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Abstract. We introduce a new streamline derivative projection-based closure modeling strategy
for the numerical stabilization of Proper Orthogonal Decomposition-Reduced Order Models (POD-
ROM). As a first preliminary step, the proposed model is analyzed and tested for advection-dominated
advection-diffusion-reaction equations. In this framework, the numerical analysis for the Finite Element
(FE) discretization of the proposed new POD-ROM is presented, by mainly deriving the corresponding
error estimates. Numerical tests for advection-dominated regime show the efficiency of the proposed
method, as well the increased accuracy over the standard POD-ROM that discovers its well-known
limitations very soon in the numerical settings considered, i.e. for low diffusion coefficients.

Résumé. Nous introduisons une nouvelle stratégie de modélisation de type streamline derivative
basée sur projection pour la stabilisation numérique de modèles d’ordre réduit de type POD (POD-
ROM). Comme première étape préliminaire, le modèle proposé est analysé et testé pour les équations
d’advection-diffusion-réaction dominées par l’advection. Dans ce cadre, l’analyse numérique de la
discrétisation par éléments finis (FE) du nouveau POD-ROM proposé est présentée, en dérivant prin-
cipalement les estimations d’erreur correspondantes. Des tests numériques pour le régime dominé par
l’advection montrent l’efficacité de la méthode proposée, ainsi que la précision accrue par rapport à la
méthode POD-ROM standard qui découvre très rapidement ses limites bien connues dans le cas des
paramètres numériques considérés, c’est-à-dire pour de faibles coefficients de diffusion.

Introduction

Among the most popular Reduced Order Models (ROM) approaches, Proper Orthogonal Decomposition
(POD) strategy provides optimal (from the energetic point of view) modes to represent the dynamics from a
given database (snapshots) obtained by a full-order system. Onto these POD modes, a Galerkin projection of
the governing equations can be employed to obtain a low-order dynamical system for the modes coefficients. The
resulting low-order model is named standard POD-ROM, which thus consists in the projection of high-fidelity
(full-order) representations of physical problems onto low-dimensional spaces of solutions, with a dramatically
reduced dimension. These low-dimensional spaces are capable of capturing the dominant characteristics of the
solution, their main advantage being that the computations in the low-dimensional space can be done at a
reduced computational cost. In particular, the computational cost in a Direct Numerical Simulation (DNS) of
a complex problem could be reduced by several orders of magnitude when POD-ROM is employed. This has
led researchers to apply POD-ROM to a variety of physical and engineering problems, including Computational
Fluid Dynamics (CFD) problems, see e.g. [10, 14, 19, 27, 30, 37]. Once applied to the physical problem of
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interest, POD-ROM can be used to solve engineering problems such as shape optimization [2, 22] and flow
control [3, 13,21,35], making their effective resolution increasingly affordable in almost real-time.

Although POD-ROM can be very computationally efficient and relatively accurate in some configurations,
they also present several drawbacks. In this report, we address one of them, namely the numerical instability of
a straightforward POD-Galerkin procedure applied to advection-dominated problems. To address this issue, we
draw inspiration from the Finite Element (FE) context, where stabilized formulations have been developed to
deal with the numerical instabilities of the Galerkin method. In particular, we consider a Streamline Derivative-
based (SD-based) approach used by Knobloch and Lube in [28] in the FE context, which only acts on the high
frequencies of the advective derivative (see also [1] for its extension to Navier–Stokes Equations (NSE)). This
approach consists in adding a filtered advection stabilization term by basically following the streamlines to
prevent spurious instabilities due do dominant advection. This stabilization term acts on the high frequencies
component (main responsible for numerical oscillations) of the advection/streamline derivative, which seems
to be a natural choice when dealing especially with strongly advection-dominated configurations. Although
applications of stabilized methods can already be found in the ROM literature (see [10–12, 20, 25, 26] for the
POD context, and also [31,32] for the Reduced-Basis (RB) context), to the authors’ knowledge this is the first
time that the SD-based formulation in [28] has been applied in a POD setting. A different strategy used in the
recent literature to obtain surrogate ROM for nonlinear dynamical systems is the Dynamic Mode Decomposition
(DMD) method. In particular, a DMD-Galerkin method has been applied in [4] to advection-diffusion problems.

In this report, the proposed SD-based POD-ROM (SD-POD-ROM) is preliminary analyzed and tested for
the numerical approximation of advection-dominated advection-diffusion-reaction problems of the form: ∂tu+ b · ∇u− ε∆u+ gu = f in Ω× (0, T ),

u = 0 on Γ× (0, T ),
u(x, 0) = u0(x) in Ω,

(1)

where b with ‖b‖∞ = O(1) is the given advective field, ε << 1 the diffusion parameter, g the reaction coefficient,
f the forcing term, Ω the computational domain in Rd (d = 2 or 3), t ∈ [0, T ], with T the final time, and u0

the initial condition. For the sake of simplicity, we have imposed homogeneous Dirichlet boundary condition on
the whole boundary Γ = ∂Ω.

Although the new SD-POD-ROM is being developed to derive a low-order approximation of convection-
dominated and turbulent flows described by the NSE [9], as a first preliminary step we have decided to analyze
it for the mathematical setting in (1), which is simpler to work out, yet relevant to our ultimate goal (since
ε << ‖b‖∞).

