all w € LP(f2) and i = 1,..., N the weak derivative of K ju is given by

< ai KJU,<,0> = (K yu, 0y, /{ Z /{ ) u(5)0s,p (o) dy
(+9): 0z, p) s u)
BIIJ Y), %), u)
/ / By J (2, y)uly) () dy dz
= (K9.7/92,U: ) (3.5)

for all ¢ € C°(£2). Therefore,

0
81'7; KJ'LL = K@J/@wiu. (36)
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Since J € WH4(2, L (£2)), and from part (i) and (3.6), we have that for i =

1,...,N,
9 a.J
Ha K = 1Kos/02: |l c(tr(2),L0(2)) < ’ . (3.7)
Li L(LP(22),L9(£2)) TillLa(o,Lv (2)

Hence, K; € L(LP(2), W14(02)) for all 1 < p,q < oo, and from part (i) and (3.7)
we have (3.4). O

The following result collects cases in which K; € £(X, X), with X = LP(£2) or
X =Cp(02).

COROLLARY 3.2.
(i) If J € LP(2, L¥' (2)), then K; € L(LP(2), LP(12)).
(i) If J € Cy(£2, L' (£2)), then K; € L(Cy(£2),Ch(£2)).

(iil) If p(£2) < 0o and J € L™(£2,L>(12)), then Ky € L(LP(§2),LP(2)) for all
1<p<oo

Proof.
(i) From proposition 3.1 we have the result.

(i) If J € Cp($2, L1(£2)), then, thanks to proposition 3.1, we have that K ; belongs
to L(L*(£2),Cp(£2)). Moreover, since Cp(§2) C L*>°(§2), we have that Ky €
L(Cp(£2), Cy(£2)).

(iii) From proposition 3.1 we have that K; € L£(L(£2), L°>°(£2)). Moreover, since
1(£2) < oo, we have that

LP(0) — LYR) 24 L2(Q) — LP(0).

O

The particular case in which the non-local diffusion term is given by a convolution
in 2 = RY with a function Jy: RY — R, i.e. J(z,y) = Jo(z —y) and Kyu = Jo*u,
has been widely considered; see, for example [3,8,10] and references therein. Hence,
we consider here such a type of operator. For this, let £2 C RY be a measurable set
(it can be 2 =R or just a subset 2 C RY) and consider the kernel

J(SC,y) = JO(I - y)a T,y € ‘Qa (38)

where Jy is a function in L?' (RM) for 1 < p < oo. Straight from proposition 3.1,
we get the following corollary.

COROLLARY 3.3. For1 < p < oo let 2 C RN be a measurable set, let Jo € LP (RN)
and let J be defined as in (3.8). Then K; € L(LP(§2),L>°(2)). In particular, if
pu(£2) < oo, then Ky € L(LP(£2),LI(£2)) for 1 < g < 0.
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Proof. Tt Jy € L (RY), then J € L>(£2, L*' (£2)) since
sup [|J(z, ')HLP’(Q) = sup [ Jo(z — ')”LP’(Q) < ||J0||LP'(]RN) < 0.
TE€S? e
Thus, thanks to proposition 3.1, we have that K; € L(L?(£2), L>°({2)). In particu-
lar, if 4(£2) < oo, then Ky € L(LP(£2),L1(2)) for all 1 < ¢ < 0. O

On the other hand, if 1£(£2) = oo (as for the case in which 2 = RY), then K is
not necessarily in L(LP(§2), L1(£2)) for g # oco. In the proposition below we prove
the cases that cannot be obtained as a consequence of proposition 3.1.

PROPOSITION 3.4. With the notation above, let 2 C RY be a measurable set with
w(2) =00 and let 1 < p < 0.

(i) If Joe L"(RN) and 1/q=1/p+1/r — 1, then K; € L(LP(£2), L9(£2)) and
1K\l ce().La2) < 1ol or@yy-
In particular, if r =1, we can take p = q.

(i) If 2 C RY is open, Jo € WE(RN) and 1/q = 1/p+1/r — 1, then K; €
L(LP(02),WL4(8)) and

1Kl cor ) wrae) < [[Jollwrr@yy-

Proof. (i) If u is defined in §2, let us denote by @ the extension by zero of u to RY.
Thus, we have for x € 2,

Kpula) = [ Joa=yutn)dy = [ Joe = )its) dy = (o + ) (o).

RN
Now, we define the extension of the operator K; as
Kyu(z) = (Jo *a)(z) for z € RY,

so Kyu(z) = (K ju)|o(z) for z € £2. Thanks to Young’s inequality (see [7, p. 104]),
we have

1K yull ooy < 1K sullpo@yy < [1Joll @yl o @yy = 1ol @~y lull o (o)

Hence, [|Kjullza(2) < [[Jollor@~yllulle(e) for all p, g, v such that 1/¢ = 1/p +
1/r—1.

(ii) Following the same arguments made in proposition 3.1 to obtain (3.5), we know
that for =z € 2,

oz Kju= KaJ/ain = (KBJ/ain”ﬂ

Then, applying part (i) to ||Kjul re0) and || Ks /0z,ullLa(0), we have that for p,
q, 7 such that 1/¢=1/p+1/r—1, K; € L(LP(2), WH4(£2)). Thus, the result. O

Below, we prove that if J is symmetric, then K is self-adjoint in L?({2).
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PROPOSITION 3.5. If J € L2(2 x ) satisfies J(z,y) = J(y,x), then Ky is self-
adjoint in L?(£2).

Proof. From proposition 3.1 we have K ; € L(L?(2), L?(£2)). Also, for u,v € L?(02),
thanks to Fubini’s theorem and the hypotheses on J,

(Kju,v)2 2 = // x,y)u(y) dy v(x dx—// (y, x)v(z) deu(y) dy

u KJ’U>L2 L2

3.1.1. Compactness

Now we prove that under the hypotheses on J in proposition 3.1, the operator
K j is compact. For this we will use the following result.

LEMMA 3.6. For1 < g< 00 and 1 < p < oo, let (£2,u) be a measure space. Then
any function H € Lq(Q, L (£2)) can be approzimated in L1((2, LP (£2)) by functions
of separated variables.

We then have the following proposition.
PROPOSITION 3.7.

(i) For 1 < p < ooand1 < q < oo, if J € LI(R,LF(R)), then K; €
L(LP(£2), LI(£2)) is compact.

(i) For 1 < p < oo, if J € BUC(2, LV (R2)), then Ky € L(LP(£2),Cy(£2)) is
compact. In particular, Ky € L(LP(£2), L°°(12)) is compact.

(iii) For1<p< oo and1 < q < oo, if 2 C RN is open and J € Wh4(82, LV (2)),
then Ky € L(LP(92), Wl’q(Q)) is compact.

