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A B S T R A C T   

In this work, the application of an optimization algorithm is investigated to optimize static and dynamic engi
neering problems. The methodology of the approach is to generate random solutions and find a zone for the 
initial answer and keep reducing the zones. The generated solution in each loop is independent of the previous 
answer that creates a powerful method. Simplicity as its main advantage and the interlaced use of intensification 
and diversification mechanisms–to refine the solution and avoid local minima/maxima–enable the users to apply 
that for a variety of problems. The proposed approach has been validated by several previously solved examples 
in structural optimization and scored good results. The method is also employed for dynamic problems in vi
bration and control. A modification has also been done on the method for high-dimensional test functions 
(functions with very large search domains) to converge fast to the global minimum or maximum; simulated for 
several well-known benchmarks successfully. For validation, a number of 9 static and 4 dynamic constrained 
optimization benchmark applications and 32 benchmark test functions are solved and provided, 45 in total. All 
the codes of this work are available as supplementary material in the online version of the paper on the journal 
website.   

1. Introduction 

1.1. Literature review 

The use of evolutionary algorithms has been highlighted in science 
due to their capability in various fields such as mathematics, electrical, 
civil, mechanical, and control engineering, physics, economics, finance, 
etc. The idea of the evolution in science changed the perspective of re
searchers to switch to simpler methods for solving more complex 
problems with the cost of more computations and numerous iterations. 
The classical mathematical optimization methods are fast and precise 
such as gradient descent method (Nesterov, 2013), linear programming 
(Kirk, 2012), second-order cone programming (Alizadeh & Goldfarb, 
2003), nonlinear programming (Peressini & Sullivan, 1988), etc.; how
ever, the application of them in different fields is difficult and they 
require modifications and tuning. 

There are some techniques specifically for the context of dynamic 
optimization: calculus of variations (Kirk, 2012), dynamic 

programming, and optimal control which proposes lots of tools such as 
linear quadratic regulator (Bemporad, Morari, Dua, & Pistikopoulos, 
2002), state-dependent Riccati equation (Nekoo, 2019), successive 
Galerkin approximation (Kim, Kim, & Lim, 2003), and interpolation 
(Beeler, Tran, & Banks, 2000). The characteristics of static and dynamic 
optimization are different. Static optimization problems have several 
objective functions and variables with constraints though the ultimate 
solution is constant (global optimum) to the cost function. Dynamic 
optimization is more complex. The cost function and variables are 
available and they are time-varying, moving from initial to final con
dition. The optimization task is usually the best transition for the vari
ables between boundary values. The search method in this work has 
been used for both static and dynamic optimization problems. It should 
be noted that the search method is not an optimal control method to 
provide a state transition of a dynamical system between boundary 
conditions. It can be used for the parameter optimization of static and 
dynamic systems. The dynamical problems have some tuning parame
ters or physical parameters that define the behavior of the system or the 
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error of a task. The proposed method is applicable for finding those 
control or physical parameters. 

Besides the mathematical search approach, heuristics and meta
heuristics methods are powerful tools for optimization such as memetic 
algorithm (Burke, Newall, & Weare, 1995), differential evolution (Price, 
Storn, & Lampinen, 2006), dynamic relaxation (Collins & Cosgrove, 
2019), hill-climbing with random restart (Yelmewad & Talawar, 2019), 
particle swarm optimization (Tharwat, Elhoseny, Hassanien, Gabel, & 
Kumar, 2019), and Tabu search (Brusco & Doreian, 2019). The heuristic 
optimization methods do not mathematically guarantee a solution to the 
defined problem though they are powerful, easy to implement, and can 
be used for a wide range of problems in multiple disciplines. Zuo et al. 
applied the Tabu search for optimization of the layout of a hospital 
emergency department as a multi-objective optimization (Zuo et al., 
2019). Agrawal et al. presented a new hybrid adaptive Cuckoo search- 
squirrel algorithm for brain MR image analysis (Agrawal, Samantaray, 
Panda, & Dora, 2020). The vast application of heuristic optimization 
tools is the most important advantage of evolutionary search methods. 
Self-adaptive sine cosine algorithm (Gupta & Deep, 2019), and 
improved sine cosine algorithm (Long, Wu, Liang, & Xu, 2019), were 
also recorded precise results for high dimensional problems. 

The main contribution of this work is to investigate the application of 
a search algorithm for both static and dynamic problems. The main 
advantages of the method are simplicity, applicability for so many 
problems, precision, few tuning parameters, and capability for static and 
dynamic optimization. The simplicity of the method enables the tuning 
of the control methods such as proportional derivative and the state- 
dependent Riccati equation. 

The rest of the work is structured as follows. Sections 1 and 2 defines 
the characterization of the method. Section 2 describes the motivation of 
the method and details of the algorithm. Section 3 presents static and 
dynamic examples along with well-known test functions to check the 

performance of the method. A discussion is provided in Sections 4 and 5 
summarizes the conclusions. 

1.2. Search algorithm within the metaheuristic optimization framework 

Heuristics are basic approximate algorithms that search the domain 
to find a good solution (also called search): constructive algorithms 
which generate an answer by putting pieces of solutions together, and 
local search methods that start with a pre-existing solution and try to 
improve it by modifying the components (Bianchi, Dorigo, Gambardella, 
& Gutjahr, 2009). Metaheuristics combine heuristics in a more general 
framework with a trade-off between intensification and diversification. So, 
metaheuristics are iterative master processes that guide subordinate 
heuristics intelligently and efficiently; the heuristics might be a low- 
level search or simple local searches (Osman & Laporte, 1996). The 
proposed method performs an inefficient global search in zone 1 and is 
guided to efficient local searches in other zones. The guidance of the 
local searches around the best solution in the previous zone imposes an 
intelligent way of a search on the overall search method. So, based on 
the above definitions, the search method is categorized as a meta
heuristic approach. The following items are a summary of meta
heuristics (Blum & Roli, 2003); also applicable to the proposed 
approach: guidance of a sublevel search process, efficiently exploring 
search space to find a near-optimal solution, approximate and non- 
deterministic, possess mechanisms to avoid getting trapped in local 
minima, and they are not problem-specific. The term “diversification” 
indicates the exploration of the search domain, whereas the term 
“intensification” represents the exploitation of the accumulated search 
experience (Blum & Roli, 2003). The balance between diversification 
and intensification (for the proposed search method) could be easily 
done by setting the number of iterations in each zone and reducing 
search domain parameters; as explained in Section 2. Consideration of a 

Fig. 1. Pseudocode of the search algorithm.  
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large number for zone 1, the entire search space, enhances the diversi
fication, and adding the number of zones increases the intensification by 
zooming in on the search space. 

Population-based search methods work over a search domain and 
evaluation of set-points; however, single-point search methods work on 
a single solution, so-called trajectory methods. One could see the tra
jectory of evolution and the solution in the generations. The proposed 
approach is a trajectory method or single-point search method. 

Does the method make use of search history? The search algorithm 
uses only the previous-loop information exclusively to determine the 
next action. So, we might refer to that as the usage of short-term 
memory. The definition of memory-based methods indicates the usage 
of accumulated information on search history (Blum & Roli, 2003). As a 
result, the search algorithm is a memoryless method. 

1.3. Framework and practical implementation 

The application of the search algorithm is multidisciplinary covering 
constraint, static, and dynamic optimization. Several examples were 
solved in the simulation section. This algorithm has been developed in 
the context of two recent cutting-edge projects: the ERC GRIFFIN (Per
manent-URL(b)), and AERIAL-CORE (https://aerial-core.eu/) projects 
which are related to aerial robotics including several platforms such as 
multi-rotor drones and flapping-wing flying robots for perching and 
manipulation. Both projects are devoted to developing new complex 
prototypes for aerial manipulation and, among other applications, this 
metaheuristic algorithm will help to optimize them. The flapping-wing 
flying robots in GRIFFIN possess ultra-lightweight designs to increase 
the time of flight and better maneuverability. Inverse shape design in the 
fluid flow problem is an interesting topic in metaheuristics which is an 
optimum design approach for wings (Chegini, Bagheri, & Najafi, 2018). 
The optimization problem of wing design for the flying robot of the 
GRIFFIN project is also a good application for the proposed search al
gorithm. Although it is not a mature design yet, an example of the 
application to this subject has been also addressed in one of the simu
lations in Section 3.1.9. The problem is the optimization of wing design 
concerning weight and lift force. The currently proposed wing design 
optimizes the top view of the wing; however, the previous literature 
optimized the cross-sectional profile of the wing (Mirjalili et al., 2017). 

2. The search algorithm 

2.1. Algorithm 

The idea of the search algorithm is very simple and is based on 
random solutions. The method, at least, has three phases for the gen
eration of a solution. First, the algorithm provides solutions in the entire 
domain of variables. The best solution in stage 1 defines the bounds of 
zone 2 for search in the next phase. Consequently, the best solution in 
the second stage narrows the search area for the next look. At the end of 
zone 3, the best answer is found. The selection of the solutions is random 
and the method is extremely simple, as presented in Fig. 1. The number 
of zones can be extended for more complex problems depending on the 
dimension and vastness of the search area. 

The simple idea of the method is as follows:  

• Try random solutions in the entire search domain and check the 
objective function.  

• Repeat the trial if the answer is worse than the previous one.  
• If the trials have been repeated so many times, reduce the search 

domain around the last and best answer so far.  
• Search again in the smaller search domain while checking the entire 

domain as well.  
• If the trials have been repeated so many times, reduce the search 

domain again around the last and best solution up to now.  
• Search again many times and declare the last answer as the best. 

It should be noted that the mentioned steps are presenting the idea 
and the complete form of the algorithm is presented in Pseudocode, 
Fig. 1. 

2.1.1. Pseudocode 
N1,N2,⋯,NZ are the number of iterations (Z is the total number of 

zones), e.g. N1 = 500,N2 = 1000,N3 = 2000,N4 = NZ = 5000, here the 
ultimate number of iterations for each generation of a solution is 5000 
and we have 4 zones. NG is an independent limit for external loop 
counter i. i is the counter of the external loop and j is the counter of the 
internal loop, both of them are updated in line 24 of the algorithm, 
Fig. 1. 

Zone 1 in Fig. 1 is presenting the operation for the search in the entire 
domain for the solution that optimizes the objective function: 

minimize or maximize :

f (x) =
∑m

l=1
fl(x), (1)  

where f(x) includes m criteria to be minimized or maximized, x = [x1,⋯ 
, xn] collects the variables related to the criteria. The constraints are set 
as. 

subject to :

gmin,h(x) ≤ gh(x) ≤ gmax,h(x), (2)  

in which h = 1,⋯, k defines k constraints and the variables are bounded 
between xmin,p ≤ xp ≤ xmax,p, for p = 1,⋯, n in which n represents the 
total number of variables. The solution to the first zone is random be
tween the minimum and maximum allowable bound: 

xp(i) = rand[0, 1]
(
xmax,p − xmin,p

)
+ xmin,p, (3)  

where rand[0,1] generates a random number between 0 and 1. The 
optimization is repeated N1 times, e.g. 1000 times. During the N1 iter
ations (related to j counter), there are M1 generations of solutions 
(related to i counter), e.g. 50. So, not all the iterations lead to a newly 
generated solution though the last generated solution M1 is the best up 
to now. After so many trials it is obvious that the best solution is around 
the last solution in zone 1. In the next stage, zone 2, the deviations are 
smaller and the search bounds are reduced P1 percent, e.g. 50% or 30%. 
Now, the algorithm has more power to find a better answer in (N2 − N1)

iterations that provide M2 generations. The last stage is again narrowing 
the search area drastically P2 percent, e.g. 5% or 1% to find the ultimate 
solution by (N3 − N2 − N1) iterations. After N3 iterations, the last solu
tion is the best one by the approach. So, it is obvious that N1 < N2 < N3 
and P1 > P2 are held. The bounds of the solution in r-th zone are: 

xmax,p,Nr = xp(i − 1)+
(
xmax,p − xmin,p

)

2Pr
, (4)  

xmin,p,Nr = xp(i − 1) −
(
xmax,p − xmin,p

)

2Pr
, (5)  

where j > Nr, r = 1,2, and the new bounds are limited to. 

if xmax,p,Nr > xmax,p, xmax,p,Nr = xmax,p, (6)  

if xmin,p,Nr < xmin,p, xmin,p,Nr = xmin,p, (7)  

in which for the second zone r = 1 and P1 = 0.5 shows a 50% reduction 
in the search zone. The solution to the problem in the r-th zone is: 

xp(i) = rand[0, 1]
(
xmax,p,Nr − xmin,p,Nr

)
+ xmin,p,Nr . (8) 

In line 6 of Fig. 1, it was stated that if the answer is “not better” than 
the previous one, repeat the task. The word “less” can be used instead of 
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Fig. 2. The flowchart of the search algorithm; the zones can be extended.  
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“better” for minimization and “bigger” for maximization. Since the 
search algorithm is capable of both minimization and maximization, it 
was expressed “better” in the Pseudocode. It should be noted that the 
method could be enhanced by increasing the search zones, r = 1,2,3,⋯, 
to find more precise answer though all the simulations in Sections 3.1 
and 3.2 were done by three search zones r = 1,2. 