The rest of the paper is organized as follows. In section 1, we briefly describe the POD methodology and
introduce the new SD-POD-ROM. The error analysis for the full discretization (FE in space and backward
Euler in time) of the new model is presented in section 2. The new method is tested numerically in section 3
for a 2D traveling wave problem, presenting a sharp internal layer moving in time. Finally, section 4 presents
the main conclusions of this work and future research directions.

1. Streamline derivative projection-based POD-ROM

1.1. Proper orthogonal decomposition reduced order model

For the report to be self-contained, this section briefly presents the computation of a basis for ROM with
POD. For more details, the reader is referred to [15,24,33,34,36].

We first present the continuous version of POD method. Consider a function u(x, t) : Ω × [0, T ] → R, and
r ∈ N. Then, the goal of POD consists in finding the set of orthonormal POD basis {ϕ1, . . . , ϕr} that deliver
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the best approximation:

min

∥∥∥∥∥u(x, t)−
r∑
i=1

(u(x, t), ϕi)H ϕi

∥∥∥∥∥
2

L2(0,T ;H)

, (2)

in a real Hilbert space H. Although H can be any real Hilbert space, in what follows we consider H = L2(Ω),

with induced norm ‖·‖ = (·, ·)1/2 =

(∫
Ω

| · |2
)1/2

.

In the framework of the numerical solution of Partial Differential Equations (PDE), u is usually given at
a finite number of times t0, . . . , tN , the so-called snapshots. Let us consider an ensemble of snapshots χ =
span {u(·, t0), . . . , u(·, tN )}, which is a collection of data from either numerical simulation results or experimental
observations at time tn = n∆t, n = 0, 1, . . . , N and ∆t = T/N . Then, usually an approximation of the error in
the square of the L2(0, T ) norm is consideed, e.g., by a modification of the composite trapezoidal rule. Thus,
in its discrete version (method of snapshots), the POD method seeks a low-dimensional basis {ϕ1, . . . , ϕr} that
optimally approximates the snapshots in the following sense, see for instance [29]:

min
1

N + 1

N∑
n=0

∥∥∥∥∥u(·, tn)−
r∑
i=1

(u(·, tn), ϕi)ϕi

∥∥∥∥∥
2

, (3)

subject to the condition (ϕj , ϕi) = δij , 1 ≤ i, j ≤ r, where δij is the Kronecker delta. To solve the optimization
problem (3), one can consider the eigenvalue problem:

Kzi = λizi, for 1, . . . , r, (4)

where K ∈ R(N+1)×(N+1) is the snapshots correlation matrix with entries:

Kmn =
1

N + 1
(u(·, tn), u(·, tm)) , for m,n = 0, . . . , N,

zi is the i-th eigenvector, and λi is the associated eigenvalue. The eigenvalues are positive and sorted in
descending order λ1 ≥ . . . ≥ λr > 0. It can be shown that the solution of (3), i.e. the POD basis, is given by:

ϕi(·) =
1√
λi

N∑
n=0

(zi)nu(·, tn), 1 ≤ i ≤ r, (5)

where (zi)n is the n-th component of the eigenvector zi. It can also be shown that the following POD error
formula holds [24,29]:

1

N + 1

N∑
n=0

∥∥∥∥∥u(·, tn)−
r∑
i=1

(u(·, tn), ϕi)ϕi

∥∥∥∥∥
2

=

M∑
i=r+1

λi, (6)

where M is the rank of χ.

We consider the following space for the POD setting:

Xr = span {ϕ1, . . . , ϕr} .

Remark 1.1. Since, as shown in (5), the POD modes are linear combinations of the snapshots, the POD
modes satisfy the boundary conditions in (1). This is because of the particular choice we have made at the
beginning to work with homogeneous Dirichlet boundary conditions. In general, one has to manipulate the
snapshots set. This is the case, for instance, of steady-state non-homogeneous Dirichlet boundary conditions, for
which is preferable to consider a proper lift in order to generate POD modes for the lifted snapshots, satisfying
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homogeneous Dirichlet boundary conditions. This would lead to work with centered-trajectory method in the
POD-ROM setting [20].

In the form it has been presented so far, POD seems to be only a bivariate data compression or reduction
technique. Indeed, equation (3) simply says that the POD basis is the best possible approximation of order r of
the given data set. In order to make POD a predictive tool, one couples the POD with the Galerkin procedure.
This, in turn, yields a ROM, i.e., a dynamical system that represents the evolution in time of the Galerkin
truncation. Thus, the Galerkin POD-ROM uses both Galerkin truncation and Galerkin projection. The former
yields an approximation of the velocity field by a linear combination of the truncated POD basis:

u(x, t) ≈ ur(x, t) =

r∑
i=1

ai(t)ϕi(x), (7)

where {ai(t)}ri=1 are the sought time-varying coefficients representing the POD-Galerkin trajectories. Note that
r << N , where N denotes the number of degrees of freedom (d.o.f.) in a full order simulation (e.g., DNS).
Replacing u with ur in (1), using the Galerkin method, and projecting the resulted equations onto the space
Xr, one obtains the standard POD-ROM:

d

dt
(ur, ϕr) + (b · ∇ur, ϕr) + ε(∇ur,∇ϕr) + (gur, ϕr) = (f, ϕr) ∀ϕr ∈ Xr. (8)

Despite its appealing computational efficiency, the standard POD-ROM (8) has generally been limited to
diffusion-dominated configurations. To overcome this restriction, we draw inspiration from the FE context,
where stabilized formulations have been developed to deal with the numerical instabilities of the Galerkin
method in advection-dominated configurations.

