Check for updates

# Clinical Characteristics and Outcome of Drug-Induced Liver Injury in the Older Patients: From the Young-Old to the Oldest-Old

Rianne A. Weersink<sup>1,2,†</sup>, Ismael Alvarez-Alvarez<sup>1,†</sup>, Inmaculada Medina-Cáliz<sup>1,3</sup>, Judith Sanabria-Cabrera<sup>1,4</sup>, Mercedes Robles-Díaz<sup>1,3</sup>, Aida Ortega-Alonso<sup>3,5</sup>, Miren García-Cortés<sup>3,5</sup>, Elvira Bonilla<sup>1</sup>, Hao Niu<sup>1</sup>, German Soriano<sup>3,6</sup>, Miguel Jimenez-Perez<sup>7</sup>, Hacibe Hallal<sup>8</sup>, Sonia Blanco<sup>9</sup>, Neil Kaplowitz<sup>10</sup>, M. Isabel Lucena<sup>1,3,4,\*</sup>, and Raúl J. Andrade<sup>3,5</sup>, Kaplowitz<sup>10</sup>, M. Isabel Lucena<sup>1,3,4,\*</sup>, Raúda Raúl J. Andrade<sup>3,5</sup>, Kaplowitz<sup>10</sup>, M. Isabel Lucena<sup>1,3,4,\*</sup>, Andrade<sup>3,5</sup>, Kaplowitz<sup>10</sup>, Kaplowitz<sup>10</sup>, M. Isabel Lucena<sup>1,3,4,\*</sup>, Macula Raúl J. Andrade<sup>3,5</sup>, Kaplowitz<sup>10</sup>, Kaplowitz<sup>10</sup>, Kaplowitz<sup>10</sup>, M. Isabel Lucena<sup>1,3,4,\*</sup>, Kaplowitz<sup>10</sup>, Kap

Older patients with hepatotoxicity have been scarcely studied in idiosyncratic drug-induced liver injury (DILI) cohorts. We sought the distinctive characteristics of DILI in older patients across age groups. A total of 882 DILI patients included in the Spanish DILI Registry  $(33\% \ge 65 \text{ years})$  were categorized according to age: "young" (< 65 years); "young-old" (65–74 years); "middle-old" (75–84 years); and "oldest-old" (≥ 85 years). All elderly groups had an increasingly higher comorbidity burden (P < 0.001) and polypharmacy (P < 0.001). There was a relationship between jaundice and hospitalization (P < 0.001), and both were more prevalent in the older age groups, especially in the oldest-old (88% and 69%, respectively), and the DILI episode was more severe (P = 0.029). The proportion of females decreased across age groups from the young to the middle-old, yet in the oldest-old there was a distinct female predominance. Pattern of liver injury shifted towards cholestatic with increasing age among top culprit drugs amoxicillin-clavulanate, atorvastatin, levofloxacin, ibuprofen, and ticlopidine. The best cutoff point for increased odds of cholestatic DILI was 65 years. Older patients had increased non-liver-related mortality (P = 0.030) as shown by the predictive capacity of the Model for End-Stage Liver Disease score (odds ratio (OR) = 1.116; P < 0.001), and comorbidity burden (OR = 4.188; P = 0.001) in the 6-month mortality. Older patients with DILI exhibited an increasingly predominant cholestatic phenotype across a range of culprit drugs, other than amoxicillin-clavulanate, with increased non-liver-related mortality and require a different approach to predict outcome. The oldest DILI patients exhibited a particular phenotype with more severe DILI episodes and need to be considered when stratifying older DILI populations.

## **Study Highlights**

## WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?

 $\checkmark$  Drug-induced liver injury (DILI) in older people has been studied only in the population categorized as  $\ge 65$  years.

## WHAT QUESTION DID THIS STUDY ADDRESS?

✓ We assessed the phenotypic characteristics and outcome of DILI in the young (< 65 years), young-old (65–74 years), middle-old (74–84 years), and oldest-old (≥ 85 years) patients included in the Spanish DILI Registry and define the most suitable age classification to stratify older DILI populations.

## WHAT DOES THIS STUDY ADD TO OUR KNOW-LEDGE?

This is the largest study on DILI in older patients at different age subgroups and the first to characterize that the oldest-old is

a unique group of patients in their response to DILI with female predominance and a more severe injury leading to hospitalization. Liver damage shifts towards cholestatic injury with increasing age among top culprit drugs. Older patients with DILI have poorer outcomes with increased non-liver-related mortality.

### HOW MIGHT THIS CHANGE CLINICAL PHARMA-COLOGY OR TRANSLATIONAL SCIENCE?

☑ Older DILI patients exhibit an increasingly predominant cholestatic phenotype, a more severe DILI episode, and require a different approach to predict outcome.

<sup>1</sup>Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain; <sup>2</sup>Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands; <sup>3</sup>Biomedical Research Network Center for Hepatic and Digestive Diseases (CIBERehd), Carlos III Health Institute, Madrid, Spain; <sup>4</sup>Platform for Clinical Research and Clinical Trials IBIMA, SCReN (Spanish Clinical Research Network), Madrid, Spain; <sup>5</sup>Servicio de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga-IBIMA, Universidad de Málaga, Málaga, Spain; <sup>6</sup>Servicio Aparato Digestivo, Hospital Santa Creu I Sant Pau, Barcelona, Spain; <sup>7</sup>UGC Aparato Digestivo, Complejo Hospitalario Regional de Málaga, Málaga, Spain; <sup>8</sup>Servicio Aparato Digestivo, Hospital General Universitario J.M. Morales Meseguer, Murcia, Spain; <sup>9</sup>Servicio de Aparato Digestivo, Hospital Universitario Basurto, Bilbao, Spain; <sup>10</sup>Keck School of Medicine, University of Southern California Research Center for Liver Diseases, Los Angeles, California, USA. \*Correspondence: M. Isabel Lucena (lucena@uma.es)

<sup>†</sup>Co-first authors.

Idiosyncratic drug-induced liver injury (DILI) is a potentially severe adverse drug reaction that challenges clinical drug development and postmarketing clinical use of medicines.<sup>1</sup> DILI typically presents as an array of phenotypes and affects subjects of all ages.<sup>2</sup> Due to an increasing life expectancy worldwide, the population is aging and the proportion of older adults (defined as  $\geq$  65 years) is predicted to double over the next 50 years.<sup>3</sup> Especially the group of patients aged 85 years or older ("oldest-old") is significantly growing.<sup>4</sup> Distinct characteristics of the older population are a high comorbidity burden and polypharmacy,<sup>5,6</sup> which may increase the likelihood of DILI and complicate its diagnosis.<sup>7,8</sup> In addition, the liver safety of drugs launched to the market is scarcely known in elderly patients as they are often excluded from clinical trials.<sup>5</sup>

More information on the phenotypic presentation of DILI across all ages is key to support both clinicians and the pharmaceutical industry in recognizing DILI in older people. However, research in this area is limited. Studies from both the prospective US DILI Network (DILIN)<sup>9</sup> and the Spanish DILI Registry<sup>10</sup> characterized DILI in the elderly by comparing the whole group of elderly to younger patients. Several studies have highlighted that elderly cannot be considered as one homogeneous group but rather as a heterogeneous group with regard to pattern of diseases and pharmacological therapy.<sup>11,12</sup> Consequently, a chronological definition establishing three age groups of older people (65–75 years; 75–85 years;  $\geq$  85 years) has been proposed,<sup>13</sup> whereas in Japan the aging population is stratified in two groups, early-stage (65–75 years) and later-stage elderly ( $\geq$  75 years).<sup>14</sup>

A retrospective study from Japan specifically compared the characteristics of DILI across different age groups of older adults (< 65 years; 65–74 years; and  $\geq$  75 years),<sup>14</sup> yet the number of elderly patients was limited. In addition, this study did not specifically analyze the oldest-old. Therefore, the aim of this study was to assess the potential differences in the phenotypic presentation of DILI, its severity, and causative agents in patients of older age, ranging from the young-old to the oldest-old.

