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1. Introduction

The features characterizing complex systems may be spatially dis-
tributed and/or change over time in many examples from Economy,
Ecology, sedimentation analysis, study of flexible structures, Physiology,
and etcetera. In order to analyze these situations it is crucial to general-
ize the classical theory to include space-dependent or time-dependent
parameter models [7,50]. Thus, time-varying parameters regression
models were introduced by Cooley, Prescott and Rosenberg [11,12,37].
Coefficients may vary over time continuosly or, alternatively,
resonance imaging; EEG,
, Kuramoto transform; SAR,
oregressive transform; MOU,
ransform; DMT, Discrete model
ART, Discrete simultaneous
transform; DST, Dynamical sys-
tion; GA, Global attractor; DS,
plementarity problem; NDD,
y levels; LVT, Lotka-Volterra
, Effective connectivity; SC,

tico de Sistemas Diferenciales,

. This is an open access article under
discontinuosly at certain points in time or space which can be either
known a priori or estimated from the sample data. In other cases param-
eters are assumed to evolve in a randomway and a stochastic process is
modeled, which can be either stationary or non-stationary, with a cer-
tain mean and variance. The corresponding dynamical systems can be
characterized by differential equations' models which include these
time-dependent or random parameters. In last decades a theory of
non-autonomous dynamical systems has emerged including time-
dependent differential equations and random dynamical systems so
that there are now abstract formulations of them [8,27].

Concurrently, an inverse problem arises for the estimation of these
parameters using data obtained from empirical observations.
Historycally, Quandt was the first one in attempting to estimate the
point in time at which one regime switches to other in a linear regres-
sion system [35]. These inverse or parameter identification problems
take place in the same diverse contexts than the direct problem. For ex-
ample, the growth of a population depends on the resources,whichmay
be a function of time and space [6]. Furthermore,many important scien-
tific problems require the estimations of distributed parameters in par-
tial differential equations. Thus, time dependent parameters are usually
estimated, for instance, for diverse parabolic systems [1]. A general the-
ory for distributed parameters estimation in an abstract setting can be
found in [7].
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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In Estimation Theory, departing from measured empirical data, an
estimator attempts to approximate the unknown parameters using
the measurements. The usual approach assumes that the measured
data are randomwith probability distribution dependent on the param-
eters of interest. However, there are some trivial situations in which the
functional form of the temporal or spatial dependency of the parame-
ters is determined exactly without assuming random components.
The simplest example consists of the equations xi′(t) = vi, i = 1,2,3
which could be seen as a “model” of uniform motion in a straight line
when “parameters” vi has a fixed value for i = 1,2,3. Alternatively,
when the values of vi are allowed to change over time the equations

xi′(t) = vi(t) become a definition of the instantaneous velocity v
!

tð Þ
at each time point t for any sufficiently smooth trajectory x

!
tð Þ. The

model could be seen as a tool to transform x
!

tð Þ into v
!

tð Þ. Thus, v! tð Þ
can be defined to exactly reproduce “empirical data” x

!
tð Þ integrating

the equations xi′(t) = vi(t), i = 1,2,3 when an initial point x
!
0 ¼

x
!

t0ð Þ is known. Similarly, the circle is a trivial “model” which allows to
define the radius of curvature, a local or spatial-dependent parameter,
for any sufficiently smooth curve. The circle equation

x � að Þ2 þ y � bð Þ2 ¼ r2

can be differentiated twice by x. Removing a and b, and after some sim-
plifications we get

y0ð Þ2 þ 1
� �3

¼ ry0 0
� �2 ð1Þ

which can be seen as a differential “model” of all circles of radius rwhen
“parameter” r has a fixed value. Alternatively, when r is allowed to
change over a (sufficiently smooth) trajectory y(x) the E. (1) becomes
a definition of the radius of curvature at the point P(x,y):

r xð Þ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y0ð Þ2 þ 1

� �3r
y0 0

ð2Þ

The circle model may be imagined as a tool to transform y(x) into r
(x) through (2). Thus, r(x) can be defined to exactly reproduce “empir-
ical data” y(x) integrating the Eq. (1) from some initial point of the tra-
jectory.

In real situations, the main drawback of the exact fitting of the pa-
rameters to the empirical data is the so-called overfitting, which is one
of the most important concepts in Machine Learning. Understanding
how amodel fits the data is important to establish the causes of low ac-
curacy in predictions. A model is overfitted when it performs well with
the training data, but its accuracy is noticeably lower with the evalua-
tion data. The model has memorized the training data but is unable to
generalize the rules for predicting new data in a cross-validation. How-
ever, there are situations in which we are not focused on predictions.
For example, there are complex systems that have so far resisted real
modeling, such as the human brain. The global models developed are
capable of reflecting general characteristics such as functional connec-
tivity or metastability of the system, but we are far from being able to
predict specific time series of brain activity in the short or long term
using, for example, data from fMRI or EEG measurements. Our thesis
is that some fundamental characteristics of the different states of com-
plex systems could be reflected through a transformation of the data
mediated by the appropriate model. Some of the crucial characteristics
could be lost when estimating parameters assuming empirical data
with random components. It might be possible that these random fac-
tors are a consequence of: a) our lack of knowledge about the true
mechanisms governing the dynamics or b) the difficulty of reproducing
its actual complexity. Hence, smoothing or averaging the process from
real data to estimated parameters would lead to a loss of information
that could be essential to characterize the system.
2

Thus, we propose as an alternative to the classical approach to
modeling complex systems themodel transform (MT), which is a gener-
alization of the transformation performed by trivial models to calculate
the instantaneous velocity or the local radius of curvature, and thus find
new measurements that could characterize different states of the most
complex and difficult systems to model. Therefore, the MT is proposed
here not to model but to carry out a transformation of the empirical
data of complex systems to time-dependent or local measurements.
We call this mathematical tool “transform” because there is not neces-
sarily reduction of information of the dynamics of the system, but rather
a transformation to a different phase space. In the conceptual frame-
work of modeling, this would be a clear overfitting. In this sense,
the MT would be an overfitting by definition because it is defined
so that the differential equations of the model with time-
dependent parameters exactly comply with the experimental
data. But since we aim not to model the dynamics, it should not
be considered overfitting.

The remaining part of the article is arranged as follows: In Section 2,
the MT is formally defined and several examples are shown. A discrete
version of theMT is defined in Section 3. As an example of the potential
applications of the MT, in Section 4 the concept of instantaneous
attractors is developed. Other possible applications of the MT are sug-
gested in Section 5. Finally, in Section 6, as a conclusion, we highlight
the most important contributions of this work.

2. Model transform

2.1. Definition

For the sake of simplicity, here a model is defined as a system of n
first order ordinary differential equations but this definition and thedef-
inition of model transform can be extended to second, third, etc., order
ordinary differential equations, partial differential equations, or even
difference equations.

Definition 1. A model is a system of n first order ordinary differen-
tial equations that relate n functions ui : ℝ → ℝ, their derivates ui′
(x), m parameters θk and n functions fi : ℝn+m → ℝ in the
following form:

u0
i xð Þ ¼ f i u1, . . . ,un; θ1, . . . , θmð Þ, i ¼ 1, . . . ,n ð3Þ

where m ≤ n and x ∈ ℝ,

Definition 2. Given a model (3) and a differentiable function bu:
û : ℝ→ℝn

û xð Þ ¼ û1 xð Þ;…; ûi xð Þ;…; ûn xð Þð ÞT ; for all x ∈ℝ
ûi xð Þ ∈ℝ; for all i ¼ 1;…;n:

we define the model transform of bu xð Þ for model (3) as the functionsbθk xð Þ such that fulfills:

bu0
i xð Þ ¼ f i bu1, . . . , bun;bθ1 xð Þ, . . . ,bθm xð Þ

� �
, i ¼ 1, . . . ,n

Theorem 1. Given û : ℝ→ℝn, in the particular case of a model where

u0
i xð Þ ¼ f i u1, . . . ,un; θið Þ, i ¼ 1, . . . ,n ð4Þ

and the auxiliary functions f̂ i : ℝ→ℝ , bf i θið Þ ¼ f i bu1, . . . , bun; θi
� �

for
all i ¼ 1, . . . ,n are invertible for all i=1,…, n, the model transform of bu
xð Þ for model (4) are the functions bθi xð Þ that fulfills:

bθi xð Þ ¼ bf � 1

i bu0
i

� �
, i ¼ 1, . . . ,n: ð5Þ
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Proof. We must prove that bθi xð Þ fulfills bu0
i xð Þ ¼ f i bu1, . . . , bun;bθi xð Þ

� �
.