2.1.2. Enhancement 
The method works perfectly for constrained optimization problems 

presented in simulation Section 3.1 which covers so many static exam
ples, and dynamic problems in Section 3.2. However, that might be weak 
for problems with very vast search domains such as high-dimensional 
test functions, Section 3.3. To present a very powerful option for the 
method, Eq. (8) is rewritten as. 

xp(i) =
(
− xp(i − 1) + rand[0, 1]

)(
xmax,p,Nr − xmin,p,Nr

)
+ xmin,p,Nr . (9) 

This new edition speeds up the convergence and works for high- 
dimensional optimization functions. The proposed method with updat
ing solution (9) is referred to as an improved search algorithm. All the 
simulations in Sections 3.1 and 3.2 are solved using the proposed search 
algorithm, without consideration of Eq. (9). In Section 3.3, both 
methods are compared to show the effectiveness of the simple version 
for fixed dimensional and constrained optimization and the enhanced 
version for high-dimensional problems. 

The flowchart of the method is presented in Fig. 2. The program 
starts by reading the parameters, NG in flowchart is the maximum 
number of generations for i counter. If the algorithm finds the answer in 
less than NZ iterations (j counter), NG finishes the while loop. For i > 2 
the method checks the improvement with regards to the constraints. If it 
is not improving, the algorithm repeats the loop. For the two-first- 
generation loops, the constraints must be checked as well, presented 
at the bottom of the flowchart. If we do not check the first two gener
ation loops for satisfying the constraints, we might find an infeasible 
solution and stay in the loop for entire NZ iterations. 

It should be noted that all solutions are random and in each gener
ation, the previous answer does not play a role in the algorithm for 
finding the new guess. However, in the definition of the search area, the 
last solution plays a crucial role. According to Mitchell (Mitchell, 1998), 
the search methods that work for a large number of problems are weak 
methods and the ones especially defined to work for a specific problem 
are strong methods. Based on that definition and the fact that the 
method solves a large number of problems in static and dynamic opti
mizations, our proposed method is in the weak category though it is 
really simple. The simplicity does not imply that the solutions are not as 
good as the solutions by other search methods, and in some cases, the 
proposed algorithm scored better results. This point is also observable 
concerning large standard deviations by the search algorithm (see the 
results in tables) which implies the best solution is a mutation from 
multiple trials and sometimes results in astonishing values. Another 
highlight of the method is random solutions in the domain that even
tually lead to the best answer, see Fig. 5. 

The zones in the algorithm can be increased to give more power to 
the search method though most of the cases in this paper were solved by 
the proposed three-zone formalism. For test functions in Section 3.3, 
several examples were solved by simple and enhanced versions, with 
increased zones up to 9. 

2.2. Stochastic mechanisms of the core algorithm 

Although it is well-known that due to its complex nature, some of the 
metaheuristic algorithms do not have any mathematical proof of opti
mality or even convergence, in this approach we could provide at least a 
probabilistic formula of the evolution of the solutions as a function of 
zones and generations. Thus, in this section, we provide a combinatorial 
(rough) estimate of how the method generates a better result by the 

expansion of the zones (reduction of search space) along with genera
tions in the random searching process. The process of generated answers 
is mainly defined by the “better” or “worse” condition in the flowchart, 
in Fig. 2. That condition asks “if the answer is worse than one in the 
previous loop and constraints are not satisfied”,—no better estimate was 
found—, repeat the task by putting “YES” to the condition. If the answer 
is not worse than the previous one—a better estimate was found—, the 
algorithm goes to the next generation by putting “NO” to that condition, 
which is preferable. To simplify the analysis we define the event YES:=
“a better estimate for the solution that satisfies the constraints is found”. 
For the sake of clarity, in Fig. 3 we show a partial tree generated in the 
finding, where the event YES is denoted as y, and y denotes its 
complement. 

Let us also denote Z as the number of zones with Zi is i-th zone, and 
for simplicity but without any loss of generality, let N represent the 
search domain (set) in each zone, e.g. the number of points per zone, p is 
the probability of YES event in each zone 〈p+q = 1〉 and finally, let NG 

be the number of generations. Notice that we have imposed equal N for 
all the zones, which is not necessary, but it eases the analysis. This 
means, in turn, that p is likely to be equal for each zone because roughly 
speaking p∝1/dim(N). With all of these definitions, we can pose the 
problem of finding better estimates or solutions in a combinatorial 
framework. Thus, we can state the following result. 

Theorem 1. Assume that for each generation a better estimate is found 
in one of the zones. The probability of finding a better estimate with Z 
zones and NG generations PNG

Z (y) yields. 

PNG
Z (y) =

(
1 − qZ)NG

.

Proof. The discrete probability distribution of the success is a binomial 
distribution and hence the probability of a better estimate in the i-th 
generation reads. 

Pi(y) = p+ pq+ pq2 +⋯ = p
∑Z

i=1
qk− 1. (10) 

Moreover, it is straightforward to see that for the next generation this 
probability becomes. 

Pi+1(y) = pPi(y)+ pqPi(y)+ pq2Pi(y)+⋯, (11)  

and therefore, summing up for NG generations (last generation) yields. 

Fig. 3. Tree of the generations and solutions based on the probability of 
YES/NO. 
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PNG
Z (y) =

(

p
∑Z

i=1
qk− 1

)NG

= pNG

(
1 − qZ

1 − q

)NG

, (12)  

where the last term comes from the sum of the convergent geometric 
series and p+q = 1, concluding the proof. ■. 

2.2.1. Discussion 
On the one hand, Theorem 1 provides a simple and compact formula 

showing the evolutionary behavior of the algorithm as a function of the 
number of zones and generations. However, on the other hand, and 
more interestingly, it allows a qualitative analysis. Thus, let us say that 
we run the simplest random algorithm of searching for solutions in the 
entire space without any heuristic, and with a total number of inde
pendent trials NG = Z× N. Hence, since they are all independent, the 
probability of finding a better estimate in the entire space, namely PNG

1 , 

becomes PNG
1 =

(
p
Z

)NG
. When compared with the result of Theorem 1, it 

is straightforward to see that PNG
Z > PNG

1 , for any Z > 1, and therefore 
increasing the number of zones will increase the chances of finding 
better estimates in non-convex optimization problems. 

2.3. Computational cost 

It should be reminded that two main loops, external (i) and internal 
(j), are playing the role in performing the algorithm. The first external 
loop is limited to maximum NG generations. The number of generations 
varies between almost 10 for fixed-dimensional examples and 700–900 
for high-dimensional test functions. It is always good to define NG a large 
number. In that case, the algorithm decides to finish the generations 
when it has good enough results, defined by the internal loop. The in
ternal loop is represented by j and is limited to the maximum number of 
NZ. So, if the algorithm starts to work, several generations of answers 
will be found and after refining the answer and entering the other zones, 
NZ sets the break command. There are two end switches for the algo
rithm though the correct way of finishing the optimization is by reaching 
NZ limit. Every generation of solutions is gained by counting the internal 
loop less than NZ. Consequently, the ultimate number of iterations is 
always [total num. iterations < num. of generations × NZ]. It could be coun
ted for each case, though the general form is less than [num.

of generations× NZ]. The role of different zones is presented for an 
arbitrary example in Fig. 4. For this example, N1 = 200, N2 = 500 and 
N3 = 1000; 132 generation were obtained which the last one caused the 
break command. The best answer is the 131st solution in this example. 
The total number of iterations is 30235, less than the estimated upper 
bound of 131000. It should be noted that the actual number of iterations 
is significantly lower than the upper bound. 

3. Implementation and numerical experiments 

3.1. Optimization for static problems 

3.1.1. Himmelblau’s non-linear optimization problem 
The Himmelblau’s optimization problem was proposed in 1972 

(Himmelblau, 2018), and since then it has been widely used for testing 
search and optimization algorithms (Coello, 2000; Deb, 2000; Dimo
poulos, 2007; Fesanghary, Mahdavi, Minary-Jolandan, & Alizadeh, 
2008; Gandomi, Yang, & Alavi, 2013; Garg, 2016; Gen & Cheng, 1997; 
S. He, Prempain, & Wu, 2004; Homaifar, Qi, & Lai, 1994; Lee & Geem, 
2005; Mehta & Dasgupta, 2012; Omran & Salman, 2009). It is a five- 
variable optimization problem (Lee & Geem, 2005): 

Fig. 4. Demonstration of 3 zones for an arbitrary solution.  

Table 1 
Results of Himmelblau’s problem; NA represents not available and SD represents standard deviation; bold numbers are based on the second version of Himmelblau’s 
problem.  

Method x f(x) SD 

Best Median Mean Worst  

(Homaifar et al., 1994) [80.39, 35.07, 32.05, 40.33, 33.34] − 30005.700 NA NA NA NA 
(Gen & Cheng, 1997) NA − 30183.5760 NA NA NA NA 
(Coello, 2000) [78.0495, 33.007, 27.081, 45, 44.94] ¡31020.859 ¡31017.21369 ¡30984.240703 ¡30792.407737 73.63 
(Deb, 2000) NA − 30665.537 − 30665.535 NA − 29846.654 NA 
(Lee & Geem, 2005) NA − 30665.500 NA NA NA NA 
(S. He et al., 2004) [78, 33, 29.9952, 45, 36.7758] − 30665.539 NA − 30643.989 NA 70.04 
(Dimopoulos, 2007) [78, 33, 29.995256, 45, 36.775813] − 30665.54 NA NA NA NA 
(Fesanghary et al., 

2008) 
[78, 33, 27.08515, 45, 44.92533] − 31024.3160 NA NA NA NA 

(Omran & Salman, 
2009) 

NA − 31025.5560 NA NA NA NA 

(Gandomi et al., 2013) [78, 33, 29.99616, 45, 36.77605] − 30665.2327 NA NA NA 11.62 
(Mehta & Dasgupta, 

2012) 
[77.99, 32.99, 29.995, 44.99, 36.775] − 30665.538741 NA NA NA NA 

(Garg, 2014) [78, 33, 27.07097927, 45, 
44.96902388] 

¡31025.57569195 ¡31025.5612911 ¡31025.55841263 ¡31025.49205458 0.0153528 

(Garg, 2016) [78, 33, 27.0709505, 45, 44.9691668] ¡31025.574717 ¡31025.561141 ¡31025.557816 ¡31025.492054 0.01526 
(Garg, 2019) [77.961, 32.99948, 27.0728355, 45, 

44.973943] 
− 30668.004045 
¡31027.6407622 

− 30667.51076 
¡31026.28126 

− 30667.17208 
¡31026.07246 

− 30665.32463 
¡31025.38705 

0.23158 
0.01803 

(Himmelblau, 2018) [78, 33, 29.995, 45.0, 36.776] − 30665.5 NA NA NA NA 
this work [78.03, 33.01, 30.01, 44.98, 36.77] 