### METHODS

### Study population

All cases of idiosyncratic DILI from the Spanish DILI Registry collected from 1994 to 2018 were included. In-depth details of this registry have been described elsewhere.<sup>15</sup> In short, suspected DILI cases were assessed for (i) the compatibility of the time span between medicine intake and onset of symptoms, (ii) all biochemical, histological, and imaging data to exclude alternative (liver) diseases, and (iii) the outcome of the liver injury. Afterwards, the CIOMS/RUCAM (Council for International Organizations of Medical Sciences / Roussel Uclaf Causality Assessment Method) scale was applied. Patients were categorized into age groups based on their age at DILI onset. For comparative purposes, patients were categorized in a threegroup scale, merging the middle-old and oldest-old age groups (< 65 years, 65–74 years, and  $\geq$  75 years). Preliminary analysis with 5-year age groups resulted in too-small groups with overlapping characteristics. Thus, patients were classified into the following 10-year groups: < 65 years (young), 65–74 years (young-old), 75–84 years (middle-old) and  $\geq$  85 years (oldest-old).<sup>13,16,17</sup>

The Charlson Comorbidity Index (CCI), as measure of the comorbidity burden, was calculated.<sup>18</sup> In the CCI, underlying liver disease is only scored in case of chronic hepatitis or cirrhosis. Culprit drugs were classified using the Anatomical Therapeutic Chemical classification system of the World Health Organization. Hospitalization costs were estimated using the hospital-adjusted expenses per inpatient day.<sup>19</sup>

Using the laboratory parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP)) at DILI recognition, the R-ratio was calculated, and the pattern of liver injury classified into hepatocellular ( $R \ge 5$ ), mixed (R > 2 and R < 5), or cholestatic injury ( $R \le 2$ ). The severity of the DILI episode was calculated using the DILI severity index.<sup>20</sup> Patients were followed for a minimum of 6 months after DILI recognition. The number of patients adhering to the new Hy's law was calculated.<sup>21</sup>

The study protocol was approved by the local Ethics Committee at the Virgen de la Victoria University Hospital in Málaga, Spain, and all subjects gave informed consent.

## Statistical analyses

Differences across age groups were assessed with the exact  $\chi^2$  linear trend test and the Kendall's Tau correlation coefficient for categorical variables, and the analysis of variance or Kruskal-Wallis test, as appropriate, for continuous variables. *Post hoc* analysis with Bonferroni correction were performed afterwards. Multivariate logistic regression models were fitted including age as continuous or categorical variable. Tests were two-sided; a *P* value < 0.05 was deemed statistically significant. IBM SPSS version 24.0 (Armonk, NY: IBM Corp) was used for the statistical analyses.

## RESULTS

In total, 882 idiosyncratic DILI cases (mean age 54 years, 48% female), were retrieved from the database. These were classified by age into the following groups: young (< 65 years; n = 589), and the remaining 293 (33%, 44% females) cases into young-old (65–74 years; n = 169), middle-old (75–84 years; n = 108), and oldest-old ( $\geq$  85 years; n = 16). The distribution of DILI cases according to age groups in the Spanish registry did not point towards increased DILI prevalence in older ages.

## **Demographics and comorbidities**

Demographic characteristics and comorbid conditions of the patients are shown in **Table 1**. The proportion of males increased with age from 50% in the young population to 66% in the middle-old. Noticeably, in the oldest-old, only 25% of

| Table 1 | Demographic | characteristics | of 882 DII | l natients  | stratified by age group | s |
|---------|-------------|-----------------|------------|-------------|-------------------------|---|
|         | Demographic | characteristics | 01 002 011 | i patients, | stratified by age group | 3 |

|                                                                | Young<br>< 65 years<br>(n = 589) | Young-old<br>65–74 years<br>(n = 169) | Middle-old<br>75-84 years<br>(n = 108) | Oldest-old<br>≥ 85 years<br>(n = 16) | P value |
|----------------------------------------------------------------|----------------------------------|---------------------------------------|----------------------------------------|--------------------------------------|---------|
| Age (years), mean (range)                                      | 45 (11–64)                       | 69 (65–74)                            | 79 (75–84)                             | 87 (85–91)                           |         |
| Female, <i>n</i> (%)                                           | 293 (50)                         | 79 (47)                               | 37 (34)                                | 12 (75)                              | 0.129   |
| BMI (kg/m <sup>2</sup> ), mean $\pm$ SD                        | 25 ± 3.8<br>(n = 376)            | $27 \pm 3.8^{a}$<br>( <i>n</i> = 106) | $27 \pm 3.8^{a}$<br>(n = 64)           | 26 ± 4.8<br>(n = 10)                 | < 0.001 |
| Underlying liver disease, n (%)                                | 53 (9)                           | 11(7)                                 | 3 (3)                                  | 0 (0)                                | 0.011   |
| Charlson Comorbidity Index score, median (IQR)                 | 0 (0-1)                          | 0 (0-1) <sup>a</sup>                  | 1 (0-2) <sup>a,b</sup>                 | 1 (0-3) <sup>a</sup>                 | < 0.001 |
| Myocardial infarction, n (%)                                   | 9 (2)                            | 9 (5) <sup>a</sup>                    | 9 (8) <sup>a</sup>                     | 0 (0)                                | 0.001   |
| Congestive heart failure, n (%)                                | 22 (4)                           | 11 (7)                                | 15 (14) <sup>a</sup>                   | 2 (13)                               | < 0.001 |
| Peripheral vascular disease, n (%)                             | 2 (0)                            | 7 (4) <sup>a</sup>                    | 4 (4) <sup>a</sup>                     | 0 (0)                                | 0.004   |
| Cerebrovascular disease, n (%)                                 | 8 (1)                            | 7 (4)                                 | 8 (7) <sup>a</sup>                     | 3 (19) <sup>a</sup>                  | < 0.001 |
| Dementia, n (%)                                                | 1 (0)                            | 3 (2)                                 | 2 (2)                                  | 3 (19) <sup>a,b,c</sup>              | < 0.001 |
| Chronic pulmonary disease, n (%)                               | 29 (5)                           | 12 (7)                                | 13 (12) <sup>a</sup>                   | 1 (6)                                | 0.015   |
| Connective tissue disease, n (%)                               | 15 (3)                           | 5 (3)                                 | 3 (3)                                  | 0 (0)                                | 0.999   |
| Peptic ulcer disease, n (%)                                    | 10 (2)                           | 6 (4)                                 | 4 (4)                                  | 1 (6)                                | 0.063   |
| Hemiplegia or paraplegia, n (%)                                | 0 (0)                            | 0 (0)                                 | 1 (1)                                  | 0 (0)                                | 0.141   |
| Renal disease (moderate/severe), n (%)                         | 2 (0)                            | 5 (3) <sup>a</sup>                    | 5 (5) <sup>a</sup>                     | 4 (25) <sup>a,b,c</sup>              | < 0.001 |
| Malignancy, n (%)                                              | 17 (3)                           | 12 (7) <sup>a</sup>                   | 11 (10) <sup>a</sup>                   | 0 (0)                                | 0.004   |
| Leukemia, n (%)                                                | 6 (1)                            | 0 (0)                                 | 1 (1)                                  | 0 (0)                                | 0.639   |
| Lymphoma, n (%)                                                | 2 (0)                            | 1 (1)                                 | 0 (0)                                  | 0 (0)                                | 0.999   |
| Diabetes, uncomplicated/complicated, n (%)                     | 44 (7)/2 (0)                     | 24 (14) <sup>a</sup> /0 (0)           | 31 (29) <sup>a,b</sup> /2 (2)          | 5 (31) <sup>a</sup> /0 (0)           | < 0.001 |
| Liver disease, mild / moderate-severe, n (%)                   | 10 (2)/9 (2)                     | 2 (1)/2 (1)                           | 0 (0)/2 (2)                            | 0 (0)/0 (0)                          | 0.867   |
| Acquired immune deficiency syndrome, n (%)                     | 9 (2)                            | 0 (0)                                 | 0 (0)                                  | 0 (0)                                | 0.076   |
| Number of concomitant medications, median $\left(IQR\right)^d$ | 1 (0-3)                          | 2 (1-4) <sup>a</sup>                  | 3 (2–5) <sup>a,b</sup>                 | 3 (2–5) <sup>a</sup>                 | < 0.001 |