Substitutingu ¼ bu xð Þ in f i u1, . . . ,un;bθi xð Þ
� �

, for i=1,…, n, is obtained

f i bu1, . . . , bun;bθi xð Þ
� �

which is bu0
i by (4) and by definition of inverse func-

tion f−1. Q.E.D.

Definition 3. If (3) is a model of a dynamical system we use t ∈ ℝ

(instead of x ∈ ℝ), and the parameters bθi tð Þ for any given time point
t = t0 are called instantaneous parameters in t = t0.

Remark: In practice, (5) makes sense, for instance, when the ui
variables are known (e.g. empirical data), and therefore also are
the _uiðtÞ. Given θi, u(t) is typically the solution of the Eq. (3), but
now the situation is the opposite.

2.2. Examples

2.2.1. Trivial examples
InDifferential Calculus, themost trivial example ofMT is the slope of a

curve at a point. Themodel would be the differential equation u′(x)=m
wherem is the parameter of this model. It can be seen as a “straight line
model” that is trivially invertible and given a sufficiently smooth func-
tion bu : R ! R, bu xð Þ, for x ∈ R the transform is bm xð Þ ¼ bu0 xð Þ which is
the well-known slope bm of the curve bu xð Þ at each point x.

Similarly, the linearization of a bivariable function is a model trans-
form. The model is given by the equations

∂u x, yð Þ
∂x

¼ q,
∂u x, yð Þ

∂y
¼ r

where q and r are the parameters of the model. It is a “plane surface
model” that is invertible and given a sufficiently smooth functionbu : R2 ! R, bu x, yð Þ for (x,y) ∈ ℝ2 the transforms are bq x, yð Þ ¼ ∂bu x, yð Þ

∂x and

br x, yð Þ ¼ ∂bu x, yð Þ
∂y . In the general case of a linearization of a multivariable

function u(x) themodel is∇u= q, where q∈ℝn and given a sufficiently
smooth function bu : Rn ! R, bu xð Þ, for x ∈ Rn the transform isbq xð Þ ¼ ∇bu xð Þ.

In Physics, another trivial example is the instantaneous velocity.
In this case the model is a uniform motion in a straight line, a
trivial dynamical system, defined by the three differential equations xi′
(t) = vi, i = 1,2,3. Given a sufficiently smooth function bx : R ! R3,bxi tð Þ, i ¼ 1, 2, 3, for t ∈ R, the transform is bv tð Þ ¼ bx0 tð Þ. Thus, in this
case the instantaneous parameters are the components of the
instantaneous velocity.

InDifferential Geometry, as a example of simplemodel transform that
generates well-known expressions, let us start from the phase spaceℝ3

and an orbit bγ tð Þ, to which a helixmodel is now applied in ℝ3:

g tð Þ ¼ Acos θ tð Þð Þ þ Bsin θ tð Þð Þ þ Ckθ tð Þt þ D

where D ∈ ℝ3 is a point of the helix axis, A, B, C ∈ ℝ3 are three mutually
perpendicular vectors, A and B with module ρ and C module 1. Finding
the derivative and removing θ, θ′ and θ′′, it is obtained:

g0 ⋅ g0 0 � g0 0
0� �

¼ τ g0 � g0 0
�� ��2 ð6Þ

where τ ¼ k
ρ2þk2

. The expression (6) can be seen as a differential model
of helix if the definition of model is generalized to include third order
differential equations. Thus, when τ is a constant the helix-shaped paths
in ℝ3 match that equation. However, the model transform can be com-
puted for any sufficiently smooth trajectory bγ tð Þ for that differential
model and it is obtained:
3

bτ tð Þ ¼
bγ0 ⋅ bγ00 � bγ� �
bγ0 � bγ00��� ���2

where the instantaneous parameter of this model transform bτ tð Þ is the
well-known expression of the torsion of the curve bγ tð Þ in ℝ3.

Therefore, the slope of a curve in a point, the linearization of a mul-
tivariable function, the instantaneous velocity and the torsion are sim-
ple particular cases of MT when trivial models are applied. In complex
empirical systems the application of non-trivial models can provide rel-
evant information of the system through the corresponding instanta-
neous and local parameters.

2.2.2. Kuramoto transform
The Kuramoto model was motivated by the behavior of systems of

chemical and biological oscillators, and it has found widespread applica-
tions in areas such as neuroscience and oscillating flame dynamics. It de-
scribes a set of n coupled oscillators:

θ0i tð Þ ¼ ωi þ g∑
n

j¼1
aij sin θj � θi

� �
, i ¼ 1, . . . ,n: ð7Þ

where θi are the phases of each oscillator, g is the global coupling, and aij
is the adjacency matrix which express the connectivity among
oscillators. Each of the oscillators is considered to have its own
intrinsic frequency ωi.

All the n Eqs. (7) are trivially invertible with respect to parameters
ωi, hence a non-trivial example of a model transform can be shown
using this model:

Definition 4. Given the values of the parameters g ∈ℝ+ and A=(aij) ∈

ℝn×n and given a sufficiently smooth function bθ such that:

θ̂ : ℝ→ℝn

θ̂ tð Þ ¼ θ̂1 tð Þ;…; θ̂i tð Þ;…; θ̂n tð Þ
� �T

; for all t ∈ℝ

θ̂i tð Þ ∈ℝ; for all i ¼ 1;…;n:

the Kuramoto transform (KT) of bθ tð Þ for model (7) is defined as the
functions bωi tð Þ that fulfills:

bωi tð Þ ¼ bθ0i tð Þ � g∑
n

j¼1
aij sin bθj tð Þ � bθi tð Þ

� �
, i ¼ 1, . . . ,n:

and the numerical values of functions bωi tð Þ for any t = t0 are called
instantaneous intrinsic frequencies. In practice, to calculate the KT we
may have to previously perform a Hilbert transform [31] that serves to

obtain the amplitude and phase of the signal. bθi tð Þ would be an empiri-
cal phase in each node i andωi the parameter of themodel that becomes
a function of time and that is the actual result of the KT.

2.2.3. Simultaneous autoregressive transform
Neighboring nodes have more influence on each other than on

nodes far away. The same is true of cities, countries, and friends on social
media. Simultaneous autoregressive (SAR) models can be fit using
datasets from Social Sciences and Economy. The SAR model is composed
of a linear combination of the fluctuations within other regions [49]:

ui ¼ g∑
j≠i

γijuj þ νi, i ¼ 1, . . . ,n: ð8Þ

where νi stands for noise, and ui, g and γij are defined as in the LVmodel.
Usually the νi’s are modeled as uncorrelated white Gaussian noise.

For SAR Transform (SART) νi is the model parameter that is
converted to a function of time. Therefore, instead of being modeled
as a Gaussian noise, it is calculated exactly from the experimental data:
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νi tð Þ ¼ ui � g∑
j≠i

γijuj

2.2.4. Rate fluctuations transform
In Computational Neuroscience, the Rate fluctuations model [19] is a

simplification of the Wilson–Cowan model where inhibitory neurons
and saturation have been removed. It can be described as aMultivariate
Ornstein-Uhlenbeck (MOU) process usually applied in disciplines as Fi-
nancial Mathematics, Physical Sciences, and Evolutionary Biology:

τ
dui tð Þ
dt

¼ � ui tð Þ þ g∑
j≠i

γijuj tð Þ þ νi: ð9Þ

Here τ is the time scale of the excitatory population, and νi usually
stands for uncorrelated white Gaussian noise. ui, g and γij are defined
as in the previous models.

In the Rate Fluctuations Transform (RFT) νi is again the chosen
instantaneous parameter:

νi tð Þ ¼ τ
dui tð Þ
dt

þ ui tð Þ � g∑
j≠i

γijuj tð Þ:

3. Discrete model transform (DMT)

3.1. Definition

In practice, both bui tð Þ and bu:
i
tð Þmay be empirical or simulated signals

that aremeasured as discrete time series, t= tk= k ·ΔtwhereΔt is the
time step betweenmeasurements and k=1,…, Twhere T is the length
of the time series. Hence, we use the notation ui, k = ui(t= tk = k · Δt)
and θi, k = θi(t = tk = k · Δt).

