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Abstract. In this work we prove the equivalence between three different weak
formulations of the steady periodic water wave problem where the vorticity is

discontinuous. In particular, we prove that generalised versions of the standard

Euler and stream function formulation of the governing equations are equiva-
lent to a weak version of the recently introduced modified-height formulation.

The weak solutions of these formulations are considered in Hölder spaces.

1. Introduction. In this paper we consider steady periodic water waves, which
propagate over a flat bed with a specified mean-depth, and which have discontinuous
vorticity distribution. In particular, we prove the equivalence between three differ-
ent weak formulations of the governing equations, namely the generalised standard
Euler equation and stream function formulations, and the modified-height formu-
lation. The standard governing equations for perfect (inviscid and incompressible)
fluids are given by the Euler equation together with associated boundary conditions.
Often it proves useful to reformulate these equations in terms of a stream function,
leading to a semilinear elliptic equation with nonlinear boundary conditions. Both
of these formulations are free boundary problems, and an inherent difficulty in their
solution is the determination of the wave’s free surface, cf. [1, 3, 23, 31].

One way to by-pass this difficulty is to employ a semi-hodograph change of vari-
ables to transform to a fixed-domain, with the trade-off being that our PDE system
becomes quite more involved and complicated than previously. The standard trans-
formation which is typically employed to this end in studying waves with vorticity
(which model wave-current interactions [1, 3, 30]) is the Dubreil-Jacotin transfor-
mation [10], whereby the system of governing equations may then be expressed in
terms of a height function. This approach has been successfully implemented in
[7, 8] in using local and global bifurcation theory to prove the existence of steady
rotational water waves with small and large amplitude. Motivated by this work,
there have been an extensive analytical studies of periodic waves with vorticity
[4, 5, 6, 7, 9, 12, 18, 20, 21, 32, 33, 35, 36, 37].
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In this paper, we are interested in a recently developed modified-height function
reformulation of the governing equations, which follows when a variation on the
Dubreil-Jacotin transformation is invoked. The formulation was employed in [13,
15, 16, 17] in order to prove the existence of rotational water waves of a fixed mean-
depth d, as opposed to the approach in [8] where the mass flux p0 instead is fixed.
Fixing the mean-depth of the wave is heuristically and physically quite natural,
since the height can be measured more easily than the mass flux. Moreover, in
[24] it was noticed that fixing the mass flux does not fix the depth, since it was
observed numerically that on a bifurcation curve with fixed mass flux the depth of
the solutions varies.

Recently, in [13, 15, 22], questions concerning the existence of wave wave solutions
of fixed mean-depth with discontinuous vorticity, were addressed. Physically, such
studies are motivated by the fact that wind blowing over a water surface induces
a thin layer of high vorticity [29]. Mathematically, we note recent deep analytical
studies of flows with general discontinuous vorticity, see [2, 8, 11, 26, 28]. This paper
completes the analysis for the work [13, 15, 22] by proving the equivalence of the
weak modified-height function formulation of the governing equations, to the weak
Euler and stream function formulations. In [17] the Euler, stream and modified-
height formulations of the governing equations were proven to be equivalent in the
sense of classical solutions. In the setting of the classical Dubreil-Jacotin trans-
formation and standard height function formulation, this equivalence was recently
proved by Constantin and Strauss [8] for solutions considered in a weak sense, for
solutions in Sobolev spaces. More specifically, they consider weak solutions under-
stood in the sense of distributions, and the solutions of weak wave formulation are
considered in the Sobolev spaces. In [27] the equivalence was proved for strong
solutions in Sobolev spaces that posses additional weak Hölder regularity. The re-
sult of equivalence for the standard height formulation was improved in [34], where
the authors consider weak solutions in Hölder spaces. The aim of this paper is to
suitably adapt and generalise this result to prove the equivalence of the three weak
formulations considering the modified-height function.

In this paper, in section 2 we describe in detail the three formulations: the Euler
equation; the stream formulation, and the modified-height formulation. In section
3 we specify in detail the equations and boundary conditions of the weak form of
the previous three formulations. And finally, in section 4, we give the main result
of equivalence between the three formulations. The equivalence between the weak
stream and the weak modified-height formulation is proved for weak solutions with
Hölder regularity where 0 < α ≤ 1. However, since the equivalence between the
weak velocity and the weak stream formulation is only proved for weak solutions
with Hölder regularity where 1/3 < α ≤ 1, we can only affirm that the equivalence
between the three formulations is satisfied for 1/3 < α ≤ 1. This equivalence
of formulations is important, since in [22] local bifurcation theory is applied to the
modified-height formulation in order to prove the existence of small amplitude water
waves on a fluid with discontinuous vorticity.