BMI, body mass index; DILI, drug-induced liver injury; IQR, interquartile range; SD, standard deviation.

 ${}^{a}P < 0.05$  vs. the young.  ${}^{b}P < 0.05$  vs. the young-old.  ${}^{c}P < 0.05$  vs. the middle-old.  ${}^{d}$ Only systemic medication is included in the number of concomitant medications

cases were male (P = 0.011 vs. middle-old). This change in the trend of male predominance was already suggested in the group  $\geq 80$  years old (**Table 2**). With increasing age, the CCI also was raised: Elderly age groups had significantly higher scores compared with the young patients. In the oldest-old, cerebrovascular disease (19%), dementia (19%), renal disease (25%), and diabetes (31%) were more prevalent, and differed from the < 65 years group. By contrast, there was a significantly lower prevalence of underlying liver diseases with increasing age. The number of concomitant medications increased to a median of 3 (interquartile range (IQR) 2–5) in the middle-old and oldest-old. Demographic characteristics showed similar differences across age groups (**Table 2** and **Table S1**).

### **Causative agents**

For all age groups, anti-infectives were the most frequently involved causative agents, contributing to around 40% of cases in the young, young-old, and middle-old, and 69% in the oldest-old, with a large proportion of cases attributable to amoxicillin-clavulanate (**Table 3**). The high frequency of anti-infectives (particularly amoxicillin-clavulanate), remained in the group of

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 109 NUMBER 4 | April 2021

patients  $\geq$  80 years old (**Table 2**). The second-most frequently causative agents in the young and the oldest-old were central nervous system drugs, while in the young-old and middle-old these were cardiovascular agents. In the third place were musculoskeletal system drugs for the young, young-old, and middle-old, and cardiovascular agents for the oldest-old. The main culprit drugs according to age group are shown in **Table 3** and **Table S2**.

### **Clinical features and phenotypic presentation**

The prevalence of hypersensitivity features was not different between the groups, yet the proportion of patients presenting lymphopenia increased with age (P = 0.002). The time to DILI onset and the duration of therapy were comparable across the age groups.

The proportion of cholestatic injury increased with age, from 14% in the young, 26% in both the young-old and middle-old (P = 0.001 and P = 0.008 vs. young), and reaching 50% of cases in the oldest-old (P < 0.001 vs. young). Accordingly, ALP values increased with age, with the highest values in the oldest-old (P < 0.001 vs. young), while ALT values decreased with age. Indeed, mean elevation of ALP levels in patients aged 65 and over