[78.06, 33.01, 27.08, 44.96, 44.92] 
− 30682.06054 
¡31049.88222 

− 30644.23665 
¡30966.08551 

− 30624.11046 
¡30957.36984 

− 30396.37537 
¡30866.50864 

74.75 
41.65  
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minimize :

f (x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141, (13)  

in which x = [x1, x2, x3, x4, x5] and it is limited by six constraints: 

subject to :

g1(x) = 85.334407+ 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5,

g2(x) = 80.51249+ 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3,

g3(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4,

(14)  

where 0 ≤ g1(x) ≤ 90, 90 ≤ g2(x) ≤ 110 and 20 ≤ g3(x) ≤ 25. The var
iables in equations (13) and (14) are defined in the domain of 
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45 and 27 ≤ x3, x4, x5 ≤ 45. Here two ver
sions of the Himmelblau’s problem are studied, the first case is based on 
g1(x) in Eq. (14) and in the second version, the bold number 0.0006262 
is replaced with 0.00026, according to some studies in Table 1. The 
parameters of the search algorithm were selected as N1 = 1000, N2 =

2000 and N3 = 10000 with reduction search area terms P1 = 0.5 and 
P2 = 0.01. The results (repeated 30 times for calculating the best, me
dian, mean and standard deviation) are reported in Table 1. The average 
time of runs is 4.7 s for the first case and 2.1 s for the second one, bolded 
in Table 1. The optimal answer to Himmelblau’s problem was reported 
x* = [78.0, 33.0, 29.995, 45.0, 36.776] with corresponding f(x) =
− 30665.5 (Himmelblau, 2018); and better one by gravitational search 
algorithm and genetic algorithm as f(x) = − 30665.56 (Garg, 2019); 
though with the proposed search algorithm, this work, several good 
answers were found. For example, x* = [78.03, 33.01, 29.93, 44.96,
36.82] with corresponding f(x) = − 30667.99 in 96 generations, or for 
another trial, x* = [78.06, 33.07, 30.07, 44.92, 36.73] with corre
sponding f(x) = − 30673.75 in 114 generations; however, the minimum 
solution is presented in Table 1. The solutions to the optimization 
problem are illustrated in Fig. 5. Based on the policy of the algorithm, 
the number of internal loops for the generation of the answer to the 
optimization problem is defined by the search, so, the loops are different 
in Fig. 5, some of them needed less generation to gain the accepted so
lution. The T-test results in h-value of 1 and p-value of 
6.94804447659251e-82; Wilcoxon signed-rank test also results in the 
same h-value and p-value of 1.73439762832058e-06. 

3.1.2. Pressure vessel problem 
The pressure vessel is a financial optimization problem based on the 

geometry of the vessel, allowable stress, welding, working pressure, and 

design. The objective is the cost and the limitations are engineering 
factors. Four parameters are considered for optimization, the thickness 
of the cylinder Ts = x1, the thickness of the hemisphere caps Th = x2, the 
inner radius of the cylinder R = x3 and length of the cylinder L = x4, 
Fig. 6. The working pressure is 3000psi and the minimum volume is 
750ft3 (Gandomi et al., 2013). The thickness of the elements could be 
integer multiples of 0.0625inches. 

Based on the description, the optimization function is defined 
(Gandomi et al., 2013): 

minimize :

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3, (15)  

which is limited by the constraints: 

subject to :

g1(x) = − x1 + 0.0193x3 ≤ 0, g2(x) = − x2 + 0.00954x3 ≤ 0,

g3(x) = − πx2
3x4 −

4
3

πx3
3 + 750 × 1728 ≤ 0, g4(x) = x4 − 240 ≤ 0, (16)  

where 1× 0.0625 ≤ x1, x2 ≤ 99× 0.0625, 10 ≤ x3 ≤ 200 and case I: 
10 ≤ x4 ≤ 200 and case II: 10 ≤ x4 ≤ 240. 

One hundred trials were considered to test the approach for the 
pressure vessel optimization problem the best solution was found f(x) =
6059.7215907 for case I with corresponding data x = [0.8125,0.4375,
42.0984279262, 176.637033099]. The average time for each trial was 
gained by almost 11.3 s. The parameters of the algorithm were selected 
as N1 = 50000, N2 = 60000 and N3 = 70000 with reduced search area 
terms P1 = 0.1 and P2 = 0.001. Some of the previously published results 
in Table 2 violated the selection thickness, the thickness of the elements 

Fig. 5. The solutions to Himmelblau’s problem; the left figure shows the flow of the solution and the right shows the statistics of the answers.  

Fig. 6. Pressure vessel schematic and parameters definition.  
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could be integer multiples of 0.0625 in., which resulted in lower values. 
The solutions for the first case are illustrated in Fig. 7. For case II, 

10 ≤ x4 ≤ 240, the best answer was obtained f(x) = 5850.4066129 with 
corresponding geometry x = [0.75, 0.375, 38.8600465508,
221.367130189], and average time of each trial is 10.2 s. Most of the 
solutions to case I were around 6059 and for case II around 5850 which 
confirms the correctness and precision of the approach. The T-test re
sults in h-value of 1 and p-value of 5.94904464016159e-151; Wilcoxon 
signed-rank test also results in the same h-value and p-value of 
3.89655984509596e-18. 

3.1.3. The welded beam optimization problem 
A beam is welded to a support plate and is under a vertical load P 

with cross-sectional area bt and length L + l, see Fig. 8. The thickness of 
the welding is h = x1, the length of the welding is l = x2, width of the 
beam is t = x3 and the thickness of the beam is b = x4. The optimization 
task is to minimize the cost including material, setup, and welding labor 
(Garg, 2016). 

The optimization problem is defined by (Garg, 2016): 

Table 2 
Results of the pressure vessel optimization problem; NA represents not available and SD represents standard deviation; bold numbers are based on the second version of 
the problem; 100 trials.  

Method x f(x) SD 

Best Median Mean Worst 

(Sandgren, 1988) [1.125, 0.625, 47.7, 17.701] 8129.1036 NA NA NA NA 
(Kannan & Kramer, 1994) [1.125, 0.625, 58.291, 43.69] 7198.0428 NA NA NA NA 
(Coello, 2000) [0.8125, 0.4375, 40.3239, 200] 6288.7445 NA 6293.8432 6308.1497 7.4133 
(Coello & Montes, 2002) [0.8125, 0.4375, 42.097398, 

176.65405] 
6059.9463 NA 6177.2533 6469.3220 130.9297 

(He & Wang, 2007) [0.8125, 0.4375, 42.091266, 176.7465] 6061.0777 NA 6147.1332 6363.8041 86.4545 
(Mezura-Montes & Coello, 2008) [0.8125, 0.4375, 42.098087, 

176.640518] 
6059.7456 NA 6850.0049 7332.8798 426 

(Kaveh & Talatahari, 2010) [0.8125, 0.4375, 42.098353, 
176.637751] 

6059.7258 NA 6081.7812 6150.1289 67.2418 

(Kaveh & Talatahari, 2009) [0.8125, 0.4375, 42.103566, 
176.57322] 

6059.0925 NA 6075.2567 6135.3336 41.6825 

(Cagnina, Esquivel, & Coello, 2008) [0.8125, 0.4375, 42.098445, 
176.636595] 

6059.714335 NA 6092.0498 NA 12.1725 

(Gandomi et al., 2013) [0.8125, 0.4375, 42.0984456, 
176.6365958] 

6059.7143348 NA 6447.7360 6495.3470 502.693 

(dos Santos Coelho, 2010) [0.8125, 0.4375, 42.0984, 176.6372] 6059.7208 6257.5943 6440.3786 7544.4925 448.4711 
(He et al., 2004) [0.8125, 0.4375, 42.098445, 

176.636595] 
6059.7143 NA 6289.92881 NA 305.78 

(Mezura-Montes, Coello Coello, Velázquez- 
Reyes, & Muñoz-Dávila, 2007) 

[0.8125, 0.4375, 42.098446, 
176.636047] 

6059.70166 NA NA NA NA 

(Akay & Karaboga, 2012) [0.8125, 0.4375, 42.098446, 
176.636596] 

6059.714339 NA 6245.308144 NA 205 

(Garg, 2014) [0.7781977, 0.3846656, 40.32105455, 
199.9802367] 

5885.4032828 5886.149289 5887.557024 5895.126804 2.74529 

(Garg, 2019) [0.77819652, 0.3846644, 
40.3210580446, 199.9799646] 

5885.38533633 5884.58128 5884.24637 5884.462541 0.50281 

(Dimopoulos, 2007) [0.75, 0.375, 38.86010, 221.36549] 5850.38306 NA NA NA NA 
(Mahdavi, Fesanghary, & Damangir, 2007) [0.75, 0.375, 38.8601, 221.36553] 5849.76169 NA NA NA NA 
(Gandomi, Yang, & Alavi, 2011) [0.75, 0.375, 38.8601, 221.36547] 5850.38306 NA 5937.3379 6258.96825 164.54747 
(Garg, 2014) [0.72759583, 0.359655288, 

37.69913599, 239.999805] 
5804.4486708 5805.073797 5805.47391 5811.977127 1.411462 

(Garg, 2019) [0.727610046, 0.359658023, 37.70 
0 0 0238, 239.983428] 

5804.4048008 5806.7764199 5806.596206 5808.16968 1.028072 

(Mirjalili, 2015) [0.8125, 0.4375, 42.098445, 
176.636596] 

6059.7143 NA NA NA NA 

(Chegini et al., 2018) [1.25, 0.0625, 64.7668, 11.9886] 3137.3 NA NA NA NA 
(Heidari, Abbaspour, & Jordehi, 2017) [0.727612, 0.359656, 37.771023, 

238.510803] 
5788.6492866 6100.186102 6103.774173 6971.110752 294.490733 

(Rizk-Allah, 2018) [0.7781908, 0.383047, 40.32075, 
199.98419] 

5880.71150 NA NA NA NA 

(Mirjalili et al., 2014) [0.8125, 0.4345, 42.089181, 
176.758731] 

6051.5639 NA NA NA NA 

This work [0.8125, 0.4375, 42.0984279262, 
176.637033099] 
[0.75, 0.375, 38.8600465508, 
221.367130189] 

6059.7215907 
5850.4066129 

6090.5976329 
6059.8373796 

6149.9212110 
6036.8323191 

6771.680943 
6771.733292 

144.90665 
176.71858  

Fig. 7. Numerical solution based on the search algorithm for pressure vessel 
optimization problem, 100 trials, case I. 
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minimize :

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14 + x2), (17)  

where the limits are: 

subject to :

g1(x) = τ(x) − τmax ≤ 0, g2(x) = σ(x) − σmax ≤ 0,

g3(x) = x1 − x4 ≤ 0, g4(x) = 0.125 − x1 ≤ 0,

g5(x) = δ(x) − 0.25 ≤ 0, g6(x) = P − Pc(x) ≤ 0, (18)  

where 0.1 ≤ x1, x4 ≤ 2 and 0.1 ≤ x2,x3 ≤ 10, and: 

τ(x) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

τ2
1(x) + 2τ1(x)τ2(x)

x2

2R(x)
+ τ2

2(x)
√

, τ1(x) =
P
̅̅̅
2

√
x1x2

, τ2(x)

=
M(x)R(x)

J(x)
,

M(x) = P
(

L+
x2

2

)
,R(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

2

4
+
(x1 + x3

2

)2
√

, J(x)

= 2
(

x1x2
̅̅̅
2

√

[
x2

2

12
+
(x1 + x3

2

)2
])

,

δ(x) = 4PL3

Ex3
3x4

, σ(x) = 6PL
x2

3x4
,Pc(x) =

4.013
̅̅̅̅̅̅̅̅̅̅
EGx2

3x6
4

36

√

L2

(

1 −
x3

2L

̅̅̅̅̅̅
E

4G

√ )

,

in which G = 12× 106psi, E = 30× 106psi, P = 6000lb, L = 14in, 
τmax = 13600psi and σmax = 30000psi. A second version (with an extra 
constraint and some minor changes) also exists in the literature pre
sented in Ref. (Garg, 2019), the results of that are bolded in Table 3. The 
repetitions in the three zones are defined as N1 = 2500, N2 = 5000 and 
N3 = 10000 with reduction search area terms P1 = 0.25 and P2 = 0.01. 
The best result of the proposed approach for 30 trials was gained f(x) =
2.38292535334716 with corresponding design parameters x =

[0.2442747104, 6.1965519331, 8.3186789293, 0.24427631231]. The 
average time of each trial was found around 15 s. Concerning the best 
result in Table 3, it has a 0.002 deviation though it is close the most of 
the answers. 