2. Standard governing equations. We formulate the standard governing equa-
tions using Cartesian (x, y)-coordinates. These equations are defined in a frame
which moves alongside the wave. Let d > 0 be the depth of the undisturbed mass
of water, and take y = 0 to represent the level of the undisturbed water surface,
then the flat bed is at y = −d. We assume the wave period is 2L and we denote by



EQUIVALENT FORMULATIONS FOR STEADY PERIODIC WATER WAVES 2671

η(x, t) the wave surface profile, which under physical assumptions satisfies that for
any fixed time t0 ∫ L

−L
η(x, t0)dx = 0.

Without loss of generality, using scaling arguments, we work with L = π which will
be more convenient. We are interested in travelling waves with a constant speed
denoted by c > 0 in the positive x-direction, then the velocity field takes the form
(u(x− ct, y), v(x− ct, y)) and the wave surface profile is given by η(x− ct). One of
the difficulties of this problem is that the wave profile η is a free surface which is an
unknown in the problem, then with the change of coordinates (x−ct, y) 7→ (x, y) we
simplify the problem, obtaining now a time independent problem. We denote the
fluid domain by Dη = {(x, y) ∈ R2 : −d ≤ y ≤ η(x)}, and the governing equations
of the inviscid incompressible fluid is given by the mass conservation equation and
Euler’s equations together with the boundary conditions,

ux + vy = 0 in Dη, (1a)

(u− c)ux + vuy = −Px in Dη, (1b)

(u− c)vx + vvy = −Py − g in Dη, (1c)

v = (u− c)ηx on y = η(x), (1d)

P = Patm on y = η(x), (1e)

v = 0 on y = −d, (1f)

where P = P (x, y) is the pressure, g is the gravitational constant, and Patm is the
constant atmospheric pressure. The kinematic boundary condition (1d) express the
fact that a particle on the free boundary remains there at all times; (1e) decouples
the motion of the air from that of the water, and the last boundary condition (1f)
assumes that the fluid does not penetrate the flat bed. The Eulerian governing equa-
tions for the gravity water wave problem are given by (1), and for two-dimensional
flows the vorticity is given by

ω = uy − vx. (2)

We assume also that the fluid does not contain stagnation points, that is

u < c (3)

throughout the fluid. This means that the particles of the fluid move with less
velocity than the wave speed, and physically, this assumption is valid for flows
which are not near breaking, [23, 25].

The previous governing equations (1) can be reformulated in terms of the stream
function ψ which is directly related to u, v by

ψy = u− c, ψx = −v. (4)

This function is determined up to a constant. To fix the constant we consider
ψ = 0 on y = η(x). We know from the boundary conditions (1d) and (1f) that ψ is
constant on both boundaries of Dη, and integrating (4) we obtain that ψ = −p0 on
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y = −d, where

p0 =

∫ η(x)

−d
(u(x, y)− c)dy

is known as the relative mass flux, and thanks to (3) we know that for any given
flow, p0 is a fixed constant p0 < 0. Integrating (4), we have that

ψ(x, y) = −p0 +

∫ y

−d
(u(x, s)− c)ds,

and we can see that ψ is periodic in x, with period 2π. Using (2) and (4) we obtain
that the stream function satisfies the equation

∆ψ = ω,

with

ω = γ(ψ/p0),

where γ is the vorticity function. Let

Γ̃(p) =

∫ p

0

p0γ(s)ds, for − 1 ≤ p ≤ 0,

then from Euler’s equation (1b) we obtain Bernoulli’s law which states that

E :=
(u− c)2 + v2

2
+ g(y + d) + P − Γ̃

(
ψ

p0

)
is constant throughout the flow Dη. We define Q := E − Patm + gd, then rewriting
the governing equations in the moving frame in terms of the stream function, we
obtain

∆ψ = ω in −d < y < η(x), (5a)

|∇ψ|2 + 2g(y + d) = Q on y = η(x), (5b)

