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A B S T R A C T

Unmanned Aerial Vehicle (UAV) networks have emerged as a promising means to provide wireless coverage
in open geographical areas. Nevertheless, in wireless networks such as WiFi, signal coverage alone is
insufficient to guarantee that network performance meets the quality of service (QoS) requirements of real-time
communication services, as it also depends on the traffic load produced by ground users sharing the medium
access.

We formulate a new problem for UAVs optimal deployment in which the QoS level is guaranteed for
real-time voice over WiFi (VoWiFi) communications. More specifically, our goal is to dispatch the minimum
number of UAVs possible to provide VoWiFi service to a set of ground users subject to coverage, call-blocking
probability, and QoS constraints. Optimal solutions are found using well-known heuristics that include K-means
clusterization and genetic algorithms. Via numerical results, we show that the WiFi standard revision (e.g.
IEEE 802.11a/b/g/n/ac) in use plays an important role in both coverage and QoS performance and hence, in
the number of UAVs required to provide the service.
. Introduction

The past decade has seen tremendous growth in the use of un-
anned aerial vehicles (UAVs). UAVs, or so-called drones, have at-

racted significant interest for numerous applications in the context of
mart cities, collection and dissemination of information, search and
escue, or agriculture, just to name a few [1].

There is increasingly more research focused on the deployment
f UAVs for providing fast and temporal wireless communication in-
rastructure [2,3]. A typical UAV-assisted communication example is
he provision of reliable connectivity between clustered non-directly
ommunicated users [4] (UAV-aided communication relays). Other
pplications include the deployment of quasi-stationary UAV-mounted
ase stations to create a communication service, deploying emergency
nfrastructure in disaster scenarios [5–7], reaching remote areas that
ould not be serviced otherwise [8], or offloading existing base sta-
ions [9]. In the aforementioned applications, optimal drone location
roblems typically minimize the number of drones deployed (i.e. cost)
o provide coverage to a set of ground users in known positions [10].

UAV optimal deployment problems generally assume that coverage
i.e. received signal strength) suffices for the provision of communi-
ation services [11]. Nevertheless, although this may hold for cellular
etworks (which include mechanisms to deal with congestion and QoS),
iFi networks’ ability to guarantee QoS depends not only on coverage
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G. Madinabeitia).

but also on the traffic load generated by those stations sharing the chan-
nel. Therefore, despite available QoS mechanisms [12], a congested
WiFi network may be unable to meet the strict QoS requirements of
interactive real-time services such as VoIP [13–16]. Unfortunately, this
fact is typically ignored in studies of UAV-AP link performance [17,18].

It is proven that there is an upper bound in the number of VoIP traf-
fic flows that an AP can handle with acceptable performance, namely
VoIP capacity [19]. As the authors in [13] put it, above this upper
bound, ‘‘One more VoIP connection will jeopardize the performance of all
voice connections’’. The VoIP capacity of an AP can be studied through a
model of the Medium Access Control (MAC) sub-layer [19] which lets
us estimate the impact of VoIP traffic in delay or packet loss [20,21].
Applying the findings from this research field to the problem of UAVs
optimal positioning would allow one to consider the maximum number
of simultaneous calls that each UAV-mounted AP can take (i.e. VoIP
capacity) to guarantee QoS requirements. Furthermore, VoIP capacity
should also consider statistical multiplexing in the service demand since
it is unlikely that all users associated to an AP use the VoIP service
concurrently. However, all this has been overlooked in existing UAVs
optimal location problems [22,23]

In this work, we define and solve a new optimization problem that
consists of finding the minimum number of UAV-mounted APs that
should be launched to provide VoIP service with guaranteed QoS and
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Fig. 1. Example scenario for VoWiFi.

all-blocking probability to a set of known users in a scenario that lacks
lternative cellular or WiFi infrastructure on ground (see Fig. 11). More
pecifically, our problem provides the minimum number of UAVs to
e deployed and their optimal location so that VoIP capacity of any
eployed AP is equal to or greater than the number of users associated
o that AP who are expected to be simultaneously talking.

Most handheld devices (e.g. smartphones, tables) have WiFi. Thus,
VoWiFi service can be of potential interest in situations where users

re expected to be confined in known areas such as meeting points
uring search and rescue missions, for broadcast announcements, or
oice service during outdoor activities or missions in remote areas
hat lack alternative communication infrastructure. Indeed, in these
ontexts, a common VoIP application could be downloaded by users
rom the UAV-deployed WiFi data access network. We also provide
preliminary analysis of the applicability of our problem where user
obility is considered.

The contributions and originality of this paper are:

• We mathematically formulate a new optimal drone location prob-
lem that considers the speech quality perceived by ground users
and the call-blocking probability.

• We provide a mathematical model to predict speech quality
for a set of heterogeneous VoIP traffic sources and different
IEEE 802.11 standard amendments.

• We propose a service model that takes advantage of statistical
multiplexing of users’ calls, providing efficient use of resources.

. QoS in VoIP over WiFi networks

ITU-R rec. M.1079 indicates that each communication service re-
uires specific ranges of end-to-end delay, loss and jitter to be met, and
oIP is no exception. In our view, planning a VoIP service over IEEE
02.11 networks requires taking into account two key aspects:

1. The speech quality of the VoIP service, defined by the ITU-T rec.
P.800 [24], which is measured through surveys that rate a mean
opinion score (MOS) ranging from 1 (poor) to 5 (excellent).

2. The probability that a user cannot place a new call as a result
of the exhaustion of the resources of the (WiFi) network. This is
also known as call-blocking probability in the field of teletraffic.

1 Observe that the performance of the WiFi access network (see Fig. 1) is
ssumed to be critical for the feasibility of the QoS-guaranteed service. At the
ame time, we assume that UAV-to-UAV, or UAV-to-Infrastructure either do
ot significantly impair the QoS, or its impact can be added to our model as a
onstant extra delay and/or loss. Therefore, the scope of this paper is restricted
o the IEEE 802.11 access network to be deployed.
 p

95
Fig. 2. UAV-AP: IEEE 802.11 system under consideration.

Table 1
802.11 sensitivity relations for OFDM modulations with 20 MHz channels.
Modulation Coding rate Data rate Sensitivity

(Mb/s) (dBm)

BPSK 1/2 6 −82
BPSK 3/4 9 −81
QPSK 1/2 12 −79
QPSK 3/4 18 −77
16-QAM 1/2 24 −74
16-QAM 3/4 36 −70
64-QAM 2/3 48 −66
64-QAM 3/4 54 −65

According to ITU-T G.107, acceptable conversations should exhibit
MOS > 3.5, but in general, if the network fails to underpin a minimum
level MOSmin, the service simply cannot be provided [25].

At the planning stage, a method for MOS prediction is needed.
In VoIP, the most extended method is the E-Model, [26,27], which
combines additive impairments factors to measure speech quality 𝑅
factor, ranging from 0 (poor) to 100 (excellent), that can be directly
mapped to MOS [28]. As Assem et al. [29] put it, the E-Model is ‘‘a
repeatable way to assess if a network is prepared to carry a VoIP call
or not’’. In its simplest form, the E-model can be expressed as [30]:

𝑅 = 94.2 − 𝐼𝑑 − 𝐼𝑒−𝑒𝑓𝑓 (1)

where 𝐼𝑑 represents all impairments due to delay, and 𝐼𝑒−𝑒𝑓𝑓 is a
factor that accounts for the impairments caused by low bit-rate coding
and packet loss [31]. Both, delay and packet loss are affected by the
performance of the IEEE 802.11 access network.

Fig. 2 illustrates a set of IEEE 802.11 stations associated to one
UAV-mounted AP. Each station is represented by its physical layer
and its medium access control (MAC) sub-layer. All stations share a
common MAC protocol and each one auto-configures its Modulation
and Coding Schema (MCS) according to the Received Signal Strength
Indicator (RSSI) from the AP and some thresholds (i.e. minimum input
sensitivity) defined by the IEEE 802.11 standard in use [32]. Table 1
shows examples of different MCSs defined for OFDM modulations
(e.g. IEEE 802.11a/g). Thus, each user terminal is assumed to auto-
configure its MCS to the greatest bit-rate possible depending on the
received signal power.

In VoWiFi, speech quality is strongly influenced by the delay and
loss of the downlink (i.e. from the access point (AP) to VoIP termi-
nals) [16]. Both factors depend on the traffic load, which in turn
depends on the speech codec and the number and data bit-rate of users
engaged on active calls at a given moment.2 WiFi analytical models

2 This assumes that either only VoIP traffic exists, or that VoIP traffic is
rioritized using IEEE 802.11e.
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let us capture the relation between the VoIP traffic volume handled
by an AP and the delay and loss that such traffic will experience.
There is a plethora of analytical models of the IEEE 802.11 MAC be-
havior [33–36]. In most models, the central variable is the probability
that an observed station attempts to transmit in a random time slot (𝜏).
However, different models apply different assumptions to derive their
analytical expression for 𝜏. In this paper, the following assumptions are
considered:

• Heterogeneous traffic sources (two users may have different phys-
ical data bitrate according to their RSSI).

• Non-saturated stations (sometimes there may be no packets to be
transmitted).

• Noisy channel (channel noise can corrupt packets).