|                                                                 | < 65 years<br>(n = 580)          | 65-69 years<br>(n = 03)          | 70-74 years<br>(n = 76)          | 75-79 years<br>(n = 64)          | ≥ 80 years<br>(n = 60)           | anley <b>d</b> |
|-----------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------|
|                                                                 | (GOC - 11)                       | (11 - 33)                        | (01 - 11)                        | (11 - 04)                        | (ne – n)                         |                |
| Age (years), mean (range)                                       | 45 (11–64)                       | 67 (65–69)                       | 72 (70–74)                       | 76 (75–79)                       | 83 (80–91)                       |                |
| Female, <i>n</i> (%)                                            | 293 (50)                         | 42 (45)                          | 37 (49)                          | 21 (33)                          | 28 (47) <sup>a</sup>             | 0.089          |
| BMI (kg/m <sup>2</sup> ), mean $\pm$ SD                         | 25.3 ± 3.8                       | 26.9 ± 3.9                       | 26.9 ± 3.6                       | 27.7 ± 4.0                       | 25.9 ± 3.6                       | < 0.001        |
| Underlying liver disease, $n$ (%)                               | 53 (9)                           | 6 (7)                            | 5 (7)                            | 2 (3)                            | 1 (2)                            | 0.012          |
| CCI score, median (IQR)                                         | 0 (0–1)                          | 0 (0–1)                          | 0 (0–1)                          | 1 (1–2)                          | 1 (0–2)                          | < 0.001        |
| Number of concomitant medica-<br>tions, median (IQR)            | 1 (0–3)                          | 1 (1-3)                          | 3 (1–5)                          | 3 (2–5)                          | 3 (2–5)                          | < 0.001        |
| Jaundice, <i>n</i> (%)                                          | 374 (63)                         | 72 (77)                          | 53 (70)                          | 54 (85)                          | 48 (80)                          | < 0.001        |
| Hospitalization, <i>n</i> (%)                                   | 282 (48)                         | 59 (64)                          | 47 (62)                          | 40 (63)                          | 38 (64)                          | < 0.001        |
| Hospitalization duration in<br>days <sup>b</sup> , median (IQR) | 21 (10–42)                       | 20 (12–45)                       | 19 (11–45)                       | 23 (11–41)                       | 33 (15–55)                       | 0.760          |
| Hospitalization costs <sup>b, c</sup> , me-<br>dian (IQR)       | \$51,599<br>(\$25,170-\$105,714) | \$50,340<br>(\$30,204-\$113,265) | \$47,823<br>(\$27,687–\$113,265) | \$57,891<br>(\$27,687–\$103,197) | \$83,061<br>(\$37,755-\$138,435) | 0.760          |
| Hypersensitivity features, $n \ (\%)^d$                         | 244 (42)                         | 44 (47)                          | 31 (41)                          | 26 (41)                          | 27 (45)                          | 0.767          |
| Fever                                                           | 75 (13)                          | 13 (14)                          | 10 (13)                          | 5 (8)                            | 3 (5)                            | 0.086          |
| Rash                                                            | 47 (8)                           | 8 (9)                            | 3 (4)                            | 5 (8)                            | 2 (3)                            | 0.204          |
| Lymphopenia                                                     | 98 (17)                          | 26 (28)                          | 14 (18)                          | 17 (27)                          | 16 (27)                          | 0.012          |
| Eosinophilia                                                    | 124 (21)                         | 27 (29)                          | 15 (20)                          | 14 (22)                          | 12 (20)                          | 1.000          |
| Arthralgia                                                      | 12 (2)                           | 1 (1)                            | 0 (0)                            | 2 (3)                            | 0 (0)                            | 0.368          |
| Main pharmacological groups, $n~(\%)$                           | (%)                              |                                  |                                  |                                  |                                  |                |
| Anti-infectives                                                 | 212 (36)                         | 42 (45)                          | 32 (42)                          | 24 (38)                          | 34 (57)                          | 0.007          |
| Amoxicillin-clavulanate                                         | 110 (19)                         | 28 (30)                          | 20 (26)                          | 13 (20)                          | 24 (40)                          | 0.001          |
| Central nervous system                                          | 81 (14)                          | 9 (10)                           | 8 (11)                           | 6 (9)                            | 3 (5)                            | 0.027          |
| Cardiovascular agents                                           | 54 (9)                           | 11 (12)                          | 13 (17)                          | 11 (17)                          | 7 (12)                           | 0.040          |
| Musculoskeletal system                                          | 63 (11)                          | 10 (11)                          | 9 (12)                           | 8 (13)                           | 6 (10)                           | 0.865          |
| Type of liver injury, <i>n</i> (%)                              |                                  |                                  |                                  |                                  |                                  | < 0.001        |
| Hepatocellular                                                  | 413 (70)                         | 51 (55)                          | 36 (47)                          | 37 (58)                          | 26 (43)                          |                |
| Cholestatic                                                     | 81 (14)                          | 22 (24)                          | 22 (29)                          | 14 (22)                          | 22 (37)                          |                |
| Mixed                                                           | 95 (16)                          | 20 (22)                          | 18 (24)                          | 13 (20)                          | 12 (20)                          |                |

1150

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 65 years<br>(n = 589)                                                                                                                                                | 65–69 years<br>( <i>n</i> = 93)                                                                                                                                                | 70-74 years<br>( <i>n</i> = 76)                                                                                                                                            | 75-79 years<br>(n = 64)                                                                                                                                                  | ≥ 80 years<br>( <i>n</i> = 60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P value                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Laboratory parameters at onset, median (IQR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | edian (IQR)                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          |
| Total bilirubin (× ULN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1 (1.0-9.2)                                                                                                                                                          | 6.5 (3.1–11.6)                                                                                                                                                                 | 5.7 (1.2–11.3)                                                                                                                                                             | 7.8 (3.4–13.7)                                                                                                                                                           | 6.4 (2.7–12.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                                                  |
| AST (× ULN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.8 (3.0–25.3)                                                                                                                                                         | 5.7 (3.0–18.2)                                                                                                                                                                 | 5.0 (2.6–14.0)                                                                                                                                                             | 5.4 (2.6–19.5)                                                                                                                                                           | 6.2 (3.4–9.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.301                                                                    |
| ALT (× ULN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.7 (4.9–28.6)                                                                                                                                                        | 9.6 (5.3–23.4)                                                                                                                                                                 | 7.5 (4.4–15.6)                                                                                                                                                             | 8.0 (3.5–17.0)                                                                                                                                                           | 7.6 (4.8–16.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.009                                                                    |
| ALP (× ULN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4 (0.9–2.2)                                                                                                                                                          | 1.8 (1.2–2.7)                                                                                                                                                                  | 1.9 (1.2–3.5)                                                                                                                                                              | 2.0 (1.1–3.0)                                                                                                                                                            | 2.5 (1.2-4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.001                                                                  |
| GGT (× ULN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.0 (2.1–9.3)                                                                                                                                                          | 6.1 (3.8–9.8)                                                                                                                                                                  | 7.1 (3.8–11.1)                                                                                                                                                             | 5.7 (3.4–9.4)                                                                                                                                                            | 9.4 (4.8–14.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 0.001                                                                  |
| Albumin (g/dL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.1 (3.6–4.4)                                                                                                                                                          | 4.1 (3.2-4.4)                                                                                                                                                                  | 4.2 (3.8–4.5)                                                                                                                                                              | 4.2 (3.9–4.6)                                                                                                                                                            | 4.5 (3.7-4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.241                                                                    |
| Creatinine (mg/dL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.8 (0.7–1.0)                                                                                                                                                          | 0.8 (0.7–1.0)                                                                                                                                                                  | 0.9 (0.8–1.1)                                                                                                                                                              | 1 (0.8–1.3)                                                                                                                                                              | 1.0 (0.8–1.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 0.001                                                                  |
| INR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.84 \pm 0.85$                                                                                                                                                        | $0.86 \pm 0.81$                                                                                                                                                                | $0.90 \pm 0.81$                                                                                                                                                            | 0.92 ± 0.69                                                                                                                                                              | 0.94 ± 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.876                                                                    |
| Severity, n (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                        |                                                                                                                                                                                |                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.132 <sup>e</sup>                                                       |
| Mild                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 205 (36)                                                                                                                                                               | 19 (20)                                                                                                                                                                        | 17 (24)                                                                                                                                                                    | 10 (16)                                                                                                                                                                  | 9 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |
| Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 311 (54)                                                                                                                                                               | 66 (71)                                                                                                                                                                        | 48 (68)                                                                                                                                                                    | 42 (68)                                                                                                                                                                  | 44 (75)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                          |
| Severe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38 (7)                                                                                                                                                                 | 5 (5)                                                                                                                                                                          | 2 (3)                                                                                                                                                                      | 7 (11)                                                                                                                                                                   | 5 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |
| Fatal/Transplant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 (3)                                                                                                                                                                 | 3 (3)                                                                                                                                                                          | 4 (6)                                                                                                                                                                      | 3 (5)                                                                                                                                                                    | 1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |
| Death liver related, $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 (2)                                                                                                                                                                  | 1 (1)                                                                                                                                                                          | 4 (5)                                                                                                                                                                      | 3 (5)                                                                                                                                                                    | 1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.130                                                                    |
| Transplantation, $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 (2)                                                                                                                                                                 | 2 (2)                                                                                                                                                                          | 0 (0)                                                                                                                                                                      | 0 (0)                                                                                                                                                                    | 0 (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.093                                                                    |
| Death non-liver related, $n$ (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 (1)                                                                                                                                                                  | 3 (3)                                                                                                                                                                          | 1 (1)                                                                                                                                                                      | 3 (5)                                                                                                                                                                    | 2 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.036                                                                    |
| ALT, alanine aminotransferase; ALP, alkaline phosphatase; AST, aspartate aminotransferase; BMI, body mass index; CCI, Charlson Comorbidity Index; DILI, drug-induced liver injury; GGT, gamma-glutamyl transferase; INR, International Normalized Ratio; IQR, interquartile range; SD, standard deviation; ULN, upper limit of normal range.<br>$^{a} \ge 81$ years ( $n = 51$ ); female, $n$ (%): 25 (49). $\ge 82$ years ( $n = 40$ ); female, $n$ (%): 21 (52). $\ge 83$ years ( $n = 31$ ); female, $n$ (%): 29 (61). $^{b}$ Excluding patients who died (liver related and non-liver-related deaths) and who underwent a liver transplant. <sup>c</sup> In US dollars. <sup>c</sup> Hypersensitivity features were defined as the presence of at least one of the following characteristics during the DILI episode: fever, rash, serum eosinophilia (defined as eosinophils > 5%), lymphopenia (defined as lymphocytes < 10%), or arthralgia. <sup>c</sup> Kendall's Tau correlation coefficient ranges from -1 to 1. | line phosphatase; AST, asp<br>td Ratio; IQR, interquartile r<br>19). $\geq$ 82 years ( $n = 40$ ); fer<br>4% who underwent a liver trar<br>(defined as eosinophils > 5 | artate aminotransferase; Bl<br>ange; SD, standard deviatio<br>nale, <i>n</i> (%): 21 (52). 2 83 ye<br>nsplant. °In US dollars. <sup>°</sup> Hy<br>3%), lymphopenia (defined a: | MI, body mass index; CCI, Ch:<br>n; ULN, upper limit of normal<br>ars ( $n = 31$ ); female, $n$ (%); 15<br>persensitivity features were d<br>s lymphocytes < 10%), or arth | arlson Comorbidity Index; DILI, trange.<br>9 (61). $\geq$ 84 years ( $n = 21$ ); fem<br>efined as the presence of at lei<br>ralgia. <sup>e</sup> Kendall's Tau correlati | te aminotransferase; BMI, body mass index; CCI, Charlson Comorbidity Index; DILI, drug-induced liver injury; GGT, gam e; SD, standard deviation; ULN, upper limit of normal range.<br><i>i</i> , n (%); 21 (52). $\geq$ 83 years ( $n = 31$ ); female, n (%): 19 (61). $\geq$ 84 years ( $n = 21$ ); female, n (%): 14 (67). <sup>b</sup> Excluding pat ant <sup>c</sup> In US dollars. <sup>d</sup> Hypersensitivity features were defined as the presence of at least one of the following characteri lymphopenia (defined as lymphocytes < 10%), or arthralgia. <sup>*</sup> Kendall's Tau correlation coefficient ranges from -1 to 1. | mma-glutamyl<br>ttients who died (liver<br>ristics during the DILI<br>1. |

