
Using Constraint Programming in Selection Operators for Constraint 
Databases

María Teresa Gómez-López ⇑, Rafael M. Gasca

Department of Languages and Computer Systems, University of Seville, Spain
onstra
nequati
fficient
or each
ermit 
tored, a
his ext
valuate
rder to

relation

⇑ Corresponding author. Tel.: +34 954553871; fax: +34 954557139.
E-mail addresses: maytegomez@us.es (M.T. Gómez-López), gasca@us.es 

(R.M. Gasca).
URLs: http://www.lsi.us.es/~mayte (M.T. Gómez-López), http://www.lsi.us.es/

~gasca (R.M. Gasca).
a b s t r a c t
Keywords:
Complex data
Optimal query evaluation
Selection Operator
Constraint Databases
Constraint Programming

C
i
e
f
p
s
T
e
o

int Databases represent complex data by means of formulas described by constraints (equations, 
ons or Boolean combinations of both). Commercial database management systems allow the storage and 
 retrieval of classic data, but for complex data a made-to-measure solution combined with expert systems 
 type of problem are necessary. Therefore, in the same way as commercial solutions of relational databases 
storing and querying classic data, we propose an extension of the Selection Operator for complex data 
nd an extension of SQL language for the case where both classic and constraint data need to be managed. 

ension shields the user from unnecessary details on how the information is stored and how the queries are 
d, thereby enlarging the capacity of expressiveness for any commercial database management system. In 
 minimize the selection time, a set of strategies have been proposed, which combine the advantages of 
al algebra and con-straint data representation.
1. Introduction

Databases are used for the management of information in soft-
ware applications. However there are certain types of data that
cannot be represented as classic data and treated with commercial
solutions, such as software mining, web analytics, medicine, biol-
ogy and chemistry data (Poelmans, Ignatov, Kuznetsov, &
Dedene, 2013a; Poelmans, Kuznetsov, Ignatov, & Dedene, 2013b).
Constraint Databases represent complex data by means of formu-
las described by constraints (equations, inequations or Boolean
combinations of both). The problem remains that no commercial
database exists that permits constraints to be handled in the same
terms as classic data, and which shields the user from how the
information is stored and how the queries are evaluated. It implies
that, for each type of problem, a made-to-measure solution com-
bined with expert systems are necessary. The use of the constraint
data type to represent these different types of problems permits
the abstraction to use the data in the same sense as in the rela-
tional databases, where the same type of data can be used for
different semantics.
The main contributions of this paper can be summarized as fol-
lows: (1) An extension of SQL language to evaluate the Selection
Operator for complex data; (2) The proposal for a set of strategies
to minimize the evaluation time; (3) A library to extend commer-
cial databases for constraint data and Selection Operator; (4) It is
applied to a project for the Human Accident Risk Management in
Construction.

The industrial development of the proposal has been elaborated
in a real project called Victor R&D Project. The Victor Project
(Visual Interface ConTrol Object Rules) (Victor-Project, 2013) is a
case study where classic and complex data are managed at the
same time in an application, and the efficiency of the data selection
is essential for security reasons. This project focuses on the Human
Accident Risk Management in Construction, where it is possible to
model static objects at design time (video cameras, ditches, cranes,
machinery zones, . . .), dynamic objects whose position is sent from
the sensors at runtime (persons, machinery, . . .), and rules that
describe the safe or dangerous relation between the objects. The
various objects have locations that can be described by means of
points, lines, polygons, or irregular zones, and for different floors,
in general by means of constraints (Fig. 1). The data retrieval over
this data implies the evaluation of queries such as: Which
machines are in a zone of security on floor three? or Is there any-
body with a level of risk higher than 8 from a ditch? In order to
describe the data model of the project, the level of floor can be rep-
resented by means of an integer, and the type of zone or the type of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.04.047&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.04.047
mailto:maytegomez@us.es
mailto:gasca@us.es
http://www.lsi.us.es/~mayte
http://www.lsi.us.es/~gasca
http://www.lsi.us.es/~gasca
http://dx.doi.org/10.1016/j.eswa.2014.04.047
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Fig. 1. Example of objects of risk management.
static element can be stored by means of an enumerate type, but
the problem remains of how to represent and to ascertain whether
a piece of machinery is inside or outside of a zone, or how to
represent the risk between two objects using only operations over
the database. The development of this type of query implies a
made-to-measure implementation depending on the problem.
However, would it be possible to extend the Selection Operator
to query complex types of data represented by means of constraint,
in the same sense as classic data is treated in relational databases?
Optimal data selection is essential since there are many objects,
and a delay in identifying potential accidents can be very negative
for the safety of the personnel. For this reason, the main objective
of this paper is to improve the constraint data retrieval, by
combining the advantages of the commercial relational databases
in order to delegate the evaluation of the classic data to the
database management.

This paper is organized as follows: Section 2 presents how com-
plex data represented by constraints can be stored using Constraint
Databases. Section 3 extends the syntax and the semantics of the
Selection Operator of relational algebra for constraint data.
Sections 4 and 5 explain how the queries can be evaluated by
describing the implementation details based on Constraint Satis-
faction Problems, and the strategies to improve the evaluation
time. Section 6 presents several examples of queries and their
average evaluation times, and shows how the use of our solution
improves the computation time for various selections over
constraints. Section 7 reviews the most relevant proposals in this
area. Finally, conclusions are drawn and future work is proposed.

2. Constraint Databases background

Constraints have already been related to databases by means
of the so-called Constraint Databases (CDBs) (Revesz, 2001).
Constraint Databases were introduced in 1990 in a paper by
Kanellakis and Revesz (1990), creating a new line of research
(Revesz, 1995Revesz, 1998).

Although there are several proposals related to CDBs, the defini-
tions of CDBs and how to store the constraints used in this paper is
the proposal called LORCDB (Gómez-López, Ceballos, Gasca, &
Valle, 2009), which is based on Chapter 2 of Revesz (2001) with
certain variants. In Section 7 the different solutions found in the
literature are analysed and why the LORCDB solution is used to
extend the Selection Operator in this paper. The necessary defini-
tions are included in this work to facilitate the understanding of
the paper.

A Constraint can be expressed by means of a Boolean combina-
tion of equations and inequations that follows the metamodel
presented in Gómez-López, Gasca, and Reina-Quintero (2011).
A constraint is a Boolean combination (not, and, or) of comparison
(<;6;P; . . .) among equations (þ; �;�; =). For example: {a>b AND
NOT c + 1 = b}

When constraint data need to be stored in a database, classic
attributes and constraint attributes can be combined in the same
relation, where the tuples of the relation are called constraint
k-tuples:

� A constraint k-tuple with the variables x1; . . . ; xk is a finite con-
junction u1 ^ . . . ^uN where each ui, for 1 6 i 6 N, is either a
constraint, such that {xj¼Constant}, where xj 2 {x1; . . . ; xk}, called
a Classic Attribute, or an X-constraint over the variables x1; . . . ; xk

which do not correspond to a classic attribute, and is called a
constraint Attribute.

When a set of constraint k-tuples are joined in a relation, it is
called a constraint relation:

� A constraint relation is defined as a finite set of Classic Attributes
and constraint Attributes. A constraint relation of arity k, is a finite
set r ¼ fw1; . . . ;wMg, where each wj for 1 6 j 6 M is a constraint
k-tuple over {x1; . . . ; xk}. The corresponding formula is the dis-
junction w1 _ . . . _ wM , such that wj ¼ u1 ^ . . . ^uN for each ui

is a constraint k-tuple, where 1 6 i 6 N . If in each wj 2 r there
is a ui such that {x = Constant}, where x is the same variable
in all ui belonging to different wj, and x does not appear in
the rest of the ui of the same wj, then the x variable is a classic
attribute, while the rest of the variables belong to constraint
attributes.
A relation has classic attributes if and only if:
uij is a ui 2 u1 ^ . . . ^uN and wj 2 w1 _ . . . _ wM , such that wj ¼
u1j ^ . . . ^uNj, and therefore a constraint relation will have a
classic attribute (x) if:
9uij � 8j 2 1::M j i 2 1::N; fuij � x ¼ cjg ^
8t 2 1::N ^ t – i ^ utjðx1; . . . ; xkÞ ^ x R fx1; . . . ; xkg

where cj is a constant, M the number of tuples, and N the number of
attributes (columns).

This implies that if an equality relation exists between a variable
and a constant (the same variable in all tuples) in all constraint k-
tuples, and that if this variable does not appear in another con-
straint attribute, then this variable is a classic attribute, since it fol-
lows relational algebra.

An example is presented in Fig. 2, where the constraint rela-
tion is composed of one constraint attribute and two classic attri-
butes. In the example, there are two variables (x and y) that
appear in all the tuples which have an equality relation with a
constant, and these variables cannot appear in the rest of the
attributes.