The simplest discrete version of the Eq. (3) for the particular case
(4) in a dynamical system model where x = t is:

ui,2 � ui,1

Δt
¼ f i u1,1, . . . ,un,1; θi,1

� �
, i ¼ 1, . . . ,n

ui,kþ1 � ui,k � 1

2 � Δt ¼ f i u1,k, . . . ,un,k; θi,k
� �

, i ¼ 1, . . . ,n; k ¼ 2, . . . , T � 1

ui,T � ui,T � 1

Δt
¼ f i u1,T , . . . ,un,T ; θi,T

� �
, i ¼ 1, . . . ,n

where n is the number of nodes in themodel and each different i from 1
to n corresponds to a different node. Solving for θ, the corresponding
discrete model transform (DMT) and substituting data bui,k:

bθi,1 ¼ bf � 1

i bu1,1, . . ., bun,1;
bui,2 � bui,1

Δt

� 	
, i ¼ 1, . . . ,n

bθi,k ¼ bf � 1

i bu1,k, . . ., bun,k;
bui,kþ1 � bui,k � 1

2 � Δt
� 	

, i ¼ 1, . . . ,n k ¼ 2, . . . , T � 1

bθi,T ¼ bf � 1

i bu1,T , . . ., bun,T ;
bui,T � bui,T � 1

Δt

� 	
, i ¼ 1, . . . ,n

where the discrete version (3) and the bθi,k are defined to reproduce the
empirical or simulated signal bui,k following the Euler method:

ui,2 ¼ ui,1 þ Δt � f i u1,1, . . . ,un,1;bθi,1� �
, i ¼ 1, . . . ,n

ui,k ¼ ui,k � 2 þ 2 � Δt � f i u1,k, . . . ,un,k;bθi,k� �
, i ¼ 1, . . . ,n k ¼ 3, . . . , T

with initial conditions ui,1 ¼ bui,1 for i = 1, …, n.
Thus, at each time step k the DMT provides a θi, k column with n

components, and a temporal series of T different 1 × n columns is
obtained.
4

3.2. Examples

Here we show examples of DMTs such as the discrete KT, the dis-
crete SART, and the discrete RFT. See another example of discrete MT
in 4.7.

3.2.1. Discrete Kuramoto transform
The simplest discrete version of the Eq. (7) is:

θi,2 � θi,1
Δt

¼ ωi,1 þ g∑
n

j¼1
aij sin θ j,1 � θi,1

� �
, i ¼ 1, . . . ,n

θi,kþ1 � θi,k � 1

2 � Δt ¼ ωi,k þ g∑
n

j¼1
aij sin θ j,k � θi,k

� �
, i ¼ 1, . . . ,n; k ¼ 2,

. . . , T � 1

θi,T � θi,T � 1

Δt
¼ ωi,T þ g∑

n

j¼1
aij sin θ j,T � θi,T

� �
, i ¼ 1, . . . ,n

where each different k from 1 to T corresponds to a different time step.
Solving forωi, k and substituting the discrete data bθi,k the corresponding
discrete Kuramoto transform (DKT) bωi,k is:

bωi,1 tð Þ ¼
bθi,2 � bθi,1

Δt
� g∑

n

j¼1
aij sin bθ j,1 � bθi,1� �

, i ¼ 1, . . . ,n

bωi,k tð Þ ¼
bθi,kþ1 � bθi,k � 1

Δt
� g∑

n

j¼1
aij sin bθ j,k � bθi,k� �

, i ¼ 1, . . . ,n k ¼ 2, . . . , T � 1

bωi,T tð Þ ¼
bθi,T � bθi,T � 1

Δt
� g∑

n

j¼1
aij sin bθ j,T � bθi,T� �

, i ¼ 1, . . . ,n

3.2.2. Discrete simultaneous autoregressive transform
The discrete version of the Eq. (8) is:

ui,k ¼ g∑
j≠i

γiju j,k þ νi,k, i ¼ 1, . . . ,n; k ¼ 1, . . . , T

for the time step k from1 to T. Solving forνi, k and substituting the discrete
data bui,k the corresponding discrete simultaneous autoregressive
transform (DSART) bνi,k is:

bνi,k ¼ bui,k � g∑
j≠i

γijbu j,k, i ¼ 1, . . . ,n k ¼ 1, . . . , T

3.2.3. Discrete rate fluctuations transform
The simplest discrete version of the Eq. (9) is:

τ
ui,2 � ui,1

Δt
¼ � ui,1 þ g∑

j≠i
γiju j,1 þ νi,1, i ¼ 1, . . . ,n

τ
ui,kþ1 � ui,k � 1

2 � Δt ¼ � ui,k þ g∑
j≠i

γiju j,k þ νi,k, i ¼ 1, . . . ,n; k ¼ 2, . . . , T � 1

τ
ui,T � ui,T � 1

Δt
¼ � ui,T þ g∑

j≠i
γiju j,T þ νi,T , i ¼ 1, . . . , n

for time step 1 ≤ k ≤ T. Solving for νi, k and substituting the discrete
data bui,k the corresponding discrete rate fluctuations transform
(DRFT) bνi,k is:

bνi,1 ¼ τ
bui,2 � bui,1

Δt
þ bui,1 � g∑

j≠i
γijbu j,1, i ¼ 1, . . . ,n

bνi,k ¼ τ
bui,kþ1 � bui,k � 1

Δt
þ bui,k � g∑

j≠i
γijbu j,k, i ¼ 1, . . . ,n k ¼ 2,

. . . , T � 1

bνi,T ¼ τ
bui,T � bui,T � 1

Δt
þ bui,T � g∑

j≠i
γijbu j,T , i ¼ 1, . . . ,n



Table 1
Themodel transform (MT) allows simple theoretical models to be applied to complex em-
pirical systems and the specific choice of model and parameter depends on the question
we want to answer.

Minimal model Variable parameter Question we want to answer

Uniform motion
in a straight
line

Instantaneous velocity How far an object moves from rest
at each time point

Circle Curvature or reciprocal
of the radius of curvature

How far a curve moves away from a
straight line in any small segment

Helix Torsion Distance between any
three-dimensional curve and a
planar curve
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4. Instantaneous attractors

In this section, as an example of application of the concept of MT we
search for a model that allows us to find the stationary states towards
which a dynamical system is attracted at each time point and how the
corresponding attractor landscape is characterized. In different Subsec-
tions we a) justify themethod, b) define the concept of minimal model,
c) introduce some ideas and results from theDynamical Systems Theory
(DST), d) find the simplest model that meets certain conditions for our
objective, e) apply the DST to the particular case of the suitableminimal
model, f) define the corresponding MT to this minimal model,
g) sumarize the formalism, h) apply it in several examples, i) show
the usefulness of the method, and j) explore its application in high-
dimensional systems.

4.1. Justification, benefits and advantages of the method

Especially in very complex systems such as the human brain, it is not
realistic to imagine a stationary attractor landscape in time that would
allow explaining its dynamics. On the other hand, if we assume that
there is a non-stationary attractor landscape that explains brain dynam-
ics, wewould have to develop amethod to approximate it, since this has
not yet been done.

To develop it, we take inspiration from trivial examples such as the
concept of velocity, which has a fixed value in uniform rectilinear mo-
tion but can be extended by difference calculus to variable values in

other motions. The same differential equation dr
!
=dt ¼ v

!
that can be

used as a “differential model” of uniform rectilinear motion when the

parameter v
!
is fixed can, alternatively, be taken as the definition of in-

stantaneous velocity when its value is allowed to vary with time. In
this second case, it is no longer a differential equation but the definition

of v
!
, which could be calculated knowing, for example, the empirical

values of r
!
.

Starting from that trivial example we try to transfer this idea what
we formalize as Model Transform to the concept of global attractor.
Our goal is to find a simple but non-trivial model for which, when the
corresponding parameters are fixed, this global attractor is well
known. Interestingly, this global attractor varies when the parameters
are allowed to vary over time. In analogy to the trivial example of veloc-
ity, the same equation that defines the model serves for the empirical
calculation of the parameters as functions of time, substituting in it
the empirical values, typically, empirical time series.

The ideal model for this purpose should be the simplest one that
meets the following requirements: a nontrivial model with a finite
number of stationary points which includes at least the trivial solution
(0,0,…,0) and a globally asymptotically stable solution (GASS). This
GASS is the state the system is attracted to, since from any initial point
the system will converge to the GASS. Here, “nontrivial” means that
the model includes more than one stationary point. Finally, in order to
have a manageable and interesting structure to study, a finite number
(larger than one) of stationary points is required.

It will be shown that the model proposed has multiple advantages,
such as: i) it includes a rich attractor landscape with a large number of
stationary points, each being a unique combination of active and inac-
tive nodes of the dynamical system, ii) it includes empirical information
regarding the interaction matrix of the dynamical system, iii) it has a
well-known condition for existence and uniqueness of the GASS, iv) it
supports a Lyapunov function so that its isolated invariants could be or-
dered according to its energy levels, v) it supports an algorithm of low
computational complexity to find the GASS (see Section 4.10), and vi)
it has a well-known structure of the global attractor.