1.2. Streamline derivative projection-based method

It is well known that a simple Galerkin truncation of POD basis leads to unstable results for advection-
dominated configurations [5], and although the disregarded modes do not contain a significant amount of the
system’s kinetic energy, they have a significant role in the dynamics of the reduced-order system. To model the
effect of the discarded POD modes, various approaches have been proposed, both based on physical insights
(cf., e.g., the survey in [37]), or on numerical stabilization techniques (cf. [10, 12,20,26]).

In this paper, we develop an approach that enters in the second group (no ad-hoc eddy viscosity is required,
as it is in [37]), and aims to improve the previous works, because on one side a projection-stabilized structure
is used (contrary to strategies in [10, 12, 20]), which allows to act only on the high frequencies components of
the advective derivative, and to control them, aspect of extreme importance. On the other side, a SD-based
model is considered here, which is more adequate (with respect to a gradient-based model used in [26]) when
dealing especially with advection-dominated configurations. This would allow to improve numerical stability
and physical accuracy of the standard Galerkin POD-ROM also for convection-dominated and turbulent flows,
with a rather simple driven structure, both for practical implementations such as to perform the numerical
analysis.

Let {Th}h>0 be a regular family of triangulations of Ω. For any mesh cell K ∈ Th, its diameter will be
denoted by hK and h = maxK∈Th hK . To describe our strategy, we define the scalar product:

(·, ·)τ : L2(Ω)× L2(Ω)→ R, (v, w)τ =
∑
K∈Th

τK(v, w)K ,

and its associated norm:

‖v‖τ = (v, v)1/2
τ ,
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where for any K ∈ Th, τK is a positive local stabilization parameter (to be determined later). Let us introduce
the POD space:

X̂R = span {ϕ̂1, . . . , ϕ̂R} , R ≤ r,

where ϕ̂i, i = 1, . . . , R, are the POD modes associated to K̂, defined as the snapshots correlation matrix with
entries:

K̂mn =
1

N
(b · ∇u(·, tn+1), b · ∇u(·, tm+1)) , for m,n = 0, . . . , N − 1. (9)

Note that for classical POD modes asssociated to the standard correlation matrix Kmn, there already exists a
theory on convergence rates and error bounds for POD expansions of parameterized solutions of heat equations,
see e.g. [6–8]. With co-authors of the referred works, we aim to derive a similar analysis for POD modes

associated to the advection correlation matrix K̂mn defined in (9).

We consider the L2-orthogonal projection on X̂R, PR : L2(Ω) −→ X̂R, defined by:

(u− PRu, ϕ̂R) = 0, ∀ϕ̂R ∈ X̂R. (10)

Let P ′R = I − PR, where I is the identity operator. We propose the Streamline Derivative projection-based
POD-ROM (SD-POD-ROM) for (1):

d

dt
(ur, ϕr) + (b · ∇ur, ϕr) + ε(∇ur,∇ϕr) + (P ′R(b · ∇ur), P ′R(b · ∇ϕr))τ + (gur, ϕr) = (f, ϕr) ∀ϕr ∈ Xr. (11)

Remark 1.2. When τK = 0 for any K ∈ Th, the SD-POD-ROM (11) coincides with the standard POD-ROM,
since no numerical dissipation is introduced. When R = 0, since numerical diffusion is extended to all the
resolved modes {ϕ1, . . . , ϕr}, the SD-POD-ROM (11) becomes a penalty-stabilized method of the form:

d

dt
(ur, ϕr) + (b · ∇ur, ϕr) + ε(∇ur,∇ϕr) + (b · ∇ur, b · ∇ϕr)τ + (gur, ϕr) = (f, ϕr) ∀ϕr ∈ Xr, (12)

which provides less accuracy with respect to the SD-POD-ROM (11), see remark 2.12 in section 2.2.

Remark 1.3. Note that the new SD-POD-ROM (11) proposed in the present work rather differs from the
VMS − POD −ROM introduced in [25]. Indeed, in [25], a gradient-based model for the standard POD-ROM
is considered, which adds artificial viscosity by a term of the form:

α(P
′
R(∇ur), P

′
R(∇ϕr)),

α being a constant eddy viscosity coefficient, and P
′
R = I − PR, with PR the L2-orthogonal projection on the

POD space defined by span{∇ϕ1, . . . ,∇ϕR}. On the contrary, in the present work, we are adding an advection
stabilization term, by basically following the streamlines, which seems to be a more natural choice when dealing
especially with strongly advection-dominated configurations. This clearly differentiate the present work with
respect to [25].