Therefore, a Constraint Database is a finite collection of con-
straint relations composed of Classic and constraint attributes.
From the previous definitions, it is clearly necessary to extend
the types of attributes for CDBs. The definitions of three different
types of attributes are used:



Fig. 2. Example of constraint k-tuples and constraint relations.
� Classic attribute (ati): ati belongs to the n-tuples of a relation
(1 6i 6n), where ati is of a type permitted by standard SQL,
for example Integer, String, Date, . . . This type of attribute can
be represented as a constraint, such as {ati = constant}, since
relational databases only permit attributes with atomic values.
These attributes can be used as a primary or foreign key.
� Constraint attribute (atc

i ): atc
i belongs to the n-tuples of a

relation where atc
i is of Constraint type defined as a constraint

k-tuple with the variables v1 . . . vk. A constraint attribute
represents a relation between the set of variables v1 . . . vk.
Therefore, for our proposal, a constraint relation is formed by
classic and constraint attributes.
� Constraint-variable attribute (atc

i .vj): vj is a variable
which belongs to a constraint attribute atc

i . This attribute is
represented by:
<Constraint�column�name>.<Variable�name>

where <Variable�name> is not a classic attribute, but it is a var-
iable of a constraint stored as a value inside a column. A column of
the database (constraint attribute) can have several constraints, and
these constraints can be defined over different variables.

Derived form theses definitions, The storage proposal in
Gómez-López et al. (2009) presents a framework called LORCDB
(Labelled Object–Relational Constraint Database). LORCDB is
focused on storing the constraints as objects indexed by the vari-
ables contained within, the minimum and maximum value of each
variable for every constraint, what is the box consistency for each
variable (the minimum-bounding hyper-rectangle) (Granvilliers,
Goualard, & Benhamou, 1999).

By storing the maximum and minimum values, the query eval-
uation becomes more efficient, as explained in the following
sections.
3. Extending the syntax and semantics of the Selection Operator
for constraint data

One of the main objectives of this paper is to define a language
to describe the constraint data for the selection of data in a data-
base, independent of the semantics of the problem. Since SQL is
the standard language for relational databases, we propose an
extension to the meaning of selection for constraint data. For the
extension, it is necessary to propose: a new syntax; the semantics
of the possible comparators; and a way of evaluating the queries in
order to optimize the data selection. Examples where a Selection
Operator can be used to select data include:

� Is any security zone being crossed by any machine?
� What degree of risk does the ditch ðx� 5Þ2 þ ðy� 12Þ2 6

36 ^ 2 <¼ x ^ x <¼ 8 pose for a particular person?
� What objects are to the north of the person located at the point

(6;8)?
In general, the Selection Operator has to return the tuples that
satisfy a condition, which can relate an attribute either with a con-
stant or with attributes of different relations. An example of a
selection in SQL is:

Select R.
⁄
from R, R’ where R.At3 h R’.At2

The main difference in the syntax, when constraint data is
added, is that the attributes can be constraints, and hence the com-
parison (h) must allow the comparison between constraints. One of
the goals of this paper is to define what ’’to compare constraints’’
means, what types of comparison can be defined between con-
straints, how we can evaluate the queries, and how the efficiency
of query evaluation can be improved. In this paper we propose
various strategies to improve the evaluation, such as the box
consistency of constraints, relational algebra, and Constraint Satis-
faction Problems.
3.1. Syntax of the Selection Operator

The syntax of the query with a selection of tuples in standard
SQL is:

SELECT <list�of�attributes (t1) [,list�of�attri-

butes (t2), . . .]>

FROM <list�of�tables (t1, t2; . . .)> WHERE predicate

The predicate is a condition where the attributes of tables
involved can participate, where a Boolean expression is composed
of logic operators v ¼{^;_} and comparison operators
h ¼{<;6; >;P;¼; <>} with the form:

a1hc1 v a2hc2 v � � � v an h cn

where ai represents an attribute (one of the three proposed for
CDBs) and where ci is another attribute or a constant of the same
domain as that of ai.

The differences added for the extension of SQL for constraints
are: the type of attributes involved, which can be constraint attri-
butes; and the predicate to define the condition. The parameter
<list�of�attributes (ti)> represents various types of projections
over the attributes of table ti. These attributes can be classic attri-
butes, constraint attributes, or constraint-variable attributes. The
predicate that we propose extends the standard, adding to the clas-
sic attributes the comparison among constraint attributes, con-
straint-variable attributes, and constraint attributes for a set of
variables (at, atc, atc.variable). The operators to compare classic
attributes (<;6; >;P;¼; <>) are also used to compare con-
straint-variable attributes, but the operators to compare constraint
attributes are extended to compare the constraints
(<;6; >;P;¼; <>;&;�; # ;�;	). When only a number of the vari-
ables of the constraints are to be taken into account in the selection
process, the syntax permits either the specification of these vari-
ables with the token FOR, or a combination of this comparison with
the equality of other variables. A detailed clarification of the fol-
lowing syntax is given in the subsection below:



predicate :¼ condition

j condition [’AND’ j ’OR’] predicate;

condition :¼ at COMPARATOR [at j constant]
j atc CONSTRAINTCOMP [atc j constraint]
j atc CONSTRAINTCOMP ’(’[atc j constraint] ’FOR’

’{’listOfVariables’}’
[’AND’ listAtVarEqual]’)’

j atc’.’variable COMPARATOR [atc’.’variable j
constant];

COMPARATOR :¼ ’<’ j ’6’ j ’>’ j ’P’ j ’¼’ j ’<>’;
CONSTRAINTCOMP :¼ ’<’ j ’6’ j ’>’ j ’P’ j ’¼’ j ’<>’ j
’&’ j ’�’ j ’#’

j ’�’ j ’	’;
listOfVariables :¼ Variable

j Variable ’,’ listOfVariables;

listAtVarEqual :¼ atc’.’Variable ’=’

atc’.’Variable

j atc’.’Variable ’=’ atc’.’Variable ’AND’

listAtVarEqual;
3.2. Semantics of the Selection Operator for constraint attributes

In the same way as the comparison operators have been modi-
fied, the semantics has to be adapted. In this work, the comparison
defined between constraints is related to the comparison between
the extensional values that the constraints involved represent in an
intensional way. As stated earlier, the constraint data is an inten-
sional way to represent a set of extensional data, therefore their
comparison operators must compare all the extensional data that
they represent. Some of the operators used are those defined in
Chapter 2 of Marriott and Stuckey (1998) that describe the relation
between the extensional values of the variables represented by
means of constraints in a similar way to operations between sets.
Other papers, such as Lee, Unger, Zheng, and Lee (2011), also use
the comparison operators for the containment scope of mobiles
in covered zones. We propose the comparison which ascertains
whether the values that represent a constraint are included in
the values of another constraint (�, # ;�;	), or that both sets of
values of the variables have at least one solution in common (&).
Moreover, the semantics of the classic operator for the comparison
in relational algebra have also been added (h ¼(<;6; >;P;¼; <>)).
The semantics defined in this paper for these operators describes
whether the values that represent a constraint are greater than,
smaller than, equal to or different from the values of another con-
straint. The typical topological relations (disjoint, meet, overlap,
. . .) can be performed with the comparison operators that we pro-
pose. The advantage of incorporating these operators, however, is
that they can be used in any type of problem or selection, by per-
mitting the use of the same operators in a general purpose data-
base, and not only for spatio-temporal data.

We also find it interesting to compare a set of the variables
involved only in the constraints, for this reason we have included
a special syntax: ’(’[atc j constraint] ’FOR’ ’{’listOf-
Variables’}’’)’. This sentence allows the definition of the set
of variables that we want to include in the comparison.

Before explaining how the evaluation of the comparison is per-
formed, it is necessary to clarify that if the involved constraints in
the comparison are not defined over the same variables, then the
comparison has no sense. For this reason, we define a new opera-
tion over the variables that describes the syntactic equality
between variables of different constraints:

Definition 3.1. Syntactic Equality between variables of
constraints: Let Ca and Cb be two constraints where A ¼
{a1;a2; . . . ;an} represents the variables of Ca, and B ¼{b1;b2, . . . ;bm}
represents the variables of Cb. If ai 2 A, and bj 2 B, then ai �S bj is true
if both variables are syntactically equal, which means that they
have the same name. If two variables of different constraints are
syntactically equal, it does not imply that they are the same variable
and represent the same extensional values in both constraints. For
example, if two separate objects are defined in a zone of the space,
both objects are described by the same variables (x, y). However
there is no solution for both objects for the same values of x and
y, although it is possible to define a comparison between them,
for example if one object is higher than the other. This means that
although the variables of two constraints of different tuples are syn-
tactically equal, they are not semantically equal because they rep-
resent symbolically different extensive values.
4. Evaluation of Selection Operator for data selection

In order to compare the values represented by means of con-
straints, and to evaluate the queries over the possible constraint
attributes, we propose the use of Constraint Satisfaction Problems
because their resolution is more efficient and general (for any
number of variables) than the computation geometry algorithm
used in other proposals. Depending on the related constraints in
the evaluation, and the comparator of the Selection Operator, var-
ious models are created to evaluate the query. Moreover, classical
mathematics models should not be applied to solve geographical
problems, then new ways to represent and solve them are neces-
sary (Malpica, Alonso, & Sanz, 2007). In order to understand the
models, it is necessary to clarify what a Constraint Satisfaction
Problem is, to determine whether a comparison between two con-
straints is true or false, and to determine whether the tuple with
the constraint will form part of the output constraint relation.