Table 2 (Continued)

## ARTICLE

## Table 3 Main suspected pharmacological groups and individual drugs as causative agent for the DILI cases

| ATC | Main pharmacological groups, n (%)                               | Young<br>< 65 years<br>(n = 589) | Young-old<br>65–74 years<br>(n = 169) | Middle-old<br>75-84 years<br>( <i>n</i> = 108) | Oldest-old<br>$\geq$ 85 years<br>(n = 16) |
|-----|------------------------------------------------------------------|----------------------------------|---------------------------------------|------------------------------------------------|-------------------------------------------|
| A   | Alimentary tract and metabolic agents, excluding anabolic agents | 62 (11)                          | 9 (5)                                 | 3 (3)                                          | _                                         |
|     | Drugs for peptic ulcer drugs                                     | 22 (4)                           | 6 (4)                                 | 2 (2)                                          |                                           |
| В   | Antithrombotic agents                                            | 6 (1)                            | 7 (4)                                 | 5 (5)                                          | _                                         |
| С   | Cardiovascular agents                                            | 54 (9)                           | 24 (14)                               | 16 (15)                                        | 2 (13)                                    |
|     | ACE inhibitors + angiotensin II<br>antagonists                   | 10 (2)                           | 5 (3)                                 | 5 (5)                                          |                                           |
|     | Statins                                                          | 28 (5)                           | 15 (9)                                | 6 (6)                                          | 2 (13)                                    |
|     | Fibrates                                                         | 7 (1)                            | 0 (0)                                 | 1 (1)                                          |                                           |
| D   | Dermatologicals                                                  | 5 (1)                            | 1 (1)                                 | 0 (0)                                          |                                           |
| G   | Genito-urinary system and sex hormones                           | 18 (3)                           | 1 (1)                                 | 2 (2)                                          | _                                         |
| Н   | Thyroid therapy                                                  | 9 (2)                            | 0 (0)                                 | 1 (1)                                          | —                                         |
| J   | Anti-infectives                                                  | 212 (36)                         | 74 (44)                               | 47 (44)                                        | 11 (69)                                   |
|     | Antibacterials for systemic use                                  | 158 (27)                         | 64 (38)                               | 40 (37)                                        | 11 (69)                                   |
|     | Amoxicillin-clavulanate                                          | 110 (19)                         | 48 (28)                               | 28 (26)                                        | 9 (56)                                    |
|     | Hepatocellular                                                   | 59 (54)                          | 13 (27)                               | 6 (21)                                         | 2 (22)                                    |
|     | Cholestatic                                                      | 22 (20)                          | 18 (38)                               | 12 (43)                                        | 4 (44)                                    |
|     | Mixed                                                            | 29 (26)                          | 17 (35)                               | 10 (36)                                        | 3 (33)                                    |
|     | Penicillins/cephalosporins, excluding amoxicillin-clavulanate    | 10 (2)                           | 4 (2)                                 | 2 (2)                                          | _                                         |
|     | Macrolides                                                       | 12 (2)                           | 4 (2)                                 | 2 (2)                                          |                                           |
|     | Fluoroquinolones                                                 | 16 (3)                           | 7 (4)                                 | 8 (7)                                          | 1 (6)                                     |
|     | Antimycobacterials                                               | 46 (8)                           | 10 (6)                                | 7 (6)                                          |                                           |
| L   | Antineoplastic and immunomodulating agents                       | 43 (7)                           | 15 (9)                                | 12 (11)                                        | _                                         |
|     | Antineoplastic agents                                            | 13 (2)                           | 3 (2)                                 | 2 (2)                                          |                                           |
|     | Endocrine therapy                                                | 8 (1)                            | 9 (5)                                 | 9 (8)                                          | —                                         |
|     | Immunosuppressants                                               | 15 (3)                           | 3 (2)                                 | 1 (1)                                          |                                           |
| М   | Musculoskeletal system                                           | 63 (11)                          | 19 (11)                               | 14 (13)                                        |                                           |
|     | Nonsteroidal antiinflammatory drugs                              | 54 (9)                           | 14 (8)                                | 13 (12)                                        |                                           |
| N   | Central nervous system                                           | 81 (14)                          | 17 (10)                               | 6 (6)                                          | 3 (19)                                    |
|     | Antiepileptics                                                   | 21 (4)                           | 4 (2)                                 | 0 (0)                                          |                                           |
|     | Psycholeptics                                                    | 14 (2)                           | 5 (3)                                 | 4 (4)                                          | 2 (13)                                    |
|     | Antipsychotics                                                   | 7 (1)                            | 2 (1)                                 | 2 (2)                                          |                                           |
|     | Psychoanaleptics                                                 | 23 (4)                           | 4 (2)                                 | 1 (1)                                          | 1 (6)                                     |
|     | Antidepressants                                                  | 22 (4)                           | 3 (2)                                 | 1 (1)                                          | 1 (6)                                     |
|     | Herbal products                                                  | 24 (4)                           | 2 (1)                                 | 2 (2)                                          | _                                         |