The second version of the problem (according to Ref. (Garg, 2019)) 
with bold numbers in Table 3, was found with the same parameters of 

the method; the best answer is f(x) = 1.6977033295. The average time 
of each trial was defined 17 s. The results of the second version were also 
better than all the presented results in Table 3 except Refs (Chegini et al., 
2018; Garg, 2014, 2016). Stochastic fractal search (SFS) scored the value 
1.72485230 for the optimization function (Salimi, 2015), and this cur
rent work scored 1.6977033295, similar to Ref. (Garg, 2019). The SFS 
used 24,000 number-of-function-evaluations (NEF), and this work 
17,500. The T-test results in an h-value of 1 and p-value of 
4.66526787455877e-52; Wilcoxon signed-rank test also results in the 
same h-value and p-value of 1.73439762832058e-06, see ANOVA plot 
in Fig. 9. 

3.1.4. Tension/compression spring design problem 
Consider the spring optimization problem, a well-known example, 

with wire diameter d = x1, coil diameter D = x2 and the number of 
active coils N = x3. All three variables are continuous. The objective is 
to find a spring with minimum possible weight satisfying the minimum 
deflection, shear, and surge frequency constraint, and limits on the coil 
diameter. The schematic view of the spring is presented in Fig. 10. 

The mathematical optimization problem can be stated as (He et al., 
2004): 

minimize :

f (x) = (x3 + 2)x2
1x2, (19)  

where the limits are: 

subject to :

g1(x) = 1 −
x3

2x3

71785x4
1
≤ 0,

g2(x) =
4x2

2 − x1x2

12566(x3
1x2 − x4

1)
+

1
5108x2

1
− 1 ≤ 0,

g3(x) = 1 −
140.45x1

x2
2x3

≤ 0, g4(x) =
x1 + x2

1.5
− 1 ≤ 0, (20)  

in which 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3 and 2 ≤ x3 ≤ 15. Thirty trials 
were done to find the best, median, mean, worst, and standard deviation 
of the answers, reported in Table 4. The best solution was found f(x) =
0.012667928876 with corresponding elements x = [0.051647047504,
0.35569064667, 11.351872381]. There was a common range around 
0.01266 which the approach resulted in less value than that. The 
average time for each trial was obtained 12.6 s. The repetitions in the 
three zones are defined as N1 = 2500, N2 = 7500 and N3 = 15000 with 
reduction search area terms P1 = 0.2 and P2 = 0.001. Comparing with 
the SFS, the optimization function was found at 0.012665232788 for 
SFS, and 0.012667928876 for the proposed method. The NEF of the SFS 
was set at 100,000 and this work at 25,000. The T-test results in h-value 
of 1 and p-value of 1.10998075163599e-54; Wilcoxon signed-rank test 
also results in the same h-value and p-value of 1.73439762832058e-06. 

3.1.5. Gear train optimization design 
The gear train optimization problem was proposed as a discrete 

optimization case study (Sandgren, 1988). Here we use the example to 
test the capability of the approach. Consider a gearbox including four 
gears to reduce the angular velocity of the driven shaft, see Fig. 11. All 
the gears could have teeth between 12 and 60. The objective is the 
minimization of the cost. The variables are set as Td = x1, number of 
teeth of driving gear D, Tb = x2, Ta = x3 and the driven gear Tf = x4 

with transition ratio TR = TdTb/TaTf . 
The optimization function is (Sandgren, 1988): 

minimize :

Fig. 8. Schematic design of welded beam optimization problem.  
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f (x) =
(

1
6.931

−
x1x2

x3x4

)2

, (21)  

which is constrained by range 12 ≤ x1, x2, x3, x4 ≤ 60 with 
{x1, x2, x3, x4} ∈ Z+. Due to the discrete selection of the teeth and hav
ing no other constraint, this example is solved fast with fewer iterations. 
The parameters are defined as N1 = 100, N2 = 200 and N3 = 500 with 
reduction search area terms P1 = 0.7 and P2 = 0.3. The average time of 
each trial was found 0.49 s. The number of teeth was gained x = [16,19,
43,49], the same as other methods Table 5, f(x) = 2.7008571× 10− 12. 
The nature of the example leads to solutions in Table 5 to a unique 

answer which verifies the capability of the method for solving different 
problems. The T-test results in an h-value of 1 and p-value of 
0.000804033793725383; Wilcoxon signed-rank test also results in the 
same h-value and p-value of 1.64891051346443e-06. 

3.1.6. Speed reducer problem 
The speed reducer optimization problem is a popular case study for 

the comparison of algorithms in the literature. It is also another gearbox 
design with different constraints and objectives for Section 3.1.5. Here, a 
more sophisticated gearbox design is intended, the weight of the 
gearbox needs to be minimized with constraints related to the bending 
stress of the gear teeth, surface stress, transverse deflections, and stresses 

Table 3 
Results of the welded beam problem; NA represents not available and SD represents standard deviation, 30 trials.  

Method x f(x) SD 

Best Median Mean Worst  

(Ragsdell & 
Phillips, 1976) 

[0.2455, 6.196, 8.273, 0.2455] 2.385937 NA NA NA NA 

(Rao, 2019) [0.2455, 6.196, 8.273, 0.2455] 2.3860 NA NA NA NA 
(Ray & Liew, 

2003) 
[0.244438276, 6.2379672340, 8.2885761430, 0.2445661820] 2.3854347 3.0025883 3.2551371 6.3996785 0.9590780 

(Deb, 2000) NA 2.38119 NA NA NA NA 
(Hwang & He, 

2006) 
[0.2231, 1.5815, 12.8468, 0.2245] 2.25 NA 2.26 2.28 NA 

(Mehta & 
Dasgupta, 
2012) 

[0.24436895, 6.21860635, 8.29147256, 0.24436895] 2.3811341 2.3811641 2.3811786 2.3812614 NA 

(Garg, 2014) [0.24436198, 6.21767407, 8.29163558, 0.24436883] 2.38099617 2.38107233 2.38108932 2.38146999 1.01227 ×
10− 4 

(Garg, 2019) [0.24436822, 6.21754641, 8.29147808, 0.24436894] 2.3809597 2.3786824 2.3794755 2.380147 1.182265 ×
10− 4 

(Akhtar et al., 
2002) 

[0.2407, 6.4851, 8.2399, 0.2497] 2.4426 NA 2.5215 2.6315 NA 

(Aragón, Esquivel, 
& Coello, 2010) 

[0.244369, 6.218613, 8.291474, 0.244369] 2.38113 NA 2.439811 2.710406 0.093146 

(Long et al., 2019) [0.24435, 6.2178, 8.2919, 0.24437] 2.3810 NA NA NA NA 
(Chegini et al., 

2018) 
[0.140946034, 2.8644127185, 9.036471193, 0.20573659] 1.57126326 NA NA NA NA 

(Coello, 2000) [0.2088, 3.4205, 8.9975, 0.21] 1.748309 NA 1.771973 1.785835 0.011220 
(Coello & Montes, 

2002) 
[0.205986, 3.471328, 9.020224, 0.20648] 1.728226 NA 1.792654 1.993408 0.07471 

(He & Wang, 
2007) 

[0.202369, 3.544214, 9.048210, 0.205723] 1.728024 NA 1.748831 1.782143 0.012926 

(Dimopoulos, 
2007) 

[0.2015, 3.5620, 9.041398, 0.205706] 1.731186 NA NA NA NA 

(Mahdavi et al., 
2007) 

[0.20573, 3.47049, 9.03662, 0.20573] 1.7248 NA NA NA NA 

(Mezura-Montes 
et al., 2007) 

[0.205730, 3.470489, 9.036624, 0.205730] 1.724852 NA 1.725 NA 1 £ 10¡15 

(Mezura-Montes 
& Coello, 2008) 

[0.199742, 3.61206, 9.0375, 0.206082] 1.73730 NA 1.813290 1.994651 0.0705 

(Cagnina et al., 
2008) 

[0.205729, 3.470488, 9.036624, 0.205729] 1.724852 NA 2.0574 NA 0.2154 

(Kaveh & 
Talatahari, 
2009) 

[0.205729, 3.469875, 9.036805, 0.205765] 1.724849 NA 1.727564 1.759522 0.008254 

(Kaveh & 
Talatahari, 
2010) 

[0.2057, 3.471131, 9.036683, 0.205731, 1.724918 NA 1.729752 1.775961 0.0092 

(Gandomi et al., 
2011) 

[0.2015, 3.562, 9.0414, 0.2057] 1.73121 NA 1.878656 2.3455793 0.2677989 

(Akay & 
Karaboga, 
2012) 

[0.20573, 3.470489, 9.036624, 0.20573] 1.724852 NA 1.724852 1.741913 0.031 

(Garg, 2014) [0.2057245, 3.25325369, 9.03664438, 0.20572999] 1.69526388 1.69530879 1.69530842 1.69537060 2.83 £ 10¡5 

(Garg, 2019) [0.20572943, 3.253123897, 9.03662392, 0.20572964] 1.695247383 1.6952473 1.6952473 1.6952473 1.978 £
10¡8 

(Mirjalili et al., 
2014) 

[0.205676, 3.478377, 9.03681, 0.205778] 1.72624 NA NA NA NA 

(Salimi, 2015) [0.20572, 3.47048, 9.03662, 0.20572] 1.72485230 1.72485230 1.72485230 1.72485230 7.708 ×
10− 4 

This work [0.24427471040,6.1965519331,8.3186789293,0.24427631231] 
[0.2046213849, 3.2726074634, 9.0412338219, 
0.2058172266] 

2.3829253533 
1.6977033295 

2.4399704848 
1.7172827764 

2.463045569 
1.731077882 

2.6474834886 
1.836242963 

0.081778 
0.037482  
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in shafts (Gandomi et al., 2013). The schematic view of the speed 
reducer is presented in Fig. 12. The width of the gears is b = x1, gear 
module is m = x2, number of the teeth for driving gear is z = x3, length 
of the driving and driven shafts are l1 = x4 and l2 = x5 with respect, the 
diameter of the driving gear and driven one are d1 = x6 and d2 = x7 with 
respect. The number of teeth for driving gear is integer though the rest of 
the variables are continuous. 