But above analytical models, intuition suggests that VoIP traffic
increases with every new call, which impacts network delay and loss,
deteriorating the QoS of ongoing calls. As a result of the previous con-
sideration, a VoWiFi service with guaranteed QoS should not accept a
new call when this implies that calls in progress may turn unacceptable
(i.e. MOS < MOSmin). This is known as Call Admission Control (CAC)
unction, typically implemented either at the AP (as indicated in IEEE
02.11e), or at the application level (e.g. VoIP gateway). Obviously,
his function requires assessing the maximum number of concurrent
alls that an AP can take so that the quality experienced by active users
s above MOSmin. This upper bound is the VoIP capacity of an AP and
ill be denoted by CCmax from now on. For example, in [16] it was

ound that a maximum of 15 calls for 64 kb/s CBR VoIP traffic, or 38
alls for VBR VoIP traffic can be held for IEEE 802.11b.

This leads us to the second factor deemed as key for dimensioning:
he call-blocking probability, or, equivalently, the probability that a
ew call is rejected as a result of CCmax calls being already in progress.
t is possible to find such a probability if one takes a statistical model
f the user behavior from the field of teletraffic. Assuming that call
ttempts and calls duration follow exponential distributions, the call-
locking probability for the users served by an AP is given by the
lassical Engset formula [37]:

(𝐴, 𝑢, 𝑐𝑐) =

(𝑢−1
𝑐𝑐

)

𝐴𝑐𝑐

∑𝑐𝑐
𝑖=0

(𝑢−1
𝑖

)

𝐴𝑖
(2)

here 𝐴 stands for the traffic intensity (product of average frequency
nd duration of calls), 𝑢 is the number of users associated to the access
oint, and 𝑐𝑐 is the number of concurrent calls.

Then, provisioning VoWiFi with guaranteed QoS will require that
he following constraints are met:

• Speech quality level (MOS) higher than MOSmin.
• Call-blocking probability lower than
𝐵max=𝐵(𝐴, 𝑢,CCmax).

hich will be regarded as VoWiFi service QoS constraints in the prob-
em to be defined next.

. Problem statement

In the scenario illustrated in Fig. 1, we want to deploy a set of drones
o create a WiFi access network that enables the VoWiFi service with
uaranteed QoS. To make the problem more tractable, the following
ssumptions are made:

• The position of ground users is known. User terminals run a VoIP
app which utilizes a known codec and standard signaling.

• If a ground terminal could associate to more than one AP, the one
with maximum received power will be selected.

• Channelization between adjacent APs is done in such a manner
that interferences are negligible.

• A CAC mechanism is in place to limit the maximum number of
concurrent calls at each AP.
 d

96
3.1. Terminology

We discretize the flying zone as illustrated in Fig. 3. The set  rep-
resents the set of R3 coordinates of each edge of the grid (i.e. potential
locations of UAVs). The following terms and definitions will be used
for the remainder of this paper:

• Users are denoted by the set  = {1, 2,… , 𝑈} and at known
locations given by {𝒘𝑘|𝑘 ∈  }, where 𝒘𝑘∈ R3 represents the
3D coordinates of user 𝑘.

• Drones are denoted by the set  = {1, 2,… , 𝐷} and at known
locations given by the set
 = {𝒙1,𝒙2,… ,𝒙𝐷|𝒙𝑖 ∈  , 𝑖 ∈ ,𝒙𝑖 ≠ 𝒙𝑗 |∀𝑗≠𝑖}, where 𝒙𝑖∈  rep-
resents the 3D coordinates of dron 𝑖.

• (𝑖) ⊂  represents the set of users associated to the access point
at drone 𝑖 ∈ .

• The number of ground users associated to the WiFi network is
𝐶 =

∑𝐷
𝑖=1 |(𝑖)|.

• 𝐵(𝑖) represents the call-blocking probability for users associated
to the access point at drone 𝑖 ∈ .

• 𝑀𝑂𝑆(𝑖) represents the speech quality level for users associated to
the access point at drone 𝑖 ∈ .

Fig. 3, illustrates a scenario with 12 users (𝑈 = 12) and two drones
𝐷 = 2). The UAVs flying space has been discretized using a grid 
ith 30 edges. The set  = {1, 2} is composed by the leftmost drone

located at 𝒙1 ∈ ) and the rightmost drone (at 𝒙2 ∈ ). Then, (1) and
(2) would be composed of the set of users associated to drones 1 and
respectively, and the ratio of users associated to the WiFi network
ould be ∑2

𝑖=1 |(𝑖)|∕𝑈 = 11∕12.

.2. Problem definition

Our goal is to minimize the number of drones deployed. Among
olutions with the same number of drones, we chose the one that
inimizes the ratio of uncovered users (i.e. terminals not associated

o the WiFi network). This can be formulated as follows:

in


𝐷 +

(

1 −
𝐷
∑

𝑖=1
|(𝑖)|∕𝑈

)

ubject to
𝐷
∑

𝑖=1
|(𝑖)|∕𝑈 ≥ 𝐶min

𝐵(𝑖) ≤ 𝐵max ,∀𝑖 ∈ 

𝑀𝑂𝑆(𝑖) ≥ MOSmin ,∀𝑖 ∈ 

𝒙𝑖 ∈  ,∀𝑖 ∈ 

𝐷 ≤ 𝐷max

(3)

here 𝐷 represents the cardinality of  (which is bounded by 𝐷max),
nd (1−

∑𝐷
𝑖=1 |(𝑖)|∕𝑈 ) is the ratio of ground users uncovered. Constants

min, 𝐵max, 𝑀𝑂𝑆min are thresholds for their respective constraints.
ccording to ITU-T G.107 recommendation, an acceptable call should
xhibit a 𝑀𝑂𝑆 >∼ 3.5. But one could decide to raise that lower bound
o provide a higher quality service. This would impact on the number
f drones deployed (e.g. more UAVs may be necessary to provide the
oice service as the VoIP capacity of APs is decreased).

Finally, observe that the objective function is composed of an in-
eger (i.e. number of UAVs, 𝐷 ≥ 1), and a decimal number (the ratio
f uncovered users < 1). Thus, the integer part indicates the minimum
umber of UAVs that meet all constraints.

. Finding solutions using exhaustive search

The exhaustive search approach involves assessing (3) all possible
AV(s) positions within the grid () for an incremental number of

rones until the optimal solution is found (or a maximum number of



V. Mayor, R. Estepa, A. Estepa et al. Computer Communications 193 (2022) 94–108

U
I
o
c
o
a
f
(
m
u
o
a
d
t
s

c

4

(
m
s
t

n
d
W
s
A

𝑃

R

𝐺

w
a
𝑗

o
p

w
s

v
(
n
m
a



R
i
m

Fig. 3. Grid edges in a deployment scenario.

AVs 𝐷max is reached). This procedure is described in Algorithm 1.
t takes as input the set of ground users  and their location, the set
f edges  , 𝐷max, and the coverage and QoS constraints. All possible
ombinations of UAVs locations are checked for an incremental number
f drones (𝐷). The algorithm starts by estimating the set of users
ssociated to the WiFi network formed by 𝐷 drones located at  . If the
irst constraint (i.e. coverage) is met, then QoS constraints are assessed
considering the worst case among all UAVs). If both constraints are
et, a potential solution is found, and the objective function is eval-
ated. Among the potential solutions with the same value of 𝐷, the
ne with the lowest objective function is selected. The algorithm ends
fter finding the optimal solution or trying unsuccessfully with 𝐷max
rones. The algorithm’s output is the set of optimal UAVs locations and
he value of the objective function. A null location indicates that no
olution has been found.

Input:  ,
{

𝒘𝑘
}

, 𝐷max, 𝐶min, 𝐵max, MOSmin
Output:  (location), 𝑜𝑓min (obj. function)
Initialization: 𝐷 = 1,  = ∅, 𝑜𝑓min = 𝐷max + 1

1 while  = ∅ or 𝐷 ≤ 𝐷max do
2 𝐷++; // Increase number of UAVs
3 foreach possible value of  do
4 for 𝑗 = 1 to 𝐷 do
5 𝐶(𝑗) = associate( ,

{

𝒘𝑘
}

, );
6 end

/* check first constraint */
7 if

(

∑𝐷
𝑖=1 |(𝑖)|∕𝑈

)

≥ 𝐶min then
8 for 𝑗 = 1 to 𝐷 do
9 MOS(𝑗) = QoS.eval((𝑗), 𝒙𝑗 ,

{

𝒘𝑘
}

, 𝐵max);
10 end
11 MOS = min

𝑘=1..𝐷
{MOS(𝑘)};

12 if MOS ≥ MOSmin then
/* QoS constraints met */

13 𝑜𝑓 = 𝐷 + (1 −
∑𝐷

𝑖=1 |(𝑖)|∕𝑈 );
14 if 𝑜𝑓 < 𝑜𝑓min then
15 𝑜𝑓min = 𝑜𝑓 ; // solution
16  =  ; // UAVs position

17 end
18 end
19 end
20 end
21 end

Algorithm 1: Exhaustive search pseudocode
97
Next, we elaborate on the functions used for the assessment of signal
overage and the constraints related to quality of service.

.1. Signal coverage evaluation: associate()

A ground terminal associates to an AP if its Signal to Noise Ratio
SNR) and Received Signal Strength Indication (RSSI) are above mini-
um levels to properly demodulate the received signal. In addition, if

everal APs were available (e.g. 𝐷 > 1), each user will be associated to
he AP with maximum received power.