ACE, angiotensin-converting enzyme; ATC, Anatomical Therapeutic Chemical classification; DILI, drug-induced liver injury.

was  $2.8 \times$  the upper limit of normal (ULN), while cholestatic cases in this age range showed a mean elevation of  $5 \times$  ULN in ALP levels. There were higher levels of total bilirubin, creatinine, and glucose with increasing age (**Table 4**). Differences in the phenotypic presentation remained unchanged across age classifications (**Table 2** and **Table S1**).

## Predictors of the pattern of liver injury in the elderly

In the multivariable regression model, older age was found to be a significant predictor of cholestatic injury independent of potential confounders (odds ratio (OR) = 1.022; 95% confidence interval (CI), 1.011–1.034, P < 0.001). Further, when age was included as a categorical variable, all elderly groups (65–75 years,

| Table 4 Clinical presentation and laboratory parameters of 8 | 882 DILI patients, stratified by age groups |
|--------------------------------------------------------------|---------------------------------------------|
|--------------------------------------------------------------|---------------------------------------------|

|                                                | Young<br>< 65 years<br>(n = 589)   | Young-old<br>65–74 years<br>(n = 169)                            | Middle-old<br>75–84 years<br>(n = 108) | Oldest-old<br>≥ 85 years<br>(n = 16) | P value            |
|------------------------------------------------|------------------------------------|------------------------------------------------------------------|----------------------------------------|--------------------------------------|--------------------|
| Jaundice, n (%)                                | 374 (63)                           | 125 (74)                                                         | 88 (81) <sup>a</sup>                   | 14 (88)                              | < 0.001            |
| Hospitalization, n (%)                         | 282 (48)                           | 106 (63) <sup>a</sup>                                            | 67 (62) <sup>a</sup>                   | 11 (69)                              | < 0.001            |
| Hypersensitivity features, $n (\%)^{c}$        | 244 (42)                           | 75 (44)                                                          | 45 (42)                                | 8 (50)                               | 0.630              |
| Fever                                          | 75 (13)                            | 23 (14)                                                          | 7 (6)                                  | 1 (6)                                | 0.000              |
| Rash                                           | 47 (8)                             | 11 (7)                                                           | 7 (6)                                  | 0 (0)                                | 0.282              |
| Lymphopenia                                    | 98 (17)                            | 40 (24)                                                          | 27 (25)                                | 6 (38)                               | 0.002              |
| Eosinophilia                                   | 124 (21)                           | 42 (25)                                                          | 24 (22)                                | 2 (13)                               | 0.875              |
| Arthralgia                                     | 12 (2)                             | 1 (1)                                                            | 2 (2)                                  | 0 (0)                                | 0.510              |
| Positive antibody titres, n (%)                | 104 (18)                           | 26 (15)                                                          | 28 (26)                                | 4 (25)                               | 0.117              |
| Daily dose (mg), median (IQR)                  | 375 (50–1800)                      | 500 (100–1875)                                                   | 400 (80–1875)                          | 1500 (80–3000)                       | 0.054              |
| Duration of treatment in days,<br>median (IQR) | 29 (9–76)                          | 23 (9–62)                                                        | 17 (8–74)                              | 12 (6–62)                            | 0.054              |
| Time to onset in days,<br>nedian (IQR)         | 25 (10-64)                         | 25 (11–57)                                                       | 21 (7–59)                              | 27 (5–61)                            | 0.454              |
| Type of liver injury, n (%)                    |                                    |                                                                  |                                        |                                      | < 0.001            |
| Hepatocellular                                 | 413 (70)                           | 87 (51) <sup>a</sup>                                             | 58 (54) <sup>a</sup>                   | 5 (31) <sup>a</sup>                  |                    |
| Cholestatic                                    | 81 (14)                            | 44 (26) <sup>a</sup>                                             | 28 (26) <sup>a</sup>                   | 8 (50) <sup>a</sup>                  |                    |
| Mixed                                          | 95 (16)                            | 38 (22)                                                          | 22 (20)                                | 3 (19)                               |                    |
| aboratory parameters at onset, nedian (IQR)    |                                    |                                                                  |                                        |                                      |                    |
| Total bilirubin (× ULN)                        | 4.1 (1.0-9.2)                      | 6.1 (2.4–11.5) <sup>a</sup>                                      | 6.9 (3.0–13.1) <sup>a</sup>            | 6.5 (3.4–8.9)                        | < 0.001            |
| AST (× ULN)                                    | 6.8 (3.0–25.3)                     | 5.6 (2.8–18.0)                                                   | 5.4 (3.0-13.2)                         | 6.1 (3.7–19.5)                       | 0.216              |
| ALT (× ULN)                                    | 10.7 (4.9–28.6)                    | 9.0 (4.6–21.3)                                                   | 7.6 (3.7–16.6) <sup>a</sup>            | 9.2 (5.0-16.0)                       | 0.008              |
| ALP (× ULN)                                    | 1.4 (0.9–2.2)                      | 1.9 (1.2–2.8) <sup>a</sup>                                       | 1.9 (1.2–3.3) <sup>a</sup>             | 3.0 (2.4-4.6) <sup>a,b</sup>         | < 0.001            |
| GGT (× ULN)                                    | 5.0 (2.1-9.3)                      | 6.4 (3.8–10.8) <sup>a</sup>                                      | 6.8 (3.7–10.2) <sup>a</sup>            | 11.5 (6.2–25.0) <sup>a</sup>         | < 0.001            |
| Albumin (g/dL)                                 | 4.1 (3.6–4.4)<br>(n = 244)         | 4.1 (3.5–4.4)<br>( <i>n</i> = 70)                                | 4.3 (3.9–4.7)<br>( <i>n</i> = 34)      | 4.4 (4.0–4.6)<br>(n = 8)             | 0.201              |
| Other laboratory parameters, mee               | dian (IQR)                         |                                                                  |                                        |                                      |                    |
| Glucose (mg/dL)                                | 96 (86–110)<br>(n = 413)           | 101 (91–115)<br>(n = 125)                                        | 116 (97–151)<br>(n = 82)               | 113 (107–132)<br>(n = 11)            | < 0.001            |
| Creatinine (mg/dL)                             | 0.8 (0.7–1.0)<br>( <i>n</i> = 390) | $\begin{array}{l} 0.9 \; (0.7 {-} 1.1) \\ (n = 122) \end{array}$ | 1.0 (0.8–1.3)<br>(n = 80)              | 0.9 (0.7–1.2)<br>(n = 11)            | < 0.001            |
| Haemoglobin (g/dL)                             | 14 (13–15)<br>( <i>n</i> = 415)    | 13 (12–14)<br>(n = 125)                                          | 13 (12–15)<br>(n = 85)                 | 13 (13–14)<br>(n = 10)               | 0.002              |
| Platelets (× 10 <sup>3</sup> /µL)              | 227 (182–282)<br>(n = 403)         | 217 (163–263)<br>(n = 124)                                       | 216 (162–279)<br>(n = 82)              | 245 (148–272)<br>(n = 10)            | 0.134              |
| New Hy's law, n (%)                            | 208 (40)                           | 52 (34)                                                          | 33 (33)                                | 5 (31)                               | 0.078              |
| Severity, n (%)                                |                                    |                                                                  |                                        |                                      | 0.138 <sup>d</sup> |
| Mild                                           | 205 (36)                           | 36 (22) <sup>a</sup>                                             | 18 (17) <sup>a</sup>                   | 1 (6)                                |                    |
| Moderate                                       | 311 (54)                           | 114 (70) <sup>a</sup>                                            | 75 (71) <sup>a</sup>                   | 11 (69)                              |                    |
| Severe                                         | 38 (7)                             | 7 (4)                                                            | 8 (8)                                  | 4 (25) <sup>a,b</sup>                |                    |
| Fatal                                          | 20 (3)                             | 7 (4)                                                            | 4 (4)                                  | 0 (0)                                |                    |
| Death liver related, n (%)                     | 9 (2)                              | 5 (3)                                                            | 4 (4)                                  | 0 (0)                                | 0.218              |
| Transplantation, n (%)                         | 11 (2)                             | 2 (1)                                                            | 0 (0)                                  | 0 (0)                                | 0.148              |