Proof. (i) Since J € LI(£2,LP (£2)), for 1 < p < oo and 1 < ¢ < oo we know
from lemma 3.6 that there exist M(n) € N and f}' € Lq(Q), g7 € L' (£2) with
j=1,...,M(n) such that J(z,y) can be approximated by functions that are a
finite linear combination of functions with separated variables defined as

M(n)
-l S
and [|J — J"|| oo, 1 (2)) — 0 as n goes to co. Then define

K (s Zf"/ (y)uly) dy.

Thus, since Kj — K j» = K j_ j» thanks to proposition 3.1, we have that
1Ky — Kynllewe),pa2) <N =" pao,0 (@) — 0 asn goes to oo.

Since K j» has finite rank, it follows that K; € L(LP(§2), L%({2)) is compact (see,
for example, [7, p. 157]).
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(i) If J € BUC(Q,LP/(Q))7 then hypothesis (3.2) of proposition 3.1 is satisfied,
and then K; € L(LP(£2),Cp(£2)). We now consider u € B C LP({2), where B is the
unit ball in LP(2). Now, we prove using the Ascoli-Arzela theorem (see [7, p. 111])
that K j(B) is relatively compact in Cp(£2). Let z, z € £2, let u € B and, thanks to
Holder’s inequality, we have

K yu(z) — K u(a)| = ] | GG = T myut) dy\ <) = T@, ) -

Since J € BUC(2, L¥'(£2)), for all € > 0 there exists & > 0 such that if 2,z € £
satisfy that d(z,x) < 6, then ||J(z,") — J(z,")||1» () < €. Hence, we have that
K ;(B) is equicontinuous. On the other hand, thanks to Holder’s inequality, for all
z € 2 and u € B,

K u(a)| = \ JRC dy] <17 Yo < 0.

Thus, we have that K ;(B) is precompact, and therefore K; € L(LP(£2),Cp(12)) is
compact. Also, the second part of the result is immediate.

(iii) From equality (3.5) in the proof of proposition 3.1, we have that (9/0x;) K ju =
Ky 9z,u. Since J € Wha(2, L (2)), we have J € Li(£2,L” (2)) and, more-
over, 0.J/0z; € Lq(Q,L”,(Q)) for all ¢ = 1,..., N. Using part (i) we obtain that
Kyj/o0, € L(LP(82), L(82)) is compact. Thus, if B is the unit ball in LP(£2), we
have that K;(B) and Kp;j/s,(B) are precompact for all i = 1,..., N. Now we
consider the mapping 7 : LP(£2) — (L9(£2))N*! defined as

T (u) = (Kju, Ko /02, - Kogjomy )

Thanks to Tikhonov’s theorem, we know that 7(B) is precompact in (L9(£2))N+1.
Moreover, we consider the mapping S: W14(2) — (L9(2))N*1, defined as S(g) =
(g,09/0x1,...,09/0zy). Since S is an isometry, we have that $*1|1m(5) : Im(S) C
(L9(02))N*+t — W4(£2) is continuous. On the other hand, thanks to the hypotheses
on J and proposition 3.1, we have that K; € £(LP(£2), W14(£2)). Thus, Im(T) C
Im(S).

Hence, the operator K ;: LP(£2) — W14(2) can be written as

K]U = S_1|Im(5) o Tu.

Therefore, we have that K ; is the composition of a continuous operator S _1|Im(3)
with a compact operator 7. Thus, we have the result. O

REMARK 3.8. Observe that the assumptions in proposition 3.7 are the same as
in proposition 3.1 except for the case in which K € L(LP(£2),L>°(2)), where we
assume in the former that J € BUC(£2, L? (£2)) instead of J € L>®(£2, L¥' (12)), as
in the latter.

We now derive several consequences from interpolation. Note that the following
result is valid for a general operator K, not necessarily an integral operator.
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PROPOSITION 3.9. Let (£2,1) be a measure space with u(f2) < oco. Assume that,
for1 < pg < p1 < oo, K€ L(LP(N2),LP(2)) and K € L(LP(£2),LP*(12)). Then
K € £(L(9), 1(2)) for all p € [po, p1].

Additionally, suppose that K € L(LPo(£2),LP°(£2)) is compact. Then we have that
K € L(L*(£2),LP(12)) is compact for all p € [po,p1).

Proof. From the Riesz—Thorin theorem (see [6, p. 196]), it follows that we have
K € L(LP(£2),LP(£2)) for all p € [po,p1]. The proof of the compactness can be
found in [12, theorem 1.6.1]. O

3.1.2. Positivity properties of the operator K

Now we analyse positivity preserving properties of non-local operators. For this
we will need some positivity properties of the kernel J and some connectedness of
2. To do this, we first introduce the following definition.

DEFINITION 3.10. Let ({2, i, d) be a metric measure space and let R > 0. We say
that (2 is R-connected if for any z,y € (2 there exists a finite R-chain connecting x
and y. By this we mean that there exist N € N and a finite set of points {zg, ..., zn}
in 2 such that 29 =z, zy =y and d(z;—1,2;) < Rforalli=1,...,N.

We then have the following lemma.
LEMMA 3.11. If 2 is compact and connected, then (2 is R-connected for any R > 0.

Proof. We fix an arbitrary zg € {2 and we define the increasing sequence of open
sets

Ph o = B(xo,R) and Pj, = |J B(x,R) forneN. (3.9)

zGPg;lo

Observe that Pp . is the set of points in {2 for which there exists an R-chain of n
steps, connecting with zo. Then A = |, Pp ., is open. Let us show that it is also
closed. In such a case, since {2 is connected, we would have {2 = A, which implies
that 2 is R-connected, since x( is arbitrary. Indeed, if y € 2\ A, then we claim
that B(y, R) C £2\ A, since otherwise B(y, R) would intersect some Py , . which
implies that y € Pg;, which is absurd. O

With this we obtain the following lemma.

LEMMA 3.12. Let (£2, u,d) be a metric measure space such that {2 is R-connected.
For any fized xo € £2 consider the sets Pg , ~as in (8.9). Then, for every compact
set in K C (2, there exists n(vo) € N such that K C Py, for all n > n(zo).
Furthermore, if £2 is compact, there exists ng € N such that for anyy € 2, 2 = Pp |
for allm > ng.