The UAV-to-ground path loss should generally consider a combi-
ation of Line-of-Sight (LoS) and NLoS components whose probability
epend on the drone altitude and ground terminal surroundings [38].
e adopt the model presented in [39] (also used in [4]). According to

uch model, the probability that a ground user has a LoS link with the
P installed at a drone is:

𝐿𝑜𝑆 (𝜃) =
1

1 + 𝑎1𝑒−𝑏1𝜃⋅180∕𝜋+𝑏1𝑎1
(4)

where 𝜃 is the elevation angle in degrees (between user and drone), 𝑎1
and 𝑏1 are environment dependent constants (e.g. rural, urban, etc.).
Then, for user 𝑖 located at 𝒘𝑖 and the AP installed at drone 𝑗 located at
𝒙𝑗 , 𝑅𝑆𝑆𝐼𝑖𝑗 is given by:

SSI𝑖𝑗 =𝑃𝑇𝑋 + 𝐺𝑖𝑗 − 20 log10

(4𝜋𝑓 ⋅ ‖𝒘𝒊 − 𝒙𝑗‖
𝑐

)

− 𝑃𝐿𝑜𝑆 (𝜃𝑖𝑗 ) ⋅ 𝜂𝐿𝑜𝑆 − (1 − 𝑃𝐿𝑜𝑆 (𝜃𝑖𝑗 )) ⋅ 𝜂𝑁𝐿𝑜𝑆

(5)

𝑖𝑗 = 10 log10(10𝐺max∕20 ⋅ cos2 𝜃𝑖𝑗 ) (6)

here 𝑃𝑇𝑋 (dBm) stands for the power delivered by the transmitter
ntennas; 𝐺𝑖𝑗 stands for the gain of the antenna between user 𝑖 and UAV
as indicated in (6); ‖𝒘𝒊 − 𝒙𝑗‖ is the Euclidean distance between user

𝑖 and drone 𝑗; 𝑓 (hertz) is the channel frequency; 𝑐 (m/s) is the speed
f light; 𝜃𝑖𝑗 (radians) accounts for the elevation angle between user’s
osition 𝒘𝒊 and UAV’s position 𝒙𝑗 ; 𝜂𝐿𝑜𝑆 (in dB) and 𝜂𝑁𝐿𝑜𝑆 (in dB) are

losses corresponding to LoS and NLoS connections which depend on the
environment (a list of values can be found in [40]). Finally, constant
𝐺max in (6) indicates the maximum power.

Given RSSI𝑖𝑗 , the Signal to Noise Ratio (SNR𝑖𝑗) (dB) can be readily
obtained by subtracting the receiver’s noise figure (𝑁𝐹 ) and thermal
noise (𝑁) as indicated in (7) and (8).

SNR𝑖𝑗 = RSSI𝑖𝑗 −𝑁𝐹 −𝑁 (7)

𝑁 = −174 + 10 log10(𝐶𝐵𝑊 ) (8)

here 𝐶𝐵𝑊 stands for signal bandwidth as specified by the IEEE 802.11
tandard in use.

For all 𝑖 ∈  and for all 𝑗 ∈ , let us define 𝛾𝑖𝑗 as a boolean
ariable that indicates whether user 𝑖 satisfies minimum thresholds
i.e. SNR𝑖𝑗 ≥ SNRmin and RSSI𝑖𝑗 ≥ RSSImin) with respect to UAV 𝑗 or
ot. Then, the function associate() returns the set of users that meet
inimum thresholds and whose RSSI with drone 𝑗 is greater than with

ny other drone:

(𝑗) = {𝑖 ∈  ∣ 𝛾𝑖𝑘 = 1, RSSI𝑖𝑗 > RSSI𝑖𝑘 ∀𝑘 ≠ 𝑗} (9)

ecall from previous section that each ground user’s terminal 𝑖 sets
ts Modulation and Coding Scheme MCS(𝑖) according to its RSSI(𝑖) =
ax𝑗=1..𝐷{RSSI𝑖𝑗} (see (5)), which determines the data bit rate of the

terminal.

4.2. VoWiFi service QoS evaluation: QoS.eval()

This function checks on VoWiFi service QoS constraints described
in Section 2 by following these two broad steps:
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Input: |(𝑗)| (set of users associated), 𝐴, 𝐵max
Output: 𝐶𝐶max (maximum concurrent calls)

1 for 𝑐𝑐 = 1 to |(𝑗)| do
2 if 𝐵(𝐴, |(𝑗)|, 𝑐𝑐) ≤ 𝐵max then // Eq. (2)
3 𝐶𝐶max = 𝑐𝑐;
4 𝑐𝑐++;
5 end
6 end

Algorithm 2: Finding 𝐶𝐶max within an AP

Fig. 4. For QoS assessment.

1. Find out how many users in (𝑗) can simultaneously talk so
that the call-blocking probability 𝐵max is not exceeded (i.e. find
CCmax). This can be readily done by increasing the number of
concurrent calls in (2) as indicated in Algorithm 2.

2. Estimate the MOS: Let  ⊂ 𝐶(𝑗) be the subset composed of the
CC𝑚𝑎𝑥 stations with the lowest data bit rate in 𝐶(𝑗). Stations in
 are expected to exhibit greater transmission/reception delay
than the rest and consequently, are regarded to be ‘‘worst case’’
in terms of QoS. First, an analytical model of the IEEE 802.11
mac sub-layer is applied to the system composed of the set of
stations  plus its AP to estimate the delay and packet loss
experienced by VoIP traffic. Then, the E-model is used to finally
obtain speech quality level MOS. This is illustrated in Fig. 4. Next
we elaborate on steps (a) and (b).

Delay and packet loss estimation. The set of stations in  and its AP
constitute a IEEE 802.11 system whose performance has been largely
studied in scientific literature [41–44]. We have used a mix of different
analytical models from [33–36] fitted for the following assumptions:
stations can have different bit rates (i.e. heterogeneous traffic sources),
stations are not-saturated,3 and the channel is noisy. Due to the com-
plexity of the subject, and for the sake of clarity, we keep this section
as simple as possible. The reader is encouraged to read more elaborated
information in the corresponding references and Appendix A.

The Distributed Coordination Function (DCF) of the 802.11 MAC
sub-layer use CSMA/CA (Carrier Sense Multiple Access with Collision
Avoidance) for medium access control. Basically, each contending sta-
tion must sense the medium during a period of time in order to
ensure that it is idle before transmission. If the channel is busy, the
station waits a random backoff interval before trying again. The backoff
process is based on the Binary Exponential algorithm. Time is discretized
and the algorithm picks a random number of time slots between 0 and
2𝑖𝑊𝑜, where 𝑊𝑜 accounts for the minimum contention window value,
and 𝑖 increases by one in each failed attempt up to a ceiling 𝑚. After

3 When the channel is idle a station may have no packets to transmit.
 r
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a maximum number of retransmissions is reached (𝑀), the packet is
discarded.

Most analytical models based on Markov chains lay on a central
variable termed 𝜏 which represents the probability that an observed
station attempts to transmit in a randomly chosen time slot. In this
paper we used the expression in [33]:

𝜏 = 1
𝜂

1
1 − 𝑞

(

𝑟2𝑊𝑜

(1 − 𝑝)(1 − (1 − 𝑟))𝑊𝑜
− 𝑞𝑟(1 − 𝑝)

)

(10)

where 𝜂 is defined in (14), 𝑞 is the probability of having at least one
acket queued at the transmission buffer, 𝑝 is the probability that a
acket suffers any transmission errors, and 𝑟 is the probability that at

least one packet arrives during an idle state (load factor). Assuming
non-saturated stations and Poisson packet arrivals (with rate 𝜆) to the
transmission queue, 𝑟 and 𝑞 can be expressed as:

𝑟 = 1 − 𝑒−𝜆𝐸[𝑇 ] (11)

𝑞 = 1 − 𝑒−𝜆𝐸[𝑇 ]𝐸[𝐵] (12)

where 𝐸[𝑇 ] represents the expected average slot duration, and 𝐸[𝐵]
is expected average number of back-off slots that a packet waits be-
fore transmission. Due to its complexity, a closed-form of 𝐸[𝑇 ] is
deduced in Appendix A (Eq. (A.19)). 𝐸[𝐵] can however, be expressed as
in [36]:

𝐸[𝐵] =
𝑊𝑜

2(1 − 𝑝)

(

1 − 𝑝 − (2𝑝)𝑚

(1 − 2𝑝)
− 2𝑚𝑝𝑀+1

)

(13)

𝜂 = (1 − 𝑟) +
𝑟2𝑊𝑜(𝑊𝑜 + 1)
2(1 − (1 − 𝑟)𝑊𝑜 )

+
𝑊𝑜 + 1
2(1 − 𝑞)

(

𝑟2𝑞𝑊𝑜

1 − (1 − 𝑟)𝑊𝑜
+ 𝑟𝑝(1 − 𝑞) − 𝑟𝑞(1 − 𝑝)2

)

+
𝑝

2(1 − 𝑞)(1 − 𝑝)

(

𝑟2𝑊𝑜

1 − (1 − 𝑟)𝑊𝑜
+ 𝑞𝑟(1 − 𝑝)2

)

×
(

2𝑊𝑜
1 − 𝑝 − 𝑝(2𝑝)𝑚−1

1 − 2𝑝
+ 1

)

(14)

Let 𝜏(𝑖), 𝑟(𝑖), 𝑞(𝑖), 𝐸[𝐵(𝑖)] and 𝜆(𝑖) denote 𝜏, 𝑟, 𝑞, 𝐸[𝐵] and 𝜆 of station
𝑖 in the system under consideration (i.e. the subset  and its AP
such as illustrated in Fig. 2), where 𝑖 refers to either one user station
{1, 2, ..||}, or the AP (𝑖 = ||+1 = 𝐴𝑃 ). Let 𝑝(𝑖) be the probability of
packet transmission error 𝑝 for station 𝑖. Then, 𝑝(𝑖) can be broken down
as:

𝑝(𝑖) =
(

1 − 𝑃 (𝑖)
𝑖

)

∪ FER(𝑖)

=
(

1 − 𝑃 (𝑖)
𝑖

)

+ FER(𝑖) −
(

1 − 𝑃 (𝑖)
𝑖

)

⋅ FER(𝑖) (15)

where 𝑃 (𝑖)
𝑖 accounts for the probability that the jth station finds the

channel idle and FER(𝑖) stands for the Frame Error Rate due to channel
noise. The probability of finding the channel idle, can be further
expressed as:

𝑃 (𝑖)
𝑖 =

𝑆
∏

𝑗=1, 𝑖≠𝑗

(

1 − 𝜏(𝑗)
)

(16)

Assuming that frames have a constant size of 𝐿 bits (𝐿 = preamble
+ header + data), it is possible to obtain the FER of station 𝑖 as:

FER(𝑖) = 1 − (1 − P(𝑖)
𝑒 )𝐿 (17)

where P(𝑖)
𝑒 represents the codec bit error rate of station 𝑖, which can be

readily calculated4 if one knows user’s modulation (i.e. MCS(𝑖)).
Finally, solving the non-linear equation system, the packet loss of

station 𝑖 can be expressed as:

PL(𝑖) = 1 −

(

1 − FER(𝑖)
)

𝜏(𝑖)
∏

||+1
𝑗=1,𝑗≠𝑖

(

1 − 𝜏(𝑗)
)

𝜆(𝑖) 𝐸[𝑇 ]
(18)

4 See equations in [45] and [46] for DSS and OFDM modulations
espectively.
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Fig. 5. Example solution (𝐷 = 2).

Since we assume a very small buffer size, the queueing delay can
e neglected, and the only delay component will be the channel access
elay. Then, the delay of station 𝑖 can be expressed as:

DEL(𝑖) = 𝐸[𝐵(𝑖)] 𝐸[𝑇 ] (19)

As justified in [16], the AP5 (𝑖 = 𝐴𝑃 ) is the most saturated station,
eading the packet loss and delay in the system. Thus, we can take its
acket loss and delay as representative of the worst case. Then, the
utput of this step is:

L = PL(𝐴𝑃 ) (20)

EL = DEL(𝐴𝑃 ) (21)

OS estimation. As stated in Section 2, the E-Model rates the conver-
ation quality 𝑅 factor, which can be calculated using (1) [29], whose
erms were:

• 𝐼𝑒,𝑒𝑓𝑓 is the effective impairment equipment parameter. It is a
combination between impairment equipment parameter at zero
packet loss (𝐼𝑒), and a function of 𝐼𝑒 that is dependent on packet
loss rate and packet loss behavior. It can be expressed as:

𝐼𝑒,𝑒𝑓𝑓 = 𝐼𝑒 + (95 − 𝐼𝑒)
𝑃𝑝𝑙

𝑃𝑝𝑙
BurstR + 𝐵𝑝𝑙

(22)

where 𝐼𝑒 is a codec-dependent constant associated with codec
compression degradation,6 𝑃𝑝𝑙 represents the packet loss rate,
BurstR accounts for the burst ratio (i.e. equals 1 if packet loss if
random and greater otherwise), 𝐵𝑝𝑙 represents the codec packet
loss robustness, which also has a specific value for each codec
(listed in ITU-T Rec. G117 Appendix I).

• 𝐼𝑑 accounts for all impairments due to delay of communication
chain. A widely accepted approximation for 𝐼𝑑 can be obtained
from one-way delay in communication path (𝑑) as follows:

𝐼𝑑 = 0.024𝑑 + 0.11(𝑑 − 177.3)𝐻(𝑑 − 177.3), (23)

where 𝐻 is the Heaviside function (i.e. 𝐻(𝑥) = 0 for 𝑥 < 0 and
𝐻(𝑥) = 1 for 𝑥 > 0). This shows that the effect of one-way delays
under 100 ms can be discarded.

In this paper, we will use the G.711 codec (𝐼𝑒 = 0) with BurstR = 1
and 𝐵𝑝𝑙 = 25, 1. So, assuming that 𝑃𝑝𝑙 = PL (from (20)), and 𝑑 = DEL
(from (21)) + 20 ms (from the VoIP codec packetization), 𝑅 can be

5 Observe that the AP is also part of the system and its MCS and FER
hange dynamically according to its communication partner. Our approach
s to consider average values of its data bit-rate and FER.

6 A list of values from ITU-T codecs were presented in ITUT-T Rec. G.113
ppendix I.
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expressed7 as:

𝑅 = 93.72 − 95 PL
PL + 25, 1

− (0.024DEL + 0.11(DEL − 157.3)𝐻(DEL − 157.3)) (24)

Finally, to obtain speech quality, the 𝑅 factor can be mapped to
MOS [27] as:

MOS =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑅 < 6.5
1 + 0.035 𝑅 + 7 ⋅ 10−6 𝑅
⋅ (𝑅 − 60) (100 − 𝑅), 6.5 ≤ 𝑅 ≤ 100

4.5, 𝑅 > 100

(25)

4.3. Example solution

In this section, we provide an example solution obtained after
implementing Algorithm 1 in Matlab® in a scenario that includes 25
ground users randomly distributed within an area of 100m×100m. The
parameters used are listed in Table 3. Unless otherwise specified, such
parameters are common to all experiments in this paper.

Fig. 5 ilustrates the solution obtained. Users’ color shows the user
distribution among UAVs. In this case, two drones were required to
cover 24 out of 25 users8 (i.e. (|(1)| + |(2)|)
∕𝑈 = 0.96 > 𝐶min) using the IEEE 802.11n standard revision.

The solution represented in Fig. 5 has been simulated with the
network simulator ns-3 in order to validate the IEEE 802.11 analytical
model from Section 4.2. The ns-3 model YansWifiPhy has been used
with a transmission buffer size of one packet. The simulation has
been repeated 30 times with different seeds and the results presented
represent the average value with a 95% confidence interval.

In Table 2, we compare the delay, packet loss and MOS from our
analytical models with those obtained with ns-3. It can be observed no
significant differences between the output of the analytical models used
and simulation results, particularly in terms of predicted speech QoS.
Note that delay is very small in absolute terms, always under 1 ms as
a result of a very small buffer. The comparison of the MOS obtained
with our analytical models versus simulation suggests that the method
and models proposed in Section 4.2 are acceptable.

Note that the X–Y discretization step in our example was only 1 m
(which we consider the minimum safe for collision avoidance), while
Z step was 5 m. In general, the smaller grid steps the more accurate
the solution will be (i.e. closer to the optimal that would be found
without discretizing the flying space) but the more edges in  will
have to be assessed, increasing the computational load. In general,
∑𝐷

𝑑=1
(

||

𝑑

)

possibilities will have to be assessed when 𝐷 drones are
being evaluated. For example, the grid defined in our example has || =
2 ⋅104 edges, thus ≃ 2 ⋅108 possible combinations of UAV locations have
been assessed. This fact suggests that exhaustive search may be feasible
only in very small scenarios since its computational complexity grows
exponentially with 𝐷. For that reason, heuristic search methods are
commonly preferred as a general way to find (semi) optimal solutions.

5. Heuristic solution

A number of different metaheuristics can be used to find
(semi)optimal solutions. These include genetic algorithms (GAs), parti-
cle swarms optimization, artificial immune system, and simulated an-
nealing. Furthermore, other approaches such as optimal transport the-
ory have been also successfully applied to solve user–drone association
in similar scenarios.

Our heuristic search method can be viewed as a replacement of
lines 3–20 in Algorithm 1 with a function call (GAsearch) that returns
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Table 2
Comparison of algorithmic results with simulation.
Drone 𝑥𝑖 𝐶(𝑖) 𝐵(𝑖) Algorithm 1/Simulation

(𝑖) (%) PL D MOS
(%) (ms) [1–4.5]

1 (24, 36, 20) 12 1.58 0.45/0.32 ± 0.05 0.19/0.12 ± 0.002 4.39/4.40

2 (63, 67, 20) 12 1.58 0.36/0.26 ± 0.04 0.18/0.13 ± 0.002 4.39/4.40
Table 3
Example solution input parameters.
IEEE Standard Scenario Traffic Constraints

Revision 802.11 n Users 25 Calls/hour/user 1 RSSImin −82 dBm
GI 800 ns Size 100 × 100 m Call length 180 s SNRmin 20 dB
Preamble Greenfield X–Y step 1 m VoIP codec G.711 MOSmin 3.5
Bandwidth 20 MHz Altitude layers {20, 25} m On/Off times CBR 𝐶min 0.9
Retries 7 Prop. Exponent 3.3 Packet interval 20 ms 𝐵max 0.05
Input:  ,
{

𝒘𝑘
}

, 𝐷max, 𝐶min, 𝐵max, MOSmin
Output:  (location), 𝑜𝑓min (obj. function)
Initialization: 𝐷 = 0,  = ∅, 𝑜𝑓min = 𝐷max + 1

1 while ( = ∅ or 𝐷 ≤ 𝐷max) do
2 𝐷 + +;
3 ,𝑜𝑓 =GAsearch(D,{𝒘𝑘},𝐵max,𝐶min,MOSmin)
4 end

Algorithm 3: Use of the heuristic search method

he (semi)optimal solution found for a specific number of drones 𝐷 as
shown in Algorithm 3.