Therefore, it is about extending the concept of global attractor taken
from the dynamical systems theory (DST) to non-stationary attractor
landscapes, such that the state to which a system is attracted at each in-
stant of time can be approximated.
5

4.2. Minimal model

The specific choice of themodel and parameters for themodel trans-
form (MT) depends on the question we want to answer. In trivial
models, if we want to quantify the “departure from rest” or “distance”
between the rest and a givenmotionwemust look for the simplest pos-
sible motion that allows us to measure that distance. The simplest mo-
tion in this case is the uniformmotion in a straight line and, fitting it to

each small neighborhood of x
!

tð Þ, the variation per unit of time of x
!

tð Þ is
ameasure of “remoteness from rest”. Therefore, we say that the uniform
motion in a straight line is the minimal model that transforms amotion

x
!

tð Þ into v
!

tð Þ, or conversely that v
!

tð Þ is the MT of x
!

tð Þ when the mini-
mal model is the uniform motion in a straight line. Note that first, we
have an intuitive idea of what we want to measure and then, after
looking for a minimal model, the intuitive idea is specified and formal-
ized. While the uniform motion in a straight line is the simplest model
that allows us to know “how far an object moves from rest at each

time instant”, i.e. how a motion x
!

tð Þ “moves away from rest”, in
Table 1 other examples ofminimalmodels are shown.Note that the cur-
vature or “How far a curve moves away from a straight line in any small
segment” can be measured using, for example, a parabola as model, but
that the simplest model that allows us to measure the curvature
through a MT is the circle.

Hereafter, we search for theminimalmodel that allows us to answer
the questions “towardswhich state is the dynamical system attracted to
at each time point?” and “what does the corresponding instantaneous
attractor look like?” These questions will be faced with help of the Dy-
namical Systems Theory (DST).

4.3. Introduction to Dynamical Systems Theory (DST)

The Global Attractor (GA) is an important concept in DST which de-
scribes all the future scenarios of a Dynamical System (DS). The GA is
defined as follows [5,22,24,28,36,47]:

A set A in the phase space X, A⊆X is a GA for the semigroup
{S(t) : t ≥ 0} (which characterizes the DS) if it is

(i) compact,
(ii) invariant under {S(t) : t ≥ 0}, i.e. S tð ÞA ¼ A for all t ≥ 0, and.
(iii) attracts bounded subsets of X under {S(t) : t ≥ 0} for theHausdorff

semidistance; i.e., for all bounded B ⊂ X

lim
t!þ∞

distH S tð ÞB,Að Þ ≔ lim
t!þ∞

sup
b ∈ B

inf
a ∈ A

d S tð Þb, að Þ ¼ 0:

where distH is the Hausdorff distance.
A global solution is a function ξ : ℝ→ X such that ξ(t+ s) = S(t)ξ(s)

for all s ∈ℝ, t ∈ℝ+. A orbit initiating at u0 is the set {S(t)u0 : t ∈ℝ+}⊂ X.
u ∗ ∈ X is a stationary point if S(t)u ∗ = u ∗, for all t ≥ 0. A stationary point
is the simplest instance of global solution associatedwith S(t). A station-
ary point u ∗ ∈ X is said to be stable if for any neighborhood U of u ∗, there
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exists a neighborhoodW of u ∗ such that any orbit initiating inW at time
t=0 remains in U for all t ≥ 0. It is said to be asymptotically stable if it is
stable and the orbit converges to u ∗. If u ∗ is not stable, it is said to be un-
stable. The basin of attraction of u ∗ is defined by the set of points u0
satisfying S(t)u0 → u ∗ as t → + ∞. When the basin of attraction of u ∗ is
the whole phase space or at least its interior and u ∗ is stable, u ∗ is said
to be globally stable. When a stationary point is asymptotically and
globally stable it is called globally asymptotically stable solution (GASS)
[46].

Generically, the GA structure can be described by isolated invariant
sets (typically stationary points or periodic orbits [10,23,25,34], see def-
inition of isolated invariant set in Supplementary Materials) and
connecting global solutions among them ([2,10], see definition of
connecting global solution in Supplementary Materials). Those connec-
tions among invariant sets describe its structure [4,8].

Wewill say that a semigroup {S(t) : t⩾ 0} with a GAA and a disjoint
family of isolated invariant setsΩ={Ξ1,…,ΞN} is a gradient semigroup
with respect to Ω, if there exists a continuous function V : X → ℝ such
that [0,∞) ∍ t ↦ V(S(t)u) ∈ ℝ is decreasing for each u ∈ X, V is constant
in Ξi for each 1 ⩽ i ⩽ N, and V(S(t)u) = V(u) for all t ≥ 0 if and only if

u ∈ ∪
N

j¼1
Ξj: V is called Lyapunov function respect to Ω (see more about

gradient semigroups in Supplementary Materials).
So, a DS is called gradient if there is some continuous real-valued

function which is strictly decreasing on nonconstant solutions. This de-
scription shows a geometrical picture of the GA of a dynamically gradi-
ent system, in which all the stationary points or isolated invariant sets
are ordered by connections related to its level of attraction [3] or stabil-
ity. Thus a consequence of it is that the GA is isomorphic to a directed
graph: Each of the Ξi is associated with a vertex or node from the
graph, and there is a directed edge from the vertex associated to Ξi

towards the vertex associated to Ξj if and only if there is a global
solution that connects Ξi to Ξj. That edge is directed because there is
a Lyapunov function which is decreasing across the global solution
that connects Ξi to Ξj. The resulting directed graph is called
Informational Structure (IS) [16,26].

We can define an order between two isolated invariant sets Ξi and
Ξj saying that Ξi preceds Ξj (Ξi ≺ Ξj) if there is a chain of global
solutions

ξ‘, i ≤ ‘ ≤ j � 1f g ð10Þ

with

lim
t! � ∞

dist ξ‘ tð Þ,Ξ‘ð Þ ¼ 0

and

lim
t!∞

dist ξ‘ tð Þ,Ξ‘þ1ð Þ ¼ 0:

This implies that, given any gradient semigroup with respect to the
disjoint family of isolated invariant sets Ω = {Ξ1,…,ΞN}, there exists a
partial order in Ω.

There exists a dynamical description of a gradient semigroup by
reordering and regrouping the corresponding isolated invariant subsets
to obtain a totally ordered family of isolated invariant sets that we refer
to as energy levels.

Let us consider

M1 ≔ Ξl ∈ Ω : there is no elementΞ ∈ Ω that preceedsΞlf g

and, for any integer k ≥ 2,

Mk ≔ Ξl ∈ Ω : ifΞ ∈ Ω andΞ≺Ξl thenΞ ∈ Mk � 1f g:

Note that, by definition,ℳk ⊂ ℳk+1.
6

We now define the sets

N 1 ≔ ∪
Ξ ∈ M1

Ξ

and

N k ≔ ∪
Ξ ∈ Mk∖Mk � 1

Ξ ,

for all k ≥ 2.
Each of the levelsN i, 1 ≤ i ≤ q is made of a finite union of the isolated

invariant sets in Ω and N ¼ fN 1, :::,N qg is totally ordered by the dy-
namics defined by (10). Indeed, the associated Lyapunov function has
strictly decreasing values in any global solution linking two different
level-sets of N and any two elements of Ω which are contained in the
same element of N (same energy level) are not connected (see more
about energy levels in Supplementary Materials).

4.4. Minimal model to find the instantaneous global attractor

Mathematically speaking, we aim to find the simplest nontrivial
model with a finite number of stationary points which includes at
least the trivial solution (0,0,…,0) and a globally asymptotically stable
solution (GASS). This GASS is the state the system is attracted to, since
from any initial point (the basin of attraction of is the whole phase
space or at least its interior) the system will converge to the GASS.
Here, “nontrivial” means that the model includes more than one sta-
tionary point. Finally, in order to have a manageable and interesting
structure to study, a finite number (larger than one) of stationary points
is required.

We can choose a system of higher order differential equations but
for the sake of simplicity, we choose first order differential equations:
the lower the order the simpler the model. The most general form of a
model of n first order differential equations is:

dui
dt

¼ Fi u1, . . . ,uj, . . . ,un
� �

, i ∈ 1, . . . ,nf g, ð11Þ

where each i corresponds to a different node. We restrict Fi
(u1,…,uj,…,un) to analytical functions for all i ∈ {1,…,n}, again for
simplicity. Thus, it has a Taylor series at the origin (Maclaurin series):

Fi u1, . . . ,uj, . . . ,un
� � ¼ Fi 0, . . . , 0ð Þ þ∑

n

j¼1

∂Fi 0, . . . , 0ð Þ
∂uj

ujþ

þ 1
2!