ψ = 0 on y = η(x), (5c)

ψ = −p0 on y = −d. (5d)

Furthermore, the condition which excludes stagnation points, (3), is equivalent to

ψy < 0. (6)

The main difficulties of solving the latter problem (5) are its nonlinear character
and the fact that the free surface is unknown. To overcome this difficulty, we define
the nonstandard semi-hodograph transformation, which was first introduced in [17],
given by

q = x, p =
ψ(x, y)

p0
. (7)

This change of variables represents an isomorphism thanks to the assumption (3).
The semi-hodograph transformation (7) transforms the fluid domain Dη, with the

unknown free boundary η, into the fixed semi-infinite rectangular domain R =
R× [−1, 0]. We can now define the modified-height function in the (q, p)-variables,

h(q, p) =
y

d
− p, (8)
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where y = y(q, p) is a function of the new (q, p)-variables. We assume that the
modified-height function h is even and 2π-periodic on q, and by definition (8) and
from (7), it satisfies ∫ π

−π
h(q, 0)dq = 0. (9)

The modified-height function (8) was introduced in [17], where it was used to obtain
existence results for rotational water waves of fixed mean-depth. This is a different
approach from the approach taken in [8], where the authors fix the mass flux p0
to prove the existence of solutions using local bifurcation. Here, as well as in in
[13, 15, 17] we fix the mean-depth. This is the more ideal physical approach, since
it is easier to directly determine the mean-depth of a mass of water over a flat bed
than the mass flux which is a more variable characteristic for any given flow. As was
stated in [17], another difference in approaches from that of [8] where the standard
height function eliminates the depth d from the problem, here the modified-height
function (8) allows us to introduce the depth d into the problem. This is important,
since in [24] was notice that fixing the mass flux does no fix the depth, since given
a fix mass flux there exists a bifurcation curve which has solutions with different
depths. The semi-hodograph transformation (7) transforms the stream function
system of equations (5a)-(5d) on an unknown domain with a free surface, into the
following modified-height function system in a fixed domain

(
1

d2
+ h2q

)
hpp − 2hq(hp + 1)hpq + (hp + 1)2hqq +

γ(p)

p0
(hp + 1)3 = 0

in − 1 < p < 0,
1

d2
+ h2q +

(hp + 1)2

p20
[2gd(h+ 1)−Q] = 0 on p = 0,

h = 0 on p = −1,
(10)

where h is even and 2π−periodic in q and (9) holds. The condition which excludes
stagnation points (6) is equivalent to

hp + 1 > 0, (11)

and consequently the system (10) is a uniformly elliptic quasilinear partial differ-
ential equation with oblique nonlinear boundary condition.

3. Weak formulations. In this section we describe the weak formulations which
are associated to each of the formulations described in the previous section. These
generalised formulations will give a meaning to solutions with weaker regularity
than those of the formulations above, and the weak solutions we are interested in
will be considered to be in Hölder spaces.

3.1. Weak Euler equation. We can write the Euler equation (1) in the (weak)
divergence form as

−cux +
(
u2
)
x

+ (uv)y = −Px in Dη, (12a)

−cvx + (uv)x +
(
v2
)
y

= −Py − g in Dη, (12b)

ux + vy = 0 in Dη, (12c)

v = 0 on y = −d, (12d)

v = (u− c)ηx on y = η(x), (12e)

P = Patm on y = η(x). (12f)
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In this formulation, the equations (12a)–(12c) will be understood in the sense of
distributions, whereas the boundary conditions (12d)–(12f) will be understood in
the classical sense. The type of solutions of (12) we are interested in are solutions
u, v, P ∈ C0,α

per(Dη), where η ∈ C1,α
per(R), for some α ∈ (0, 1]. Here the per subscript

indicates that our solutions are even and 2π-periodic in the x-variable. We assume
also that the fluid has no stagnation points, so that u < c.