We have designed the genetic algorithm GAsearch() using the
Matlab® R2017 A Global Optimization Toolbox [47]. Next we elaborate
on the GA developed.

5.1. Individuals

An individual is a possible solution to the problem. As such, each in-
dividual is a location of 𝐷 drones
 = {𝒙1,𝒙2,… ,𝒙𝐷|𝒙𝑖 ∈  , 𝑖 ∈ ,𝒙𝑖 ≠ 𝒙𝑗 |∀𝑗≠𝑖}, where 𝒙𝑖 ∈  rep-
resents the 3D coordinates of drone 𝑖. For instance, an individual
composed of two drones {𝒙1,𝒙2} is given by the sequence of genes
{𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2}.

5.2. Algorithm steps

The algorithm performs the following steps:

1. Generate the initial population.
2. Each individual from the generation is evaluated and ranked by

assessing a raw fitness score based on the objective function of the
problem (3).

3. Selection of parents according to their position in the ranking.
4. A new generation is created as follows:

• The top 5% of the ranking (elite individuals) are copied to
the new generation.

• Of the remaining individuals:

– 80% is created by Crossover-and-Mutation (CM)
combining the genes of two selected parents
(crossover) and applying a mutation to these new
individuals with a very low probability 𝑝𝐶𝑀

𝑚 .

7 The 20 ms of packetization delay has been taken into account in the
xpression provided.

8 Some ground terminals almost entirely overlap in the figure as they were
enerated randomly.
100
– 20% is created by mutation of parents (termed self-
reproduction and mutation, SRM) with probability
𝑝𝑆𝑅𝑀𝑚 .

5. After each new generation the exit criteria is evaluated. The al-
gorithm finishes when the lowest raw fitness score found cannot
be improved after 𝑀𝐴𝑋𝐺 consecutive generations9 by at least
10−3. If the exit criteria is not met, go to step 2.

The previous steps differ slightly from the traditional sequential ap-
plication of operations done by the canonical GA, however convergence
is improved according to [48,49].

5.2.1. Initial population
It is desirable to count with initial individuals prone to be fit [50].

We created the following heuristic based on the k-means clusterization
method illustrated in Fig. 6:

• In an area similar to the grid X–Y dimensions, 𝐷 clusters are
created so that the mean distance from each ground user to its
cluster centroid is minimized. Then, we add the grid’s average
altitude to the centroid of each 2D region created previously,
obtaining 3D centroids.

• The first individual of the initial population will locate its drones
in the edges closest to these 3D centroids.

• The remainder (𝑝 − 1) individuals of the initial population are
created simply by distributing each individual’s drones randomly
among the spatial regions created around each centroid. In partic-
ular, we define cubes with a volume equals to the D-th part of the
grid volume.10 Note that drones are always located at grid edges

We found experimentally that a population size 𝑝 of 200 individuals
provided results that could not be improved in the scenarios tested.

To guarantee convergence, after creating the initial population,
these 3D spatial regions are no longer taken into consideration for next
generations. This implies that genes carried by individuals from next
generations are not constrained by spatial regions and hence, could be
at any edge ∈  .

9 However, if within the first 𝑀𝐴𝑋𝐺 generations no individual meets
problem constraints, the algorithm returns  = ∅ to indicate that no solutions
can be found with that number of drones.

10 Observe that since the centroid of each cube was determined by k-means
clusterization, there could be overlapping regions or regions out of the grid
bounds such as those illustrated (in 2D) in Fig. 6.
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Fig. 6. Example of 2D spatial regions where drones of initial population are confined
(𝐷 = 4).

.2.2. Operators
The following operators have been used:

1. Evaluation and ranking. Each individual is assigned a raw fit-
ness score by evaluating the problem objective function defined
in (3). Since the genetic algorithm is called to search for solu-
tions with 𝐷 drones, individuals that do not meet the problem
constraints are assigned a higher score by adding a penalty
(between 1 and 2, according to the ratio of ground users that
meet QoS constraints) to the value of their objective function.
Appendix B details how the raw fitness score is calculated.
Individuals are then sorted according to their raw fitness score.
Finally, if an individual is in the 𝑛 position in the ranking, it is
assigned a new scored termed expectation value of 1∕

√

𝑛.
2. Parents Selection. We use stochastic uniform selection among

individuals according to their expectation value. In our case, 342
parents (152 × 2 CM + 38 SRM) are selected for crossover and/or
mutation operations. Therefore, individuals in the top positions
are chosen multiple times to be parents.

3. Crossover. The crossover operator combines the characteristics
of two parents to create a new individual. We use a uniform
crossover operation by generating a random binary vector that
determines whether each child’s gene comes from one parent or
the other.

4. Mutation. We apply a exchange-type uniform mutation that
consists of changing one gene of an individual with a given prob-
ability11 (𝑝𝐶𝑀

𝑚 for those individuals generated after crossover, or
𝑝𝑆𝑅𝑀𝑚 for parents) for a random coordinate within the grid edges.

.3. Heuristics performance

We have carried out a series of experiments using the parameters
isted in Table 4 to validate our heuristic method. In an area of 50 m ×
0 m, we increase the number of users on ground from 10 to 60 so
hat the number of drones in the solutions is also increased. We have
erformed 30 runs of each experiment (changing the layout of ground
ser randomly each time) and thus, values shown represent the average
alue obtained

11 We set 𝑝𝑆𝑅𝑀𝑚 = 1∕(3 ⋅𝐷) in inverse proportion to the number of genes of
individuals, and 𝑝𝐶𝑀 = 1∕2 ⋅ 𝑝𝑆𝑅𝑀 .
𝑚 𝑚

101
Fig. 7. Comparing heuristics, exhaustive search and clusterization.

5.3.1. Quality of the solutions
Table 5 compares the results obtained with our heuristic method,

the exhaustive search method, and the results obtained by simply using
the first individual in our initial population (i.e. k-means clusteriza-
tion method). For each case, we show the number of drones 𝐷, the
number of ground users associated to the WiFi network 𝐶, and the
value of the objective function from (3). When greater than zero, the
standard deviation is included between parentheses. It can be observed
that results obtained with our heuristic method are very close to the
optimal found by exhaustive search, matching the number of required
drones in all cases. Solutions found by k-means clusterization, however,
overestimate the number of drones needed, providing poor results when
compared to our heuristics.

Results have been extended from 70 to 150 ground users for our
heuristic method and k-means (such extension poses a computational
burden too high for exhaustive search with the grid under consid-
eration, e.g. for 𝐷 = 3 and || = 2500 edges, more than 15 ⋅ 109
possible UAV location combinations would have to be evaluated). Fig. 7
plots the value of the objective function in our extended comparison.
Results suggest that the number of drones obtained with our heuristics
tends to grow linearly with the number of users in the scenario under
consideration,12 outperforming the solutions found with k-means in the
studied cases. Note that since the coverage constraint 𝐶min is 0.9, the
value of the objective function is almost entirely determined by the
number of drones (which explains the steps in the plot). The value of
the objective function exhibits greater confidence intervals in 𝑈 = 90 as
a result of finding solutions with a different number of drones (3 or 4)
along with the 30 repetitions, as the user layout is randomly generated.

5.3.2. Convergence speed and complexity
Fig. 8 shows the number of generations produced by our heuris-

tic search until a solution is found. Remember that 𝐷 is increased
(and a new call to GAsearch is made) only after failing to find an
individual that meets the problem constraints for 𝑀𝐴𝑋𝐺 consecutive
generations.13 Results show that the best individual is always found
within the first five generations in all scenarios tested. This explains
that solutions with 𝐷 drones (see Figs. 7 and 8) are commonly found
after ∼ 50𝐷 generations (see our exit criteria).

The fast convergence speed attained can be attributed to:

• The first generation created exhibits excellent fitness. Both the
k-means clusterization heuristic, and the large population size
(𝑝 = 200) makes a first generation of 200 individuals prone to
be good candidates.

12 The grid dimensions determine the density of ground users. Thus, for a
given area of sufficient dimensions (2500 m2 in our scenarios), the number of
drones grows linearly with the density of users as shown in Fig. 7.

13 𝑀𝐴𝑋𝐺 was determined experimentally. We initially tried 𝑀𝐴𝑋𝐺 = 200
generations in an scenario of 100 m × 100 m and X–Y steps of 1 m. But since
solutions were always found in the first five generations, we decided to set
𝑀𝐴𝑋 = 50.
𝐺
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Table 4
Heuristics validation input parameters.
IEEE Standard Scenario Traffic Constraints

Revision 802.11 n Users {10,… , 60} Calls/hour/user 1 RSSImin −82 dBm
GI 800 ns Size 50 × 50 m Call length 180 s SNRmin 20 dB
Preamble Greenfield X–Y step 1 m VoIP codec G.711 MOSmin 3.5
Bandwidth 20 MHz Altitude layers 20 m On/Off times CBR 𝐶min 0.9
Retries 7 Prop. Exponent 3.3 Packet interval 20 ms 𝐵max 0.05
Table 5
Comparison of exhaustive, heuristic, and k-means.
𝑈 10 20 30 40 50 60

Exhaustive
𝐷 1 1 1 2 2 2

𝐶 10 20 29.27
(0.45)

40 50 59.33
(0.52)

𝑜𝑓 1 1 1.024
(0.02)

2 2 2.01
(0.01)

Genetic
𝐷 1 1 1 2 2 2

𝐶 10 20 29.23
(0.43)

40 50 57.87
(0.35)

𝑜𝑓 1 1 1.026
(0.01)

2 2 2.035
(0.01)

k-means
𝐷 4.93

(0.64)
6.1
(0.84)

6.47
(0.63)

6.97
(0.72)

7.07
(0.64)

7.37
(0.67)

𝐶 10 19.43
(0.5)

28.5
(0.51)

37.63
(0.72)

46.93
(0.87)

56.27
(1.17)

𝑜𝑓 4.93
(0.64)

6.13
(0.84)

6.52
(0.63)

7.03
(0.72)

7.13
(0.64)

7.43
(0.67)
c
𝐷
s

6

p
i
I
b

6

v
m
m
i
t

Fig. 8. Generations evaluated until exit criteria is met.