∑
n

j¼1
∑
n

k¼1

∂2Fi 0, . . . , 0ð Þ
∂uj∂uk

ujuk þ
1
3!

∑
n

j¼1
∑
n

k¼1
∑
n

l¼1

∂3Fi 0, . . . , 0ð Þ
∂uj∂uk∂ul

ujukul þ . . .

The more terms we consider the more complex our model is. But if
we preserve only the terms up to the first order, the model is trivial
since it will include at most a single stationary point. Therefore, we
keep the terms up to the second order

dui
dt

¼ Fi 0, . . . , 0ð Þ þ∑
n

j¼1

∂Fi 0, . . . , 0ð Þ
∂uj

uj

þ 1
2!

∑
n

j¼1
∑
n

k¼1

∂2Fi 0, . . . , 0ð Þ
∂uj∂uk

ujuk, i ∈ 1, . . . ,nf g: ð12Þ

This new Fi(u1,…,uj,…,un) is a non-homogeneousmultivariate qua-
dratic form thatmust include at least two zeros for themodel to be non-
trivial. To avoid complex cases with chaotic solutions (see, for instance,
the Lorenz [29], Rössler [38], Chen [9], and Lü [30] systems) we require
that Fi can be factored into non-homogeneousmultivariate linear forms:

Fi ¼ Fi u1, . . . ,uj, . . . ,un
� � ¼ αi þ∑

n

j¼1
aijuj

 !
βi þ∑

n

j¼1
bijuj

 !
:
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This also simplifies the search for stationary points: du∗
i

dt ¼ 0⇔γi þ
∑n

j¼1ciju
∗
j ¼ 0 where γi and cij can be αi and aij, or βi and bij

generating up to 2n different systems of equations that, if they are
determinate compatible, would involve up to 2n stationary points.

The trivial solution (0,0,…,0) is included in

dui

dt
¼ αi þ∑

n

j¼1
aijuj

 !
βi þ∑

n

j¼1
bijuj

 !
, i ∈ 1, . . . ,nf g

if either αi or βi are null for all i ∈ {1,…,n}. We choose, without loss of
generality, βi = 0 for all i ∈ {1,…,n}:

dui

dt
¼ αi þ∑

n

j¼1
aijuj

 !
∑
n

j¼1
bijuj

 !
, i ∈ 1, . . . ,nf g: ð13Þ

But ∑j=1
n bijuj = 0 could include infinite solutions if B = (bij) is

singular, i.e., it has determinant ∣B ∣ = 0. The simplest regular matrix is
the identity matrix I = (δij), so choosing B = I the model reaches the
form:

u
:

i
¼ ui αi þ∑

n

j¼1
aijuj

 !
, i ¼ 1, . . . ,n: ("NewLabel")

These equations are called Lotka-Volterra (LV)model. It was initially

proposed by Alfred J. Lotka in the theory of autocatalytic Chemical Reac-
tions. It is frequently used to describe theDynamics of Biological Systems.
The LV equations have also a long history of use in Economic Theory. In
practice, it is accepted that ui ≥ 0 for i = 1, …, n as the positive cone
Rn
þ is an invariant set [45]. In the next subsection we show that this

model:

i) includes a rich attractor landscape with a large number of sta-
tionary points, each being a unique combination of active (ui∗ ≠
0) and inactive (ui∗ = 0) nodes of the dynamical system,

ii) includes empirical information regarding the interaction matrix
aij of the dynamical system,

iii) has a well-known condition for existence and uniqueness of the
state towards which the system is attracted to, i.e. the GASS [45],

iv) supports a Lyapunov function so that its isolated invariants could
be ordered according to its energy levels,

v) supports an algorithm of low computational complexity to find
the GASS,

vi) has a well-known structure of the global attractor.

4.5. DST applied to Lotka-Volterra systems

Here they are shown the concepts of stationary solutions, GASS, GA,
and energy levels for Lotka-Volterra (LV) systems.

Originally LV model comes from populations dynamics and its solu-
tions are restricted to positive values, so the phase space for
Eq. ("NewLabel") is the positive orthant, which is an invariant set,

Rn
þ ¼ u ¼ u1, . . . ,unð Þ ∈ Rn,ui≥0, i ¼ 1, . . . ,n


 �
: ð14Þ

Given an initial data for Eq. ("NewLabel"), sufficient conditions for
the existence and uniqueness of global solutions are well-known (see,
for instance, [32,45]).

LV systems include empirical information regarding the interaction
matrix simply choosing aij as the empirical connectivity of the system
for nodes i and j which is usually called structural connectivity.

4.5.1. Stationary solutions for the Lotka-Volterra model
The next theorem shows that model assumes up to 2n stationary

points:
7

Theorem 2. Each stationary point u ∗ = (u1∗,u2∗,…,um∗ ) of
Eq. ("NewLabel") consists of a unique combination of null and non-
zero variables.

Proof: We have to prove that given I a subset of M = {1,…,m} such
that ul

∗ = 0 if and only if l ∈ I the solution u ∗ is unequivocally
determined. Each stationary solution holds ui∗(αi + ∑n

j¼1aijuj
∗) = 0

for i = 1,…, n, so for each i it can either hold ui
∗ = 0 or

αi þ∑
n

j¼1
aiju∗

j ¼ 0: ð15Þ

For any k ∉ I and due to (15) we have

u∗
k ¼

� 1
akk

αk þ ∑
n

j≠k, j∉I
akju

∗
j

 !

which univocally defines a positive number since it can not be zero by
definition of I and can not benegative becauseu ∗ ∈Rn

þ. Therefore the so-
lution u ∗ is univocally defined by I. Q.E.D.

4.5.2. Globally asymptotically stable solution in the LV model
Hereafter, it is shown that the linear complementarity problem

(LCP) in the theory of mathematical programming are closely con-
nected with the problem to find out a globally asymptotically stable so-
lution (GASS) in LV systems.

The Linear Complementarity Problem (LCP) (see [13,33]) states that,
given r ∈ ℝn and a matrix M of order n, we try to find (w,z) ∈ ℝ2n, w=
(w1,w2,…,wn)T, z = (z1,…,zn)T, such that

w ¼ r þMz

w≥0, z≥0 and wizi ¼ 0 forall i ¼ 1, . . . ,n:
ð16Þ

(See more about the LCP and its solutions in Supplementary Mate-
rials). Existence and uniqueness of solution to the LCP depends on the
stability of the matrix M. Hereafter we show some definitions and re-
sults about stability of matrices:

A ∈ℝn×n is said to be stable if all associated eigenvalues has negative
real part.

A is positive semi-definite (negative semi-definite), if uTAu ≥ 0 (uTAu
≤ 0) for all u ∈ ℝn. It is positive definite (negative definite) if uTAu > 0
(uTAu < 0) for all u ∈ ℝn\{0}..

A matrix A belongs to class Sw or is Lyapunov-stable (see [14]), A ∈
Sw, if there exists a diagonal positive matrix W such that WA + ATW is
negative definite.

A is called negative dominant diagonal, A ∈ NDD if there exist n pos-
itive numbers vi > 0 such that

� viaii>∑
n

i≠j
∣aij∣vj, i ¼ 1, . . . ,n:

Recall that a minor of a matrix A is the determinant of some smaller
square matrix, cut down from A by removing one or more of its rows or
columns. If I and J are subsets of {1,…,n} with k elements, thenwewrite
[A]I, J for the k× kminor of A that corresponds to the rowswith index in I
and the columns with index in J. If I = J, then [A]I, J is called a principal
minor. A is said to be a P-matrix, A ∈ P, if all principal minors of A are
positive.

A matrix A in Sw implies−A to be a P-matrix [45].
A belongs to Sw if any of the following conditions hold:

1. A is negative diagonal dominant;
2. A es negative definite.

The LCP(r,M) possesses a unique solution r ∈ ℝn if and only ifM is a
P-matrix.