Constraint Satisfaction Problems (CSPs) represent a reasoning
framework consisting of variables, domains and constraints. For-
mally, it is defined as a triple hX, D, Ci where X ¼ {x1; x2; . . . ; xn} is
a finite set of variables, D ¼ {dðx1Þ; dðx2Þ, . . . ; dðxnÞ} is a set of
domains of the values of the variables, and C ¼ {C1;C2, . . . ;Cm} is
a set of constraints. Each constraint Ci is defined as a relation R
on a subset of variables V ¼ {xi; xj; . . . ; xk}, called the constraint
scope. The relation R may be represented as a subset of the Carte-
sian product dðxiÞ 
 dðxjÞ 
 . . . 
 dðxkÞ. A constraint Ci ¼ ðVi;RiÞ
specifies the possible values of the variables in V simultaneously
in order to satisfy R. Let Vk ¼ {xk1 , xk2 ; . . . ; xkl

} be a subset of X,
and an l-tuple ðxk1 ; xk2 ; . . . ; xkl

Þ from dðxk1 Þ; dðxk2 Þ; . . . ; dðxkl
Þ can

therefore be called an instantiation of the variables in Vk. An instan-
tiation is a solution only if it satisfies the constraints C.

In order to solve a CSP, a combination of search and consistency
techniques is commonly used (Dechter, 2003). The consistency
techniques remove inconsistent values from the domains of the
variables during or before the search. Several local consistency
and optimization techniques have been proposed as ways of
improving the efficiency of search algorithms.

The technique for comparison of the constraints proposed in
this paper uses model-driven evaluation of CSPs. This implies
building a CSP to ascertain whether each constraint stored in the
relation satisfies the condition defined in the query, which deter-
mines whether each tuple of the input constraint relation will form
part of the output constraint relation, and hence a CSP is modelled
and solved. The inclusion of each tuple within the group of those
that satisfy the condition, and therefore its inclusion in the output
relation, depends on the condition and on the existence of a solu-
tion for the CSP. The comparison between two constraints is
defined if there is a syntactic equality between the variables of
the constraints (Definition 3.1) and if the variables are defined over
the same domain. Otherwise, the result of the evaluation will be
false. Given that a1 . . . an represent the variables of constraint Ca,



and b1 . . . bm represent the variables of Cb, then the created models
for the comparison operators are:

� Ca < Cb is true if, for all ai j ai�Sbj, the maximum value of the
solutions of ai always remains smaller than the minimum value
of bj, and if for all the variables of Ca, there is a syntactic equality
in Cb and vice versa. This definition can be extended to Ca > Cb.
In order to determine whether Ca < Cb, a CSP is built where all
the variables ai of Ca, that also participate in Cb (which means
that ai �S bj), are renamed as ai0, thereby building a new con-
straint Ca0. This creation is necessary since these two constraints
have to be able to assume different solutions in order to
compare the values of the solutions. If a CSP is built with the
variables both syntactically and semantically equal, then the
solutions obtained are the values of ai where both constraints
are satisfiable. In order to ascertain whether all the solutions
of Ca for the variables ai�Sbj are smaller than the solutions of
Cb, a created CSP will determine whether there is a solution
where this does not happen. If a solution is found, then the out-
put of the evaluation for the predicate Ca < Cb is false, and true
otherwise. This means that the formula:
8ai 2 A; 8bj 2 B j ai�Sbj ) (ai < bj) is transformed into:
:ð9 ai 2 A; 9bj 2 Bjai�Sbj ) ai > bj _ ai ¼ bjÞ.
This transformation obviates the study of the entire search
space of the solutions, since it is only necessary to find a value
where ai P bj is true. A CSP is built as follows:

A0 ¼ {a01; a
0
2, . . . ; a0n}

B ¼ {b1; b2; . . . ; bn}
C0a ^ Cb

8ai 2 A 8bj 2 B j ai�Sbj ) add {(ai0 > bj _ ai0 ¼ bj)}
If there exists a solution for the CSP, then Ca < Cb for these tuples
returns false, since it means that not all the values of the vari-
ables of Ca are smaller than those in constraint Cb, since there
exists a value that satisfies the opposite condition. If no solution
is found for the CSP, then the comparison Ca < Cb returns true.
An example is shown in Fig. 3, where Ca < Cb is true.
This type of selection can be used to query spatial objects, for
example to ascertain what objects are to the southwest of
another object.
� Ca 6 Cb is true if, for all the variables ai�Sbj, the maximum value

of ai is always smaller than or equal to the minimum values of
bj. This definition can be extended to Ca P Cb. The construction
of this CSP is as follows:

A0 ¼ {a01; a
0
2, . . . ; a0n}

B ¼ {b1; b2; . . . ; bn}
C0a ^ Cb

8ai 2 A 8bj 2 B j ai�Sbj ) add {(ai0 > bj)}

If there is a solution for this CSP, then Ca 6 Cb returns false, and

true otherwise.
Fig. 3. Example where Ca < Cb .
� Ca ¼ Cb is true if all the solutions of Ca are also solutions of Cb

and vice versa. In this case, it is possible that two syntactically
different constraints can be semantically equal. For this com-
parison, the variables are not renamed for the CSP, since it is
necessary to know whether the solutions of Ca are also solutions
of Cb. The CSP built in this case is:

A ¼ {a1; a2; . . . ; an}
B ¼ {b1; b2; . . . ; bn}
(:Ca ^ Cb) _ (Ca ^ :Cb)
If there is a solution for the CSP, then Ca = Cb returns false, and
true otherwise. The operation <>, which describes the inequal-
ity of two constraints, can be evaluated with the same construc-
tion of the CSP used for the ¼ operator. The main difference
when using this operator is that if there is a solution for the
CSP, the comparison returns true, and false otherwise.
� Ca & Cb is true if there is a solution that satisfied both con-

straints, where all the variables are syntactically equal. In this
case, the model of the CSP is:

A ¼ {a1; a2; . . . ; an}
Ca ^ Cb

If a solution is found for this CSP, the operation Ca & Cb returns

true, and false if no solution is found.
� Ca # Cb is true whether all the solutions of Ca are also solutions

of Cb. In order to analyse the inclusion operator in constraints,
both constraints have to be defined over the same variables.
Therefore, since Ca and Cb are two constraints where A ¼
{a1; a2; . . . ; an} are the variables of Ca and Cb, then Ca # Cb is
equal to the implication (Ca ! Cb) (Marriott & Stuckey, 1998).
This comparison determines if all the solutions of Ca are also
solutions of Cb, although it is possible that Cb has solutions that
do not belong to Ca.
In order to avoid having to analyse all the solutions of Ca by
checking whether they are solutions of Cb, the CSP is modelled
to search for solutions where the constraint is not satisfiable.
The evaluation of the conditional predicate Ca # Cb therefore
corresponds to the formula:
:ð9ai2AðCa ^ :CbÞÞ

and the model of the CSP is:

A ¼ {a1; a2; . . . ; an}
Ca ^ :Cb

If any solution is found for the CSP, the evaluation returns false,

and true if no solution is found. There is an example shown in
Fig. 4 where the constraint Ca is included in the constraint Cb

(all the solutions of Ca are solutions of Cb). This definition can be
extensible for Ca 	 Cb.
� Ca � Cb returns true if all the solutions of Ca are also solutions of

Cb, and Cb has at least one solution which does not belong to
y

x

Fig. 4. Example of Ca # Cb .



Ca. As for the previous operator, both constraints have to be
defined over the same variables.
In this case, one CSP is modelled in order to determine whether
Ca # Cb, and another CSP is modelled to determine whether
there is a solution for Cb that does not belong to Ca:

A ¼ {a1; a2; . . . ; an}
Cb ^ :Ca

If there is a solution for the CSP, then Ca � Cb returns true, and
false otherwise. This definition can be extended to Ca � Cb.