The mathematical optimization problem is stated as (Akhtar, Tai, & 
Ray, 2002): 

minimize :

f (x) = 0.7854x1x2
2

(
3.3333x2

3 + 14.9334x3 − 43.0934
)
− 1.508x1

(
x2

6 + x2
7

)

+ 7.4777
(
x3

6 + x3
7

)
+ 0.7854

(
x4x2

6 + x5x2
7

)
,

(22)  

where the limits are: 

subject to :

g1(x) =
27

x1x2
2x3

− 1 ≤ 0, g2(x) =
397.5
x1x2

2x2
3
− 1 ≤ 0,

g3(x) =
1.93x3

4

x2x3x4
6
− 1 ≤ 0, g4(x) =

1.93x3
5

x2x3x4
7
− 1 ≤ 0,

g5(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
745x4
x2x3

)2

+ 16.9 × 106

√

110x3
6

− 1 ≤ 0,

g6(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
745x5
x2x3

)2

+ 157.5 × 106

√

85x3
7

− 1 ≤ 0,

g7(x) =
x2x3

40
− 1 ≤ 0, g8(x) =

5x2

x1
− 1 ≤ 0,

g9(x) =
x1

12x2
− 1 ≤ 0, g10(x) =

1.5x6 + 1.9
x4

− 1 ≤ 0,

g11(x) =
1.1x7 + 1.9

x5
− 1 ≤ 0, (23)  

in which 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 
7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9 and 5 ≤ x7 ≤ 5.5. The second case, rep
resented by bold numbers in Table 6, has a different value case I: 1.69 
instead of case II: 16.9 in g5(x), Eq. (23). Similar to other sections, 30 
trials have been done in this example to provide the results, each trial 63 
s. The parameters are defined as N1 = 2500, N2 = 5000 and N3 = 10000 
with reduction search area terms P1 = 0.1 and P2 = 0.05. The best so
lution was found f(x) = 3002.1524434 for the first case, and f(x) =
2899.1336453 for the second one. The large number of constraints 
increased the time of search though the answer scored a good precision. 
As we are going forward in terms of computational tools and methods, 
we are losing the sense of engineering in problems. For example, this 
speed-reducer optimization is an engineering design, the module of gear 
is a fixed number, and finding a solution with many decimals is not 
helpful. Also, the thickness of gear could be built with almost 0.001mm 
in reality which is high precision for such a product. Therefore, we 
consider these examples just to test the capability of the search approach 
and validation with other previous sources. The T-test results in h-value 
of 1 and p-value of 7.40023725719789e-58; Wilcoxon signed-rank test 
also results in the same h-value and p-value of 1.73439762832058e-06. 

3.1.7. Three-bar truss problem 
The three-bar truss optimization problem is selected as a case study 

to show the performance of the method in structural optimization. The 
objective is to minimize the volume of a statically loaded truss, Fig. 13, 
by setting the design parameters A1 and A2 (Gandomi et al., 2013). The 
variables are selected as the area of the bars A1 = x1 and A2 = x2. 

The mathematical optimization problem is formulated as (Gandomi 
et al., 2013): 

minimize :

f (x) =
(

2
̅̅̅
2

√
x1 + x2

)
L, (24)  

where the constraints are defined: 

subject to :

g1(x) =
̅̅̅
2

√
x1 + x2

̅̅̅
2

√
x2

1 + 2x1x2
P − σ ≤ 0, g2(x) =

x2
̅̅̅
2

√
x2

1 + 2x1x2
P − σ ≤ 0,

g3(x) =
1

x1 +
̅̅̅
2

√
x2

P − σ ≤ 0, (25)  

where 0 ≤ x1, x2 ≤ 1, L = 100cm, P = 2KN and σ = 2KN/cm2. The 
repetitions in three zones of the method are defined as N1 = 5000, N2 =

10000 and N3 = 20000 with reduction search area terms P1 = 0.5 and 
P2 = 0.01. The best result for 30 trials was gained f(x) =
263.89587188382 with corresponding design parameters x =

[0.78875226015122, 0.408030431521627]. The average time of each 
trial was found around 9.1 s. The comparison is presented in Table 7. 
The results of the best solution were gained by 25 generation loops 
though the maximum generation loops for one of the answers was 35, 

Fig. 9. ANOVA plot of the welded beam design.  

D

d

Fig. 10. Schematic view of the spring problem.  
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Fig. 14. The T-test results in h-value of 1 and p-value of 
4.61600684122257e-173; Wilcoxon signed-rank test also results in the 
same h-value and p-value of 1.73439762832058e-06. 

3.1.8. Tubular column design optimization 
The schematic view of the tabular column design optimization is 

presented in Fig. 15. Optimization aims to minimize the cost (Hsu and 
Liu, 2007). The column is under a P = 2500kg.f vertical load, with yield 
stress σy = 500 kg.f

cm2, module of elasticity E = 0.85 × 106kg.f
cm2 and length of 

L = 250cm. The constraints were defined based on the geometry of the 
design and allowable stress. The variables are selected as the nominal 
diameter of the column d = x1, and half of the thickness of pipe wall t =

x2. 
The optimization problem is presented as (Gandomi et al., 2013): 

Table 4 
Results of the spring optimization problem; NA represents not available and SD represents standard deviation, 30 trials.  

Method x f(x) SD 

Best Median Mean Worst 

(Ray & Saini, 2001) [0.050417, 0.321532, 13.979915]  0.01306 NA 0.015526 0.018992 NA 
(Belegundu, 1982) [0.05, 0.3159, 14.25]  0.0128334 NA NA NA NA 
(Coello & Montes, 2002) [0.051989, 0.363965, 10.890522]  0.012681 NA 0.012742 0.012973 5.9 × 10− 5 

(Coello, 2000) [0.05148, 0.351661, 11.632201]  0.01270478 0.01275576 0.0127692 0.01282208 3.939 ×
10− 5 

(Ray & Liew, 2003) [0.052160217, 0.368158695, 10.648442259]  0.01266924934 0.012922669 0.012922669 0.016717272 5.92 × 10− 4 

(He et al., 2004) [0.0516904, 0.35674999, 11.28712599]  0.0126652812 NA 0.01270233 NA 4.124 ×
10− 5 

(Raj & Sharma, 2005) [0.053862, 0.41128365, 8.6843798]  0.0127484 NA NA NA NA 
(Tsai, 2005) [0.05168906, 0.3567178, 11.28896]  0.01266523 NA NA NA NA 
(Mahdavi et al., 2007) [0.05115438, 0.34987116, 12.0764321]  0.0126706 NA NA NA NA 
(Mezura-Montes et al., 

2007) 
[0.051688, 0.356692, 11.290483]  0.012665 NA 0.012666 NA 2 × 10− 6 

(He & Wang, 2007) [0.051728, 0.357644, 11.244543]  0.0126747 NA 0.01273 0.012924 5.19 × 10− 5 

(Cagnina et al., 2008) [0.051583, 0.35419, 11.438675]  0.012665 NA 0.0131 NA 4.1 × 10− 4 

(Mezura-Montes & Coello, 
2008) 

[0.051643, 0.35536, 11.397926]  0.012698 NA 0.013461 0.16485 9.66 × 10− 4 

(Zhang, Luo, & Wang, 
2008) 

[0.0516890614, 0.3567177469, 
11.2889653382]  

0.012665233 NA 0.012669366 0.012738262 1.25 × 10− 5 

(Kaveh & Talatahari, 2010) [0.051865, 0.3615, 11]  0.0126432 NA 0.01272 0.012884 3.48 × 10− 5 

(dos Santos Coelho, 2010) [0.051515, 0.352529, 11.538862]  0.012665 0.012957 0.013524 0.017759 0.001268 
(Mirjalili et al., 2014) [0.05169, 0.356737, 11.28885]  0.012666 NA NA NA NA 
(Akay & Karaboga, 2012) [0.051749, 0.358179, 11.203763]  0.012665 NA 0.012709 NA 0.012813 
(Garg, 2014) [0.051689156131, 0.356720026419, 

11.288831695483]  
0.01266523278 0.012665314 0.0126689724 0.012710407 9.42 × 10− 6 

(Garg, 2019) [0.051689294, 0.356723362, 11.28863614]  0.01266523278 0.0126655 0.01266555 0.01266830 8.651 ×
10− 7 

(Long et al., 2019) [0.0520217, 0.364768, 10.8323]  0.012667 NA NA NA NA 
(Chegini et al., 2018) [0.0518836, 0.36141614, 11.018738]  0.012665923 NA NA NA NA 
(Salimi, 2015) [0.05168, 0.35671, 11.28896]  0.012665232788 0.012665232788 0.012665232788 0.012665232788 1.585 × 10- 

16 

This work [0.051647047504, 0.35569064667, 
11.351872381]  

0.012667928876 0.012697001508 0.012824071721 0.013801619673 0.000279  

Fig. 11. Schematic of gear train optimization problem.  

Table 5 
Results of the gear train optimization case study; NA represents not available and SD represents standard deviation, 30 trials.  

Method x, Transmission Ratio f(x) SD 

Best Median Mean Worst 

(Sandgren, 1988) [18, 22, 45, 60], 0.146667 5.712 × 10− 6 NA NA NA NA 
(Kannan & Kramer, 1994) [13, 15, 33, 41], 0.144124 2.146 × 10− 8 NA NA NA NA 
(Deb & Goyal, 1996) [19, 16, 49, 43], 0.144281 2.701 × 10− 12 NA NA NA NA 
(Gandomi et al., 2013) [19, 16, 43, 49], 0.144281 2.701 × 10− 12 NA 1.9841 × 10− 9 2.3576 × 10− 9 3.5546 × 10− 9 

(Garg, 2019) [19, 16, 43, 49], 0.14428096 2.7008571 × 10− 12 9.9215795 × 10− 10 1.2149276 × 10− 9 3.2999231 × 10− 9 8.77 × 10− 10 

This work [16, 19, 43, 49], 0.14428096 2.7008571 × 10− 12 2.8287819 × 10− 9 1.7433495 × 10− 8 1.404475 × 10− 7 2.98 × 10− 8  

Fig. 12. Schematic view of the speed reducer example.  
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minimize :

f (x) = 9.82x1x2 + 2x1, (26)  

where the constraints are defined: 

subject to :

g1(x) =
P

πx1x2σy
− 1 ≤ 0, g2(x) =

8PL2

π3Ex1x2(x2
1 + x2

2)
− 1 ≤ 0,

g3(x) =
2
x1

− 1 ≤ 0, g4(x) =
x1

14
− 1 ≤ 0,

g5(x) =
0.2
x2

− 1 ≤ 0, g6(x) =
x2

0.8
− 1 ≤ 0, (27)  

where 2 ≤ x1 ≤ 14 and 0.2 ≤ x2 ≤ 0.8. The repetitions in the three 
zones are defined as N1 = 5000, N2 = 10000 and N3 = 20000 with 
reduction search area terms P1 = 0.5 and P2 = 0.01. The best result for 
30 trials was gained f(x) = 26.5315664916005 with corresponding 
design parameters x = [5.45120833968508,0.291965197101054]. The 
average time of each trial was found around 7.9 s. The comparison is 
presented in Table 8. The results of the best solution were gained by 23 
generation loops though the maximum generation loops for one of the 
answers was 28, Fig. 16. The T-test results in h-value of 1 and p-value of 
1.32262244843709e-129; Wilcoxon signed-rank test also results in the 
same h-value and p-value of 1.73439762832058e-06. 

3.1.9. Flapping wing design optimization 
This design optimization problem aims to present an optimal wing in 

terms of weight and lift force. The area of the wing is proportional to the 
lift force and consequently must be maximized. The weight of the 
carbon-fiber rods, the skeleton of the wing, should be minimized as well. 
The structure of the flapping wing bird is presented in Fig. 17. There are 
10 points for design optimization; the positions of them are set as var
iables to find the best shape, Fig. 18. 

The position of nodes 1 and 2 are fixed, and the total length of the 
wing is also fixed d1 + d2 + d3 + d4 = 230mm, Y5 = Y6 = 230mm. The 
wing is supported by 4 carbon-fiber tubes, horizontal, between nodes 2,9 
3,8 4,7 5,6 for l1, l2, l3, l4 with respect. Based on that, Y2 = Y9, Y3 = Y8, 
Y4 = Y7, and Y5 = Y6. The variables are the position of nodes, defined 
as x1 = X2, x2 = Y2, x3 = X3, x4 = Y3, x5 = X4, x6 = Y4, x7 = X5, x8 =

X6, x9 = X7, x10 = X8 and x11 = X9. The nominal coordinates of the 
wing are Xnom = [50,47.5,45,40, 20, − 40, − 75, − 90, − 95, − 100]mm 
which present the X positions of the 10 points, concerning reference XY 
and similarly Ynom = [0, 40, 80, 145, 230, 230, 145, 80, 40, 0]mm. The 
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Fig. 13. Three-bar truss optimization problem.  
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density of the carbon-fiber is ρ = 0.00175 kg
mm3 and the inner and outer 

diameters of the rods are 6 mm and 4 mm. The area of each zone is 
approximated by a trapezoid. The objective function is. 

minimize :

f (x) = 1
Af(x)

+ wρL(x)At, (28)  

where Af(x) is the area of the wing, At(x) is the cross-sectional area of the 
carbon-fiber rods, L(x) is the total length of carbon-fiber rods and w =

0.0285 is a weighting parameter to provide a trade-off between lift force 
and weight: 

Af(x) = A1(x)+A2(x)+A3(x)+A4(x)

=
150 + L1(x)

2
d1(x)+

L1(x) + L2(x)
2

d2(x)+
L2(x) + L3(x)

2
d3(x)

+
L3(x) + L4(x)

2
d4(x),

L(x) = L1(x)+ L2(x)+ L3(x)+ L4(x),

Table 7 
Results of the three-bar truss problem; NA represents not available and SD represents standard deviation, 30 trials.  