Proof. Since (2 is R-connected, for any y € (2, consider an R-chain connecting xg
and y, {xo,..., 2z} such that zp; = y and d(z;—1,7;) < R, for all 4 = 1,..., M.
Thus, 21 € B(wo,R) = Ph, , x2 € B(z1,R) C P, , B(xi,R) C P for all
t=1,..., M. In particular, y € PIJ;\:{IO and

B(y,R) C Py (3.10)
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On the other hand, since K is compact, K C J,cx B(y, ) and there exists n € N
and y; € K such that K c U, B(y;, R). From (3.10), for every i there exists
M, such that B(y;, R) C ngl. We choose n(zg) = max;—1, . ,{M; + 1} and we
obtain that K C Pg(fs) Therefore, £ C Py, for all n > n(xo). Thus, the result. If
{2 is compact, from the previous result we know that for a fixed zg € {2 there exists
N = N(xzg) such that 2 = P}%V, - Therefore, any two points in {2 are connected
by an R-chain of N steps to xg. Thus, any two points in (2 are connected to each
other by an R-chain of 2N steps. In other words, 2 = Pp  for all n > 2N for all
y € . O

Now we define the essential support of a non-negative measurable function.

DEFINITION 3.13. Let z be a measurable non-negative function z: 2 — R. We
define the essential support of z as

P(z)={x e 2:¥0 >0, p({y € 2: z2(y) >0} N B(x,d)) > 0},
where B(z,0) is the ball centred at x with radius ¢.

It is not difficult to check that z > 0 is not identically zero if and only if P(z) # 0,
which is equivalent to u(P(z)) > 0.
Let us introduce the following definitions.

DEFINITION 3.14. Let z be a measurable non-negative function z: {2 — R. Then
we denote by

P°(z) = P(2)
the essential support of z, and for any R > 0 we define the increasing sequence of
open sets
Pp(z)= |J Bl R),
z€PO(z)
Pi(z)= |J B(R),
z€PL(2)
Prz)= |J BB
ze€PR Y (2)
for all n € N.

We now prove the main result.

PROPOSITION 3.15. Let (£2,u,d) be a metric measure space and let J > 0 satisfy
that
J(z,y) >0 forallx,y € 2 such that d(z,y) < R (3.11)

for some R > 0. If z > 0 is a non-trivial measurable function defined in {2, then

P(K%(z)) D Pr(z) for alln e N.

https://doi.org/10.1017/50308210515000724 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000724

Linear non-local diffusion problems in metric measure spaces 847

In particular, if 2 is R-connected, then for any compact set I C {2
Ing(z) €N such that P(K'}(2)) D K for all n = no(z).

If 2 is compact and connected, then there exists ng € N such that, for all z > 0
measurable and not identically zero,

P(K7%(2)) =8 for alln = ng.

Proof. First of all we prove that P(K;z) D PA(z). Since 2z > 0, not identically zero,
#(P(z)) > 0 and then

Kyz(x) = /Q J(z,y)=(y) dy > / J(z,y)=(y) dy.

P(z)

From (3.11) we have that

Kyz(z) >0 forall ze U B(y, R) = Pi(2). (3.12)
yEP(2)

Since Ph(z) is an open set in 2, we have that if € PL(z), then
w(B(z,6) N Pa(z)) >0 forall 0 < 4. (3.13)
Thus, thanks to (3.12) and (3.13), we have that

P(Kjz) D Pg(2). (3.14)
Applying K to Kz, following the previous arguments and thanks to (3.14), we
obtain
P(K3(z)) > Pp(K;2)= | J B@R)> |J B R)=Pi).

x€P(Kz) z€PL(2)
Therefore, iterating this process, we finally obtain that
P(K7%(z)) D Pr(2) VneN. (3.15)

Now consider K C {2, a compact set in {2, and, taking o € P(z) and thanks to
lemma 3.12, there exists no(z) € N such that K C Pj(z) for all n > ng(z). Then,
thanks to (3.15), K C P(K7%(z)) for all n > ng(z). Now, if {2 is compact and
connected, thanks to lemma 3.11, {2 is R-connected. From lemma 3.12 there exists
no € N such that, for any y € 2, 2 = Py for all n > ng. Hence, from (3.15),
for any 2 > 0 not identically zero, taking y € P(z), P(K}(z)) D Pg, = {2 for all
n = ng. O

REMARK 3.16. Note that the hypothesis (3.11) is somehow an optimal condition,
as the following counterexample shows.

Let £2 =[0,1] C R and take zp = 3 and 0 < R < 1 such that (} — R, 1 + R) C
[0,1]. We consider a function J satisfying that J > 0 and defined as

T(z,y) = {1> (z,y) € 0,12\ (2 = R, L + R)? with d(z,y) < R,

3.16
0  for the rest of (z,y). (3.16)
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1
0,1)

(1/2,1/2)

00) ' C 1.0
|

Figure 2. The shaded areas are the points (z,y) where J is strictly positive, R = i,
Now, we consider a function zg: 2 — R, zg > 0, such that P(z) C [%, 1]. Since
zo(y) = 0 in [0, 3], we have that
1
Krala) = [ Jew)a@)dy= [ I
19 1/2
Moreover, from (3.16), we have that for & € [0, 3), J(Z,y) = 0 for all y € [3,1] (see
figure 2).
Hence, K zo(Z) = 0 in [0, 3), and therefore P(K;z9) C [4,1]. Iterating this
argument, we obtain that

P(K'(20)) C [3,1] forallneN.

3.1.3. Spectrum of K

We will now prove that under certain hypotheses on K; the spectrum ox (K ) is
independent of X with X = LP(£2),1 < p < 00, or X = Cp(£2). We also characterize
the spectrum of K; when K is self-adjoint in L?(§2) and prove that, under the
same hypothesis on the positivity of J in proposition 3.15, the spectral radius of K ;
in Cp(2) is a simple eigenvalue that has a strictly positive associated eigenfunction.

The proposition below is for a general compact operator K, not only for the
integral operator K ; (see proposition 3.7 to check compactness for operators with
kernel K ).

PROPOSITION 3.17. Let (§2,u,d) be a metric measure space with p(£2) < oo and
let 1 < po < p1 < 00. Assume that one of the following cases hold.

(i) K € L(LPo(£2),LP1(£2)) and K € L(LP°(£2), LP°(12)) is compact. Write then
X = LP(R2) for p € [po,p1)-

(il) K € L(LP0(§2), LP1(£2)) is compact. Write then X = LP(2) for p € [po, p1]-

(iil) K € L(LP2(£2),Cp(12)) is compact. Write then X = LP(§2) for p € [pg, ] or
X = Cy(12).

Then K € L(X,X) and ox(K) is independent of X.
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Proof. (i) Thanks to proposition 3.9, we have that K € £(LP(£2), LP({2)) is compact
for all p € [po,p1). Thus, its spectrum is composed of zero and a discrete set of
eigenvalues of finite multiplicity (see [7, ch. 6]). So, we now prove that the set of
eigenvalues is independent of p € [pg, p1]-

If X € opr (K) is an eigenvalue, with an associated eigenfunction ¢ € LP'(£2) —
LP(2) for all p € [po,p1], then A\ € o (K) for all p € [pg,p1]. Conversely, if
for p € [po,p1), A € opr()(K) is an eigenvalue, with an associated eigenfunc-
tion @ € LP(2) — LPo(f2) since K: LPo(§2) — LP1({2), then K& = AP € LP1({2).
Hence, X € o e () (k).