The operators above can be modified to compare only one set of
the variables, defined syntactically with the word FOR, and to
establish equality relations between certain variables:

� Ca < (Cb FOR {bd; . . . ; bh}) is a variant of the comparison ’<’
which returns true if for all the variables ai�Sbj such that bj 2
{bd, . . . ; bh}, the maximum value of ai is smaller than the mini-
mum value of bj. This comparison carries out a projection over
those variables that belong to the predicate {bd; . . ., bh}. This
assumes that the variables of Ca that do not belong to
{bd; . . . ; bh} hold no significance for this operation. In this case,
the constraints Ca and Cb do not require all the variables to be
syntactically equal, and the comparisons between the variables
of the predicate are included in the CSP. The model of the CSP
has the form:

A0 ¼ {a01; a2’, . . . ; a0n}
B ¼ {b1; b2; . . . ; bn}
C0a ^ Cb

8ai 2 A 8bj 2 fbd; . . . ; bhg j ai�Sbj ) add {(a0i > bj _ a0i ¼ bj)}
If there is any solution for the CSP, the comparison returns false,
and true otherwise. An example is presented in Fig. 5a where the
selection is over the variable y, and the predicate is Ca<(Cb FOR
fyg). This predicate queries whether all the values of the variable y
in Ca are smaller than the solutions for this variable in Cb, where
the values of the variables {x; z} are not important. However, for
the predicate Ca<(Cb FOR fxg) and the same example, the evaluation
output is false. This definition can be extended to the operations
6; >;& and P.

An easy way to illustrate this type of selection is in an application
which refers to objects in space, for example, in the determination of
whether there is any object physically located above another.

A further variant of this type of comparison for variables is illus-
trated in ascertaining whether the solutions of a constraint are smaller
than the solutions of another constraint for a fixed group of variables.
In Fig. 5b an example is shown, in which, for the values of x where Ca

and Cb are satisfiable, the value of y to satisfy Ca is smaller than the
value of y to make Cb satisfiable. The conditional predicate for this
example is:
(a)

a

b

Fig. 5. Example of selection
Ca < (Cb FOR {y} AND Ca.x¼Cb.x).
It assumes that the general syntax to fix the semantic equality is:

Ca < (Cb FOR {bd; . . . ; bh} AND Ca.v1 = Cb.v1 AND

. . . AND Ca.vi¼Cb.vi AND . . . AND Ca.vk¼Cb.vk).

where vi R {bd; . . . ; bh}

and means that the model of the CSP is:

A0 ¼ {a01; a2’, . . . ; an0}
B ¼ {b1; b2; . . . ; bn}
C0a ^ Cb

8ai 2 A 8bj 2 fbd; . . . ; bhg j ai�Sbj ) add {(a0i > bj _ ai0 ¼ bj)}
8v 2 fv1; . . . ;vkg j v�Sai0 ^ v�Sbj ) add {ai0 ¼ bj}

If the CSP finds a solution, then the comparison will be false, and
true if no solution is found.

The remaining operators can be extended for the use of FOR in a
similar way, although �; # ;�;	;&;¼ and <> cannot be extended
to an equality relation between variables since these operators
define a relation where the variables of these two constraints are
equal, and hence stating that the variables are equal would be
redundant.

5. Strategies for improving the selection of constraint data

In order to define a methodology to obtain an efficient evalua-
tion of the Selection Operator for the data retrieval, a strategy
inspired by spatial databases has been designed to handle each
part (conditions) of the predicate in a specified order. The evalua-
tion for the selection consists of obtaining a horizontal subset of
tuples for an input relation. In order to obtain the output relation,
a sequence of steps are executed, within each of which the tuples
that do not satisfy a part of the predicate are eliminated.

When a constraint is stored, the box consistency of each vari-
able (minimum-bounding hyper-rectangle) in each constraint is
also stored in one of the three tables presented in Section 2. This
information leads to a more efficient evaluation of the queries.

We address the problem of an efficient query evaluation of the
Selection Operator that follows a set of steps which is the result of
an exhaustive analysis of the problem. These steps are determined
by the type of attributes involved, which include:

1. Classic attribute: For an input relation R, the predicate over the
classic attributes has to be analysed according to relational
algebra, and a new constraint relation must be obtained. This
is possible since the constraints and relational data can be
differentiated.
(b)

b

a

over certain variables.



2. Constraint-variable attribute: The second step is related to
constraint-variable attributes, where these attributes represent
numeric variables whose maximum and minimum values are
stored. The implementation of this type of attribute is analysed
in Subsection 5.1.

3. Constraint attribute: For the constraint attributes, two types of
treatments are used, box consistency and the solving of CSPs.
The implementation of this type of attribute is analysed in
SubSection 5.2.

Classically, the object retrieval for spatio-temporal objects is
formed of two steps: The filter step to quickly prune the indexed
objects, and the refinement step where the exact representations
of candidates using computational geometry algorithms are
inspected. In our proposal, the filter step is executed by means of
the box consistency analysis. There are a significant number of
papers that study the benefits of the use of the box consistency
and how to improve the evaluation time based on interval-based
solvers (Chabert & Jaulin, 2009; Araya, Trombettoni, & Neveu,
2010; Trombettoni, Papegay, Chabert, & Pourtallier, 2010;
Chabert, Trombettoni, & Neveu, 2005). There exist other proposals,
such as the use of internal rectangles (Lin & Tan, 2003), but they
cannot be used directly in our problem because a constraint can
represent more than one object, and hence the internal rectangle
indexation would need adapting. Reduction of the space of analysis
for two dimensions has been proposed in papers such as Brisaboa,
Luaces, Navarro, and Seco (2010), Brisaboa, Luaces, Navarro, and
Seco (2013). Our proposal of a refinement step is based on the
use of Constraint Programming to support any type of problem
or number of variables, thereby obviating the made-to measure
algorithm, which depends on the type of problem to solve and
the number of variables.
5.1. Evaluation of a constraint-variable attribute in a selection

The predicates related to these attributes can define a compar-
ison between two constraint-variable attributes, a constraint-vari-
able attribute and a classic attribute, or a constraint-variable and a
constant attribute. These three types of comparison can be consid-
ered as only two types, since the comparison between a constraint-
variable and a classic attribute, or a variable and a constant are
equivalent. The comparison between a constraint-variable and a
classic attribute can be studied as a comparison between a con-
straint-variable attribute and a constant where the value of the
constant is different for each tuple. The various cases are handled
by means of the analysis of the box consistency. For example, if
the tuples of an output relation have to satisfy a condition where
the variable a is smaller than the value 5, and the domain of this
variable for a constraint is 10..15, then the tuple with this variable
does not belong to the output relation. In certain cases, this elimi-
nation of tuples can be performed without creating a CSP, simply
by carrying out a classic query for classic attributes, since the max-
imum and minimum value of the variables are stored. However, in
order to be sure that the value can be instantiated, a CSP has to be
created.
Fig. 6. Example of the Selection Operator with co
An example of predicate for constraint-variable attributes can
be.

rRelation:c>Relation:d(R), where R is the relation shown in Fig. 6. As
the output of the selection, the first tuple of the relation is obtained
{x ¼ 5 ^ y ¼ 2 ^ aþ b > c ^ dþ a < 8}, and since the second and
fourth tuples have the variable d, this implies that the relation
between variables cannot be defined. With respect to the third
tuple, the constraint d > c � c þ 1 appears, hence the condition
rRelation:c>Relation:d(R) cannot be satisfied.
5.2. Evaluation of constraint attributes for data selection

For the constraint attributes, we first propose an analysis of the
box consistency in order to determine whether the predicate
involved satisfies the condition over the constraint attributes. If
this analysis is insufficient, a CSP has to be created and solved.

� Box consistency analysis: If the minimum and maximum val-
ues that a variable can take are analysed, it is possible to infer
whether two constraints satisfy a condition, for example, for
the comparison between the constraints Ca and Cb, both defined
over the variables v1 and v2, where the ranges are Ca(v1 : ½5..15�,
v2 : ½20..30�) and Cb(v1 : ½20..25�, v2 : ½40..55�). If the predicate is
Ca<Cb, then it is possible to ensure that the evaluation of the
comparison is true. However if the predicate is Ca # Cb, then
the evaluation of the comparison is false. All the combinations
are studied in depth in this section.
� Building CSP: Although there are cases where it is possible to

determine whether a tuple belongs to an output relation using
only the analysis of the box consistency, other cases do exist
where a CSP has to be built and solved. Returning to the
previous example, if the domain of the variables is
Ca(v1 : ½5..15�;v2 : ½20..30�) and Cb(v1 : ½2..25�;v2 : ½10..55�), and
the predicate is Ca # Cb, although the possible solutions of the
variables of Ca are included in the possible solution of the vari-
ables of Cb, it is not possible to ensure that the predicate is sat-
isfiable. An example where the ranges of sets of variables are
included in another constraint, but not the solutions, is shown
in Fig. 7. In these cases, it is necessary to create and solve CSPs
with both constraints as explained in SubSection 3.2.