Method x f(x) SD 

Best Median Mean Worst 

(Hernández, 1994) [0.788, 0.408]  263.9 NA NA NA NA 
(Ray & Liew, 2003) [0.7886210370, 0.4084013340]  263.8958466 263.8989 263.9033 263.96975 1.26 × 10− 2 

(Ray & Saini, 2001) [0.795, 0.395]  264.3 NA NA NA NA 
(Raj & Sharma, 2005) [0.78976441, 0.40517605]  263.89671 NA NA NA NA 
(Tsai, 2005) [0.788, 0.408]  263.68 NA NA NA NA 
(Zhang et al., 2008) [0.7886751359, 0.40824 8286 8]  263.8958434 263.8958434 263.8958436 263.8958498 9.72 × 10− 7 

(Gandomi et al., 2013) [0.78867, 0.40902]  263.9716 NA 264.0669 NA 9 × 10− 5 

(Garg, 2019) [0.788676171219, 0.408245358456]  263.8958433 263.8958436 263.8958437 263.8958459 5.34 × 10− 7 

(Ahmadianfar et al., 2022) [0.788672734, 0.408255081]  263.8958434 NA NA NA NA 
This work [0.78875226015122, 0.408030431521627]  263.89587188 263.896217121 263.896304847 263.897551326 3.98729 × 10− 4  

Fig. 14. The results of the three-bar truss; the left figure shows the flow of the solution and the right shows the statistics of the answers.  

Fig. 15. Tabular column optimization problem with a cross-sectional view of 
the column. 

Table 8 
Results of the tabular column optimization problem; NA represents not available and SD represents standard deviation, 30 trials.  

Method x f(x) SD 

Best Median Mean Worst 

(Hsu & Liu, 2007) [5.4507, 0.2920]  25.5316 NA NA NA NA 
(Rao, 2019) [5.44, 0.293]  26.5323 NA NA NA NA 
(Gandomi et al., 2013) [5.45139, 0.29196]  26.5321 NA 26.53504 26.53972 0.00193 
(Garg, 2019) [5.45115623, 0.29196548]  26.531328 26.531330 26.531332 26.55315 3.94 × 10− 4 

This work [5.45120833968, 0.291965197101]  26.5315664916 26.533128295 26.5336205207 26.5384331354 0.001604  
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At =
π
4
(
62 − 42), (29)  

in which L1(x) = x1 − x11, L2(x) = x3 − x10, L3(x) = x5 − x9, L4(x) =

x7 − x8, d1(x) = x2, d2(x) = x4 − x2, d3(x) = x6 − x4 and d4(x) =

230 − x6. The constraints are imposed on d2(x) that must be bigger than 
55 mm and L1(x) bigger than 135 mm: 

subject to :

g1(x) =
55

d2(x)
− 1 ≤ 0, g2(x) =

135
L1(x)

− 1 ≤ 0, (30)  

where the bounds of the variables are xmin = [37.5,30, 35,70,30,135,
10, − 50, − 85, − 100, − 105] and xmax = [57.5,50,55,90,50,155,30, − 30,
− 65, − 80, − 85]. Setting the parameters as N1 = 1000, N2 = 2500, N3 =

Fig. 16. The results of the tabular column optimization problem; the left figure shows the flow of the solution and the right shows the statistics of the answers.  

Fig. 17. The flapping wing flying robot (Martín-Alcántara, Grau, Fernandez-Feria, & Ollero, 2019).  

Fig. 18. Axis and points definition of one wing.  

Fig. 19. Optimization of the wing design; blue lines are nominal points and red 
ones are the optimized form. 
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5000, and reduction terms P1 = 0.5 and P2 = 0.01, the simulation re
sults are found. The simulation has been repeated 30 times, each trial 
recorded an average time of 15 s. The best result of the cost function was 
found f(x) = 0.301720621682752; and median 0.301755377466941, 
mean 0.301754581714707, worst 0.301792260428475 and standard 
deviation 1.73201192480191 × 10− 5 were obtained. The new design of 
the wing based on the cost function is presented in Fig. 19. The flow of 
the solutions is also presented in Fig. 20. The best position variables of 
the example are also presented in Table 9. The T-test results in h-value of 
1 and p-value of 1.33460623900505e-125; Wilcoxon signed-rank test 
also results in the same h-value and p-value of 1.73439762832058e-06. 

3.2. Optimization for dynamic problems 

3.2.1. Gain optimization of PD control design for a Van der Pol oscillator 
The goal of this problem is to find the best gain for a proportional 

derivative (PD) controller to minimize the error of regulation for a Van 
der Pol oscillator. Consider the second-order differential equation in the 
state-space form: 

ẋ =

[
x2

− x1 + μ
(
1 − x2

1

)
x2

]

+

[
0
1

]

u, (31)  

where x = [x1, x2]
T are the states and u is the input of the system. The 

initial condition is selected as x(0) = [1, − 1]T, time of simulation 5 s and 
μ = 0.25. Without a control input, the system will oscillate in a loop that 
μ changes the shape of oscillation. A PD input law is defined to regulate 
system (31) to zero to remove the oscillations: 

u = − kPx1 − kDx2. (32) 

To have a stable control law, kP and kD, in (32) must be positive and 

bounded since the control law should be feasible. Here the objective is to 
minimize the error by defining the best 0 < kP < 20 and 0 < kD < 20 
subjected to constraint − 5 ≤ u ≤ 5. The repetitions parameters are 
selected as N1 = 1000, N2 = 2000 and N3 = 5000 with reduction search 
area terms P1 = 0.1 and P2 = 0.001. The simulation repeated for 30 trials 
to produce the results. The best gains were found kP = 12.49515242, 
kD = 7.495471616 and resulted in best error (at the final time tf = 5s) 
E =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

1(5) + x2
2(5)

√
= 8.78772391903852 × 10− 9 in 23 generations of 

gains. The median of errors is gained 1.09243776446006× 10− 8, mean 
1.32947634672588× 10− 8, worst 3.57186809630302 × 10− 8 and stan
dard deviations 6.7814411733861× 10− 9. The control signal is presented 
in Fig. 21. The T-test results in h-value of 1 and p-value of 
2.03817727850333e-06; Wilcoxon signed-rank test also results in the 
same h-value and p-value of 2.4051050298461e-12. 

3.2.2. Forced vibration of a beam 
Consider a beam subjected to a harmonic load F(t) = 1000sin50t(N)

with a distance x4(m) from the pivot point of the beam, see Fig. 22. The 
harmonic load generates rotary forced vibration for the beam θ(rad). The 
maximum allowable vibration of the beam is θmax = 1◦ . The optimiza
tion problem is to reduce the weight of the structure and reach the dy
namic response of the beam near the maximum amplitude constraint 
θ(t) < θmax. To define the maximum amplitude of the vibrating system, 
the dynamic load factor is used Rd(x) = θdyn, max/θst, max; the details of 
mathematical optimization problems could be followed in vibration 
reference textbooks (Kelly, 2012). The beam is attached to a frame by a 
spring k = x5(N/m) with a distance x2(m) and a damper c = x6(N.s/m)

with a distance x3(m) at both ends. The mass of the beam is m = x1(kg)
and the length of that is L(x) = x2 + x3(m). 

The mathematical optimization problem can be stated as: 

Fig. 20. The cost function of the wing optimization example.  

Table 9 
The best position variables of the wing optimization 
example.  

x(mm) 37.8764206883966 
30.122653515995 
35.0036196940535 
86.9952323879193 
30.0002460694343 
148.849196926496 
10.0058639345766 
− 30.0074089732872 
− 65.0213439814377 
− 80.0139490298644 
− 97.1419881529652  

Fig. 21. The control signal for gain optimization of PD control for Van der 
Pol oscillator. 

Fig. 22. Schematic of forced vibration of beam.  
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f (x) =
1

Ieq(x)
+ ceq(x) + keq(x) +

keq(x)
1000x4Rd(x)

, (33)  

where the constraints are. 

g1(x) =
1000x4Rd(x)

keq(x)
(

1×2π
360

) − 1 ≤ 0, g2(x) =
x4

x3
− 1 ≤ 0, (34)  

in which 1 ≤ x1 ≤ 5, 0.1 ≤ x2 ≤ 0.8, 1 ≤ x3 ≤ 1.5, 0.1 ≤ x4 ≤ 1.5, 
3× 104 ≤ x5 ≤ 5× 104, 50 ≤ x6 ≤ 150, and: 

Rd(x) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − r2(x) )2
+ (2ζ(x)r(x) )2

√ , ζ(x) =
ceq(x)

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
keq(x)Ieq(x)

√ ,

r(x) =
50

ωn(x)
,ωn(x) =

̅̅̅̅̅̅̅̅̅̅̅̅
keq(x)
Ieq(x)

√

, ceq(x) = x6x2
3,

keq(x) = x5x2
2, Ieq(x) =

1
12

x1L2(x)+ x1

(
L(x)

2
− x2

)2

.

The parameters are set as N1 = 1000, N2 = 5000 and N3 = 10000 
with reduction search area terms P1 = 0.1 and P2 = 0.01. The number of 
trials is 30 and the best answer is found f(x) = 407.825142 with 
corresponding design parameters x = [2.651252, 0.100024429,
1.00088121, 0.2596326, 30001.0209, 50.10418]. The average time of 
each trial was found around 27 s. The maximum amplitude of θ was 
defined 0.9997734◦ . The median is gained 424.394493, mean 
428.092205, worst 479.680436, and standard deviations 18.4445. The 
T-test results in h-value of 1 and p-value of 3.53780914123903e-41; 
Wilcoxon signed-rank test also results in the same h-value and p-value 
of 1.73439762832058e-06. 

3.2.3. Control of two-DoF manipulator 
The error minimization of a two-degree-of-freedom (DoF) revolute- 

prismatic manipulator is presented in this subsection as an optimiza
tion for dynamic problems. The dynamic of the manipulator and its 
specifications are based on Section 4-3-2 of Ref. (Nekoo & Irani Rahaghi, 
2018). The states of the system are rotation of the first link, linear mo
tion of the second link, the angular velocity of the first link, and linear 

velocity of the second links assembled in the state vector x =
[
qT, q̇T

]T
=

[
θ, d, θ̇, ḋ

]T 
with respect, Fig. 23. 

The state-space representation of the system is: 

ẋ =

[
q̇

M− 1(q)[u − c(q, q̇) − g(q) ]

]

=

[
0 I
0 − M− 1(q)[c(q, q̇) + g(q) ]

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
A(x)

+

[
0

M− 1(q)

]

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
B(x)

u, (35)  

where M(q) is inertia matrix, c(q, q̇) and g(q) are Coriolis-centrifugal 
and gravity vector with respect. The control law is the state-dependent 
Riccati equation: 

u = − R(x)BT(x)K(x)x, (36)  

which is tuned by two weighting matrices R(x) and Q(x) in the cost 
function: 

J =

∫ ∞

0

{
xT Q(x)x + uT R(x)u

}
dt. (37) 

The suboptimal gain K(x) is the solution to the SDRE (Nekoo, 2020): 

AT(x)K(x) + K(x)A(x) − K(x)B(x)R− 1(x)BT(x)K(x) + Q(x) = 0. (38) 

The definition of weighting matrices are usually forcing us to select 
diagonal positive definite and semi-definite matrices for R(x) and Q(x), 
diagonal elements of R(x) less than 1, and for Q(x) greater than 1. So, the 
idea of this section is to assign the best weighting matrix Q = diag(Q11,

Q22,Q33,Q44) for the simulation to minimize the end-effector error. The 

Fig. 23. Schematic of the revolute-prismatic manipulator (Nekoo & Irani 
Rahaghi, 2018). Fig. 24. Evolutions of the trajectories for one of the trials.  