Nowwe show the relationship between the LV systems and the LCP:
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Consider the stationary point u ∗=(u1∗,u2∗,…,un∗) of the LV equations
expressed in the general way:

dui

dt
¼ ui αi þ∑

n

j¼1
aijuj

 !
, i ¼ 1, . . . ,n, ð17Þ

In a stationary point dui
dt ¼ 0 for i=1,…, n and by (14) ui∗ ≥ 0. So any

stationary point u ∗ holds that:

u�
i ≥ 0;

u�
i αi þ

Xn
j¼1

aiju�
j

0@ 1A ¼ 0; i ¼ 1;…;n:

8>><>>: ð18Þ

There exists and equivalence between looking for the GASS of the LV
system and the solution of a LCP, as shown by the following result:

Lemma 1. The LCP(−α,−A) where α = (α1,α2,…,αn)T and A = [aij] is
equivalent to find a nonnegative u ∗ stationary point of (17) satisfying:

αi þ∑
n

j¼1
aiju∗

j ≤ 0 for i ¼ 1, . . . ,n: ð19Þ

Proof: It is enough to take

z ¼ u∗ y w ¼ � b � Au∗,

so thatM=− A and r=− α and thus it holdsw=Mz+ r,w ≥ 0, z ≥ 0
and wizi = 0, for all i = 1,…, n. Q.E.D.

u ∗ satisfying (19) is called saturated.
In this way, LV Eq. (17) has a unique saturated equilibrium point for

each α ∈ℝn if and only if the LCP(−α,− A) possesses a unique solution.
The following important result (see [46]) now gives us the global

stability of saturated equilibria for LV systems:

Theorem 3. Suppose A ∈ Sw. Then the LV system (17) possesses a satu-
rated stationary point u ∗ for each α ∈ ℝn which is globally stable in ℝI

n.

It assures existence of the GASS, i.e., the stationary point for which
(19) is satisfied (see [45]).

Note that if A ∈ Sw, every principal submatrix of A also belong to Sw.
We finally have (see [45]):

Corollary 1. If A ∈ Sw, then the LV system and all its associated subsys-
temspossess a unique globally asymptotically stable solution (GASS) for
each α ∈ ℝn.

Note: If A ∈ Sw, then−A is a P-matrix and aii < 0 ∀ i. Thus, without
loss of generality they can be chosen aii=− 1∀i by re-scaling each ui. In
addition, it can be introduced a global coupling strength parameter g so
that aij = gγij, ∀j ≠ i:

u
:

i
¼ ui αi � ui þ g∑

n

j≠i
γijuj

 !
, i ¼ 1, . . . ,n, ð20Þ

or, expressed in matrix form, u
:¼ u α � uþ gΓuð Þ.

Theorem4. The system (20) has an asymptotically globally stable solu-
tion if g< 1/ρ(Γ), where ρ is the spectral radius of a matrix Γ, i.e. ρ(Γ) =
maxλ ∣ λ(Γ)∣, with λ(Γ) denoting an eigenvalue of Γ.

4.5.3. Structure of the global attractor and energy levels in a gradient LV
system

They can be shown that if A in du
dt ¼ u α þ Auð Þ is Lyapunov-stable:

1) There is a GASS in the positive cone, and a finite set of all stationary
points U ∗ ≔ {u1∗,u2∗,…,um∗}.

2) The semigroup associated with the equations u′ = u(α + Au), is a
gradient semigroup with respect to U ∗, so the strucure of the GA is
8

a directed graph in such a way that just one of the stationary points
in the positive cone, Rn

þ, is a globally asymptotically stable solution
(GASS).

3) This GASS can be interpreted as the lower end of the structure of the
GA if it is represented with the directed links going from up to down
(see Fig. 1).

4) Each stationary point in U ∗ has a unique combination of null and
non-zero variables. So the structure of the global attractor is isomor-
phic to a subgraph of the directed hypercube [0,1]n. This hypercube
has 2n vertices (or nodes) and 2n−1n edges (or links) where each di-
rected link goes to the vertex nearest (0,0,…,0) to the vertex
nearest (1,1, ...1).

5) Recall that as the DS is defined on a graph, two different graphs
are defined: A the proper graph onwhich the DS is defined (struc-
tural network, Fig. 1A Left) and B the structure of the global at-
tractor (Fig. 1A Right). In the particular case of the LV model
there is also a unique subgraph of the structural graph associated
to each stationary point (nodes of B) since each stationary point
has a unique combination of null and non-zero variables and
the corresponding subgraph would be the one that only includes
the nodes corresponding to the non-null variables. Thus, the GA
and its corresponding directed graph can be understood as a
new dynamical network describing all the possible feasible future
networks [20,21].

6) Each energy level is formed by stationary points with the same
number of non-zero components. The number of energy levels
(NoEL) equals the number of non-zero entries in the GASS plus
one. The first level of energy (associated with a source, a node
or vertex with only outgoing edges) is always comprised of the
trivial solution (all variables equal zero), while the last energy
level includes only the GASS (associated with a sink, a node or ver-
texwith only incoming edges). Dependingonα and A all the compo-
nents of the GASS could be non-zero and the number of energy
levels would be n + 1. In some cases, the structure may even be
complete, i.e., including 2n stationary points (as in Fig. 1A Right).

4.6. Lotka-Volterra transform

Definition 5. Given the values of the parameters g ∈ℝ+ and Γ=(γij) ∈
ℝn×n in a LV model, and given a sufficiently smooth function of time bu:
û : ℝ→ℝn

þ
û tð Þ ¼ û1 tð Þ;…; ûi tð Þ;…; ûn tð Þð ÞT ; for all t ∈ℝ
ûi tð Þ ∈ℝþ; for all i ¼ 1;…;n:

the Lotka-Volterra transform (LVT) of bu tð Þ is defined as the function bα tð Þ
that fulfills:

α̂ : ℝ→ℝn

α̂ tð Þ ¼ α̂1 tð Þ;…; α̂i tð Þ;…; α̂n tð Þð ÞT ; for all t ∈ℝ

α̂i tð Þ ¼
_̂ui tð Þ
ûi tð Þ þ ûi tð Þ− g

Xn
j¼1

γijû j tð Þ; i ¼ 1;…;n:

and the numerical values of functions bαi tð Þ for any t = t0 are called
instantaneous growth rates.

Remark: Again, notice that theprevious expression have been solved
for αi whichmakes sense, for example, when data bui tð Þ are known, and,

therefore, also bu:
i
tð Þ. Usually u(t) is the solution of the equation given

α(t) but now the situation is the opposite. LVT is defined such that
given the initial values of bu tð Þ, the LV equations' solutions fit exactly
the empirical or simulated data bu tð Þ. Nevertheless, in the context of
the LVT the LV equations are not assessed as a model, since choosing
the suitable α(t) the fitting is always perfect for any sufficiently smoothbu tð Þ.



Fig. 1. A, (Left) Structural network of a cooperative (γi≠j ≥ 0) 4-dimensional (n = 4) Lotka-Volterra (LV) system given by a γ matrix for a equation like Eq. (20). (Right) Structure of the
global attractor. Each node is a stationary point which can be represented as a subgraph of the structural network where non-null components are shown in black and null in grey. B,
(Top) Evolution in time of αi parameters of a four-node system. In this example αi are periodic functions of time. Changes in the parameters governing the dynamics produce changes
in the corresponding structures of the Global Attractor. (Bottom) They are shown the corresponding different structures for the time steps shown above. For these LV systems each
energy level is formed by stationary points with the same number of non-zero components. The number of energy levels (NoEL) changes over time also, but equals the number of
non-zero entries in the GASS plus one.
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4.7. Recapitulation and procedure

The LVmodel is ideal for the purpose of answering the questions “to-
wards which GASS is the dynamical system attracted to at each time
point?” and “how is the structure of the corresponding global attrac-
tor?”, because LV is the simplest (minimal) model with a finite number
of stationary points (butmore thanone)which includes at least the triv-
ial solution (0,0,…,0) and a GASS. Furthermore, this model includes a
rich attractor landscape with a large number of stationary points, each
being a unique combination of active (ui∗ ≠ 0) and inactive (ui∗ =
0) nodes of the dynamical system (as a consequence of including the
trivial solution) which makes it easy to interpret the meaning of the
9

stationary points in practical applications. The model also includes the
empirical structural connectivity of the dynamical system, and the
conditions for existence and uniqueness of the GASS are well-known.
Cooperative LV systems have a well-known structure of the global at-
tractor, their invariants can be ordered according to its energy levels,
and supports an algorithm of low computational complexity to find
the GASS and the NoEL [3,18,21].