(i) Since K € L(LP°(£2), LP*(42)) is compact and
LP(Q) < L (2) 5 LP(2) < LP(0),

it follows that K € L(LP(£2),L*(2)) is compact for p € [po, p1]. Arguing as in (i),
we have the result.

(iii) Since K € L(LP0({2),Cp(£2)) is compact and
Co(2) = L7(£2) = LP(2) L5 Cy(2) = L7(02) — L™ (1),

it follows that K € L£(X,X) is compact for X = Cp(£2) or X = LP(2) with
D € [po, o0]. Hence, following the arguments in (i), we get the result. O

The following proposition gives more details about the spectrum of K ;.

PROPOSITION 3.18. Let (£2, u,d) be a metric measure space with p(§2) < oo. We
assume that Kj € L(LP°(12),C(12)) is compact for some py < 2. Let X = LP({2)
with p € [po, 00] or let X = Cp(£2), and assume that J satisfies

J(,y) = J(y, x).

Then Ky € L(X,X) and ox (K )\ {0} is a real sequence of eigenvalues of finite
multiplicity, independent of X, that converges to 0. Moreover, if we consider

m= inf (Kju,u)p2 and M= sup (Kju,u)r2q), (3.17)
ueL?(2), ueL?(02),
lull p2(0)=1 lull L2 (0y=1

then ox (Ky) C [m,M] CR, m € ox(K;) and M € ox(K). In particular, L?(§2)
admits an orthonormal basis consisting of eigenfunctions of K.

Proof. Thanks to proposition 3.5, K is self-adjoint in L?(§2), so o72(K ;)\ {0} is a
real sequence of eigenvalues of finite multiplicity that converges to 0 (see [7, ch. 6]).
Furthermore, from proposition 3.17 we have that ox (K ;) is independent of X.
Thus, the result. On the other hand, we have that ox(K;) C [m,M] C R with
m € ox(Ky) and M € ox(K), where m and M are given by (3.17), and thanks
to the spectral theorem (see [7, ch. 6]), we know that L?(£2) admits an orthonormal
basis consisting of eigenfunctions of K ;. O

Now, we apply the Krein—Rutman theorem [22] in Cp,({2) to prove that the spectral
radius of the operator K is a simple eigenvalue with a strictly positive associated
eigenfunction.
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PROPOSITION 3.19. Let (§2, i1, d) be a compact connected metric measure space. We
assume that J satisfies

J(z,y) = J(y, x)
and
J(x,y) >0 Va,y € 2 such that d(z,y) < R for some R > 0,

and Ky € L(LP(£2),Cp(2)) for some 1 < p < o0 is compact. Then we have that
Ky € L(Cy(£2),C(£2)) is compact, the spectral radius r(Ky) = sup|o(K)| is a
positive simple eigenvalue, and its associated eigenfunction can be taken strictly
positive.

Proof. Since {2 is compact and connected, from proposition 3.15 we obtain that
there exists ng € N such that for any non-trivial non-negative v € Cp(2), 2 =
Pg(u) for all n > ng (see definition 3.14), and for all n € N, P(K™u) D Pg(u).
Therefore, 2 = Pf(u) C P(K™u) for all n > ny, i.e. for any non-negative u € Cy(£2),
K%u > 01in £2 for all n > ng. Hence, K is strongly positive in Cy(£2). Moreover,
Kj: Cy(2) — LP(2) — Cp(f2) is compact. Hence, the result follows from the
Krein—-Rutman theorem (see [22]). O

A similar result was proved by Bates and Zhao [4] for an open set 2 C RY under
the stronger assumption that J(z,y) > 0 for all z,y € £2.

3.2. Properties of K — hI

Let (£2,1,d) be a metric measure space. We will always assume below that h €
L*>°(£2). In the case in which we work in the space X = Cp,(§2), we will furthermore
assume that h € Cp(£2).

The following result collects some properties of multiplication operators. Note
that below we denote by R(h) the range of the function h: 2 — R, and by R(h)
its closure.

PROPOSITION 3.20. Let h be as above and consider the multiplication operator hi
that maps

Then the resolvent set and spectrum of the multiplication operator are independent
of X and are given by

x(hI)=C\ R(h) and ox(hl)=R(h),

respectively. Moreover, for X = LP(§2) the eigenvalues associated with hl have
infinite multiplicity and satisfy

EV(hI) = {o; p({z € £2; h(z) = a}) > 0}.

On the other hand, for X = Cy(£2) the eigenvalues have infinite multiplicity and
satisfy

EV(RI) D {a; {z € £2; h(z) = a} has non-empty interior}.
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Proof. It X = LP({2), consider f € LP(f2) and u € LP({2) such that h(x)u(x) —
Au(z) = f(x), that is,

Then we have that A € prs(o)(hI) if and only if (I — A)~' € L(LP(£2)) if and
only if (1/(h — X)) € L*°(£2), and this happens if and only if A ¢ R(h). Thus,

pur(en () = C\ R(R).
If A is an eigenvalue, then for some ¢ € LP(f2) with ¢ # 0 we have

h(z)®(z) = A\P(z),

and this only happens if there exists a set A C 2, with u(A) > 0, such that h(z) = A
for all x € A C (2. Hence, we have that Ker(hl — AI) = L?(A). Thus, the result. If
X = Cp(£2), the arguments run as above. Just note that if {\; {z € 2; h(z) = A}}
has non-empty interior A, then

Ker(hl — M) ={P € C,(2): P(x) =0 for all x € 2\ A}. O

3.2.1. Spectrum

Now we describe the spectrum of K — hl € L(X, X), where X = LP(£2) with
1 <p< ooor X =C(f2), and we prove that, under certain conditions on the
operator K, it is independent of X . For this, we start by introducing some definitions
used in the following theorems.

DEFINITION 3.21. If T is a linear operator in a Banach space Y, a normal point of
T is any complex number that is in the resolvent set, or is an isolated eigenvalue
of T of finite multiplicity. Any other complex number is in the essential spectrum
of T.

To describe the spectrum of K — hl, we use the following theorem, which can be
found in [17, p. 136].

THEOREM 3.22. Suppose that Y is a Banach space, that T: D(T) CY — Y is a
closed linear operator, that S: D(S) C Y — Y is linear with D(S) D D(T) and
that S(\o —T) ™1 is compact for some \g € p(T). Let U be an open connected set in
C consisting entirely of normal points of T, which are points of the resolvent of T,
or isolated eigenvalues of T of finite multiplicity. Then either U consists entirely of
normal points of T + S or entirely of eigenvalues of T + S.