3.2. Weak stream formulation. Since the following identity holds for regular
enough functions ψ and γ,{

ψx ψy
}
x
− 1

2

{
ψ2
x − ψ2

y

}
y
−
{

Γ̃(ψ/p0)
}
y

= ψy [∆ψ − γ(ψ/p0)] ,

we can write the weak stream formulation as{
ψx ψy

}
x
− 1

2

{
ψ2
x − ψ2

y

}
y
−
{

Γ̃(ψ/p0)
}
y

= 0 in Dη, (13a)

ψ = −p0 on y = −d, (13b)

ψ = 0 on y = η(x), (13c)

|∇ψ|2 + 2g(y + d) = Q on y = η(x). (13d)

Again this weak formulation (13) will give a meaning for solutions with weaker reg-

ularity. In this case we are interested in solutions ψ ∈ C1,α
per(Dη), Γ̃ ∈ C0,α([−1, 0]),

and η ∈ C1,α
per(R), for some α ∈ (0, 1], and the stream function has to satisfy the

condition of there being no stagnation points, that is ψy < 0. The boundary con-
ditions (13b)–(13d) are satisfied in the classical sense, and the equation (13a) is
satisfied in the sense of distributions. Notice that ψx, ψy can be understood in the
classical sense.

3.3. Weak modified-height formulation. We can rewrite the height equation
in the divergence form{

−
1 + d2h2q

2d2(1 + hp)2
+

Γ(p)

2d2

}
p

+

{
hq

1 + hp

}
q

= 0 in − 1 < p < 0, (14a)

−
1 + d2h2q

2d2(1 + hp)2
− gd(h+ 1)

p20
+

Q

2p20
= 0 on p = 0, (14b)

h = 0 on p = −1. (14c)

Here

Γ(p) = 2

∫ p

0

d2γ(s)

p0
ds in − 1 ≤ p ≤ 0.

We understand by a solution of (14) a function h ∈ C1,α
per(R), where Γ∈C0,α

per([−1, 0]),
for some α ∈ (0, 1]. Here the per subscript indicates that our solutions are even
and 2π-periodic in the q-variable. We assume also that the modified-height funtion
satisfies hp + 1 > 0. The boundary conditions (14b) and (14c) are satisfied in
the classical sense, and the equation (14a) is satisfied in the sense of distributions.
Thanks to the regularity considered for h, its derivatives hp, hq are understood in
the classical sense.
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4. Equivalent formulation. In this section we prove the main result which states
the equivalence between the three weak formulations of the governing equations
introduced in the previous section. In particular, we prove that the weak stream
function system of equations, (13), and the weak modified-height formulation, (14),
are equivalent with ψ ∈ C1,α

per(Dη) and h ∈ C1,α
per

(
R
)
, for 0 < α ≤ 1. On the other

hand, the equivalence between the weak Euler equation (12), and the weak stream
function system of equations, (13), are only proved for 1/3 < α ≤ 1. This is why
the result below is only proved for α between the latter values.

Theorem 4.1. Let 1/3 < α ≤ 1. Then the following formulations of the governing
equations are equivalent:
(i) the weak Euler equation (12) with (3), for η∈ C1,α

per(R), and u, v, P ∈ C0,α
per(Dη);

(ii) the weak stream formulation (13) with (6), for Γ̃ ∈ C0,α([−1, 0]), η ∈ C1,α
per(R)

and ψ ∈ C1,α
per(Dη);

(iii) the weak modified-height formulation (14) with (11), for Γ ∈ C0,α([−1, 0]) and
h ∈ C1,α

per

(
R
)
.

Proof. Let us prove first the equivalence between the weak stream formulation (ii)
and the weak modifed-height formulation (iii) for 0 < α ≤ 1.

(ii)⇒ (iii) Let ψ ∈ C1,α
per(Dη) satisfy (13) and (6), with Γ̃ ∈ C0,α([−1, 0]). We

recall the semi-hodograph transformation given by

(x, y) 7→ (q, p) =

(
x,
ψ(x, y)

p0

)
, (15)

is a bijection between Dη and R as a result of (6). Let h be the modified-height

function h(q, p) = y(q,p)
d − p, then the inverse mapping from R to Dη has the form

(q, p) 7→ (x, y) = (q, d[h(q, p) + p]) . (16)

From the semi-hodograph transformation (15) we obtain the relations

∂x = ∂q −
hq

hp + 1
∂p, ∂y =

1

d(hp + 1)
∂p, and ∂q = ∂x −

ψx
ψy
∂y, ∂p =

p0
ψy
∂y,

(17)
and

ψx = − p0hq
hp + 1

, ψy =
p0

d(hp + 1)
, and hq =

−ψx
dψy

, hp =
p0
dψy
− 1. (18)