Also, the new SD-POD-ROM (11) is different from the SUPG-POD-ROM introduced in [20], since the former
does not involve the full residual (only a streamline derivative stabilization term is introduced), thus presenting
a simpler and cheaper structure for practical implementations such as to perform the numerical analysis, and
also uses a projection-stabilized structure, which allows to act only on the high frequencies components of the
advective derivative: this guarantees an extra-control on them that prevents high-frequency oscillations without
polluting the large scale components of the approximation for advection-dominated problems, see remark 2.8 in
section 2.1.
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2. Error estimates

In this section, we prove estimates for the average error:

1

N + 1

N∑
n=0

‖un − unr ‖,

where the approximation un is the weak solution of (1) and unr is the solution of (11) discretized by FE, at time
tn. We derive the error estimate in two steps. First, we gather some necessary assumptions and preliminary
results in section 2.1. Then, we present the main result in section 2.2.

2.1. Technical background

This section provides some technical results that are required for the numerical analysis. Throughout the
paper, we shall denote by C, C1, C2, . . . positive constants that may vary from a line to another, but which
are always independent of the FE mesh size h, the eigenvalues λi, and the diffusion coefficient ε. Of particular
interest is the independence of the generic constant C from ε, that is we will prove estimates that are uniform
with respect to the diffusion coefficient, which is extremely relevant when advection-dominated problems are
considered.

We first make the following assumption, which is needed to prove the well-posedness of the weak formulation
of (1).

Hypothesis 2.1. (Coercivity and continuity)

g − 1

2
∇ · b ≥ α > 0; max{‖g‖∞, ‖b‖∞} = β > 0. (13)

For the FE discretization of the weak form of (1), we consider a family of finite dimensional subspaces Xh

of X = H1
0 (Ω) such that, for all v ∈ Hm+1(Ω) ∩X, the following assumption is satisfied.

Hypothesis 2.2. (Approximability)

inf
vh∈Xh

{‖v − vh‖ + h‖∇(v − vh)‖} ≤ C hm+1‖v‖Hm+1 , 1 ≤ m ≤ k, (14)

where k is the order of accuracy of Xh.

For the POD approximation, the following POD inverse estimate was proven in [29], Lemma 2:

Lemma 2.3. Let ϕi, i = 1, . . . , r, be POD modes, Mr be the POD mass matrix with entries [Mr]ij = (ϕj , ϕi),
and Sr be the stiffness matrix with entries [Sr]ij = (∇ϕj ,∇ϕi), i, j = 1, . . . , r. Let ‖·‖2 denote the matrix
2-norm. Then, for all ϕr ∈ Xr, the following estimate holds:

‖∇ϕr‖ ≤
√
‖Sr‖2‖M−1

r ‖2‖ϕr‖. (15)

Note that, since we have chosen H = L2 in the POD method, ‖M−1
r ‖2 = 1 in inequality (15).

To prove optimal error estimates in time, we follow [29] and include the finite difference quotient ∂̄u(tn) =
un − un−1

∆t
, for n = 1, . . . , N , in the set of snapshots χ = {u(t0), . . . , u(tN ), ∂̄u(t1), . . . , ∂̄u(tN )}. As pointed out

in [29], the POD error formula (6) becomes:

1

2N + 1

N∑
n=0

∥∥∥∥∥u(tn)−
r∑
i=1

(u(tn), ϕi)ϕi

∥∥∥∥∥
2

+
1

2N + 1

N∑
n=1

∥∥∥∥∥∂̄u(tn)−
r∑
i=1

(
∂̄u(tn), ϕi

)
ϕi

∥∥∥∥∥
2

=

M∑
i=r+1

λi, (16)
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For the subsequent numerical analysis, we need the following technical hypothesis on the stabilization parameters
τK :

Hypothesis 2.4. The stabilization parameters τK satisfy the following condition:

0 < τK ≤ C hK , (17)

for all K ∈ Th, and a positive constant C independent of h and ε.

Remark 2.5. The question whether the stabilization parameters should depend on the spatial resolution of the
underlying FE space, or on the number of POD modes used has been addressed in [20], by means of numerical
analysis arguments. In that work, numerical investigations using both definitions suggested that the one based
on estimates from the underlying FE discretization provides a better suppression of numerical oscillations, and
thus guarantees a more effective numerical stabilization. For this reason, we make here assumption 2.4 on the
stabilization parameters, which is also essential for the subsequent numerical analysis.

Lemma 2.6. Assume that Hypothesis 2.4 holds. Then, for all g ∈ L2(Ω), the following estimate is satisfied:

‖P ′R(g)‖τ ≤ C
√
h‖g‖. (18)

Proof. By using (17) and the stability of PR in the L2-norm, it follows:

‖P ′R(g)‖2τ ≤ C h‖P ′R(g)‖2 ≤ C h‖g‖2.