(Continues)

1532635, 2021, 4, Downloaded from https://aspt.onlinelibrary.wiley.com/doi/10.1002/cpt.2108 by Universidad De Sevilla, Wiley Online Library on [27/10/2022]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

#### Table 4 (Continued)

|                                          | Young<br>< 65 years | Young-old<br>65–74 years  | Middle-old<br>75-84 years | Oldest-old<br>≥ 85 years | Duchus  |
|------------------------------------------|---------------------|---------------------------|---------------------------|--------------------------|---------|
|                                          | (n = 589)           | (n = 169)                 | (n = 108)                 | (n = 16)                 | P value |
| Death non-liver related, n (%)           | 6 (1)               | 4 (2)                     | 5 (5) <sup>a</sup>        | 0 (0)                    | 0.030   |
| DILI contributory                        | 2 (29)              | 2 (29)                    | 3 (43)                    | 0 (0)                    |         |
| DILI nonrelated                          | 4 (50)              | 2 (25)                    | 2 (25)                    | 0 (0)                    |         |
| Time to resolution in days, median (IQR) | 103 (51–189)        | 142 (66–451) <sup>a</sup> | 109 (53–331)              | 111 (46–140)             | 0.044   |

Severity index: Mild: elevated ALT/ALP meeting DILI criteria with total bilirubin  $< 2 \times$  ULN; Moderate: elevated ALT/ALP with total bilirubin  $\ge 2 \times$  ULN; Severe: elevated ALT/ALP, total bilirubin  $\ge 2 \times$  ULN and one of the following: ascites, encephalopathy, international normalization ratio  $\ge 1.5$  and/or other organ failure considered to be due to DILI; Fatal: death or transplantation due to DILI.

ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; DILI, drug-induced liver injury; GGT, gamma glutamyl transferase; IQR, interquartile range; ULN, upper limit of normal range.

 $^{a}P < 0.05$  vs. the young.  $^{b}P < 0.05$  vs. the young-old. <sup>c</sup>Hypersensitivity features were defined as the presence of at least one of the following characteristics during the DILI episode: fever, rash, serum eosinophilia (defined as eosinophils > 5%), lymphopenia (defined as lymphocytes < 10%), or arthralgia. <sup>d</sup>Kendall's Tau correlation coefficient ranges from -1 to 1.

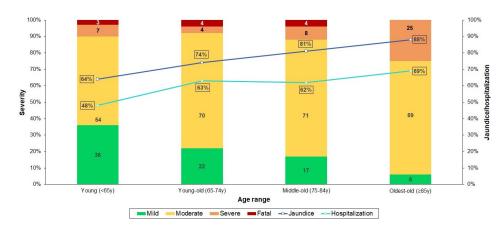
75–85 years, and ≥ 85 years) showed increasing odds of cholestatic injury compared with the youngest group (*P* for trend = 0.003). Interestingly, when considering patients aged 55–64 years, no higher risk of cholestatic injury compared with the reference group (< 55 years) was found (OR = 1.320; 95% CI, 0.805–2.167, P = 0.272) (**Table 5**).

However, no higher odds of cholestatic DILI were seen when neither the number of concomitant medications (OR = 1.028; 95% CI, 0.939–1.125, P = 0.550) nor the comorbidity burden (OR = 1.161; 95% CI, 0.990–1.362, P = 0.066) increased.

 Table 5 Associations of age and age groups and cholestatic

 liver injury

|                               |            | 95% confidence |         |
|-------------------------------|------------|----------------|---------|
|                               | Odds ratio | interval       | P value |
| Age                           | 1.022      | (1.011–1.034)  | < 0.001 |
| Male sex                      | 1.239      | (0.860-1.786)  | 0.250   |
| Charlson<br>Comorbidity Index | 1.147      | (0.977–1.347)  | 0.095   |
| Amoxicillin-<br>clavulanate   | 2.136      | (1.438–3.175)  | < 0.001 |
| Concomitant<br>medication     | 1.021      | (0.933-1.119)  | 0.647   |
| Age                           |            |                |         |
| <55 years                     | 1 (r       | eference)      |         |
| 55–64 years                   | 1.320      | (0.805–2.167)  | 0.272   |
| 65–74 years                   | 2.130      | (1.319–3.438)  | 0.002   |
| 75–84 years                   | 1.754      | (0.986-3.120)  | 0.056   |
| ≥ 85 years                    | 4.811      | (1.630–14.203) | 0.004   |
| Male sex                      | 1.263      | (0.872–1.830)  | 0.217   |
| Charlson<br>Comorbidity Index | 1.161      | (0.990-1.362)  | 0.066   |
| Amoxicillin-<br>clavulanate   | 2.102      | (1.409–3.136)  | < 0.001 |
| Concomitant<br>medication     | 1.028      | (0.939–1.125)  | 0.550   |


Male sex (yes/no); Charlson Comorbidity Index (continuous); amoxicillin clavulanate (yes/no); concomitant medication (continuous).