In the work of Veltri (2001), the idea of approaching the con-
straints using box consistency is introduced in order to improve
the evaluation time in the query evaluation for CDBs. Despite the
limitations of that study, it defines the operations and types of
relation between linear constraints to represent polygons with
only two dimensions. Our approach is based on this proposal but
is defined for all types of polynomial constraints, not only poly-
gons, and for any number of dimensions. Moreover, the aforemen-
tioned paper by Veltri adds the description of each minimum-
bounding rectangle in each constraint with the ^ Boolean operator,
while our proposal stores the minimum and maximum values of
the minimum-bounding rectangle as classic numeric data with
the characteristics of relational algebra. This way of storing the
box consistency obviates the building and solving of CSPs for the
nstraint-variable attributes in the predicate.



Cb

x

y

Ca

Fig. 7. Example of Ca � Cb .

Table 1
Evaluation of comparison using box consistency prototypes.

Ca; Cb Fig. 8(a) Fig. 8(b) Fig. 8(c) Fig. 8(d) Fig. 8(e)

�<� true false CSP CSP false
�6� true true CSP CSP false
�{>;P}� false false false CSP false
�¼� false false false false CSP
�<>� true true true true CSP
�&� false CSP CSP CSP CSP
�{�; # ;�;	}� false false false CSP CSP
tuples when the box consistency can infer the evaluation of the
query. The various types of relations between two constraints
related to the ranges of their variables (shown in Fig. 8) include:

(a) All the possible values of a variable v for the constraints Ca

are always smaller than the values of the variable v of the
constraint Cb.

(b) The greatest value of a variable v for the constraint Ca is
equal to the smallest value of this variable in the constraint
Cb.

(c) A variable v can take a set of values that satisfy both con-
straints Ca and Cb, and the values of v satisfying Ca are smal-
ler than the values satisfying Cb.

(d) For the variable v, all the values for the constraint Ca are also
solutions of Cb, although Cb can have more solutions than
can Ca.

(e) All the possible values of v to satisfy Ca are also values that
satisfy Cb, and vice versa.

These relations between domains can help towards determin-
ing the relations between constraints as described in Section 3.2,
since modelling and solving CSPs is rendered unnecessary in some
cases. With a generalization for n variables, Min�ValueCj

ðv iÞ repre-
sents the minimum value of the variable v i that satisfies constraint
Cj, which can be �1 or a numeric value, and Max�ValueCj

ðv iÞ
represents the maximum value of the variable v i that satisfies con-
straint Cj, which can be þ1 or a numeric value. Let v1 . . . vn be the
variables of the constraints Ca and Cb, and let Min�ValueCa ðv1Þ; . . .,
Min�ValueCa ðvnÞ be the minimum values of the variables of the
constraint Ca. Let Max�ValueCa ðv1Þ; . . ., Max�ValueCaðvnÞ be the
maximum values of each variable for the constraint Ca, let Min�
ValueCa ðv1Þ; . . ., Min�ValueCb

ðvnÞ be the minimum values of the
variables of the constraint Cb, and let Max�ValueCb

ðv1Þ; . . .,
Max�ValueCb

ðvnÞ be the maximum values of the variables for the
constraint Cb. In the cases where the clause FOR is included in
the condition, in order to determine the subset of variables
involved in the comparison, only these variables are analysed. If
the key words AND and FOR are used, the semantic equality
between the variables is established. The various cases depend
on the operation between the constraints Ca and Cb, and the ranges
of their variables are shown in Table 1. This table represents the
evaluation of the comparison between two constraints (Ca and
(a) (b

(d)

Fig. 8. Types of relations between the rang
Cb), depending on the relation of their box consistencies.
Sometimes it is possible to know if the comparison will be true
or false, although sometimes will be necessary to build a CSP, as
explained in SubSection 3.2.

In Fig. 9, some examples of relations of satisfaction using box
consistency are shown, highlighting two constraints with a shaded
area. In Fig. 9a, an example is given where Ca < Cb is satisfiable,
which means that all the values of the variables v1 and v2 that sat-
isfy Ca, are smaller than the values of these same variables that sat-
isfy Cb. In Fig. 9b, an example is presented where Ca < Cb FOR {v2}
is satisfiable, since all the values of v2 that satisfy Ca are smaller
than the values of this variable that satisfy Cb.

Fig. 10a presents an example where the projection obtained
from the box consistency of Ca is included in the projection of
the box consistency of Cb, and where all the solutions of Ca are also
solutions of Cb. On the other hand, in Fig. 10b, an example is pre-
sented where, although the range of the variables for Ca is included
in the range of Cb, not all the solutions of Ca are solutions of Cb. The
example shown in Fig. 10c is similar, since the range of the vari-
ables for Ca is equal to the range of Cb, but not all the solutions
of Cb are solutions of Ca. For the inclusion and equal operations,
by means of using the ranges it is possible to ensure that two con-
straints do not satisfy a condition. However, to ensure that the con-
straints satisfy the condition, it is necessary to build and solve a
CSP.

If there is no FOR clause, then this analysis is performed for all
the variables, either until one of them fails to satisfy a condition, or
until all the variables had been analysed. If finally the study returns
true, then the tuples, where the constraints are, belong to the out-
put relation.

5.3. Scope of applicability of our proposal

As a consequence of the model presented and the strategies of
evaluation, the scope of application of our proposal is limited by
three characteristics:

� Constraint Programming. We have decided to use Constraint
Programming since: it is a very mature area that has been
applied to a wide range of problems, and with high level of com-
plexity; it uses propagation techniques to reduce the search
space in an efficient way; there are numerous tools and
algorithms to model and solve problems, and; it permits an easy
(c))

(e)

es of the variables of two constraints.



(a) (b)

Fig. 9. Example of relations between constraints by means of their box consistency.

Fig. 10. Example of constraints with included ranges.
definition of the complex data using a wide range of constraints,
such as implication constraints, disjunctive constraints, reified
constraints, global constraints, and channelling constraints.
� The range of Constraints. This limitation is centred on the

capacity of their expressiveness as allowed by the grammar
and type of variables. The grammar of the Constraints consti-
tutes the formal representation of the relations between the
data involved. The limitations of use of the proposal appear
when the information to be stored cannot be represented by
numerical constraints over the defined domains, or the operator
is not included in this proposal, such as when a relation among
two variables is described by means of a trigonometric function.
The limitation of the data domain and the operations that can
be employed are established by the solver used for the Con-
straint Programming Problem, explained in Section 4. Most of
the commercial solvers maintain the capacity to include Float,
Integer, Sets, and Boolean variables in the model, thereby mak-
ing it possible to cover a significant number of problems and
their business data constraints.
� Complexity of resolution of the CSP. In the worst case scenario,

the evaluation time depends on the complexity of the resolution
of the CSP. This has been analysed in great depth over recent
decades (Cheeseman, Kanefsky, & Taylor, 1991), and depends
on two parameters: the width of the graph and the order param-
eter. On one hand, the width of the graph represents the relation
between the constraints: the tractability in CSPs is due to the
structure of the constraint network, where the tree-structured
CSPs have polynomial complexity (linear with respect to the
number of variables, and quadratic with respect to the cardinal
of the domain of the variables). On the other hand, the order
parameter, defined as the ratio of the number of forbidden
tuples to the total number of possible combinations, determines
the partition of the problem space into under-constrained, over-
constrained and just-constrained problems. In the first two
cases, the problems are scalable, but in just-constrained prob-
lems, a significant increase in solving cost could occur and the
scalability would not be possible (Krzysztof, 2003).
For these reasons, no affirmation about the efficiency or scalabil-
ity in a generic way can be given by our proposal, since our
framework permits any type and number of Constraints defined
with numerical variables, and therefore the evaluation time
depends on the specific problem. However, in order to reduce
the complexity and allow the scalability of the problems, we
have proposed a set of strategies shown experimentally in the
following section.

6. Example of use and experimental results for the Selection
Operator

In order to extend SQL and include the explained strategies in
the expert system, this proposal has been implemented as a Java
Library component, called CDB�Package, which shields the user
from unnecessary details on how the information is stored and
how the queries are evaluated. With a very similar code to that
used for any database connection in JavaTM, the user defines the
relational database connection, writes the sentence and executes
the query. The difference is that this package includes a CDB class
that creates, if they have not been created before, the three tables
to index the constraints and variables, and establishes the connec-
tion with the database and the type of database management sys-
tem. In the method executeQuery of class CDB, the steps described
in Section 5 are implemented. The current database management
systems permitted are Oracle and MySQL. CDB�Package includes
the solver for the CSP used is Rochart and Jussien (xxxx), which
is also a Java library for CSPs, although it can be enlarged to other
solvers such as JSolverTM (ILOG, xxxx). CDB�Package has been
developed and used in the Victor R&D Project (Victor-Project,
2013).