The identities above should be regarded as a relation between classical derivatives of
a C1-function with respect to the (x, y)-variables and (q, p)-variables. Thanks to the
relation between the derivatives of h and ψ, given by (18), and since ψ ∈ C1,α

per(Dη)

satisfies that ψy > 0 we have that h ∈ C1,α
per(R). Now, let us prove that the boundary

conditions of the modified-height function (14b)-(14c) hold. From (15), we know
that p can be seen as a function of the variables x and y, and from (16), h can be
regarded as a function of q and p. It follows directly from (15) and (13b) that

p =
ψ(x, y)

p0
= −1 on y = −d,

then

h(q, p) =
y(q, p)

d
+ 1 = 0 on p = −1.
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Thus, we have proved the boundary condition (14c). On the other hand, thanks to
(15) and (13c) we have that

p =
ψ(x, y)

p0
= 0 on y = η(x). (19)

From the relation (18) and thanks to (19), we have that the boundary condition
(14b) can be rewritten as follows, and since we assume that the boundary condition
on the free surface (13d) for the stream function is satisfied, we have that(

1

d2
+ h2q

)
p20

(hp + 1)2
+ 2gd(1 + h+ p) =

p20h
2
q

(hp + 1)2
+

p20
d2(hp + 1)2

+2gd
(

1 +
y

d

)
= |∇ψ|2 + 2g(y + d) = Q on p = 0.

Thus, (14b) is satisfied. Since the assumption of there being no stagnation points
for the stream function (6) is satisfied and thanks to the relations (18), we know
that ψy = p0

d(hp+1) , then the modified-height function satisfies hp + 1 > 0, and (11)

holds.
Now, since we are considering weak solutions in C1,α

per(R), to prove that the
equation (14a) of the modified-height function is satisfied, we prove it in the sense
of distributions. We need to prove that∫ ∫

R

(
−

1 + d2h2q
2d2(1 + hp)2

+
Γ(p)

2d2

)
ϕ̃p +

(
hq

1 + hp

)
ϕ̃q dq dp = 0 for all ϕ̃ ∈ C1

0 (R).

(20)
For any ϕ̃, let ϕ ∈ C1

0 (Dη) be given by ϕ(x, y) = ϕ̃ (x, ψ(x, y)/p0) for all (x, y) ∈ Dη.
Changing variables and from the relations (17) and (18) yields

I =

∫ ∫
Dη

[(
−
ψ2
y

2p20
− ψ2

x

2p20
+

Γ (ψ/p0)

2d2

)
p0
ψy
ϕy −

ψx
p0

(
ϕx −

ψx
ψy
ϕy

)]
ψy
p0
dx dy

=

∫ ∫
Dη

[
1

2p20

(
−ψ2

x − ψ2
y

)
ϕy +

Γ (ψ/p0)

2d2
ϕy −

ψxψy
p20

ϕx +
ψ2
x

p20
ϕy

]
dx dy.

(21)

Multiplying (21) by p20, and since Γ̃(p) =
∫ p
0
p0γ(s)ds =

p20
2d2 Γ(p), we have that

p20 I =

∫ ∫
Dη

[
Γ̃ (ψ/p0)ϕy − (ψxψy)ϕx +

1

2

(
ψ2
x − ψ2

y

)
ϕy

]
dx dy. (22)

Since the stream function satisfies (13a) we have that I = 0. Then we have proved
(20), and (iii) holds.

(iii)⇒ (ii) Let h ∈ C1+α
per (R) satisfy (14) and (11), with Γ ∈ C0,α([−1, 0]).

From the definition of ψ and η, we have that the relation of the derivatives (17) and
(18) are still valid, and since h ∈ C1+α

per (R), we have that ψ ∈ C1,α
per(Dη) and η ∈

C1,α
per(R). Now, to recover ψ, we observe that the mapping (q, p)→ (q, d(h(q, p)+p))

is a global bijection from R onto Dη, because for q fixed it is strictly monotone
and hence bijective. Moreover, the bijection is a global C1,α-diffeomorphism. The
inverse of this bijection is given by (x, y) → (x, ψ(x, y)/p0). Now, let us prove
that the boundary conditions for the stream function (13b)-(13d) hold. It follows
directly from (15) that