• The characteristics of the scenarios tested. Considering the finest-
grained discretization X–Y step of 1 m, the number of grid edges
that belong to each cluster (i.e. ||∕𝐷) is not too large compared
to the population size used. In general, this two factors will de-
termine the convergence speed, and thus, for scenarios covering a
wider area (i.e. large ||) a larger population is advised to attain
fast convergence.

The pseudocode used to evaluate the raw fitness function for 𝐷
drones (see Appendix B) can be computed in 𝑂(𝑈 ⋅𝐷) time.14 According
o our previous convergence analysis, the fitness function is evaluated
number of times that depends on the number of generations created

nd population size as ∼ 𝐷 ⋅ 𝑀𝐴𝑋𝐺 ⋅ 𝑝 (e.g.∼ 10 000 ⋅ 𝐷 in our
scenario). Then, we could state that the computational complexity of
our heuristic method is 𝑂(𝑈 ⋅ 𝐷2). However, the number of drones
used is not independent of the number of ground users. In its lower
bound, 𝐷 is limited by 𝑈∕𝑈0 (where 𝑈0 is the greatest number of
ground users whose traffic can be handled by a single drone). In
its upper bound, however, 𝐷 tends to match the number of users 𝑈

14 The pseudocode is composed by three main loops 𝑂(𝑈𝐷)+𝑂(𝑈𝐷)+𝑂(𝑈 ).
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(e.g. in a large extension with scattered users). Finally, using this upper
bound, we conclude that the computational complexity of our heuristic
method is upper bounded by 𝑂(𝑈3). However, if one considers that 𝐷 is
onstrained by the maximum number of UAVs in the problem (constant
max), then the computational complexity would be 𝑂(𝑈 ). At any rate,

olutions can be computed in polynomial time.

. Numerical results

This section provides a numerical analysis of the proposed UAV de-
loyment method. Results are obtained through the heuristics proposed
n Section 5. The focus is set on two different aspects: the impact of the
EEE 802.11 standard revision in use, and the impact of the constraints
ounds in the solutions.

.1. Influence of IEEE 802.11 standard revision

A comprehensive study of the challenges and implications of the
arious IEEE 802.11 amendments in long-range outdoor WiFi deploy-
ents can be found in [23]. In this section, we compare the perfor-
ance of the IEEE 802.11 (b/g/a/n/ac) standard amendments shown

n Table 6 and evaluate their fitness to scenarios with specific charac-
eristics. In particular, we define two types of scenarios:

• Coverage-limited scenario: for a fixed number of ground users
𝑈 = 100, the terrain size is increased from 100 m2 to 10 000
m2, obtaining user sparsity ranging from 1 m2 to 100 m2. In
this scenario type, it is expected that the number of drones in the
solutions is mainly determined by the need to satisfy the coverage
constraint 𝐶min (which depends on the physical layer) and SNR of
users.

• QoS-limited scenario: for a fixed very small terrain size (5 m × 5 m)
the number of users is increased from 25 to 100, obtaining highly
dense scenarios (1–0.25 m2/user). In this kind of scenario, it is
expected that all users are covered and the number of drones in
the solutions is mainly determined by the need to satisfy QoS

constraints (𝐵max,𝑀𝑂𝑆min) (which depend on the mac-sublayer).
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Table 6
IEEE 802.11 standard revisions considered.

Frequency Channel bandwidth Revision

2.4 GHz
22 MHz 802.11 b

20 MHz 802.11 g

40 MHz 802.11 n

5 GHz 20 MHz 802.11 a

160 MHz 802.11 ac

Fig. 9. Solutions for various values of user geographic dispersion.

The results presented in this section represent average values after
repeating each experiment 30 times. 95% confidence intervals obtained
were small and have been omitted in the figures shown for clarity.

6.1.1. Coverage-limited scenario
Fig. 9 plots the value of the objective function of the solutions found.

It is noticeable that the physical bit rate of IEEE 802.11b (11 Mbps) re-
sults in higher demand for drones due to the low throughput supported
by each AP. It can also be observed that when geographic dispersion
increases, standards in the 5 GHz band (IEEE 802.11a and 802.11ac)
produce worse results (i.e. more UAVs are needed) than those in
the 2.4 GHz band. This can be attributed to a higher propagation
loss (see RSSI expressionformula in (5)). Another noticeable effect is
produced by the channel bandwidth. Higher bandwidth exhibits higher
thermal noise (see 𝑁 formula in (8)), which negatively impacts SNR
nd, consequently, coverage. This is clearly noticeable in the case of
EEE 802.11ac, and less obvious in IEEE 802.11n, which performs a
ittle worse than IEEE 802.11 g for areas greater than 70 m×70 m despite
greater data bit rate.

Finally, an interesting effect can be observed in the leftmost part
f the figure. Most revisions start with 4 drones and then fall to 3 for
arger areas until it starts increasing again. This is attributable to the
cenario characteristics as in the denseset case (100 users in an area
f 10 m × 10 m) it behaves like a QoS-limited scenario where 100%
f users are covered, and the limiting factor is their traffic. However,
hen the terrain size increases (i.e. sparsity increases) some users
re left uncovered (until 𝐶min). This happens first in those standard
evisions that exhibit worse coverage properties (i.e. ac and a), and as
consequence, fewer drones are required. Nevertheless, as the terrain

ize keeps increasing, coverage constraint is dominant, and the number
f drones in the solutions tends to increase with the terrain size in all
tandard revisions but IEEE 802.11b due to the large number of drones
eployed.

.1.2. QoS-limited scenario
Fig. 10 shows the results obtained for the high user-density QoS-

imited scenario. To be consistent with the previous case, we consider
ser sparsity (0, 25–1 m2/user) instead of density in the results shown.
esults show that all standard revisions (but IEEE 802.11b) exhibit sim-
lar behavior, increasing the number of drones when QoS constraints v

103
Fig. 10. QoS limited scenario.

Fig. 11. Influence of 𝐶min in the value of the objective function.

re not met due to high traffic volume. This suggests that the higher
ata bit rate exhibited by some revisions is not fully exploited (except
t 0.76 m2/user) in the very small scenario under consideration. As
xpected, the insufficient physical bit-rate of IEEE 802.11b causes ex-
onential growth in the number of drones required to support very high
ser densities.

From the two scenarios studied, it can be concluded that revisions
EEE 802.11 g/n achieve the best results, requiring only between 1
nd 4 drones to cover between 90 and 100 users in an area ranging
rom 5 m × 5 m up to 100 m × 100 m. Revisions using 5 GHz however
a, ac), exhibit more path loss and tend to require more drones in large
reas e.g. greater than 70 ×70m. Finally, the old IEEE 802.11b standard
evision exhibits a poor performance compared with the rest as a result
f its poor throughput.

.2. Influence of the constraints

The selection of the constraints’ thresholds also plays an important
ole in the solutions obtained; very restrictive constraints may lead to
nwanted results. In this section, we show the results produced with the
ariation of 𝐶min in a coverage-limited scenario (100 users in the largest
errain size: 10 000 m2), and 𝐵max in a QoS-limited scenario (100 users
n the smallest terrain size: 25 m2). The value of 𝑀𝑂𝑆𝑚𝑖𝑛 is always set
o 3.5.

Fig. 11 shows the influence of 𝐶min in the objective function for
ifferent IEEE 802.11 standard revisions. As expected, the number of
rones in the solutions increases with 𝐶min. This growth is approxi-
ately linear until 𝐶min = 0.9, where those standard revisions with
igher frequency (a, ac) or channel bandwidth (ac, n) exhibit a steeper
ise than b or g. Therefore, very demanding 𝐶min values may cause
xponential growth in the number of UAVs needed for those standards.
n such case, the maximum number of available UAVs in the problem
𝐷max) might limit the feasibility of finding valid solutions.

Fig. 12 shows the influence of 𝐵max in the objective function for a

ery small area with a highly dense crowd. Recall that 𝐵max = 0 means
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Fig. 12. Influence of 𝐵max in the value of the objective function.

Fig. 13. Dynamic of UAVs relocation.

hat all users associated to WiFi (i.e. covered) can simultaneously call,
hereas 𝐵max = 0.1 means that a covered user will be allowed (by the
AC mechanism) to call with a probability of 90%. In this case, those
tandards with better data bit rate withstand more restrictive values of
max (i.e. simultaneous calls) with the same number of drones. As such,
e find that IEEE 802.11n/ac revisions achieve slightly better results

han the rest.
Finally, it is important to remark that several factors limit our

umerical results. First, only the highest data bit rate from each revision
as been considered; then, some features such as frame aggregation or
IMO in 802.11n or 802.11ac have also been disregarded, so it has the

nter-channel interference. Besides, some promising revisions such as
EEE 802.11ah, targeted explicitly for outdoor long-range at 900 MHz
erving high-density wireless stations [23] has not been included due
o lack of adoption in today’s user terminals. However, the most patent
imit of our results is the fact that the problem has been applied just to
he initial deployment of UAVs. Next, we provide a preliminary analysis
f the applicability of this problem to a scenario where ground users
re moving.