Hence, we consider the Lotka-Volterra transform (LVT), given by:

αi tð Þ ¼
u
:

i
tð Þ

ui tð Þ þ ui tð Þ � g∑
n

j¼1
γijuj tð Þ, i ¼ 1, . . . ,n: ð21Þ
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In practice, u(t), u
:

tð Þ, g, and γij are empirical valueswhere u(t), u
:

tð Þ
are obtained in the formof discrete time series. The discrete LVT is a par-
ticular case of DMT (see Section 3). The simplest discrete version of the
LV equations are:

ui;2−ui;1

Δt
¼ ui;1 αi;1−ui;1 þ g

Xn
j¼1

γiju j;1

0@ 1A; i ¼ 1;…;n

ui;kþ1−ui;k−1

2 � Δt ¼ ui;k αi;k−ui;k þ g
Xn
j¼1

γiju j;k

0@ 1A; i ¼ 1;…;n;

k ¼ 2;…; T−1

ui;T−ui;T−1

Δt
¼ ui;T αi;T−ui;T þ g

Xn
j¼1

γiju j;T

0@ 1A; i ¼ 1;…;n

and, solving for α, the corresponding discrete LVT:

αi,1 ¼ ui,2 � ui,1

Δt � ui,1
þ ui,1 � g∑

n

j¼1
γiju j,1, i ¼ 1, . . . ,n

αi,k ¼
ui,kþ1 � ui,k � 1

2Δt ⋅ ui,k
þ ui,k � g∑

n

j¼1
γiju j,k, i ¼ 1, . . . ,n; k ¼ 2, . . . , T � 1

αi,T ¼ ui,T � ui,T � 1

Δt ⋅ ui,T
þ ui,T � g∑

n

j¼1
γiju j,T , i ¼ 1, . . . ,n

We call this new mathematical tool “transform” because it starts
from a n × T data matrix ui, k (n nodes, T time steps) while the result
of the discrete LVT is another n × T matrix called alpha. Thus, at each
time step k the output of the LVT is a n-dimensional column vector αi,

k (i = 1, …, n), such that we obtain a temporal series of T different
columns vectors. Then, for each time step k we calculate the global at-
tractor of a LV system using the column vector αi, k. Thus, we obtain a
global attractors time series (see Fig. 1A) since for each time step k the
column vector αi, k defines a LV system for which the GA, its structure
of stationary points and the GASS can be calculated. In practice, if we
are interested only in the GASS and theNoEL and not in thewhole struc-
ture of the GA, the linear complementarity problem (LCP) can be used.
Let us remember that exists an equivalence between obtaining the
GASS of collaborative LV systems and solving a LCP (see Section 4.5.2).
Furthermore, the NoEL equals the number of non-zero entries in the
GASS plus one (see Section 4.5.3). The LCP is solved using, for instance,
the Complementary Pivot Algorithm (CPA, [13,33]) an algorithm of low
computational complexity which allow us to calculate large time series
of GASSs in a short period of time (See Section 4.10 for more informa-
tion about the low complexity of the CPA).

4.8. Examples of application of LVT

In a first example (see Fig. 2AB), the starting data consists of a time
series generated by a specific model and the MT associated with that
same model is performed on these data. In such cases the result will
be constant over time. Specifically, we have generated data from a
Lotka-Volterra model with n = 7 and a given alpha column vector.
We also need a certain connectivity matrix and a certain value of g to
generate the data. When applying the LVT to these data, we obtain, as
expected, a constant alpha column vector in time, precisely the one
from which we started, except for the variations produced by the
noise added in the data generation.

In a second example (Fig. 2CD), the generating model and the
transforming model are again the same (LV), but the parameters
(alpha) are time-varying. Specifically, the components of alpha are
piecewise functions. Again, when applying the LVT we obtain the com-
ponents of the alpha function fromwhichwe started, except for the var-
iations produced by the added noise.

But the information that MT can extract from a empirical or simu-
lated system is not reduced to these trivial cases. More interestingly,
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in a third example (Fig. 2EF), the data has been generated by a different
model than the one used for theMT. Specifically, we use aMultivariable
Ornstein–Uhlenbeck (MOU, a model with applications in Financial Math-
ematics, Physical Sciences, Evolutionary Biology, and Computational Neu-
roscience) process (n = 4) to generate the data:

dui tð Þ
dt

¼ � ui tð Þ
τ

þ∑Cijuj tð Þ þ νi:

where τ is the leakage time constant (common to all nodes) and νi the
input noise. In our simulations, the connectivity matrix

C ¼

0 0 β 0
β 0 0 0
0 β 0 β=2
0 0 β=2 0

0BBB@
1CCCA ¼ β

0 0 1 0
1 0 0 0
0 1 0 1=2
0 0 1=2 0

0BBB@
1CCCA ¼ βD

depends on β. β can be considered as ameasure of the effective connec-
tivity (EC) of a system whose structural connectivity (SC) represented
by D remains constant. For each β value, time series of data are gener-
ated through the MOU to which the LVT is applied. For each β the n ×
T data matrix (n nodes, T time steps) is transformed into another n × T
alpha matrix. For each β value and for each time step we calculate the
number of energy levels (NoEL) of the corresponding global attractor
(as explained in Section 4.7), whichwill be between 1 and n+1. There-
fore, for each βwe obtain a time series of NoEL values andwe can calcu-
late its mean and standard deviation.

The results are shown in Fig. 2EF. It is observed that both the average
NoEL and its standarddeviation are linearly correlatedwith the effective
connectivity of the system. From thiswe can infer that the LVT is a useful
tool to estimate the EC in complex systems inwhich, although the SC re-
mains constant, the EC varies depending on the state of the complex
system. In fact, this is compatible with the results obtained in [18,44],
considering that low-consciousness brain states such as sleep and
coma are generally considered to be associated with lower levels of
EC. Note that it is not obvious a priori what information each specific
MTwill extract from each empirical system, and it will often be inferred
a posteriori from applications of each specific MT to both simulated and
empirical datasets.

4.9. Usefulness of the LVT

In Section 4.8 it has been shown that the LVT could be a useful tool to
estimate the EC for complex systems in which, while the SC remains
constant, the EC varies depending on the state of the complex system.
Nevertheles, the general usefulness of the LVT is to calculate where an
empirical system is attracted to at each time point: that is, the instanta-
neous attractor. The same method also allows to approximate the sur-
rounding attractor landscape including its stationary points (saddle
and unstable), the structure of the corresponding global attractor and
its number of energy levels. All the stationary points, which are mostly
saddle points of the AL, repel or attract the state of the system. This
can be visualized by imagining these points curving the phase space,
and, indirectly, affecting the dynamics of the system (see Fig. 3 in [16]).

The novelty of this approach is essentially a first transformation of
empirical data into a non-stationary description of the attractor land-
scape by a dynamical system approach. On the side of applied mathe-
matics and DST, this way to interpret attractors as an instantaneous
object is also new.

Another motivation for this appliaction of the MT is based on the
thesis that the fundamental information of a dynamical system is
expressed in the structure of its global attractor. Thus, in the case of
the human brain as a complex dynamical system, the structure of the at-
tractor could be related to the corresponding states of consciousness. A
validation of this is that our method has been used [18] to define new
measures of consciousness.



Fig. 2. A, In a cooperative (γi≠j ≥ 0) 7-dimensional (n=7) Lotka-Volterra (LV) system (Eq. (20)), a time series dataset is generated by specific constant alpha components αi. B, The LVT is
performed on these data. and as expected, the same alpha column vector is obtained except for the noise added in the generation process. C, Again a cooperative 7-dimensional LV system,
but now the components of alphaαi are piecewise functions. D,When the LVT is applied on these data the original piecewiseαi are obtained except for the added noise. E, In this example a
four-node system evolves in time according to a multivariable Ornstein–Uhlenbeck process. αi are calculated from the generated data through the LVT. Changes in the β parameter
governing the effective connectivity (EC) produce changes in the corresponding distribution of the global attractors and their number of energy levels (NoEL). The average NoEL is
linearly correlated with the EC of the system. A linear regression is shown with R2 = 0.85 (it indicates the amount of variance in the average NoEL that is explained by the EC). Similar
results are obtained in different realizations of the simulation. F, The standard deviation of the NoEL is also linearly correlated with the EC of the system. In this realization the linear
regression performs with R2 = 0.95. Thus, the variability of the NoEL is even a better predictor of the EC. Again, similar results are obtained in different realizations.

J.A. Galadí, F. Soler-Toscano and J.A. Langa Chaos, Solitons and Fractals 159 (2022) 112094
Furthermore, the method proposes here could help to calculate the
empirical “ghost” attractors of complex systems as the human brain.
These attractors, suggested in [15,51], would correspond to distinct
foci of high activity in particular nodes. According to [15], at the edge
of the transition from resting state to task context in the human brain
the local attractors would not exist as stable fixed points yet, since
they are either saddle points, or regimes with close to zero flow in the
phase space. However, as a possible neurobiological explanation of the
resting state dynamics, these states could be easily stabilized when
needed in a given task context or for a given function. We believe that
our new formalism could be used to detect empirical ghost attractors
since, in a non-stationary AL, stable attractors are never reached.