Connection con = DriverManager.getConnector

("jdbc. . .", . . .)

String cmd = "Select . . ..";

CDB bd = new CDB (con, "Oracle");

PreparedStatement stmt = db.executeQuery (cmd);

Based on the Victor Project, we have tested how the various
strategies that we propose reduce the evaluation time. In order
to test queries with this Selection Operator, two different tables
are used to represent the various zones of construction and the sta-
tic objects modelled. The Victor Project only contains two-dimen-
sional objects, but the same methodology can be used for any



number of variables or problems that can be represented by con-
straints. Table Objects consists of 550 tuples, while Table Zones
has 100 tuples. The two tables have two classic attributes to repre-
sent their identification (id) and description (desc), and a constraint
attribute (location) to represent the location with respect to the
constraint-variables x and y for the example.

All the measures presented in this paper relate our solution
with the improvements proposed herein, and not with other solu-
tions since there are no other proposals that permit polynomial
constraints to be managed, as is explained in Section 7. All the
measures are presented in milliseconds and have been obtained
by means of an AMD AthlonTM 64 Dual Core Processor 4200
+ 2.21 GHz, where the Database Management System Oracle 10 g
is running. Various query evaluation times are presented in
Fig. 11. It is also shown how, due to the relational structure of
the information, the evaluation time decreases when relational
algebra is used for classic data, and where the creation of CSPs is
rendered unnecessary thanks to the use of box-consistency
analysis.

We have taken one hundred measurements for each type of
Selection Operator, combined by using comparison of variables
(FOR C1.x = C2.x’) as explained in Section 4. Figs. 11 and 12 repre-
sent, for each type of test, the minimum, maximum, and average
evaluation time for the tests, and the number of CSPs created
respectively. For example, case B presents the evaluation of a query
to evaluate which static objects are to the North of a given object. If
all the comparisons between the objects are analysed, then the
potential combinations of objects is 302;500 (550�550) indepen-
dent of which object is given. Therefore 302;500 CSPs must be cre-
ated (as presented in Fig. 12), which expends the evaluation time
to 1:8 108 milliseconds as shown in Fig. 11. If relational algebra
is used and only one object is compared with the rest, only 550
CSPs are created (Fig. 12), thereby decreasing the evaluation time
(Fig. 11) to an average of 1:8 106 milliseconds for the example. In
the case when box consistency is used, the number of CSPs can
be even zero, and the evaluation time depends on the constraints
involved in the comparison, to an average of 4:64 105 milliseconds
for the example.

Since the comparison operators share certain similarities, they
can be grouped into the following four sets {<;6; >;P},
{�; # ;�;	}, {&}, {<>;¼}. We present tests for only the first three
sets, since the last set represents simpler operators that fail to con-
tribute further information to the conclusions. For each set, we
Fig. 11. Evaluation time
propose the three variants described depending on the variables
used (for all the variables, for a set of variables, or for a set of vari-
ables with an equality relation).

(A) The comparison operators <;6; > and Pare found to be
equivalent in complexity, therefore the tests were run for
the comparison operator < comparing different objects, in
order to determine which objects lie to the northeast of
the object with the identification k (have higher values for
y and x variables). The query is: Select o2.id from

Objects o1, Objects o2 where o1.location 6 o2.loca-

tion AND o1.id = k.
(B) The comparison operators <;6; > and Pcan be combined

with the ’’FOR’’ operator to determine which variables are
compared. The tests were run for the comparison operator
< for different objects, in order to discover which objects
lie to the North of the object with the identification k (have
higher values for y variables). The query is: Select o2.id

from Objects o1, Objects o2 where o1.id = k and

o1.location

6o2.location FOR {y}.
(C) The comparison operators <;6; > and Pcan be combined

with the ’’FOR’’ operator to determine which variables are
compared and where another variable is semantically equal
in the constraints involved. The tests were run for the com-
parison operator < for different objects, in order to discover
which objects have values (for y and x variables where both
objects are equal) higher than those of the object with the
identification k. The query is: Select o2.id from Objects
o1, Objects o2 where o1.id = k and o1.location 6

o2.location FOR {y and o1.x = o2.x}.
(D) The comparison operators �; # ;� and 	 are equivalent in

complexity, and hence the tests were run for � for different
objects in order to determine which objects are included (for
the variables y and x) in the zone with identification z. The
query is: Select o.id from Objects o, Zones z1 where

z1.id = z and o.location � z1.location.
(E) The comparison operators �; # ;� and 	 are equivalent in

complexity, and hence the tests were ran for � for different
objects in order to find out which objects are included (for
the variables y and x) in the zone with identification z. The
query is: Select o1.id from Objects o1, Zones z1 where
z1.id = z and o1.location � z1.location {FOR y}.
for query examples.



Fig. 12. Number of CSPs created for query examples.
(F) The comparison operators �; # ;� and 	 need no evaluation
for the operator FOR y and x = x’ since it makes no sense. If
the sentence Ca # Cb FOR y is satisfiable, then Ca # Cb FOR y

and Ca.x = Cb.x is also satisfiable.
(G) The comparison operator & describes if there is at least one

value in common between two constraints. For example, it
can be used to obtain if there is any object that touches to
another object. The query is: Select o.id from Objects

o1, Object o2 where o1.location &

o2.location.
(H) The comparison operator & can also be used for some vari-

ables. It can, for example, be used to obtain the object whose
projection for the variable x has some values in common
with a zone with the identification z. The query is: Select
o.id from Objects o, Zones z1 where z1.id = z and

o.location & z1.location FOR {y}.
(I) The comparison operator & needs no evaluation for the

operator FOR y and x = x’ since it makes no sense. If the
sentence Ca & Cb FOR y is satisfiable, then Ca & Cb FOR y

and Ca.x = Cb.x is also satisfiable.

As conclusions of Figs. 11 and 12, it should be pointed out that
the proposed solution improves the evaluation time since rela-
tional algebra allows us to select the related tuples depending on
the query, and the box consistency analysis renders the creation
and solution of the CSPs unnecessary. Although there is a major
reduction in the number of CSPs, the query evaluation time does
not decrease by the same percentage. It is produced by the time
expended for the database access, since although several CSPs
are created they are very easy to solve, and they can be evaluated
in a very short time.

7. Related work

The problem of the management of complex data implies two
areas of analysis: how to store and represent the information,
and how to filter the objects to improve the evaluation time.

The main proposals found in the literature are based on geo-
metric data, and therefore need to represent two and three dimen-
sions, including: Segments; triangles (Tøssebro & Nygård,
2011;Tøssebro & Nygård, 2006); and Realms, which are a set of
points and non-intersecting line segments over a discrete domain,
that is, a grid (Gting & Schneider, 1993). The geometric data selec-
tion can be improved applying grid partitioning to reduce the
query evaluation time (Park, 2014). All these proposals are based
on spatial databases storing geometric data, but they cannot be
used for several variables or for general purpose databases. In
order to overcome this limitation, we have decided to use Con-
straints to represent the relation of the variables, and we have been
inspired by their algorithms to improve the evaluation time (Lin &
Tan, 2003) used to index spatial objects. To this end, constraint
data has been proposed as a more general purpose application.

There are several proposals for implementing and building pro-
totypes that store and select constraint data, most of which are
based on the scenario of CDBs. The most significant examples of
these are analysed below:

� DISCO (Revesz, 2000) (DATALOG with Integer Set COnstraints)
is a CDB system which implements Datalog with Boolean con-
straints on variables that range over finite and infinite sets of
integers. The constraints in DISCO are stored in a file using facts
and rules, thereby ignoring the advantages that relational dat-
abases offer, despite the fact that a large amount of research
on relational databases has been published over the years, such
as in the design of large-scale databases and concurrent access.
The syntax of DISCO is very similar to that of Datalog, and very
different from the standard SQL. DISCO is presented as an exten-
sible system where the Boolean algebra can be modified by
replacing certain operators in a straightforward way.
� MLPQ/PReSTO (Revesz, 2008;Revesz, 2010) presents a combi-

nation of MLPQ (Management of Linear Programming Queries)
and PReSTO (Parametric Rectangle Spatio Temporal Object).
MLPQ is a system to manage and query linear constraints in a
CDB. It allows Datalog queries and the addition of operators
over linear functions. PReSTO enables query systems which
change over time, with similar semantics to that of classic rela-
tional algebra. Although both present a similar SQL syntax, they
actually use plain text to store the information and a query
transformation process into Datalog.
� DEDALE (Grumbach, Rigaux, Scholl, & Segoufin, 2000) is an

implementation of CDBs based on linear constraint models.
DEDALE proposes a language to query CDBs, which permits
information to be obtained by using a graphical interface to
show the results. In order to represent the constraints, DEDALE
uses the object-oriented paradigm, which is an appropriate way
to represent complex data. The disadvantage in this proposal is
that all the information is stored as objects, and therefore fails
to take advantage of relational algebra.