Fig. 25. The control signal of the second link.  
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bound of selection is 0 < Qii < 20, for i = 1,⋯,4. The parameters are set 
as N1 = 1000, N2 = 2000 and N3 = 5000 with reduction search area 
terms P1 = 0.1 and P2 = 0.01. The constraints are set on the inputs 
− umin,i < ui < umax,i, for i = 1, 2 and umin = [− 24, − 20] and umax = [24,
20]. The initial and final conditions of the robot are x(0) = [0, 0.9,0, 0]T 

and x(5) = [1.4758,0.05475,0,0]T with respect. Thirty trials have been 
performed to find the best and least end-effector error E =

2.80361172875433 × 10− 4mm with the best selection Q =

diag(17.26150676, 18.18696608, 9.431774017, 10.36830457). The 
median of errors is gained 2.11306117961254× 10− 3mm, mean 
2.67879900515113× 10− 3mm, worst 1.06725457555111 × 10− 2mm 
and standard deviations 2.23424734755049× 10− 3. The evolutions of 
the trajectories for one of the trials are presented in Fig. 24. The control 
signal of the second link for one of the trials is illustrated in Fig. 25. The 
error reduction for the manipulator is presented in Fig. 26. 

3.2.4. Mobile robot error minimization 
Consider a wheeled mobile robot with nonlinear dynamics and non- 

holonomic constraints (Korayem, Nekoo, & Korayem, 2016), illustrated 
in Fig. 27. The task is to define a control gain for minimizing the error 
with respect to input constraints due to the limitation of DC motors. The 
initial and final regulation points are (0, 0)m and (1.25,0.75)m with 

respect. The proposed approach will find the control gains KP =

[
* 0
0 *

]

and KD =

[
* 0
0 *

]

in a way to minimize the regulation error. 

The simulation is compared with finite time SDRE and output-feedback 

linearization with constant gains KP =

[
100 0
0 100

]

and KD =

[
80 0
0 80

]

. The time of simulation is 3 s and the rest of the parameters 

Fig. 26. Error reduction of one of the trials.  

Fig. 27. Schematic view of differential drive wheeled mobile robot (Korayem 
et al., 2016). 

Fig. 28. Position variables of the mobile robot.  

Fig. 29. Trajectory and configuration of the robot in comparison with output- 
feedback and SDRE method. 
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are based on Ref. (Korayem et al., 2016). 
Selecting parameters as N1 = 500, N2 = 1000, N3 = 2000, P1 = 0.2 

and P2 = 0.005, the error is reduced to E = 5.6014× 10− 7mm. The 

gains were obtained KP =

[
100.6066 0

0 146.7633

]

and KD =

[
19.6680 0

0 23.9786

]

. The error of the output-feedback method was 

found at 40.23mm and the finite time SDRE 0.62mm (Korayem et al., 
2016). The position variables of the robot are presented in Fig. 28. The 
trajectory and configuration of the robot in comparison with the output- 

feedback and SDRE methods are illustrated in Fig. 29. The input torque 
of the right wheel is shown in Fig. 30. The error reduction rate is also 
presented in Fig. 31 in 27 loops. 

3.3. Test functions 

3.3.1. Comparison with previous works 
There are some specific test functions for the assessment of meta

heuristic search methods. Three of them were selected for checking the 
performance of the proposed approach, presented in Table 10. The re
sults of the first function, a unimodal function, are presented in Fig. 32. 
The second function is multimodal with many local minima which 
makes it hard for the algorithm to find the global minimum. Lack of 
constraints and vast search bound, ±90000, are the challenges for the 
second function. The proposed method could reduce the initial guess 
from near the bounds to around 100. There are some methods capable of 
reducing the objective function near zero, the global minimum point for 
fs,2 such as grey wolf optimizer 0.310521 (Mirjalili, Mirjalili, & Lewis, 
2014), improved sine cosine algorithm 0 (Long et al., 2019), and sine 
cosine algorithm 12.7 (Long et al., 2019). This shows that the current 
approach is weak for high dimensional multimodal functions though the 
results of the fixed dimensional function fs,3 and unimodal function fs,1 

were satisfactory. All three test functions were computed 30 times for 
finding standard deviation, best, mean, median and worst answer. The 
parameters were chosen for test functions as: N = 10, 20,30,40,50,60,
70,80, 100 and P = 0.75,0.1,0.01,0.001,0.0001,0.00001, 0.000001,
0.0000001 for the first case, N = 10,50, 60,70,80 and P = 0.5,0.1,
0.01,0.001 for the second case and N = 60,90,100,110,120,130,140,

Fig. 30. Input torque of right wheel.  

Fig. 31. Error reduction was generated in 27 loops.  

Table 10 
Test functions, 30 trials.  

Test function Dim,n Range Min Literature This work 

fs,1(x) =
∑n

i x2
i 30 [− 100,100] 0 Grey Wolf (Mirjalili et al., 2014):6.59× 10− 28 

Sine Cosine (Long et al., 2019): 3.24 × 10− 1 

Improved Sine Cosine (Long et al., 2019): 0 

Best:1.8967425620358× 10− 9 

Median:4.05773271258732× 10− 9 

Mean:7.8982861739249× 10− 9 

Worst:8.24300997218811× 10− 9 

SD:1.46118358423316× 10− 9 

fs,2(x) =
∑n

i (x
2
i − 10cos2πxi + 10) 30 [− 5.12,5.12] 0 Grey Wolf (Mirjalili et al., 2014):0.310521 

Sine Cosine (Long et al., 2019): 127 
Improved Sine Cosine (Long et al., 2019): 0 

Best:99.2426465014127 
Median:144.807290814228 
Mean:151.986610127804 
Worst:216.024394808014 
SD:33.0650604967027 

fs,3(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 
2 [− 5,5] − 1.0316 Grey Wolf (Mirjalili et al., 2014): − 1.03163 Best: − 1.03162845348987 

Median: − 1.03162845348983 
Mean: − 1.03162845348979 
Worst: − 1.03162845348913 
SD:1.40306419238579× 10− 13  

Fig. 32. The results of the test function f1(x).  
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150, 160and P = 0.75,0.1, 0.01,0.001,0.0001, 0.00001,0.000001,
0.0000001 for the third case. Increasing the reduction search areas in 
the method is possible. For high dimensional optimization task such as 
the test functions in this section, the search areas increased from 3 zones 
to 9 zones. 

3.3.2. Comparison with test functions 
Enhanced version experiment and comparison: To cover the simple 

search algorithm weakness in high-dimensional test functions or opti
mization problems with vast search domains, the enhanced version is 
used. The modification is the proposed simple algorithm equipped with 
Eq. (8) instead of (3). All other specifications and structures are similar 
to the original version. The assessment and its comparisons are done for 
the test functions in Table 11 (unimodal), Table 12 (multimodal), and 
Table 13 (fixed-dimensional). The results are expressed in Table 14 and 
Table 15. 

4. Discussion 

The optimization problems are categorized as follows. Engineering 
structural optimization: this sort of problem has many constraints and 
limited search space which allow the method to perform the search with 
3 zones with normal repetition loops. Dynamic problems: there exist 

fewer constraints though they are more time-consuming since, in each 
loop, the problem is simulated between two boundary conditions within 
a time span. The search area is limited and the behavior of the search 
parameters is expected. The application was shown for parameter 
optimization for limiting vibrations in the mechanical structures and 
control. The control examples were tuning the gains of three different 
controllers to indicate the wide range of applications. The first controller 
was PD, the second one was the state-dependent Riccati equation and 
the last one was output feedback linearization. The control platforms 
were also different, a Van der Pole oscillator, a manipulator, and a 
wheeled mobile robot. Test functions: three types of test functions were 
tested for assessment of the method. The first type is unimodal functions 
with one minimum. The dimension of the problem resulted in a very vast 
search space. To overcome the long reducing trajectory of the method 
from near boundaries to the optimum point, the reduction-search zones 
increased to 9 stages. The results were gained satisfactory. In the second 
case, multimodal functions with many local minima and extensive 
search areas created difficulties for the algorithm and it was not as good 
as in the unimodal case. With the fixed dimensional test function, the 
solutions were almost similar to the best available answers. The 
enhanced version of the proposed search algorithm, was tested and 
compared for 32 test functions with very vast domains to show the 
capability and flexibility of the proposed method. It has been concluded 
that for fixed-dimensional problems and constrained optimizations the 
simple version is better though, for high-dimensional problems, the 
enhanced version is more suitable. 

The stochastic fractal search approach is a powerful method that 
considers convergence and accuracy simultaneously (Salimi, 2015). The 
current method in this work will be compared with SFS to clarify the 
difference between these two methods. The SFS uses Levy flight to 
model diffusion-limited aggregation and sweeps the domain of search in 
the first step of the algorithm. Then for each particle, the electrical po
tential energy will be computed and finally, a few best particles remain, 
also with the record of the rest of the particles. The exchange of infor
mation between the particles speeds up the convergence. On the con
trary, the search algorithm in this current work is focused on the domain 
of search instead; narrows down the search domain without saving the 
particles’ records. There is no exchange of information between the 
particles as well. Two examples were chosen to compare the results of 
the two methods. The welded beam example, Section 3-1-3, shows that 
SFS scored the value 1.72485230 for the optimization function and the 
search method in this work scored 1.6977033295, similar to Ref. (Garg, 
2019). The SFS used 24,000 number-of-function-evaluations (NEF), and 
this work 17, 500. For the second example, SFS scored a better result 

Table 11 
Unimodal test functions.  

Test function Dim,n Range Min 

f1(x) =
( ∑n

i=1x2
i
)2 30 [− 100,100] 0 

f2(x) =
∑n

i=1x2
i 30 [− 100,100] 0 

f3(x) =
∑n/4

i=1(x4i− 3 − 10x4i− 2)
2
+

5(x4i− 1 − x4i)
2
+ (x4i− 2 − x4i− 1)

4
+

10(x4i− 3 − x4i)
4 

40 [− 4,5] 0 

f4(x) =
∑n− 2

i=2 (xi− 1 − 10xi)
2
+ 5(xi+1 − xi+2)

2
+

(xi − 2xi+1)
4
+ 10(xi− 1 − xi+2)

4 

40 [− 4,5] 0 

f5(x) =
∑n

i=1 |xi|
i+1 30 [− 1,1] 0 

f6(x) = −
∑n

i=1 |xi|, concave function 30 [− 100,100] 0 
f7(x) = max|xi|, i = 1,⋯,n 30 [− 100,100] 0 
f8(x) =

∑n
i=1 |xi| +

∏n
i=1 |xi| 30 [− 100,100] 0 

f9(x) =
∑n

i=1x10
i 30 [− 10,10] 0 

f10(x) =
∑n

i=1 ix2
i 30 [− 10,10] 0 

f11(x) =
∑n

i=1

(∑i
j=1xj

)2 30 [− 100,100] 0 

f12(x) =
∑n− 1

i=1 E100
(
xi+1 − x2

i
)2

+ (xi − 1)2F 30 [− 30,30] 0 

f13(x) =
∑n

i=1
(
ix4

i +random(0,1)
)

30 [− 1.28,1.28] 0  

Table 12 
Multimodal test functions.  