. Application to moving targets

The problem defined in Eq. (3) is aimed at solving the problem of
he initial deployment of UAVs, and as such, it can also be applied for
ervice provisioning when ground users are gathered in specific known
reas such as meeting points. In this section, we provide a brief analysis
f its applicability when ground users are on the move, identifying open
ssues which remain to be addressed in future work. It is assumed that
round users position can be tracked. In such case, every 𝑇 seconds
ser’s position is updated and our optimization problem is solved,
elocating UAVs accordingly in a process like the one illustrated in
ig. 13.

The key points in this process are:

• The observation period 𝑇 . The minimum possible value for 𝑇
should be greater than the addition of:

– The time required to solve the problem (which in turn
depends on the performance of the algorithm finally im-
plemented, the scenario under consideration and computa-

tional resources).
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– The time required to relocate all UAVs according to the new
solution. This, in turn, depends on the solution found, initial
position, UAV speed and the displacement strategy.

Practical values should be in the order of seconds. Clearly, the
longer 𝑇 , the greater discrepancy between the theoretical and
actual position of ground users, increasing the error of the models
and chances of unsatisfying constraints.

• Relocation of UAVs. Moving UAVs may result in transient periods
of unsatisfied constraints. The decision about which drones are
displaced according to the final solution and the trajectories fol-
lowed is a problem itself that should consider not only the delay
(e.g.[11]) but also service disruption to ground users engaged
in conversations. Examples of strategies include minimizing the
sum of all UAVs displacements, the longest UAV displacement,
or the number of users affected by service outages. It would also
be interesting to explore techniques of machine learning such as
conceptor-based echo state networks (ESN) [51] to predict user
service request pattern and user mobility pattern.

• Problem Objective function. Once the relocation strategy is fixed,
the cost of relocating drones should be considered in the optimiza-
tion problem as a penalty factor added to the objective function.
Let us imagine a case in which two candidate solutions exhibit
the same number of drones and coverage (i.e. a similar value
of the objective function) but one solution implies a complex
repositioning of all drones while the other implies just a slight
change on a single drone. Thus, this penalty could include aspects
such as the relocation delay or the temporal effect of impaired
users due to drones’ relocation, serving as a factor to break the
deadlock in favor of the less costly solution.

The aforementioned key points suggest that user’s movement brings
ut new issues and implications that require an extension to the prob-
em defined in this paper, including the cost of UAVs relocation ac-
ording to a specific strategy and user mobility models. Furthermore, a
entralized approach such as the one suggested for initial deployment
ight not hold service continuity. These aspects15 are left as open issues

or further research. Nevertheless, as a prospective exercise, we have
erformed a simulation with users on the move using the coverage-
imited scenario and the parameters in Table 4 (but using a traffic
rofile of 5 calls/hour/user and altitude layers between 10 m and 40 m
ith steps of 1 m).

In our coverage-limited scenario, the 100 users now move according
o a correlated random walk model. Each ground user moves at a
alking speed of 5.3 km/h with a probability of 0.8, and in such case,

he direction remains unchanged with a probability of 0.8. Users rotate
80 degrees when they reach the area bounds. Algorithm 3 is used for
he initial deployment and the number of drones deployed 𝐷 remains
nchanged for the remainder of the simulation (30 min). To achieve
his, we limit subsequent solutions to the best possible found by our
A with 𝐷 drones (even though problem constraints were not satisfied).
ith every new solution, drones are relocated (considering a speed of

0 Km/h) so that the sum of the distances traveled by all drones is the
inimum possible.

To study the transient effects of UAV relocation, we check ev-
ry five seconds whether the problem constraints (i.e. coverage and
peech quality) are satisfied considering the actual position of users.
ew solutions (and drones relocation) have been recalculated every
={15 s, 30 s, 45 s, 60 s} and in each case simulations are repeated 30

imes. Fig. 14 shows the percentage of the simulation time when both
onstraints are satisfied. Results show that problem constraints were
atisfied above 92% of the time in the worst case (i.e. area of 10 000
2 and 𝑇 = 60 s). As expected, the worse performance is obtained when
sers are more scattered and, to a lesser extent, with longer 𝑇 .

15 Another open issue is to speed up the solution search by experimenting
with other heuristics or at the implementation level (e.g. using low-level
programming language).
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Fig. 14. Effect of UAV relocation in problem constraints.

Fig. 15. Effect of UAV relocation in calls in progress.

But since users call according to a traffic profile of 5 calls/hour, it
ould be interesting to observe the impairment that drones relocation

ause in these calls. To this end, we define a call disruption event when
call in progress does not satisfy the speech quality constraint for two

onsecutive samples (i.e. 10 s). The percentage of calls that experience
service free of disruption is shown in Fig. 15. According to our results,
fter the 30 min of simulation, almost 95% of calls have not been
ffected by disruption events. As in the previous case, results show a
light decrease for larger scenarios with more scattered users and to a
esser extent with 𝑇 .

A final experiment was done by launching one extra drone (𝐷 + 1)
n the initial deployment (i.e. forcing one extra iteration in Algorithm
). The results obtained in this case were promising since the effect of
AV relocation was unnoticed (i.e. constraints were met 100% of the

ime, and no call was interrupted). This suggests that launching extra
rones16 can be an effective method to avoid service degradation during
AVs relocation.

. Conclusions and further work

In this paper, we dealt with the problem of optimal placement of
AVs to provide a VoWiFi service with guaranteed QoS to a set of

tatic users. We formulated an optimization problem that minimizes
he number of drones required to provide such service and the ratio of
ncovered users. An exhaustive search algorithm was proposed to find
olutions. Still, due to its high computational cost, we also proposed
fficient heuristics as a general way to solve the optimization problem.

The results obtained in our experiments suggest that large area
cenarios with highly dispersed users (coverage-limited) will benefit
rom IEEE 802.11 g/n standards, as fewer drones will be needed to

16 Although we used one extra drone, the optimal number will end up
epending on users’ density and terrain extension, which is also left for further
esearch.
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provide the service. However, in very small scenarios with a highly
dense crowd, the limiting factor will be QoS, and fewer drones will
be required by using IEEE 802.11 standards with a higher bit rate.

The next step in our work is to include the energy of the communi-
cation and the blocking probability as part of the objective function in
a combination customizable by the designer. It is also left for further
work the full extension of this problem to ground users on the move
exploring relocation strategies and launching extra drones.
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Appendix A. Expected time per slot: E[T]

The expected time per slot represents the expected length of each
state of the Markov chain modeling the IEEE 802.11 system. To obtain
a closed-form expression of 𝐸[𝑇 ], we follow the approach presented
in [35] (but adapted to the terms and concepts defined in Section 4.2)
which considers the probability of being on each of the following states:

• Idle state, when nobody attempts to transmit.
• Success state, when only a single station attempts to transmit with

no channel related errors.
• Error state, when a single station attempts to transmit but channel

errors occur.
• Collision state, when more than one station attempts to transmit

simultaneously (same slot).

𝐸[𝑇 ] can be obtained by weighting the time spent on each of the
revious states respectively as follows:

[𝑇 ] = 𝑇𝐼 + 𝑇𝑆 + 𝑇𝐸 + 𝑇𝐶 (A.1)

The factors in (A.1) can be calculated as follows:

• 𝑇𝐼 can be expressed as:

𝑇𝐼 = 𝑃𝐼 𝜎 (A.2)

where 𝜎 stands for the time slot duration as defined in the
corresponding IEEE 802.11 revision. 𝑃𝐼 is the probability that the
channel is idle in a randomly chosen slot, which can be expressed
as

𝑃𝐼 =
𝑆
∏

𝑗=1

(

1 − 𝜏(𝑗)
)

(A.3)

where 𝑆 is the number of stations in the system under consider-
ation . Let us define this set as  =  ∪ 𝐴𝑃 . Then, 𝑆 = || =
|| + 1.

• The time spent on successful (𝑇𝑆 ) and erroneous (𝑇𝐸) slots can be
expressed as:

𝑇𝑆 =
𝑆
∑

𝑗=1
𝑃 (𝑗)
𝑠 (1 − FER(𝑗)) 𝑇 (𝑗)

𝑠 (A.4)

𝑇𝐸 =
𝑆
∑

𝑗=1
𝑃 (𝑗)
𝑠 FER(𝑗) 𝑇 (𝑗)

𝑒 (A.5)

where 𝑇 (𝑗)
𝑠 and 𝑇 (𝑗)

𝑒 represent the average time that station 𝑗
spends in successful and erroneous transmissions, respectively.
Their actual value depend on the IEEE 802.11 standard revision
used and physical data rate of stations. They can be expressed
as:
𝑇 (𝑗)
𝑠 = DIFS + 2 ⋅ PLCP(𝑗)+

(𝑗) (𝑗) (𝑗) (A.6)

(Header + Data )∕𝑅𝑏 + SIFS + 𝑇𝑎𝑐𝑘 + 2𝛿
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1 −

(

1 −
∏

𝑗∈(𝑑)

(

1 − 𝜏(𝑗)
)

))

⋅ 𝑇 (𝑑)
𝑐
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𝑇𝐶 (continued)

(A.19)

Box I.
t
o

A

(
a
g
c

𝑇 (𝑗)
𝑒 = DIFS + PLCP(𝑗)+

(Header(𝑗) + Data(𝑗))∕𝑅(𝑗)
𝑏 + EIFS + 𝛿

(A.7)