REMARK 3.23. If S: Y — Y is compact, theorem 3.22 implies that the perturbation
S can not change the essential spectrum of 7.

We then have the following theorem.
THEOREM 3.24. If K € L(X,X) is compact (see proposition 3.7), then
o(K —hI) = R(—h) U{u }M.,  with M € NU {o0},

where {un, YM | are eigenvalues of K — hI with finite multiplicity. If M = oo, then
{pn}2, accumulates in R(—h).

https://doi.org/10.1017/50308210515000724 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000724

852 A. Rodriguez-Bernal and S. Sastre-Gomez

Proof. With the notation of theorem 3.22, we consider the operators

S=K and T =-hl.

First of all, we prove that C\ R(—h) C p(K — hI). We choose the set U in theo-
rem 3.22 as

U =p(T) =C\ R(=h),

which is an open connected set. Hence, every A € U is a normal point of T.

On the other hand, if \g € p(T), then (T — Xg)~! € L(X,X) and S = K is
compact. Then we have that S(A\g — 7)™ € L£(X,X) is compact. Thus, all the
hypotheses of theorem 3.22 are satisfied. Now, thanks to theorem 3.22, we have
that U = C\ R(—h) consists entirely of eigenvalues of T + S5 = K — hl or U
consists entirely of normal points of T+ S = K — hl. If U = C\ R(—h) consists
entirely of eigenvalues of T'+ S = K — hl, we arrive at a contradiction, because the
spectrum of K — hl is bounded. So U = C\ R(—h) has to consist entirely of normal
points of T'+ S. Then they are points of the resolvent or isolated eigenvalues of
T+ S = K — hl. Since any set of isolated points in C is a finite set, or a numerable
set, we have that the isolated eigenvalues are

{pn}M,  with M € Nor M = cc.

Moreover, since the spectrum of K — hI is bounded, if M = oo, then {p,}52,
is a sequence of eigenvalues of K — hl with finite multiplicity that accumulates in
R(—h). Now we prove that R(—h) C o(K —hlI). We argue by contradiction. Suppose
that there exists a A € R(—h) that belongs to p(K — hl). Since the resolvent set
is open, there exists a ball B.(\) centred in A that is in the resolvent of K — hl.

Then U = B.(\) is an open connected set that consists of normal points of K — hl.
With the notation of theorem 3.22, we consider the operators

T=K-hl and S=-K
and the open connected set U = B.()). Arguing as in the previous case, if \g € p(T),
we have that S(A\g —7T) ! is compact, and thus the hypotheses of theorem 3.22 are
satisfied. Hence, U = B.()) consists entirely of eigenvalues of T'+ S = —hI or
U = BE(S\) consists entirely of normal points of T'+ S = —hl. If U = BE(S\)
consists entirely of eigenvalues of 7'+ S = —hl, we would arrive at a contradiction

because the eigenvalues of —hI are only inside R(—h) and the ball B.(\) is not
inside R(—h). So U = B.()) has to consist of normal points of T 4+ S = —hlI, so
they are points of the resolvent of —hl or isolated eigenvalues of finite multiplicity
of —hI. Since p(—hI) = C\ R(—h) and X € R(—h), we have that A has to be an
isolated eigenvalue of —hl with finite multiplicity. But from proposition 3.20 we
know that the eigenvalues of —hl have infinite multiplicity. Thus, we arrive at a
contradiction. Hence, we have proved that R(—h) C o(K — hI). With this, we have

finished the proof of the theorem. O

In the following proposition we give conditions that guarantee that the spectrum
of K — hI is independent of X = LP(£2) with 1 <p < 0o or X = Cp(12).
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PROPOSITION 3.25. Let u(£2) < oo, let h € L™(2) and assume either one of the
following cases holds.

(i) For some 1 < pg < p1 < o0 and K € L(LP°(02),LP1(12)), we have that
K € L(LPo(02),LPo(S2)) is compact and h € L*°(£2). Write then X = LP({2)
for p € [po, p1).

(ii) For some 1 < py < p1 < 00, we have that K € L(LP°(£2), LP'(£2)) is compact
and h € L*>(£2). Write then X = LP(£2) for p € [po,p1].

(iii) For some 1 < py < o0, we have that K € L(LP°(2),Cp(12)) is compact and
write then X = LP(§2) forp € [po, 00] or X = Cy(£2) (in which case we assume
h e Cy(12)).

Then K € L(X,X) and ox(K) is independent of X.

Proof. Following the same arguments in proposition 3.17, we have that in any of
the cases (i), (ii) or (iii), K € £(X,X) is compact. Then, from theorem 3.24 we
just have to prove that the eigenvalues A € ox (K — hl) such that A ¢ R(—h) are
independent of X. For such an eigenvalue and an associated eigenfunction @, we

have 1
P(x)=——7KP 1
(x) OES) (z) (3.18)
and 1/(h(-) + ) € L>(12) since X\ ¢ R(—h). For cases (i) and (ii), if A € o (K —
hI), then & € LP(f2) and X\ € ore(K — hI) for all p € [pg,p1]. Conversely, if
AE O'Lp(Q)(K — hI), then

1
—— K& =90 e LP(02).
h(:)+ A ()

Case (iii) is analogous using that 1/(h(-) + A) € Cp(£2). O

Note that if 1 < pg < 2, proposition 3.25 allows us to analyse the spectrum of
K — hI in the L?(£2) setting for which we have conditions to be self-adjoint using
proposition 3.18. In such a case, and as will be seen in §4, it will be important
to determine when the largest point on the spectrum is a simple eigenvalue. For
h a constant function this is easily derived from proposition 3.19. However, for
non-constant h the situation could be more involved. A simple particular situation
occurs for the function

ho(x) = /Q J(z,y) dy,

for which we assume that J € L>°(§2,L'(£2)), and hence hy € L>({2). Note that
in this case, A = 0 is an eigenvalue with constant eigenfunctions. The result below
gives the condition for A = 0 being the largest eigenvalue and being simple.

COROLLARY 3.26. Under the assumptions of proposition 3.25, assume furthermore
that

J(z,y) = J(y,z),

J € L>(02,L*(R2)), and h(z) = ho(z) = [, J(x,y)dy € L>®(12) satisfies that
ho(z) = a >0 for all x € £2.
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Then ox (K — hol) is non-positive and 0 is an isolated eigenvalue. Moreover, if
J satisfies that

J(xz,y) >0 Va,y € 2 such that d(z,y) < R

and (2 is R-connected, then 0 is a simple eigenvalue with only constant eigenfunc-
tions.