Thus, the estimate (18) can be deduced. �

We introduce the bilinear form A(u, v) = (b · ∇u, v) + ε(∇u,∇v) + (P ′R(b · ∇u), P ′R(b · ∇v))τ + (gu, v). The
SD-POD-ROM (11) with a backward Euler time discretization reads:

1

∆t
(un+1
r − unr , ϕr) +A(un+1

r , ϕr) = (fn+1, ϕr) ∀ϕr ∈ Xr. (19)

We have the following existence and stability result for the fully discretized SD-POD-ROM (19):

Lemma 2.7. Problem (19) admits a unique solution that satisfies the following bound:

‖ukr‖2 + ∆t

N−1∑
n=0

(
ε‖∇un+1

r ‖2 + ‖P ′R(b · ∇un+1
r )‖2τ

)
≤ ‖u0

r‖2 +
∆t

α

N−1∑
n=0

‖fn+1‖2, (20)

for k = 0, . . . , N , with α the coercivity constant in (13).

Proof. Hypotheses 2.1 and 2.4 guarantee the well-posedness of (19). To prove estimate (20), we choose
ϕr = un+1

r in (19), and decompose the bilinear form A into its symmetric and skew-symmetric parts: A =

As + Ass, where As(u, v) = ε(∇u,∇v) + (P ′R(b · ∇u), P ′R(b · ∇v))τ +

(
(g − 1

2
∇ · b)u, v

)
and Ass(u, v) =(

b · ∇u+
1

2
(∇ · b)u, v

)
, nothing that Ass(u, u) = 0. From (19), we obtain:

(un+1
r − unr , un+1

r ) + ∆tAs(u
n+1
r , un+1

r ) = ∆t(fn+1, un+1
r ). (21)

Using the identity:

(a− b)a =
1

2
(|a|2 − |b|2 + |a− b|2), ∀a, b ∈ R,
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and Young’s inequality, from (21) we get:

‖un+1
r ‖2 − ‖unr ‖2 + ε∆t‖∇un+1

r ‖2 + ∆t‖P ′R(b · ∇un+1
r )‖2τ ≤

∆t

α
‖fn+1‖2. (22)

Then, the stability estimate (20) follows by summing (22) from n = 0 to k ≤ N − 1. �

Remark 2.8. The stability estimate (20), which makes apparent the estimate of the advective stabilization
term, guarantees an extra-control on the high frequencies of the advective derivative, which is not obtained
by the standard Galerkin POD-ROM. This is an aspect of extreme importance, especially when dealing with
advection-dominated configurations.

In order to prove an estimate for ‖un − unr ‖, we will first consider the Ritz projection wr ∈ Xr of u ∈ X:

A(u− wr, ϕr) = 0, ∀ϕr ∈ Xr. (23)

The existence and uniqueness of wr follow from the Lax–Milgram lemma. We now state an estimate for un−wnr ,
the error in the Ritz projection.

Lemma 2.9. The Ritz projection wnr of un satisfies the following error estimate:

1

N

N∑
n=1

‖un − wnr ‖ ≤ C

(1 + ‖Sr‖2)
1/2

hm+1 1

N

N∑
n=1

‖un‖Hm+1 +

√√√√ M∑
i=r+1

λi


+ (1 + ε)

1/2

hm 1

N

N∑
n=1

‖un‖Hm+1 +

√√√√ M∑
i=r+1

λi

 . (24)

The proof of this lemma can be directly derived by the one performed for the VMS-POD-ROM in [25].

Corollary 2.10. The Ritz projection wnr of un satisfies the following error estimate up tp O(∆t2):

1

N

N∑
n=1

‖∂t(un − wnr )‖ ≤ C

(1 + ‖Sr‖2)
1/2

hm+1‖∂tu‖L2(Hm+1) +

√√√√ M∑
i=r+1

λi


+ (1 + ε)

1/2

hm‖∂tu‖L2(Hm+1) +

√√√√ M∑
i=r+1

λi

 . (25)

The proof of this corollary follows along the same lines as the proof of lemma 2.9. Note that it is exactly at
this point that we use the fact that the finite difference quotients ∂̄u(tn) are included in the set of snapshots
(see remark 1 in [29]).

2.2. Error estimate for the SD-POD-ROM

We are now in position to prove the following error estimate result for the SD-POD-ROM defined by (19):
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Theorem 2.11. The solution of the SD-POD-ROM (19) satisfies the following error estimate:

1

N + 1

N∑
n=0

‖un − unr ‖ ≤ C

(1 + ‖Sr‖2)
1/2

hm+1 1

N

N∑
n=1

(
‖un‖Hm+1 + ‖∂tu‖L2(Hm+1)

)
+

√√√√ M∑
i=r+1

λi


+ (1 + ε)

1/2

hm 1

N

N∑
n=1

(
‖un‖Hm+1 + ‖∂tu‖L2(Hm+1)

)
+

√√√√ M∑
i=r+1

λi


+ ‖u0 − u0

r‖ + ∆t‖∂ttu‖L2(L2) +

√√√√h

M∑
i=R+1

λ̂i

 , (26)

where the initial condition is given by the L2-orthogonal projection of u0 on Xr:

u0
r =

r∑
i=1

(u0, ϕi)ϕi, (27)

and λ̂i, i = R+1, . . . ,M , in the right-hand side of (26) are the eigenvalues associated to the snapshots correlation

matrix K̂ previously defined in (9).