Where 𝑅(𝑗)
𝑏 represents the physical data rate (given by the MCS

used by the station), DIFS, SIFS, EIFS are inter-frame periods as
specified by the 802.11 standard and PLCP(𝑗),Header(𝑗) and 𝑇𝑎𝑐𝑘
correspond with the PLCP header, the IEEE 802.11 header and the
duration of an ack frame in the IEEE 802.11 standard,17 and 𝛿 is
the propagation delay.
In Eqs. (A.4) and (A.5), 𝑃 (𝑗)

𝑠 stands for the probability that only
an observed station 𝑗 attempts to transmit while the rest remain
silent, which can be expressed as:

𝑃 (𝑗)
𝑠 = 𝜏(𝑗)

𝑆
∏

𝑘=1, 𝑘≠𝑗

(

1 − 𝜏(𝑘)
)

(A.8)

• The time spent in collided transmissions 𝑇𝐶 can be deduced as
follows. Each station 𝑗 exhibits an average collision time, 𝑇 (𝑗)

𝑐
which can be approximated by the time spent in a erroneous
transmission 𝑇 (𝑗)

𝑒 (i.e. 𝑇 (𝑗)
𝑐 = 𝑇 (𝑗)

𝑒 ). Nevertheless, when packets
sent by two different station collide, the time to be considered
corresponds with the longest average collision time. To address
this concern, stations in the system (i.e. set ) are grouped in
traffic classes according to their collision time (i.e. all stations
with the same average collision time belong to the same class).
Then, the following subsets of  can be defined:

 (𝑖)
𝑖∈1..𝑆

=
{

𝑗 ∈  ∣ 𝑇 (𝑗)
𝑐 = 𝑇 (𝑖)

𝑐 , 𝑗 ∉  (𝑘), 𝑘 ≤ 𝑖
}

(A.9)

Where  (𝑖) is a subset of  that includes those stations whose
collision time is 𝑇 (𝑖)

𝑐 (only if such stations are not yet in other
group  (𝑗) with 𝑗 < 𝑖). Notice that (A.9) defines multiple
groups (e.g.  (1), (2),… , (𝑆)), and since each station can
only belong to one group (or class), some of the previous classes
may be empty sets. Therefore, let us define a new set which can
be used to identify non-empty sets as:

 =
{

𝑖 ∣  (𝑖) ≠ ∅
}

(A.10)

The number of non-empty classes will be finally given by 𝑁𝑐 =
||.
Considering  (𝑑) as the set of stations that belong to class 𝑑 ∈  ,
let us define (𝑑) as the set of stations whose collision time is
longer than 𝑇 (𝑑)

𝑐 (i.e. their data bit rate is slower), and (𝑑) as the
set of stations whose collision time is shorter than 𝑇 (𝑑)

𝑐 (i.e. their

17 Note that in the AP station these times are averaged considering the
hysical data rate and/or codec of every user in .
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data bit rate is faster). (𝑑) and (𝑑) can be formally defined
as:

(𝑑) =
{

𝑖 ∈  ∣ 𝑇 (𝑖)
𝑐 > 𝑇 (𝑑)

𝑐
}

(A.11)

(𝑑) =
{

𝑖 ∈  ∣ 𝑇 (𝑖)
𝑐 < 𝑇 (𝑑)

𝑐
}

(A.12)

Now the probability that at least one station that belongs to class
𝑑 ∈  transmits is:

𝑃 (𝑑)
𝑡𝑥 = 1 −

∏

𝑗∈ (𝑑)
(1 − 𝜏(𝑗)) (A.13)

And the probabilities that at least one station from a higher or
lower class transmits are:

𝑃(𝑑)
𝑡𝑥 = 1 −

∏

𝑗∈(𝑑)

(

1 − 𝜏(𝑗)
)

(A.14)

𝑃(𝑑)
𝑡𝑥 = 1 −

∏

𝑗∈(𝑑)

(

1 − 𝜏(𝑗)
)

(A.15)

Due to the fact that lower classes slow down higher ones as a
result of longer transmission times, 𝑇𝐶 can be calculated as:

𝑇𝐶 =
𝑁𝑐
∑

𝑑=1

(

𝑃 (𝑑)
𝑐 + 𝑃(𝑑)

𝑐

)

𝑇 (𝑑)
𝑐 (A.16)

where 𝑇 (𝑑)
𝑐 is the average time that any station from class 𝑑 spends

on collision state, and 𝑃 (𝑑)
𝑐 represents the probability that any

collision occurs between stations from the same class 𝑑:

𝑃 (𝑑)
𝑐 =

(

1 − 𝑃(𝑑)
𝑡𝑥

)

⋅
(

1 − 𝑃(𝑑)
𝑡𝑥

)

⋅
⎛

⎜

⎜

⎝

𝑃 (𝑑)
𝑡𝑥 −

∑

𝑗∈ (𝑑)
𝑃 (𝑗)
𝑠

⎞

⎟

⎟

⎠

(A.17)

and 𝑃(𝑑)
𝑐 accounts for the probability that class 𝑑 is involved in

a collision with at least one station from a higher class.

𝑃(𝑑)
𝑐 = 𝑃 (𝑑)

𝑡𝑥 ⋅ 𝑃(𝑑)
𝑡𝑥 ⋅

(

1 − 𝑃(𝑑)
𝑡𝑥

)

(A.18)

Finally, substituting the expressions of 𝑇𝐼 , 𝑇𝑆 , 𝑇𝐸 , and 𝑇𝐶 in (A.1),
he closed-form expression of 𝐸[𝑇 ] presented in (A.19) (see Box I) is
btained.

ppendix B. Raw fitness criteria evaluation

Assessing raw fitness scores entails solving both signal coverage
e.g. RSSI and SNR) and the analytical models to estimate QoS. This
ppendix provides a pseudocode in Algorithm 4 that can be used as a
uidance for implementation and also to estimate the computational
omplexity of this step.
The algorithm can be divided in the following parts:
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• Lines 1–6: RSSI and SNR are calculated for each pair ground
user–drone.

• Lines 7–15: Each ground user station is associated to a specific
drone, creating (𝑖).

• Lines 19–24: The maximum number of concurrent calls 𝐶𝐶max

is calculated for each drone 𝑘, which depends on the blocking
probability constraint 𝐵max.

• Lines 25: The set of stations  = ∪𝐴𝑃 , is created selecting the
𝐶𝐶max slowest ground users stations and the AP.

• Lines 26–42: The non-linear equation system is solved iteratively,
the output is the estimation of the MOS experienced by users
associated to drone 𝑘.

Input:  = {1,… , 𝑈},  = {1,… , 𝐷},
{

𝒘𝒊 | 𝑖 ∈ 
}

,
{

𝒙𝒌 | 𝑘 ∈ 
}

Initialization: 𝑓fitness = 𝐷 + 2
Output: 𝑓fitness

1 for 𝑖 = 1 to 𝑈 do
2 for 𝑗 = 1 to 𝐷 do
3 calculate RSSI𝑖,𝑗 ; // Eq. (5)
4 calculate SNR𝑖,𝑗 ; // Eq. (7)
5 end
6 end
7 for 𝑖 = 1 to 𝑈 do
8 for 𝑘 = 1 to 𝐷 do
9 if RSSI𝑖,𝑘 ≥ RSSImin and SNR𝑖,𝑘 ≥ SNRmin then

10 if RSSI𝑖,𝑘 > RSSI𝑖,𝑗 , ∀𝑗 ≠ 𝑘 then
11 (𝑘) = (𝑘) ∪ 𝑖;
12 end
13 end
14 end
15 end
16 if ∑𝐷

𝑖=1 |(𝑖)|∕𝑈 ≥ 𝐶min then
17 for 𝑘 = 1 to 𝐷 do
18 calculate 𝐶𝐶max; // Algorithm 2
19 build set  =  ∪ ;
20 for 𝑗 = 1 to || do
21 calculate 𝑇 (𝑗)

𝑠 , 𝑇 (𝑗)
𝑐 , 𝑇 (𝑗)

𝑒 ;
22 calculate FER(𝑗); // Eq. (17)
23 end
24 𝜏(𝑗)next = 𝑇 (𝑗)

𝑐 , ∀𝑗;
25 while diff > 𝛥 do
26 𝜏(𝑗) = 𝜏(𝑗)next;
27 calculate 𝐸[𝑇 ]; // Appendix Appendix A
28 for 𝑗 = 1 to || do
29 calculate 𝐸[𝐵(𝑗)]; // Eq. (13)
30 calculate 𝑟(𝑗), 𝑞(𝑗); // Eqs. (11),(12)
31 calculate 𝑝(𝑗); // Eq. (15)
32 calculate 𝜏(𝑗)next; // Eq. (10)
33 end
34 diff = max

(

|𝜏(𝑗)next − 𝜏(𝑗)|
)

, ∀𝑗;
35 end
36 calculate MOS(𝑘); // Eq. (25)
37 end
38 if MOS(𝑘) ≥ MOSmin, ∀𝑘 ∈ {1,… , 𝐷} then
39 𝑓fitness = 𝐷 +

(

1 −
∑𝐷

𝑘=1 |(𝑘)|∕𝑈
)

;
40 else
41 𝑓fitness = 𝐷+1+

(

1 −
∑𝐷

𝑘=1 |(𝑘)|
[

MOS(𝑘) < MOSmin
]

∕𝑈
)

;
42 end
43 end
Algorithm 4: Fitness function evaluation
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