Proof. From proposition 3.25, the spectrum ox (K —hI) is independent of X. Hence,
we prove the result in L?(£2) and in this space K — hol is self-adjoint. Using the
symmetry of J and Fubini’s theorem, we get, for any u € L?(2),

(K — ho)u,u) g2 2 = / / z,y)( —u(y))? dydz < 0. (3.19)
From this, as in (3.17), we get

O'L2(_Q)(KJ — ho) < sup <(KJ — ho)u,u>L2(Q)7L2(Q) < 0.
u€L?(£2),
||UHL2(Q):1

Also observe that constant functions satisfy (K — ho)u = 0 and, since 0 € R(—hy),
0 is an isolated eigenvalue with finite multiplicity.

If, moreover, J satisfies the sign assumption in the statement and ¢ is an eigen-
function of 0, from (3.19) we get

0= ((K — hol)p, p)r2(02),L2(2) = / / z,y)( — p(z))? dy da.

Since J(x,y) > 0 for x,y € 2 with d(z,y) < R, for all x € 2, p(z) = p(y) for
any y € B(x, R). Thus, since {2 is R-connected, ¢ is a constant function in (2.
Therefore, 0 is a simple eigenvalue. O

4. The linear evolution equation

Let (£2, u, d) be a metric measure space. The problem we are going to work with in
this section is

us(x,t) = (Ky — hlu(z,t) = Lu(z,t), =z € 2, t>0, (41)
u(z,0) = up(z), x € {2, '
with Kju(z) = [, J( y)dy, J =0, h € L>®(02), up € X and Ky € L(X, X),

where elther X = LP(Q) Wlth 1 <p<oo,or X =Cp(f2) (in which case we assume
that h € Cy(12)).
First, since K; € L(X,X), problem (4.1) has a unique strong solution u €
C>(R, X) given by
u(t) = eFtug.
The mapping
R >t u(t) =ellug € X

is analytic. Moreover, the mapping (¢, ug) — e**uq is continuous.
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We denote by Sk 5 the group associated with the operator L = K; — hl to
highlight the dependence on K ; and h. Hence, the solution of (4.1) is

u(t, ug) = Sk.n(t)ug = eltuyg.

4.1. Maximum principles

We now prove that the solutions of (4.1) satisfy maximum principles. For this,
let u be the solution to (4.1). We take the function

v(t) = e"Otu(t) fort >0,

which satisfies vs(z,t) = e"@* K ju(x,t) and v(x,0) = up(z). Hence, integrating in
time we get

t
u(z,t) = e M@tyg(2) + / e M@K ju(x, s) ds. (4.2)
0

Let X = LP(§2) with 1 < p < o0, or let X = Cp(§2). For every wp € X and T' > 0
we consider the mapping F,,,: C([0,T]; X) — C([0,T]; X) defined as

t
Foo)(@,t) = e Mg () + / PO =) K 5 (W) (z, 5) ds.
0

Then we have the following immediate result.

LEMMA 4.1. If wg,20 € X and w,z € Xp = C([0,T); X), then there exist two
constants C1 and Cy depending on h and T, such that

1 Fao (@) = Fzo (2l < CL(T)]lwo = 20l x + Ca(T)lflw = =, (4.3)

where C1(T) = elh-liz=@T  Cy(T) = CTell-ll=@T 5 [0,00) — R is increas-
ing and continuous, and Co(T) — 0 as T — 0.

With this and the standard Picard iterations, we can prove the following propo-
sition.

PROPOSITION 4.2 (weak maximum principle). For every non-negative ug € X the
solution to problem (4.1) is non-negative for all t > 0.

Proof. Thanks to (4.2), we know that the solution to (4.1) can be written as

t
u(z,t) = e M@ tyg(x,t) + / e MO K ju(z, s) ds = Fuulz,t).
0

We choose T small enough such that C2(T') in lemma 4.1 satisfies that Co(T) < 1.
Hence, by (4.3) we have that F,,(-) is a contraction in Xy = C([0,T]; X). We
consider the sequence of Picard iterations

Unt1(x,t) = Fup(un)(x,t) ¥n>=1, x€ 2, 0<t<T.

Then the sequence u,, converges to u in Xp. We take uj(x,t) = ug(z) > 0, and
then, for t > 0,

t
U (1) = Fouy (ur) (2, 1) = e MOy () + / e MO K (ug) (2) ds
0
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is non-negative, because K is a positive operator. Thus, us(z,t) > 0 for all ¢ > 0.
Repeating this argument for all u,,, we get that u,(z,t) is non-negative for every
n > 1fort > 0. As u, converges to u in X, we have that u is non-negative. Since
T > 0 does not depend on the initial data, if we consider again the same problem
with initial data u(-,T'), then the solution (-, ) is non-negative for all ¢t € [T, 2T.
Since (4.1) has a unique solution, we have proved that the solution of (4.1) satisfies
u(z,t) > 0 for all ¢ € [0,2T]. Repeating this argument, we have that the solution
of (4.1) is non-negative for all ¢ > 0. O

We now show that with the assumptions in proposition 3.15 we have in fact the
strong maximum principle.

THEOREM 4.3 (strong maximum principle). Assume that K; € L(X,X) and J >
0 satisfies
J(x,y) >0 forall x,y € 2 such that d(z,y) < R

for some R > 0, and (2 is R-connected. Then for every non-trivial ug > 0 in X,
the solution u(t) of (4.1) is strictly positive for all t > 0.

Proof. Thanks to proposition 4.2, we know that v > 0 in {2 for all ¢ > 0. We take
v(t) = e"Otu(t)

and then, recalling the definition of the essential support in definition 3.13, we have
P(u(t)) = P(v(t)) for all ¢ > 0. From the argument above (4.2), we know that v
satisfies

v(t) = "OUK s (u(t)) =0 Vit > 0. (4.4)

Integrating (4.4) over [s,t], we obtain
¢
v(t) = v(s) +/ ve(r)dr > v(s) forany t > s> 0. (4.5)

Then P(v(t)) D P(v(s)) for all t > s. Moreover, since v(t) = e)tu(t) and thanks
to (4.5), we obtain
u(t) = e hOE=3)y(s).