4.10. LVT for high-dimensional systems

Herewe discuss about the validity of our approachwhen the dimen-
sion n of the underlying dynamical system becomes large. Even a rela-
tively simple model, as LV is, could include a complex attractor
landscape with up to 2n stationary points (for instance 1.238 × 1027

when n = 90). It is known that many data analysis method fail for
high-dimensional dynamics. On the contrary, one of the advantages of
our approach is that it is validwhen the dimension of the underlyingdy-
namical system becomes large. The problem of calculating the GASS
(and consequently the number of energy levels of the GA) in a cooper-
ative LV system is equivalent to solving a LCP. Algorithms to solve the
LCP such as the Complementary Pivot Algorithm (CPA) have shown
low computational complexity [33].

The computational complexity of an algorithmmeasures the growth
of the computational effort involved in executing the algorithm as a
function of the size of the problem. In the CPA, the computational effort
11
is assessed by the number of pivot steps carried out before the algorithm
terminates.

The Probabilistic Average Computational Complexity is a measure
for studying the computational complexity of an algorithm where the
data in the problem are assumed randomly generated according to
some probability distribution. The average computational complexity
of the algorithmunder thismodel is then defined to be the statistical ex-
pectation of the number of steps needed by the algorithm before termi-
nation on problem instances with this data. The average analysis has
been performed [48] under certain assumptions on the distribution of
the data and the expected number of pivot steps taken by the CPA be-
fore termination when applied on the LCP was at most n(n + 1)/4.

The Empirical Average Computation Complexity is another measure
for computational complexity usedmore in the spirit of simulation. The
computational experiment is performed by applying the algorithm on a
large number of problem instances of various sizes, and summary statis-
tics are then prepared on how the algorithm performed on them. Com-
putational experiments indicate that on problems on which it did
terminate, the average number of simplices that the algorithm walked
through before termination is O n2

� �
, as a function of the dimension of

the problem (see [39–42]).
As a conclusion, the CPA can be applied in systems of n dimensions,

being relatively fast as n grows.
5. Other applications

Metastability is usually measured in empirical complex systems with
the standard deviation σR of the Kuramoto order parameter R, where
R is the module of the complex number 1

n∑
n
j¼1e

iθj [43]. However,
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what really expresses σR is a variability in the overall synchronization of
the system. In the framework of the previous section, an alternative is
the standard deviation of the NoEL which assesses the tendency of the
system to change the local attractors (the GASSs) and could be called
structural metastability [17].

In this LVT context, cooperation and integration measures can be de-
veloped after the structure of the global attractor. Structures with
NoEL equal to q + 1 can have up to 2q nodes, where q ≤ n but not all
nodes are always present. The number of nodes divided by 2q is a mea-
sure of the lack of integration in the system. This is because when this
ratio is small, it is reached a stable local attractor (GASS)with certain ac-
tive nodes while stationary points corresponding to combinations of
some of those active nodes do not appear in the GA. The explanation,
therefore, is that the integrative interaction between different nodes fa-
cilitates the existence of that stable attractor. Furthermore, in coopera-
tive LV systems (γij ≥ 0 ∀ i ≠ j) once a node ni appears as active in a
stationary point at certain energy level, it will also appear in the more
stable levels and also in the GASS. But we can focus on the stationary
points which contain some new apparition of a certain node, and call
them cooperative points. Several measures can be defined by looking at
the cooperative nodes of a GA. Thus, the highest energy level in which
cooperation appears is the highest cooperative level.

Again in the framework of the previous section criticality and syn-
chronicity measures can be defined. In the context of the LCP solved to
calculate the GASS 16 joining w and z there are, at most, only 7 non-
zero components different that are also positive which will be called
ri. Recall that each GASS of a LV system is a unique combination of null
and non-null components. At the points where the transition between
GASS occurs there are more than 7 null components of r. Thus, one
way to measure the proximity of the GASS transition is to calculate
the minimum of the ri. Hence, the minimum of the {ri} is a measure of
criticality as it indicates the proximity of a phase transition.
Additionally, the GASS divides the nodes of the system into two
subsets: inactives and actives ones. But there are two special kinds of
GASSs: when all nodes are actives and when all nodes are inactives.
Synchronicity is defined as the ratio of these extreme GASSs in the
GASS time series.

In a general framework beyond the LVT, empirical noise distributions
can be calculated using different MTs. In Physics, Acoustical Engineering,
Telecommunications, and Statistical Forecasting noise refers to a statistical
model for signals and signal sources. Noise time series can be calculated
using, for example, the SAR Transform (SART) and the Rate Fluctuations
Transform (RFT). In both cases andwhatever cases in which the noise is
the model parameter converted to a function of time, instead of being
modeled as a Gaussian noise, noise is calculated exactly from the exper-
imental data.

InMachine Learning, classification is the problemof identifyingwhich
of a set of categories an observation belongs to. An algorithm that imple-
ments classification in a concrete implementation is known as a classi-
fier. The observations are termed instances, the explanatory variables
are known as features, and the categories to be predicted are called clas-
ses. Classifiers can be trained for using the instantaneous parameters
values from theMT. Indeed, a parameter generally, is any characteristic
that can help in defining or classifying a particular system. Thus, our
proposal is that the precision of the classification can be increased by
using the appropriate MT for each case, because the instantaneous pa-
rameters can reveal characteristics of the system not shown in the
raw data. In [18], it has been proved that the LVT is useful for classifica-
tion of different human brain states.

When the parameters are fixed, a model can be used to generate
data through simulations given initial values or boundary conditions.
When the MT associated with the model that generated the data is ap-
plied to these simulated data, the fixed parameters from which it was
started are obtained. The variability of the MT result in this case would
therefore be zero. Said variability can be measured in different ways
as, for example, by standard deviation. Any of these measurements
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can be used as a model distance that can be defined as the distance be-
tween the empirical model and the model used in the MT.

In Structural Engineering, Electrodynamics, and Mechanics the Modal
analysis is the study of the dynamic properties of systems in the fre-
quency domain. The analysis of the signals typically relies on Fourier
analysis. The resulting transfer function will show one or more reso-
nances, whose characteristic mass, frequency and damping ratio can
be estimated from the measurements. An alternative in the framework
of the model transform is the Kuramoto transform which can provide
instantaneous intrinsic frequencies from empirical data.

6. Conclusion

Amodel was defined as a system of n first order ordinary differential
equations but this definition can be extended to second, third, etc., order
ordinary differential equations, difference equations, or other formula-
tions of a theoretical dynamical system. In the model transform (MT)
the model is solved for parameters which makes sense, for instance,
when empirical time series of the model variables are known. Typically
the solution of amodel is assessed given fixed parameters, but, contrary
to this, in the MT the situation is just the opposite. The MT is defined as
the time dependent parameters with which themodel equations fit ex-
actly the empirical data as a solution. Nevertheless, it is very important
noticing that the model equations are not being assessed as a model. In
other words, the model could be too simple compared to complex em-
pirical time series.

The Lotka-Volterra transform (LVT) is a particular case of the general
model transform. It was desirable to take advantage of the well-known
structure of the the global attractor (GA) of the Lotka-Volterra (LV)
model. Using LV equations the globally asymptotically stable solution
(GASS) and the number of energy levels (NoEL) are easily computed
bymeans of the efficient Complementary Pivot Algorithm. No similar al-
gorithm is known to calculate the GASS in more complex models. A GA
is obtained for that LVmodel for each time point resulting a continuous
movement of attractor landscapes.

Thus, in complex empirical systems the application of the LVT can
provide relevant system information through the corresponding instan-
taneous parameters. The LVT can be analytically computed for dynami-
cal activity of complex systems with local node dynamics u(t) defined
on networks where the connectivity γij is the underlying structure of a
system. Changes in the parameters characterize the dynamics of the
system and produce changes in the corresponding GA.

In practice, the empirical signals aremeasured as time series, that is,
their values are known for discrete values of time. At each time step the
data define a columnmatrix, and, finally, it is obtained a temporal series
of different attractors. It opens the door to describe landscapes of
attractors that change over time and to calculate the associated struc-
tures for any empirical system on a network.

In Neuroscience, it has been proved [18] that the LVT is useful for
studies of consciousness. This approach also opens the door to use the
MT for different models, for instance, the Kuramoto model for comput-
ing instantaneous intrinsic frequencies. In this and other research fields
the applications of the MT may be countless.
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