Proof. We evaluate the weak form of (1) at t = tn+1, let the function test v = ϕr, and add and subtract

the different quotient term

(
un+1 − un

∆t

)
:

(
∂tu

n+1 − un+1 − un

∆t
, ϕr

)
+

(
un+1 − un

∆t
, ϕr

)
+ a(un+1, ϕr) = (fn+1, ϕr), (28)

where we have considered the bilinear form a(u, v) = (b · ∇u, v) + ε(∇u,∇v) + (gu, v). Subtracting (19) from
(28), we obtain the error equation:(
∂tu

n+1 − un+1 − un

∆t
, ϕr

)
+

(
un+1 − un+1

r

∆t
, ϕr

)
−
(
un − unr

∆t
, ϕr

)
+A(un+1−un+1

r , ϕr)+(a−A)(un+1, ϕr) = 0.

(29)
We now decompose the error as un − unr = (un −wnr )− (unr −wnr ) = ηn − φnr , so that by triangle inequality we
have:

‖un − unr ‖ ≤ ‖ηn‖ + ‖φnr ‖. (30)

Note that ‖ηn‖ has already been bounded in lemma 2.9. Thus, in order to estimate the error, we only need to
estimate ‖φnr ‖. The error equation (29) can be written as:(
∂tu

n+1 − un+1 − un

∆t
, ϕr

)
+

(
ηn+1 − ηn

∆t
, ϕr

)
−
(
φn+1
r − φnr

∆t
, ϕr

)
+A(ηn+1−φn+1

r , ϕr)+(a−A)(un+1, ϕr) = 0.

(31)
We consider ϕr = φn+1

r , and note that, since φn+1
r ∈ Xr, then A(ηn+1, φn+1

r ) = 0, so that we get:

A(φn+1
r , φn+1

r ) +
1

∆t

(
φn+1
r − φnr , φn+1

r

)
=

1

∆t

(
ηn+1 − ηn, φn+1

r

)
+
(
rn, φn+1

r

)
+ (a−A)(un+1, φn+1

r ), (32)
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where we have denoted rn = ∂tu
n+1 − un+1 − un

∆t
. We proceed by estimating all the terms in (32). The terms

on the left-hand side of (32) are estimated as follows:

A(φn+1
r , φn+1

r ) ≥ α‖φn+1
r ‖2 + ε‖∇φn+1

r ‖2 + ‖P ′R(b · ∇φn+1
r )‖2τ , (33)

1

∆t

(
φn+1
r − φnr , φn+1

r

)
≥ 1

∆t

(
‖φn+1

r ‖2 − ‖φnr ‖‖φn+1
r ‖

)
. (34)

By using Cauchy–Schwarz and Young’s inequalities, the terms on the right-hand side of (32) are estimated as
follows:(

1

∆t
(ηn+1 − ηn) + rn, φn+1

r

)
≤
∥∥∥∥ 1

∆t
(ηn+1 − ηn) + rn

∥∥∥∥ ‖φn+1
r ‖ ≤ 1

2α

∥∥∥∥ 1

∆t
(ηn+1 − ηn) + rn

∥∥∥∥2

+
α

2
‖φn+1

r ‖2,

(35)

(a−A)(un+1, φn+1
r ) ≤ ‖P ′R(b · ∇un+1)‖τ‖P ′R(b · ∇φn+1

r )‖τ ≤
1

2
‖P ′R(b · ∇un+1)‖2τ +

1

2
‖P ′R(b · ∇φn+1

r )‖2τ . (36)

Using (33)-(36) and absorbing right-hand side terms into left-hand side terms, (32) becomes:

1

∆t

(
‖φn+1

r ‖2 − ‖φnr ‖‖φn+1
r ‖

)
+
α

2
‖φn+1

r ‖2 + ε‖∇φn+1
r ‖2 +

1

2
‖P ′R(b · ∇φn+1

r )‖2τ

≤ 1

2α

∥∥∥∥ 1

∆t
(ηn+1 − ηn) + rn

∥∥∥∥2

+
1

2
‖P ′R(b · ∇un+1)‖2τ (37)

By using Young’s inequality, the first term on the left-hand side of (37) can be estimated as follows:

‖φn+1
r ‖2 − ‖φnr ‖‖φn+1

r ‖ ≥ 1

2

(
‖φn+1

r ‖2 − ‖φnr ‖2
)
. (38)

Using (38) in (37) and multiplying by 2∆t, we get:

‖φn+1
r ‖2 − ‖φnr ‖2 ≤ C∆t

(∥∥∥∥ 1

∆t
(ηn+1 − ηn)

∥∥∥∥2

+ ‖rn‖2 + ‖P ′R(b · ∇un+1)‖2τ

)
. (39)

Summing from n = 0 to k ≤ N − 1 in (39), we obtain:

max
0≤n≤N

‖φnr ‖2 ≤ ‖φ0
r‖2 + C∆t

N−1∑
n=0

(∥∥∥∥ 1

∆t
(ηn+1 − ηn)

∥∥∥∥2

+ ‖rn‖2 + ‖P ′R(b · ∇un+1)‖2τ

)
. (40)

The second term on the right-hand side of (40) can be estimated as follows:

∆t

∥∥∥∥ 1

∆t
(ηn+1 − ηn)