This implies that P(u(t)) D P(u(s)) for all ¢ > s. As a consequence of (4.5), we
have that for any subset D C 2,

ot = elole) + [ @O Al (16)
Since P(u(t)) 5 P(v(s)) for all ¢ > s, and from (4.6), we have that
Pu(t)) N D = Pw(t)) 1D > P(Kyu(r)) N D forallre[s,f.  (47)
Moreover, applying proposition 3.15 to u(s), we have
P(K yu(r)) 5 P(K;(u(s)) o Ph(u(s) = |J B, R) forall 7€ s,

zEP(u(s))
(4.8)

https://doi.org/10.1017/50308210515000724 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210515000724

Linear non-local diffusion problems in metric measure spaces 857

Hence, if we consider the set D = Pk(u(s)), from (4.7) and (4.8) we have that
P(u(t)) D Pi(u(s)) for all t > s. (4.9)

Hence, the essential support of the solution at time ¢ contains the balls of radius R
centred at the points in the support of the solution at time s < ¢t. We fix ¢t > 0, let
C C {2 be a compact set and then proposition 3.15 implies that there exists ny € N
such that C C P"(ug) for all n > ng. We consider the sequence of times

t(n—1) tj t

b=ty tpog = —2, .ty ==, ..., t1=—, tg=0.
n n n

Therefore, thanks to (4.9), we have that the essential support at time ¢ contains
the balls of radius R centred at the points in the essential support at time ¢,_1,
P}(u(ts—1)), which contains the balls of radius R centred at the points in the
essential support at time ¢, o, P3(u(t,—2)). Hence, repeating this argument, we
have

P(u(t)) = P(u(tn)) > Ph(u(ta—1)) > P3(ulta—2)) > --- > P(us) > C.

Thus, we have proved that wu(¢) is strictly positive for every compact set in {2 for
all ¢t > 0. Therefore, u(t) is strictly positive in (2 for all ¢ > 0. O

We also get the following immediate consequence.

COROLLARY 4.4. Under the assumptions of theorem 4.3, if ug = 0, not identically
zero, with P(ug) # {2, then the solution to (4.1) has to be sign changing in 2 for
all t < 0.

4.2. Asymptotic regularizing effects

In general, the group associated with (4.1) has no regularizing effects. However,
we will prove that there exists a part of the group, which we call Sy(t), that is
compact, so it somehow regularizes. Moreover, there exists another part of the
group, which we call S;(¢), that does not regularize, i.e. it carries the singularities
of the initial data, but it decays to zero exponentially as ¢t goes to oo if h > 0. Thus,
we have asymptotic smoothness as defined in [16, p. 4].

THEOREM 4.5. Let u(f2) < oco. For 1 < p < g < o0, let X = LU(12) or Cp(£2). If
Ky e L(LP(02),X) is compact (see proposition 3.7) and h satisfies

h(z) Z2a>0 forallz el
and ug € LP(12), then the group associated with problem (4.1) satisfies that
u(t) = Skn(t)uo = S1(t)uo + S2(t)uo
with

(i) Si(t) € L(LP(£2)) for all t > 0, and ||S1(t)|| (L (2),Lr2)) — O exponentially
ast — ooy

(i) Sa(t) € L(LP($2),X) is compact for all t > 0.
Therefore, S p(t) is asymptotically smooth.
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Proof. We write the solution associated with (4.1) as in (4.2). Then we have that

t
u(z,t) = Sgp(t)uo(z) = e " @tyg () —|—/ e MO K u(z,s)ds Vo e 2
0

and we define
S1(t)ug = e MOty Sa(t)ug = /Ot e_h(')(t_s)KJu(s) ds.
(i) Since ug € LP(£2) and h € L>(£2) with h > a > 0, we have S; (t)ug = e "ty €
LP(§2) and
151 (B)uol Loy = lle™" D ug ()l o (2) < e *luollLo(2)-

(ii) Fix t > 0. As h € L™(£2), Sk,n(s) € L(LP(12)) for all s € [0,t], and K, €
L(LP(£2),X), we have

[[S2(t) (uo)llx < e_at/o K5 (Sk,n(s)uo) x ds

< —at
<e torggéctHKJ(SK,h(S)uo)”X

< 00.
Let us see now that Sa(t) € L(LP(£2),X) is compact for all ¢ > 0. Fix ¢t > 0 and
consider a bounded set B of initial data. We define Sa(t)ug = fg F,,(s)ds with
Fuy(s) = e PO K 5 (Sge 1 (s)ug).

Assume that we have proved that F, (s) € €, where ¢ is a compact set in X
for all s € [0,¢] and for all ug € B. Then we have that (1/¢)S2(t)(ug) € ¢o(%) for
all up € B and, thanks to Mazur’s theorem, we obtain that (1/t)S2(¢)(B) is in a
compact set of X. Therefore, So(t) is compact. Now, we have to prove that

Fouy(s) = e POE) K 1 (Sk o (s)uo)

belongs to a compact set for all (s,up) € [0,¢] x B. First of all, we check that
K ;(Sk,n(s)ug) belongs to a compact set W in X for all (s,uo) € [0,t] x B. Since
K ; is compact, we just have to prove that the set

B = {SK,h(s)uoz (s,ug) € [0,t] x B}
is bounded. In fact, since Ky — hI € L(LP(2), LP(£2)), for some 6 > 0 we have
1Sk, n(s)uollLe 2y = [lul-; 8)|lLr(2) < C’e55||u0||L,,(Q) < CGMHUOHLP(Q)

for all (s,up) € [0,t] x B. Then, since B is bounded, we obtain that B is bounded
in LP({2). Finally, we just need to prove that F, (s) is in a compact set for all
(s,up) € [0,t] x B. Since the mapping

M:[0,t] x X - X
(s, f) e =)y

is continuous, M sends the compact set [0,t] x W into a compact set €. Thus,
F,,(s) belongs to a compact set € for all (s,ug) € [0,t] x B. O
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4.3. The Riesz projection and asymptotic behaviour

In this section we study the asymptotic behaviour of the solution of problem
(4.1) by using the Riesz projection, which is given in terms of the spectrum of
the operator. Since the spectrum of the operator L = Kj; — hl was proved in
proposition 3.25 to be independent of X = LP({2), with 1 < p < oo, or X = C(12),
the asymptotic behaviour of the solution of (4.1) will be characterized with the
Riesz projection, which can be explicitly computed in L?({2).

We now briefly recall the construction of the Riesz projection; for more details
see [15, ch. 1] and [19, §II1.6.4]. Consider an operator L € £(X,X), where X is a
Banach space, and consider the linear problem

ug(x,t) = Lu(z,t),
’U,(:L‘70) = uO(fL‘) with ug € X} (410)

Since L is a bounded operator, Re(o(L)) < ¢ and the norm of the semigroup satisfies
that
le"* | 2(x) < Coe®r, ¢ >0, (4.11)

Then, given an isolated part o of o(L), we define the Riesz projection of L
corresponding to the isolated part o1, Qs,, as the bounded linear operator on X
given by .

—1
Qo = 5 F()\I L) " dA,
where I' consists of a finite number of rectifiable Jordan curves, oriented in the
positive sense around oy, separating o from oy = o(L) \ 7. This means that oy
belongs to the inner region of I'" and o9 belongs to the outer region of I'. The
operator (), is independent of the path I" described as above.