Test function Dim,n Range Min 

f14(x) = − 20exp

(

− 0.2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
x2

i

√ )

− exp

(
1
n
∑n

i=1
cos2πxi

)

+ 20 + e 
30 [− 32,32] 0 

f15(x) =
∑n

i=1 |xisinxi +0.1xi| 30 [− 10,10] 0 

f16(x) =
∑n− 1

i=1

((
x2

i
)(x2

i+1+1)
+
(
x2

i+1
)(x2

i +1)
) 30 [− 1,4] 0 

f17(x) = − exp
(
− 0.5

∑n
i=1x2

i
)

30 [− 1,1] − 1 

f18(x) =
1

4000
∑n

i=1

(
x2

i
)
−
∏n

i=1

(

cos
xi
̅̅
i

√

)

+ 1 
30 [− 600,600] 0 

f19(x) =
∑n

i=1
(
x2

i − 10cos(2πxi)+10
)

30 [− 5.12,5.12] 0 

f20(x) =
π
n

(

10sinπy1 +
∑n− 1

i=1
(
yi − 1

)2 ( 1 + 10sin2πyi+1
)
+
(
yn − 1

)2
)
+
∑n

i=1u(xi,10, 100,4)yi = 1 +
xi + 1

4
u(xi, a, k,m) =

⎧
⎪⎨

⎪⎩

k(xi − a)m xi > a
0 − a ≤ xi ≤ a

k( − xi − a)m xi < − a 

30 [− 50,50] 0 

f21(x) = 0.1
(

sin23πx1 +
∑n

i=1(xi − 1)2
(
1 + sin2(3πxi + 1)

)
+(xn − 1)2

(
1 + sin22πxn

) )
+
∑n

i=1u(xi, 5,100,4) 30 [− 50,50] 0 

f22(x) =
∑n

i=1x2
i +

( ∑n
i=10.5ixi

)2
+
( ∑n

i=10.5ixi
)4 30 [− 5,10] 0  
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than this work, tension/compression spring, Section 3.1.4. The optimi
zation function was found at 0.012665232788 for SFS, and 
0.012667928876 for this work. The NEF of the SFS was set at 100,000 

and this work at 25,000. 
To justify the performance of the method and enhanced version, the 

results of the search algorithm are compared with the winner of the IEEE 

Table 13 
Fixed-dimensional test functions.  

Test function Dim,n Range Min 

f23(x) =

(
1

500
+
∑25

j=1
1

j +
∑2

i=1
(
xi − aij

)6

)− 1

a =

[
− 32 − 1601632 − 32 − 1601632 − 32 − 1601632 − 32 − 1601632 − 32 − 1601632
− 32 − 32 − 32 − 32 − 32 − 16 − 16 − 16 − 16 − 160000016161616163232323232

] 2 [− 65,65] 1 

f24(x) =
∑11

i=1

⎛

⎝ai −
x1

(
b2

i + bix2

)

b2
i + bix3 + x4

⎞

⎠

2

a = [0.19570.19470.17350.160.08440.06270.04560.03420.03230.02350.0246]b =

1
[0.250.51246810121416]

4 [− 5,5] 0.0030 

f25(x) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2 
2 [− 5,5] − 1.0316 

f26(x) =

(

x2 −
5.1
4π2x2

1 +
5
πx1 − 6

)2
+ 10

(

1 −
1
8π

)

cosx1 + 10 
2 [− 5,5] 0.398 

f27(x) =
(

1+(x1 + x2 + 1)2 ( 19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2
) )(

30+(2x1 − 3x2)
2 ( 18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
) ) 2 [− 2,2] 3 

f28(x) = −
∑4

i=1ciexp
(

−
∑3

j=1aij

(
xj − pij

)2
)

c = [11.233.2],a =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

31030

0.11035
31030

0.11035

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,p =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.36890.1170.2673

0.46990.43870.747
0.10910.87320.5547

0.038150.57430.8828

⎤

⎥
⎥
⎥
⎥
⎥
⎦

3 [1,3] − 3.86 

f29(x) = −
∑4

i=1ciexp
(

−
∑6

j=1aij

(
xj − pij

)2
)

c = [11.233.2],a =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

103173.51.78

0.0510170.1814
33.51.710178

1780.05100.114

⎤

⎥
⎥
⎥
⎥
⎥
⎦

p =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.13120.16960.55690.01240.82830.5886

0.23290.41350.83070.37360.10040.9991
0.23480.14150.35220.28830.30470.6650

0.40470.88280.87320.57430.10910.0381

⎤

⎥
⎥
⎥
⎥
⎥
⎦

6 [0,1] − 3.32 

f30(x) = x2
1 − 12x1 + 11 + 10cos

πx1

2
+ 8sin

5πx1

2
− 0.2

̅̅̅
5

√
exp
(
− 0.5(x2 − 0.5)2

) 2 [− 30,30] − 42.9443 

f31(x) = −
1 + cos

(
12

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
1 + x2

2

√ )

0.5
(
x2

1 + x2
2
)
+ 2 

2 [− 5.12,5.12] − 1 

f32(x) = 100
(
x2

1 − x2
)2

+ (x1 − 1)2
+ (x3 − 1)2 + 90

(
x2

3 − x4
)2

+ 10.1
(
(x2 − 1)2 +(x4 − 1)2

)
+ 19.8(x2 − 1)(x4 − 1) 4 [− 10,10] 0  

Table 14 
The results of the test functions; SD shows standard deviations and PI presents possible improvement; 30 trials.  

No. Type Best enhanced version SD 
enhanced 
version 

p-value T-test enhanced 
version 

Best simple search 
algorithm 

SD simple search 
algorithm 

PI % of enhanced 
version 

1 unimodal function 3.08675094599304E− 9 5.44E− 7 0.0147517845451004 6.95360195046262E− 9 8.99E− 7 55.6 
2 4.40471211833798E− 5 5.49E− 4 5.79404620511476E− 6 1.01674983925428E− 4 6.95E− 4 56.6 
3 9.88129700602106E− 5 1.21E− 5 1.07243191421192E− 8 4.63263465290848 2.1 99.9 
4 3.04116840632009E− 5 1E− 4 5.02314701838995E− 8 3.19784183105535 1.19 99.9 
5 1.93901155110529E− 9 1.98E− 8 2.18161803721525E− 7 1.83642379129164E− 7 1.77E− 7 98.9 
6 − 0.475324416827596 0.07 1.1869836819655E− 25 − 41.4024941956355 19.69 98.8 
7 7.15459674642637E− 5 8.24E− 4 7.35392200988825E− 6 0.267058877130073 0.4 99.9 
8 2.33253899599805E− 5 4.9E− 3 0.325581988016065 991562.985192921 8.8E27 99.9 
9 1.85451609892134E− 22 4.78E− 15 0.100241125822395 6.21648056136648E− 21 8.64E− 11 97 
10 6.77705877779907E− 5 2.79E− 4 6.72336658073292E− 6 2.88089105571225E− 4 3E− 3 76.4 
11 4.32220719330256E− 5 7.02E− 5 2.85723356334505E− 10 2.63339122311631E− 2 0.47 99.9 
12 0 1.82 8.5187666571308E− 13 61 5.77 100 
13 3.45681317080786E− 3 9.47E− 3 8.18871919539133E− 11 4.10911845539854E− 2 5.91E− 2 91.5 
14 multimodal 

functions 
6.85408534373266E− 7 1.05E− 7 2.70707501875702E− 32 7.67218730324259E− 7 0.97 10.6 

15 8.62465167570393E− 3 2.25E− 3 1.97875967649453E− 14 4.3815807893475 0.47 99.8 
16 1.60696126565815E− 14 1.3E− 15 0.0542993726706154 1.69744729668881E− 14 2.19E− 15 5.3 
17 − 0.999999999999999 1.7E− 16 0 − 0.999999999999999 2.48E− 16 0 
18 3.22163407062703E− 11 1.55E− 11 8.57243944047098E− 14 5.29469801335836E− 11 5.69E− 3 39.1 
19 5.40012479177676E− 12 3.95E− 12 0.0834935549759329 117.404820444782 18.23 99.9 
20 0.716974069579892 0.12 6.35745334908942E− 30 3.90465374114241 5.84 81.6 
21 3.20271431132239 19.72 7.53178654929205E− 36 19.0781780322723 46.59 83.2 
22 4.73698855301029E− 13 1.18E− 12 0.243502293843435 7.83523256647346E− 13 3.68E− 13 39.5 
23 fixed-dimensional 

functions 
0.998023179855449 9.52 0.000620367204066364 0.99800383779445 1.12E− 16 1.9E− 3 

24 3.07523873560042E− 4 1.98E− 2 0.0315035621578187 5.61917606175115E− 4 5.16E− 3 45.2 
25 − 1.0316269834269 3.71E− 2 1.9461866476215E− 38 − 1.03162845348988 4.3E− 16 − 1.4E− 4 
26 0.398303289154891 0.85 1.02984186999034E− 9 0.397887357729738 2.41E− 14 − 0.1 
27 3.02334942534786 9.57 8.46779535951879E− 8 2.99999999999995 6.05E− 13 − 0.7 
28 − 3.81616062024405 0.58 1.0466675198387E− 20 fail – – 
29 − 3.17757870460904 0.21 5.07380505614456E− 32 − 3.32199462702961 5.99E− 2 − 4.3 
30 − 42.8431437431918 0.15 2.84697846083004E− 69 − 42.9443869406516 0.15 − 0.23 
31 − 0.999992900529517 0.02 1.38871601492462E− 48 − 0.999991188979966 0.05 1.7E− 4 
32 2.53545204245043 8.02 1.14173644443228E− 17 2.92047216903384E− 12 4.9E− 12 –  

S.R. Nekoo et al.                                                                                                                                                                                                                                



Expert Systems With Applications 206 (2022) 117866

22

Table 15 
The plot results of the test functions.  

(continued on next page) 
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Table 15 (continued ) 

(continued on next page) 
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Table 15 (continued ) 
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Congress on Evolutionary Computation (CEC) 2014. Ackley’s function, 
presented in Table 12, number 14, was modified to be compatible with 
Ref. (Tanabe & Fukunaga, 2014). The dimension of the equation is 30, 
and the range of search is [ − 100,100]30, and a number of 51 iterations 
were done to compute the statistics. The results of the L-SHADE method 
scored the best solution 2.0E + 01, the worst answer 2.0E + 01, the 
median value 2.0E + 01, the mean value 2.0E + 01, and the standard 
deviation 3.7E − 02, which are very good results with respect to the 
domain of the search (Tanabe & Fukunaga, 2014). This work also scored 
with the same condition, the best solution 20.9517965443784, the 
worst solution 21.1939668780108, the median and mean values 
21.0872585611148 and 21.0811858734007 respectively, and the 
standard deviation 0.0575. 

INFO: an efficient optimization algorithm based on the weighted 
mean of vectors, is a recent search algorithm for multi-objective opti
mization (Ahmadianfar, Heidari, Noshadian, Chen, & Gandomi, 2022). 

This method is also compared with the proposed search algorithm to 
provide a performance assessment. Function 9 of Table 3, in 
Ref. (Ahmadianfar et al., 2022), has been compared with this current 
work. The INFO scored 00E + 00, similar to this work by increasing the 
zones. The three-bar truss optimization problem also scored the opti
mization function value of 263.8958434 for INFO, and the same prob
lem for this work scored 263.89587188, Section 3.1.7, which confirms 
the correctness of the proposed approach in comparison with other 
trendy techniques. 

5. Conclusions 

The search algorithm generates a random solution that makes it a 
powerful approach for seeking the best answer. The first level of the 
method searches zone 1 to find the best answer, then focuses around it to 
find the best answer. It does not rely on the previously generated 

Table 15 (continued ) 
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solution, in the previous loop. The implementation is easy, simple, and 
fast. The convergence of the method might be a little time-consuming 
due to the nature of the method though the wide range of applications 
justifies the drawback. Most of the evolutionary methods are slow with 
respect to mathematical methods without trials. The method was 
applied for mathematical functions, structural optimization in static 
form, and also for dynamic problems such as vibration and control of a 
manipulator. The method has been validated by several examples and 
other previously established methods, scoring a good result. An 
enhancement was also introduced for optimization problems with 
excessive large search domains. 

All the codes of this work are available as supplementary material in 
the online version of the paper on the journal website. 
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