∥∥∥∥2

≤ ‖∂tη‖2L2(L2), (41)

which has been bounded in corollary 2.10. For the third term on the right-hand side of (40), we get:

∆t

N−1∑
n=0

‖rn‖2 ≤ ∆t2‖∂ttu‖2L2(L2). (42)
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Finally, the last term on the right-hand side of (40) can be estimated as follows:

∆t

N−1∑
n=0

‖P ′R(b · ∇un+1)‖2τ ≤ C h

(
h2m 1

N

N∑
n=1

‖un‖2Hm+1 +

M∑
i=R+1

λ̂i

)
, (43)

where we have used assumption (17) in hypothesis 2.4 on the stabilization parameters, assumption (14) in

hypothesis 2.2 on the FE approximation, (10), (6), and λ̂i, i = R+ 1, . . . ,M , are the eigenvalues associated to

the snapshots correlation matrix K̂ previously defined in (9). Using (41)-(43) in (40), (30) and the estimate
(24) in lemma 2.9, we obtain the error estimate (26). This concludes the proof. �

Remark 2.12. If one just consider the standard Galerkin POD-ROM (τK = 0 for any K ∈ Th), thus error
estimate (26) can be recovered, without the appearance of the last term on the right-hand side of (26). In this
case, any control on the high-frequency modes of the advective derivative is guaranteed. When R = 0, one has
that the last term on the right-hand side of (26) is limited to

√
h. This low convergence order appears linked to

the diffusive nature of the penalty-stabilized POD-ROM (12), which extends the numerical diffusion to all the
resolved modes.

3. Numerical results

The mathematical model used for the numerical tests in this section is the advection-dominated advection-
diffusion-reaction equation (1) with the following parameter choices: computational spatial domain Ω = (0, 1)2,

computational time interval [0, T ] = [0, 1], advection field b =
(

cos
π

3
, sin

π

3

)T

, diffusion parameter ε = 10−4,

and reaction coefficient g = 1. The forcing term f and initial condition u0 are chosen to satisfy the exact solution

u(x, y, t) = 0.5 sin(πx) sin(πy)

[
tanh

(
x+ y − t− 0.5

0.04

)
+ 1

]
, which simulates a 2D traveling wave displaying a

sharp internal layer moving in time. As in the theoretical developments in section 2, in this section we employ
the FE method for spatial discretization and the backward Euler method for temporal discretization. The
open-source FE software FreeFem++ [23] has been used to run the numerical experiments. All computations
are carried out on a MacBook Pro with a 3.1 GHz Intel Core i7 processor.

We perform a comparison between the SD-POD-ROM (11) and the standard POD-ROM (8). To generate
the POD modes, we run offline a DNS with the following parameters: piecewise linear FE, uniform triangular
mesh with mesh-size h = 10−2, and time step ∆t = 10−3. The POD modes are generated in L2 by the
method of snapshots by storing every tenth solution, so that 101 snapshots were used. The DNS average error

is
1

N + 1

N∑
n=0

‖un − unh‖ = 1.91 · 10−3, with N = 100. The CPU time of the DNS is 2.18 · 102 s. Since the

forcing term f is time-dependent, the global load vectors are stored for later use in the tested POD-ROM. In
figure 1, we show that the POD expansion/truncation converges in space-time L2-norm with an exponential
rate to the continuous solution, with respect to the number of retained POD modes, up to r = 40. Then,
the spatial (due to the FE method) and temporal (due to the backward Euler method) discretization error
become predominant, and we have a flattening effect. Thus, hereafter we prefer to compute the POD average
error for both POD-ROM (standard POD-ROM and SD-POD-ROM) with respect to the DNS solution, that

is
1

N + 1

N∑
n=0

‖unh − unr ‖, by varying the number r of POD modes used, and computing the corresponding CPU

times.

We first test the standard POD-ROM (8). The average errors with respect to the DNS solution for different
values of r are showed in figure 2 (red line), and listed in table 1 together with the corresponding CPU times.
The numerical solution at T = 1 is shown in figure 3 for both the DNS (left) and the standard POD-ROM
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Figure 1. POD expansion/truncation error in discrete space-time L2-norm. x-Axis: number
of POD modes. y-Axis: POD expansion/truncation error in space-time L2-norm, in logarithmic
coordinates.

r 10 20 30 40 50 60

1

N + 1

N∑
n=0

‖unh − unr ‖ 4.92 · 10−1 2.25 · 10−1 1.07 · 10−1 3.80 · 10−2 1.57 · 10−2 5.30 · 10−3

CPU times [s] 1.87 · 10−2 3.65 · 10−2 5.85 · 10−2 9.48 · 10−2 1.16 · 10−1 1.71 · 10−1

Table 1. Average errors (in L2-norm) w.r.t. the DNS solution and CPU times at different
values of r for the standard POD-ROM.