ψ(x, y) = −p0 on y = −d,
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and

ψ(x, y) = 0 on y = η(x),

and so ψ satisfies the boundary conditions (13b) and (13c). From the definition of
h, we have that

y = d[h(x, p) + p]. (23)

Differentiating (23) we get

yx = 0 = d[hq + hppx + px]⇒ px = − hq
1 + hp

, (24)

yy = 1 = d[hppy + py]⇒ py =
1

d(1 + hp)
. (25)

Thanks to (18) and the previous relations (24) and (25), we can rewrite (13d) in
terms of the modified-height function as follows, and since (14b) is satisfied, we
have that

|∇ψ|2 + 2g(y + d) =
p20h

2
q

(hp + 1)2
+

p20
d2(hp + 1)2

+ 2gd(1 +
y

d
)

=

(
1

d2
+ h2q

)
p20

(hp + 1)2
+ 2gd(1 + h+ p) = Q on y = η(x).

Thus, the boundary condition (13d) follows. On the other hand, thanks to the
relation (18) we have that ψy = p0

d(hp+1) , and since h satisfies (11) and p0 < 0,

we have that the assumption of there being no stagnations points for the stream
function, (6) holds. Now, let us prove that the equation (13a) is satisfied in the
distribution sense. To do this we have to prove that∫ ∫

Dη

Γ̃ (ψ/p0)ϕy − (ψxψy)ϕx +
1

2

(
ψ2
x − ψ2

y

)
ϕydxdy = 0 for all ϕ ∈ C1

0 (Dη).

(26)
For any ϕ ∈ C1

0 (Dη), let ϕ̃ ∈ C1
0 (R) be given by ϕ̃(q, p) = ϕ (q, d[h(q, p) + p]) for all

(q, p) ∈ R. By changing variables in the integral in (26) which is equal to (22), and
following the arguments above from the bottom up, we can rewrite (22) as (20).
But (20) is valid, as a consequence of (14a). Hence, we have proved that (ii) holds.

Although the details of the proof of the equivalence between (i) and (ii) follows
as in [34], since the precise composition of the modified-height function plays no
role in the equivalence considerations, for the sake of completeness we present an
outline of the proof considering the stream formulation presented in this paper –
full details may be found in [34].

(i)⇒ (ii) Since (i) holds, then u, v ∈ C0,α
per(Dη) and η ∈ C1,α

per(R). From the

definition of ψ, (4), we have that ψ ∈ C1,α
per(Dη), which is unique up to a constant.

It is clear that (12d) and (12e) imply (13b) and (13c). Using the definition of ψ we
rewrite (12a) and (12b) in the weak distributional form (with the first derivatives
understood in the classical sense),(

ψ2
y

)
x
− (ψxψy)y = −Px in Dη, (27a)

− (ψxψy)x +
(
ψ2
x

)
y

= −Py − g in Dη. (27b)

Let us define

F := P +
1

2
|∇ψ|2 + gy in Dη, (28)



2678 SILVIA SASTRE-GOMEZ

then it follows from (27a) that the derivatives of F in sense of distributions are
given by

Fx =
1

2

(
ψ2
x − ψ2

y

)
x

+ (ψxψy)y , (29)

Fy = (ψxψy)x −
1

2

(
ψ2
x − ψ2

y

)
y
. (30)

Now we prove that the equation (13a) holds, which is (30) in the sense of distribu-

tions if we show that there exists a function Γ̃ ∈ C0,α ([p0, 0]) such that

F (x, y) = Γ̃(ψ(x, y)/p0) for all (x, y) ∈ Dη, (31)

where Γ̃(p) =
∫ p
0
p0γ(s)ds. Let F̃ : R→ R be given by F̃ (q, p) = F (q, y(q, p)) in R,

which is equivalent to F (x, y) = F̃ (x, ψ(x, y)/p0) in Dη. Then (31) is equivalent to

F̃ (q, p) = Γ̃(p), (32)

for some Γ̃ ∈ C0,α([−1, 0]). To prove (32), we have to see if∫ ∫
R

F̃ ϕ̃qdqdp = 0 for all ϕ̃ ∈ C1
0 (R). (33)

For any ϕ̃, let ϕ ∈ C1
0 (Dη) be given by ϕ(x, y) = ϕ̃(x, ψ(x, y)/p0) for all (x, y) ∈ Dη.