The syntax of DEDALE is very different from standard SQL, and
therefore any user of the system must learn another language,
which is a great disadvantage.
� CCUBE (Brodsky, Segal, Chen, & Exarkhopoulo, 1999) (Con-

straint Comprehension Calculus) is the first constraint object-
oriented database system. The CCUBE system was designed to
be used for the implementation and optimization of high-level
constraint object-oriented query languages. The CCUBE data
manipulation language, Constraint Comprehension Calculus, is
an integration of constraint calculus for extensible constraint
domains within monoid comprehension. CCUBE serves as an
optimization-level language for object-oriented queries. The
data model for the constraint calculus is based on Constraint
SpatioTemporal (CST) objects. CCUBE guarantees polynomial
time data complexity whose implementation uses the linear
programming package CPLEX developed by Bixby et al. (1998).
CPLEX allows both integer programming and very large linear
programming problems to be solved.
� CQA/CDB is a CDB prototype whose constraints are linear

over rational coefficients (Goldin, Kutlu, & Song, 2003;Goldin,
2004). This solution uses only linear constraints in order to
represent and process the information, since it studies the spa-
tiotemporal area, whose data can be approximated with linear
constraints. The constraint tuples are represented by a matrix
of coefficients. In this prototype, queries are based on relational
operators, and look similar to SQL; however there are numerous
syntactic and semantic differences to the standard. CQA/CDB
does not allow new constraints to be inferred by using the con-
straints stored in the CDB.
� LORCDB (Labelled Object-Relational Constraint Database)

(Gómez-López, Gasca, Valle, & De la Rosa, 2005;Gómez-López
et al., 2009) presents an extension of an object relational data-
base based on the use of Constraint Programming paradigm.
This proposal has certain extension of the SQl syntax, but only
for the projection operator. As the constraints are represented
by means of objects, both linear and polynomial constraints
can be described.

The various characteristics are shown in Table 2. The reason why
we have decided to extend the LORCDB is because the rest of the
proposals mentioned above have the following disadvantages:

� Some of the previous prototypes offer languages that are centred
on a specific application domain. Most of these prototypes are
developed to work with spatiotemporal data such as those in
Deo (2002), Toman (2000). In this paper we have presented a
generic example, where the language is not dependent on the
semantics of the problem and constraint data modelling can eas-
ily be carried out since we have the possibilities of a classic rela-
tional database, adding the management of constraints.
� There are many query languages whose syntax greatly differ

from that of SQL, thereby causing the user to need to learn a
new language. Sometimes this syntax is focused on the applica-
tion of CDBs, frequently in the spatiotemporal domain.
Table 2
Characteristics of the CDB prototypes.

Logic Logic SQL
model progr. syntax

MLPQ/PReSTO File Datalog Yes
DISCO File Datalog No
DEDALE BDOO No Yes
CCUBE BDOO No Yes
CQA/CDB ? No Yes
LORCDB BDOR No Yes
� Proposals, such as MLPQ, do not use relational databases,
thereby losing out on the relational theory advantages, such
as uniqueness of the primary key, and referential integrity.
Some of these proposals are based on Deductive Databases
whose disadvantages of inconsistency is analysed in Mayol
and Teniente (2003). A vast amount of experience and theories
in relational databases have improved the selection of data by
using indexation, clustering, and hashing, all of which have
been included in commercial relational database management
systems, except for the case when Deductive Databases are
used.
� These proposals only handle linear constraints, since, for spatio-

temporal problems, this type of constraint is good enough to
approximate the problem, and solving linear constraint prob-
lems is more efficient than solving problems for polynomial
constraints. This approximation is inappropriate for applica-
tions where more precision is necessary.
� None of these prototypes defines Constraints as a new type of

data, and although some use the object-oriented paradigm, they
fail to distinguish between discrete and continuous informa-
tion, and hence are unable to exploit relational algebra in any
of these aspects. Our solution is independent of the database
management system used, it implies that it is also independent
of the format. There is no a file format where the constraints are
stored. The use of CDB�Package Java library is more versatile
than the other options since it is adaptable to any commercial
database (MySQL, Oracle, PostGreSQL, . . .). This implies that
any database can be ’’transformed’’ into a Constraint Database
simply by using the CDB�Package.
� A paper where the combination of constraints and relational

databases is proposed (Cai, 2004), but presents many limitations
solved in LORCDB. Examples of these limitations include: all the
constraints stored in the same column have to be defined over
the same set of variables, only linear constraints can be stored
and queried; there is nether indexation nor box-consistency
analysis to improve the evaluation time; and the condition of
the Selection Operator is not adapted to constraint-attributes.
Other proposals, such as Talebi, Chirkova, and Fathi (2013), use
Constraint Programming to improve the selection of data, but
for extracting classic data not for complex data.

8. Conclusions and future work

In this paper, the SQL language has been extended in order to
improve the data selection for complex data represented, by means
of constraints for any number of variables and different types of
data domains. Our proposal enables a set of strategies based on
Constraint Programming, to be included into a relational database.
It permits an extended relational database to work as an expert
system for queries of a more complex nature, while shielding the
user from unnecessary details about how the query is evaluated.
The Selection Operator enables us to determine which constraints
satisfy a condition with respect to other constraints, where the
meaning of the comparison depends on the case where it is used,
Constraint Easy constraint Independent
type data modelling format

Linear High No
Linear Medium No
Linear Medium No
Linear Medium No
Linear Medium No
Linear and polynomial High Yes



and not exclusively on topological relations. The proposal is based
on the storage of relational and constraint data in a relational data-
base, by defining a set of strategies based on relational algebra,
CSPs and box consistency to minimize the evaluation time, since
the Constraint Programming paradigm is more efficient and gen-
eral. Furthermore, this proposal permits constraints to be treated
as classic data in the general purpose databases, thereby helping
the user to select data from an extended relational database.

The paper contributes towards the existing literature in the fol-
lowing ways: a general purpose language based on SQL is pro-
posed; linear and polynomial constraints are supported for
storage and evaluation; classic and complex data can be combined
in the same database and in the same queries; and a set of strate-
gies has been proposed for the reduction of the evaluation time.
Moreover, our proposal is adaptable to any commercial database,
since it is independent of the database management system. The
use of CDB�Package Java library is more versatile than all other
options since it is adaptable to any commercial database (MySQL,
Oracle, PostGreSQL, etc). The applicability of our proposal is dem-
onstrated by means of its use in a real project.

The limitations of use of the proposal appear when the con-
straints cannot be represented by numerical relations, data type,
or by the operators included in the proposed grammar, such as
when a relation between two variables is described by means of
a trigonometric function. The limitation of the data domain and
the operations that can be employed are established by the solver
used for the Constraint Programming Problem, explained in
Section 4. However, commercial solvers tend to provide more com-
plex constraints, such as If. . .then, For all, and All different.

As future work, we propose redefining other operations of SQL,
such as cartesian product, union, difference and join. We also
propose the adaptation of other index structures, such as R-trees
and internal rectangles for constraints as an improvement to the
current proposal.
Acknowledgment

This work has been partially funded by the Junta de Andalucía
by means of la Consejería de Innovación, Ciencia y Empresa
(P08-TIC-04095) and by the Ministry of Science and Technology
of Spain (TIN2009–13714) and the European Regional Develop-
ment Fund (ERDF/FEDER).
References

Araya, I., Trombettoni, G., & Neveu, B. (2010). Making adaptive an interval
constraint propagation algorithm exploiting monotonicity. In Proceedings of
the 16th international conference on Principles and practice of constraint
programming, CP’10 (pp. 61–68). Berlin, Heidelberg: Springer-Verlag.

Bixby, R. E., Boyd, E. A., & Ríos-Mercado, R. Z. (Eds.). (1998). Integer Programming and
Combinatorial Optimization, 6th International IPCO Conference, Houston, Texas,
USA, June 22-24, 1998, Proceedings. Lecture Notes in Computer Science (Vol. 42).
Springer.

Brisaboa, N. R., Luaces, M. R., Navarro, G., & Seco, D. (2010). Range queries over a
compact representation of minimum bounding rectangles. In Proceedings of the
2010 international conference on Advances in conceptual modeling: applications
and challenges, ER’10 (pp. 33–42). Berlin, Heidelberg: Springer-Verlag.

Brisaboa, N. R., Luaces, M. R., Navarro, G., & Seco, D. (2013). Space-efficient
representations of rectangle datasets supporting orthogonal range querying.
Information Systems, 38(5), 635–655.