with r = 40 (middle). It is clear from this figure that, although the first 40 POD modes capture 99.96% of
the system’s kinetic energy, the standard POD-ROM yields poor quality results and displays visible numerical
oscillations. This is confirmed by the standard POD-ROM high average error, which is almost one orders of
magnitude higher than that of the performed SD-POD-ROM for r = 40. It happens that r = 40 in POD-ROM
almost provides similar accuracy of r = 30 in SD-POD-ROM. It is thus clear that the standard POD-ROM,
although computationally efficient (CPU times three orders of magnitude lower than DNS, at least), is rather
inaccurate for advection-dominated configurations.
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Figure 2. POD average error (in L2-norm) w.r.t. the DNS solution for POD- (red) and SD-
POD-ROM (black). x-Axis: number of POD modes. y-Axis: POD average error (in L2-norm)
w.r.t. the DNS solution, in logarithmic coordinates.

r 10 20 30 40 50 60

1

N + 1

N∑
n=0

‖unh − unr ‖ 3.52 · 10−1 1.05 · 10−1 2.60 · 10−2 5.80 · 10−3 1.74 · 10−3 5.25 · 10−4

CPU times [s] 2.54 · 10−2 4.81 · 10−2 7.63 · 10−2 1.14 · 10−1 1.46 · 10−1 1.83 · 10−1

Table 2. Average errors (in L2-norm) w.r.t. the DNS solution and CPU times at different
values of r for the SD-POD-ROM.

Figure 3. Numerical solution at T = 1: DNS (left), standard POD-ROM with r = 40 (mid-
dle), SD-POD-ROM with r = 40, R = r/2 = 20 (right).

Now, we investigate the SD-POD-ROM (11). We make the following parameter choice: R = r/2. Also, the
working expression of the stabilization coefficients is:

τK =

[
c1

ε

h2
K

+ c2
UK
hK

+ c3g

]−1

, (44)
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by following the form proposed in [17,18], designed by asymptotic scaling arguments applied in the framework
of stabilized methods aimed at taking into account the local balance between advection, diffusion and reaction.
In expression (44), c1, c2 and c3 are positive algorithmic constants, and UK is some local advection speed
on the mesh cell K. The values of the constants are chosen to be c1 = 4, c2 =

√
c1 = 2, c3 = 1, cf. [16].

These values are justified from the analysis of the one-dimensional advection-diffusion-reaction equation and
from many numerical experiments, for which they are optimal, cf. [16]. In this case, hK = h, and we take
UK = ‖b‖∞,K = ‖b‖∞(= sinπ/3), so that for all K ∈ Th:

τK = τ =

[
c1
ε

h2
+ c2

‖b‖∞
h

+ c3g

]−1

≈ 5.61 · 10−3, (45)

and assumption (17) in hypothesis 2.4 is satisfied, with C = 1/(c2‖b‖∞) = 1/(2 sinπ/3). Again, the average
errors with respect to the DNS solution for different values of r are showed in figure 2 (black line), and listed
in table 2 together with the corresponding CPU times. The numerical solution at T = 1 for the SD-POD-ROM
with r = 40 is shown in figure 3 (right). We can observe from this figure that the SD-POD-ROM is more stable
and accurate than the standard one, and numerical unphysical oscillations displayed by the latter are practically
eliminated by adding numerical stabilization, while keeping the same level of computational efficiency. This is
confirmed by figure 2 and table 2.

Also, if we slightly extend the time range used in the generation of the POD modes (just up to T = 1.25), we
have that the final solution for the standard POD-ROM is already totally inaccurate and oscillatory, while the
one for the new SD-POD-ROM is still rather acceptable, see figure 4. This suggests that the new SD-POD-ROM
could be considered in principle a better predictive tool with respect to the standard POD-ROM. Nevertheless,
for much larger time intervals than that used in the derivation of the input data, one should endow the new
SD-POD-ROM with a basis updating mechanism, using for instance a posteriori error indicators. This study is
today in progress, following some hints given by the hybrid DNS/POD approach introduced in [12].

Figure 4. Numerical solution at T = 1.25: DNS (left), standard POD-ROM with r = 40
(middle), SD-POD-ROM with r = 40, R = r/2 = 20 (right).

4. Conclusions

In this work, we have proposed a new stabilized POD-ROM for the numerical simulation of advection-
dominated advection-diffusion-reaction equations. This model, denoted SD-POD-ROM, is derived from high-
order stabilized FE methods, and uses a streamline derivative projection-based operator to properly take into
account the high frequencies advective derivative component of POD modes not included in the ROM.

We have performed a thorough numerical analysis of the arising fully discrete SD-POD-ROM applied to
advection-dominated advection-diffusion-reaction problems. In particular, the numerical analysis makes appar-
ent an extra-control on the high frequencies of the advective derivative, which is an extremely important feature
in view of computing more complex convection-dominated and turbulent flows. We also emphasize that the
theoretical error estimates are uniform with respect to the diffusion coefficient.
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At a computational level, the new SD-POD-ROM has been tested on a representative problem displaying a
sharp internal layer advected in time. We employed the theoretical error estimates to provide some guidance
in choosing the stabilization parameters in practical computations. The numerical investigations yielded the
following conclusions: the SD-POD-ROM is more stable and accurate than the standard POD-ROM, and
numerical unphysical oscillations displayed by the latter are practically eliminated by the former, while keeping
the same level of computational efficiency. Also, the new SD-POD-ROM showed better predictive features for
short-time integrations of unsteady fields, which is rather promising in view of potentially becoming a powerful
predictive tool in realistic physical and engineering applications.
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