Changing variables in the integral (33) we obtain∫ ∫
Dη

F (ψyϕx − ψxϕy) dxdy = 0. (34)

Our aim is to prove (34) for all ϕ ∈ C1
0 (Dη). We define V := Dη, and for ϕ ∈ C1

0 (Dη)
arbitrary, we denote K := suppϕ. Let ε0 := dist(K,R2 \V )/2, then for 0 < ε < ε0,
we denote Vε :=

{
x ∈ V : dist(x,R2 \Dη) > ε

}
. Let ρε be a mollifier defined in V ε,

and let F ε := F ∗ ρε be defined in V ε. Then we can write (34) as∫ ∫
Dη

F
(
ψyϕx − ψxϕy

)
dxdy =∫∫

K

(
Fψy − F εψεy

)
ϕx − (Fψx − F εψεx)ϕydxdy +

∫∫
K

F εψεyϕx − F εψεxϕydxdy.

Thanks to [34, Lemma 4.2], we have some estimates of the norm of F ε and ψε given
in terms of the norm of F and ψ. Thanks to these estimates we obtain that∫ ∫

Dη

F (ψyϕx − ψxϕy) dxdy ≤ C1ε
α + C2ε

2α + C3ε
3α−1,

then if α > 1/3 and taking limits as ε goes to zero, we obtain (34), and (ii) holds.

(ii)⇒ (i) Let u, v be defined by (4) up to a constant, and the pressure by

P := −1

2
|∇ψ|2 − gy + Γ̃(ψ/p0) in Dη.

Then, u, v, P ∈ C0,α
per(Dη). The definition of u and v implies (12c), and (13b) and

(13c) imply (12d) and (12e). Using the definition of u, v and P mentioned above,
we can rewrite (12a) and (12b) as

Γ̃(ψ/p0)x =
1

2

(
ψ2
x − ψ2

y

)
x

+ (ψxψy)y in Dη, (35a)

Γ̃(ψ/p0)y = (ψxψy)x −
1

2

(
ψ2
x − ψ2

y

)
y

in Dη. (35b)
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However, (35b) is exactly (13a), which we are assuming to hold. We just need to
prove that (35a) holds, and to do this we will prove that (35a) is a consequence of

(35b). Let us define F = Γ̃(ψ/p0), then (35a) is equivalent to proving that∫ ∫
Dη

Fϕx −
1

2

(
ψ2
x − ψ2

y

)
ϕx − (ψxψy)ϕydxdy = 0 for all ϕ ∈ C1

0 (Dη). (36)

We define V := Dη, and for ϕ ∈ C1
0 (Dη) arbitrary, let K := suppϕ. We define ε0 :=

dist(K,R2 \ V )/2, then for 0 < ε < ε0, let Vε :=
{
x ∈ V : dist(x,R2 \Dη) > ε

}
,

and let ρε be a mollifier defined in V ε, then we consider F ε := F ∗ρε defined in V ε.
We can rewrite (36) as∫ ∫

Dη

F ϕx −
1

2

(
ψ2
x − ψ2

y

)
ϕx − (ψxψy)ϕydxdy

=

∫ ∫
K

[F − F ε]ϕx −
[

1

2
(ψ2
x − ψ2

y)− 1

2

(
(ψεx)

2 (
ψεy
)2)]

ϕx

−
[
(ψxψy)−

(
ψεxψ

ε
y

)]
ϕydxdy

+

∫ ∫
K

F εϕx −
1

2

(
(ψεx)

2 (
ψεy
)2)

ϕx −
(
ψεxψ

ε
y

)
ϕydxdy.

(37)

Again, thanks to [34, Lemma 4.2], we have some estimates of the norm of F ε and
ψε given in terms of the norm of F and ψ. Thanks to these estimates we obtain
that∫ ∫

Dη

Fϕx −
1

2

(
ψ2
x − ψ2

y

)
ϕx − (ψxψy)ϕydxdy ≤ C1ε

α + C2ε
2α + C3ε

3α−1.

Since α > 1/3, then taking limits as ε goes to zero, we obtain (36). Thus, we have
proved that (i) holds.

Remark 1. Notice that in Theorem 4.1 the equivalence between the weak stream
formulation and the weak modified-height formulation has been proved for α ∈ (0, 1].
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