Brodsky, A., Segal, V. E., Chen, J., & Exarkhopoulo, P. A. (1999). The CCUBE Constraint
Object-Oriented Database System. In SIGMOD ’99: Proceedings of the 1999 ACM
SIGMOD international conference on Management of data (pp. 577–579). ACM
Press.

Cai, M., 2004. Integrating constraint and relational database systems, in: CDB, pp.
180–188.

Chabert, G., Trombettoni, G., Neveu, B., 2005. Box-set consistency for interval-based
constraint problems, in: SAC, pp. 1439–1443.

Chabert, G., & Jaulin, L. (2009). Hull consistency under monotonicity. In Proceedings
of the 15th international conference on Principles and practice of constraint
programming, CP’09 (pp. 188–195). Berlin, Heidelberg: Springer-Verlag.
Cheeseman, P., Kanefsky, B., & Taylor, W. M. (1991). Where the really hard problems
are. Proceedings of the 12th international joint conference on Artificial intelligence -
IJCAI’91 (Vol. 1, pp. 331–337). San Francisco, CA, USA: Morgan Kaufman
Publishers Inc..

Dechter, R. (2003). Constraint Processing (The Morgan Kaufmann Series in Artificial
Intelligence). Morgan Kaufman.

Deo, A.D., 2002. Modeling Spatial and Temporal in an Object-Oriented
Constraint Databases, (Ph.D. thesis). von der Fakultt IV-Elektrotechnik und
Informatik der Technish Universitt zur Erlangung des akademischem Grades,
Berln.

Goldin, D. (2004). Taking Constraints out of Constraint Databases.. In Constraint
DataBases. Lecture Notes in Computer Science (Vol. 74, pp. 168–179). Springer.

Goldin, D., Kutlu, A., & Song, M. (2003). Extending the constraint database
framework. In PCK50 (pp. 42–54). New York, USA: ACM Press.

Gómez-López, M. T., Ceballos, R., Gasca, R. M., & Valle, C. D. (2009). Developing a
labelled object-relational constraint database architecture for the projection
operator. Data & Knowledge Engineering, 68(1), 146–172.

Gómez-López, M.T., Gasca, R.M., Reina-Quintero, A., 2011. Model-driven
engineering for constraint database query evaluation, in: Workshop Model-
Driven Engineering, Logic and Optimization: friends or foes?, MELO 2011.

Gómez-López, M. T., Gasca, R. M., Valle, C. D., & De la Rosa, F. (2005). Querying a
polynomial constraint object-relational database in model-based diagnosis.
Lecture Notes in Computer Science, 3588, 848–857.

Granvilliers, L., Goualard, F., & Benhamou, F. (1999). Box consistency through weak
box consistency. In ICTAI ’99: Proceedings of the 11th IEEE International
Conference on Tools with Artificial Intelligence (pp. 373). Washington, DC, USA:
IEEE Computer Society.

Grumbach, S., Rigaux, P., Scholl, M., & Segoufin, L. (2000). The DEDALE prototype.
Constraint Databases, 365–382.

Gting, R. H., & Schneider, M. (1993). Realms: A foundation for spatial data types in
database systems. In 3RD INT. SYMP. ON ADVANCES IN SPATIAL DATABASES, LNCS
692 (pp. 14–35). Springer-Verlag.

ILOG, xxxx. Jsolver 2.1, Reference Manual April.
Kanellakis, G. M. K. P. C., & Revesz, P. Z. (1990). Constraint query languages.

Symposium on Principles of Database Systems, 299–313.
Krzysztof, A. (2003). Principles of Constraint Programming. New York, NY, USA:

Cambridge University Press. Ed..
Lee, K. C. K., Unger, B., Zheng, B., & Lee, W.-C. (2011). Location-dependent spatial

query containment. Data & Knowledge Engineering, 70(10), 842–865.
Lin, P. L., & Tan, W. H. (2003). An efficient method for the retrieval of objects by

topological relations in spatial database systems. Information Processing &
Management, 39(4), 543–559.

Malpica, J. A., Alonso, M. C., & Sanz, M. A. (2007). Dempster-shafer theory in
geographic information systems: A survey. Expert Systems with Applications,
32(1), 47–55.

Marriott, K., & Stuckey, P. J. (1998). Programming with Constraints. An introduction,
Simplification, Optimization and Implication. The Mit Press.

Mayol, E., & Teniente, E. (2003). Consistency preserving updates in Deductive
Databases (Vol. 47). Amsterdam, The Netherlands, The Netherlands: Elsevier
Science Publishers B.V..

Park, K. (2014). Location-based grid-index for spatial query processing. Expert
Systems with Applications, 41(4), 1294–1300.

Poelmans, J., Ignatov, D. I., Kuznetsov, S. O., & Dedene, G. (2013a). Formal concept
analysis in knowledge processing: A survey on applications. Expert Systems with
Applications, 40(16), 6538–6560.

Poelmans, J., Kuznetsov, S. O., Ignatov, D. I., & Dedene, G. (2013b). Formal Concept
Analysis in knowledge processing: A survey on models and techniques. Expert
Systems with Applications, 40(16), 6601–6623.

Revesz, P.Z., 1995. Datalog Queries of Set Constraint Databases., in: ICDT, pp. 425–
438.

Revesz, P. (1998). Safe query languages for constraint databases. ACM Transactions
on Database Systems, 23(1), 58–99.

Revesz, P. Z. (2000). The DISCO system. Constraint Databases, 383–389.
Revesz, P. (2001). Introduction to Constraint Databases. Springer.
Revesz, P. Z. (2008). MLPQ spatial constraint database system. Encyclopedia of GIS,

661–662.
Revesz, P. Z. (2010). Introduction to Databases: From Biological to Spatio-Temporal

(1st Edition.). Springer Publishing Company, Incorporated.
Rochart, X.L.G., Jussien, N.. xxxx. Choco. a java constraint programming library,

Reference Manual. <http://www.emn.fr/z-info/choco-solver/>.
Talebi, Z. A., Chirkova, R., & Fathi, Y. (2013). An integer programming approach for

the view and index selection problem. Data & Knowledge Engineering, 83,
111–125.

Toman, D., 2000. SQL/TP: A Temporal Extension of SQL., in: Constraint Databases,
Springer, pp. 391–399.

Tøssebro, E., Nygård, M., 2006. Representing topological relationships for moving
objects, in: GIScience, pp. 383–399.

Tøssebro, E., & Nygård, M. (2011). Representing topological relationships for
spatiotemporal objects. GeoInformatica, 15(4), 633–661.

Trombettoni, G., Papegay, Y., Chabert, G., Pourtallier, O., 2010. A box-consistency
contractor based on extremal functions, in: CP, pp. 491–498.

Veltri, P. (2001). Constraint database query evaluation with approximation. In ITCC
’01: Proceedings of the International Conference on Information Technology: Coding
and Computing (pp. 634–638). Washington, DC, USA: IEEE Computer Society.

Victor-Project, 2013. <http://estigia.lsi.us.es/victor/>.

http://refhub.elsevier.com/S0957-4174(14)00270-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0070
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0080
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0080
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0080
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0080
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0085
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0085
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0085
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0085
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0090
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0090
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0090
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0095
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0105
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0105
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0105
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0110
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0110
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0110
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0110
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0120
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0120
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0125
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0125
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0130
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0130
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0135
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0135
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0135
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0140
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0140
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0140
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0145
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0145
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0145
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0145
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0150
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0150
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0155
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0155
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0155
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0170
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0170
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0175
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0175
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0180
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0180
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0185
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0185
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0185
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0190
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0190
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0190
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0195
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0195
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0200
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0200
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0200
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0210
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0210
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0215
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0215
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0215
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0220
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0220
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0220
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0225
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0225
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0230
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0235
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0240
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0240
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0245
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0245
http://www.emn.fr/z-info/choco-solver/
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0250
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0250
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0250
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0255
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0255
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0260
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0260
http://refhub.elsevier.com/S0957-4174(14)00270-X/h0260
http://estigia.lsi.us.es/victor/

	Using Constraint Programming in Selection Operators for Constraint Databases
	1 Introduction
	2 Constraint Databases background
	3 Extending the syntax and semantics of the Selection Operator for constraint data
	3.1 Syntax of the Selection Operator
	3.2 Semantics of the Selection Operator for constraint attributes

	4 Evaluation of Selection Operator for data selection
	5 Strategies for improving the selection of constraint data
	5.1 Evaluation of a constraint-variable attribute in a selection
	5.2 Evaluation of constraint attributes for data selection
	5.3 Scope of applicability of our proposal

	6 Example of use and experimental results for the Selection Operator
	7 Related work
	8 Conclusions and future work
	Acknowledgment
	References