Assume that the spectrum of L is the disjoint union of two non-empty closed
subsets o7 and os. To this decomposition of the spectrum corresponds a direct
sum decomposition of the space, X = U & V, such that U and V are L-invariant
subspaces of X, the spectrum of the restriction L|U is equal to o1, and that of L|V
is equal to 0. If we assume that

0o < Re(al) < 61, RG(O'Q) < b with 6y < 51,
then we have that the solution to (4.10) can be split as

u(t) = Qo (u)(t) + Qo (u) (?).
With this, we get the following theorem (see [15, ch. 1]).
THEOREM 4.6. Consider L € L(X) and let o(L) be a disjoint union of two closed

subsets o1 and oo with 6o < Re(o1) < 61, Re(o2) < 02, and 6o < 61. Then the
solution of (4.10) satisfies

lim e (u(t) = Qu, (W)(£) [ x =0 Vi1 > bs.

t—o0

The assumptions of the following proposition are tailored for the case in which
L =Kj;—hIin (4.1) and allows us to compute the Riesz projection in terms of the
Hilbert projection.
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PROPOSITION 4.7. For 1 < pg < p1 < oo with 2 € [pg,p1], let X = LP(£2) with
p € [po,p1], or let X = Cp(£2). We assume that L € L(X,X) is self-adjoint in
L2(02), that the spectrum of L, ox (L), is independent of X, and that the largest
eigenvalue associated with L, \1 is simple and isolated with associated eigenfunction
@y € LP() N L' (2), for p € [po,p1], if X = LP(R2), or &1 € Co(2) N LY(2) if
X =Cp(02) and ||P1||12(0) = 1. If 01 = {1} and I is a simple curve around only
A1, then for uw € X the Riesz projection associated with o1 is given by

Qo (u) = (/Qu%)@l. (4.12)

Proof. First, working in L?(§2), it is well known that the Riesz projection coincides
with the Hilbert projection; that is, (4.12) holds for all u € L?(2) (see [19, §§I11.6.4
and I11.6.5]). Now, in X = LP({2), for p € [po, p1], or X = Cp({2), since the spectrum
ox (L) is independent of X, we have that the projection P(u) = (u,®1)P; is well
defined for u € X because of the hypotheses on @;. In fact, P € £(X, X). On the
other hand, since the set

V =span[xp; D C 2 with u(D) < oo] C L*(2),

where xp is the characteristic function of D C {2, is dense in LP({2), and Q,, = P
in V, they coincide in X = LP(£2). Finally, for X = C,(£2) we use that L2(£2)NCy(£2)
is dense in Cy(£2), and again Q,, = P in X. O

We now apply proposition 4.7 to problem (4.1) in two cases: h constant or h =
ho = [ J(y) dy with J € L(£2, L'(£2)).

CASE 1 (h constant). For h = a € R constant we have the problem

ut(x,t) = (Kj — al)u(z,t),
u(:r, 0) = U()(if) € LP(Q). } (4'13)

Then we have the following proposition.

PROPOSITION 4.8. Let {2 be compact and connected. Furthermore, assume that
K€ L(LY(£2),Cp(£2)) is compact (see proposition 3.7) and J(x,y) = J(y,z) with

J(x,y) >0 Va,y € 2 such that d(z,y) < R for some R > 0.
Then, for ug € X with X = LP(£2), 1 < p < 00, or X = Cp(£2), the solution u of

(4.13) satisfies that
e_/\ltu(t) — (/ Uodsl)@l
2

where A1 > 0 is the spectral radius of Ky and ®1 is an associated eigenfunction,
normalized in L?(2).

lim
t—o0

:()7
X

Proof. From proposition 3.17 we have that ox (K ) is independent of X. Moreover,
since J(z,y) = J(y,z), from proposition 3.18 we know that o(K ) \ {0} is a real
sequence of eigenvalues { A\ }nen of finite multiplicity that converges to 0. Further-
more, from proposition 3.19, the largest eigenvalue A\; = r(K ) is an isolated simple
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eigenvalue and the eigenfunction @1 € Cp(2) C X associated with it can be taken
to be positive. In particular, @, € LP(£2) N LP (2) and &1 € Cy(2) N L (£2). Also,
the spectrum of Ky —al is {\, —a}nen and &y is a positive eigenfunction associated
with Ay — a.

Thus, for ug € X and thanks to theorem 4.6, the solution of (4.13) satisfies

Jim [le™ (u(t) — Qo (u)(1))l|x =0

and by proposition 4.7 we have Q,, = P. Thus, since u(z,t) = e/~ Dty (), we
have that

Qal (u)(t) _ Qal (e(KJ—aI)tuo) — e(K"_aI)thl (UO) _ C*e(KJ—llI)t¢1 _ C*e/\ltdjh
where C* = fQ uo®1, and we get the result. O

CASE 2 (h = hg € L®(£2)). Assume that we have J € L>°(§2, L' (£2)) and consider
the problem

w(z,0) = uo(z) with ug € LP(02). (4.14)

ug(x,t) = (Ky — hol)u(z,t), }
In the following proposition we prove that the solution of (4.14) goes exponen-
tially in norm X to the mean value in {2 of the initial data.

PROPOSITION 4.9. Let u(§2) < co. Assume that Ky € L(L*(£2),Cy(£2)) is compact
(see proposition 3.7), that J satisfies J € L= (2, L*(2)), that J(x,y) = J(y,z) and

J(z,y) >0 Va,y € 2 such that d(z,y) < R for some R > 0.

We also assume that ho(x) > a > 0 for all x € (2.
Then, for ug € X with X = LP(£2), 1 < p < o0, or X = Cp(2), the solution u of

(4.14) satisfies that
i Bt 1 _
lim ||e (u(t) (D) /Q uo> 0

t—o0

’ X

for some B > 0.

Proof. From corollary 3.26 we consider oy = {0}, an isolated part of o(K; — hol)
with associated eigenfunction @ = 1/u(£2)'/2, and o9 = o(K; — hoI) \ {0}. Then,
thanks to theorem 4.6,

lim [|le” (u(t) — Qo (u)(t))l|lx =0

t—o0

for some 3 > 0, by proposition 4.7 and since Q,, = P. Since

u(z,t) = eBr=ho Dty (1)

3
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we have

Qo, (u)(t) = Qo (e(KJ_}LOI)tUO)

- e(K:fhol)tQU1 (uo)

(/ U0@1>6(K‘7h01)t@1
0
</ Uo¢1>¢1

0

:ﬁ/QUO

REMARK 4.10. Propositions 4.8 and 4.9 were proven in [8] in the case in which {2
is an open set in RY and for X = L2(£2) or X = C({2).
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