Stratified analyses by amoxicillin-clavulanate use showed that increasing age was significantly related to the onset of cholestatic injury both in patients treated and nontreated with amoxicillin-clavulanate (OR = 1.039; 95% CI, 1.016–1.062, P = 0.001 and OR = 1.016; 95% CI, 1.002–1.029, P = 0.023, respectively). A similar shift towards cholestatic injury was found in patients who took atorvastatin, levofloxacin, ticlopidine, or ibuprofen (P < 0.001). However, in those patients who took drugs with a definite hepatocellular profile, no change in the phenotype in elderly patients was found (P = 0.335) (Table S3).

We tested the hypothesis that chronic heart failure and/or a longer time to onset may contribute to the risk of cholestatic injury in the older population.<sup>14</sup> However, none of these variables were found to be significantly related to cholestatic DILI in this cohort (OR = 1.241; 95% CI, 0.603–2.552, P = 0.557, and OR = 0.999; 95% CI, 0.998–1.001, P = 0.289, respectively).

### Severity

In Figure 1, the prevalence of jaundice and hospitalization due to DILI and the grading of severity of the DILI episode is shown. There was a relationship between jaundice and hospitalization (P < 0.001), and both features were more prevalent in the elderly age groups, especially in the oldest-old. Indeed, a correlation between hospitalization and bilirubin values at DILI recognition was found (point biserial correlation coefficient  $(r_{pb}) = 0.39$ ; P < 0.001). Hospitalization duration increased along age groups. Accordingly, estimated hospitalization costs rose in older groups, from nearly US \$50,000 in young cases to over US \$80,000 in patients aged  $\geq$  80 (Table 2). Compared with the young, DILI in the young-old and middle-old was more often of moderate severity, while in the oldest-old, the episode was more frequently severe compared with the young (25% vs. 7%; P = 0.029). The percentage of patients meeting the new Hy's law did not differ between the groups (Table 4). Of note, the new Hy's law performed as expected, with about 10-13% of liver-related death / liver transplant, except 0% in the oldest-old group, which had no true Hy's law cases. As expected, there were no transplant cases



**Figure 1** Severity of DILI episode and prevalence of jaundice and hospitalization due to DILI, stratified by age groups. Severity index: Mild: elevated ALT/ALP meeting DILI criteria with total bilirubin  $< 2 \times$  ULN; Moderate: elevated ALT/ALP with total bilirubin  $\ge 2 \times$  ULN; Severe: elevated ALT/ALP, total bilirubin  $\ge 2 \times$  ULN and one of the following: ascites, encephalopathy, international normalization ratio  $\ge 1.5$  and/ or other organ failure considered to be due to DILI; Fatal: death or transplantation due to DILI. ALP, alkaline phosphatase; ALT, alanine aminotransferase; DILI, drug-induced liver injury; ULN, upper limit of normal.

in the middle-old and oldest-old groups. The median age of patients who died (liver-related) or underwent a liver transplant was 73 (IQR 73–78) and 67 years old (IQR 65–68), respectively. All these patients had hepatocellular DILI and were predominantly females (56% of liver-related deaths, 100% of liver transplants). The median times to death or liver transplant since the DILI diagnosis were 34 (IQR 22–44) and 17 days (IQR 15–18), respectively.

There were more non-liver-related deaths with increasing age during the time of follow-up (P = 0.030). The median time to death in these cases was 31 days (IQR 23–51). DILI was deemed as a contributing cause of death in seven patients (47%). Distribution of cases across age groups is shown in **Table 4**. Causes of death were multiorgan failure (two patients), post-transplant complications (two), cardiac arrest (one), amyloidosis and renal insufficiency (one), and respiratory infection in the context of liver failure (one). In the eight patients in whom DILI did not play a role, causes of death comprised malignancies (four patients), cardiovascular disease (one), lung infarction (one), septic shock (one), cerebral toxoplasmosis (one), and tuberculous meningitis (one).

The 6-month predictive model developed by Ghabril *et al.*<sup>22</sup> was applied in this cohort. The Model for End-Stage Liver Disease (MELD) score (OR = 1.153; 95% CI, 1.071–1.240, P < 0.001), comorbidity burden (OR = 5.721; 95% CI, 1.459–22.459, P = 0.012), and serum albumin (OR = 0.530; 95% CI, 0.292–0.962, P = 0.037) were independent predictors of liver-related death. However, when overall mortality (including non–liver related) was considered, only MELD score (OR = 1.116; 95% CI, 1.066–1.168, P < 0.001) and comorbidities (OR = 4.188; 95% CI, 1.738–10.091, P = 0.001) remained as significant predictors (**Table 6**). Noticeably, serum albumin levels were significantly lower in liver-related death patients than in those with non–liver-related deaths ( $3.01 \pm 0.32$  vs.  $3.94 \pm 0.28$ ; P = 0.049).

Differences in hospitalization, jaundice, severity, and nonliver-related death remained significant regardless of age cutoff  $\ge 80$  years or  $\ge 75$  years (**Table 2** and **Table S1**).

## DISCUSSION

With an aging population the prevalence of DILI in the older adults is forecast to increase, making it worthwhile to focus on the clinical signature of DILI in this population. Furthermore, the National Institutes of Health and guidelines are enforcing the inclusion of individuals of all ages, including older patients, in clinical studies.<sup>6,16,17,23,24</sup>

The long history of the Spanish DILI Registry allowed us to prospectively study a substantial number of DILI cases in patients aged 65 years or older, including patients  $\geq$  85 years ("oldest-old"), a group that has never before been described. The phenotypic presentation of DILI in these patients exhibited some differential characteristics compared with younger age groups. The high proportion of females in the oldest age group was unexpected considering the male predominance observed in the young-old and middle-old. Indeed, this change was also suggested in the population  $\geq$  80 years. Interestingly, when comparing our results in the oldest-old subgroup with data from the Spanish Statistical Institute, the same pattern of gender distribution was found: A lower male-to-female ratio among the very old,<sup>25</sup> which reflects women having a longer lifespan than men and underscores the importance of assessing this distinct oldest-old category.

Second, the DILI episode was frequently deemed to be more severe in the elderly patients, especially in the oldest-old, being more jaundiced and leading to hospitalization in almost 70% of these patients. Although the overall mortality rate in patients aged  $\geq 65$  years was similar to that reported in the US DILIN prospective cohort (6.8% vs. 8.7%, respectively),<sup>9</sup> more non-liver-related deaths were found with increasing age. In comparison, the US DILIN<sup>9</sup> found a relatively lower severity of DILI in the elderly patients ( $\geq 65$  years) compared with the younger patients, although the elderly population represented only 17% of the cases (compared with the 33% in this registry), with a similar age (73 ± 6 vs. 74 ± 6, respectively), and they did not specifically look at different age subgroups. The reason behind an increase in DILI severity in eldersis unclear but, in addition to pharmacokinetic and

| Table 6 | Predictors | of 6-mon | th mortality | in DILI | patients <sup>22</sup> |
|---------|------------|----------|--------------|---------|------------------------|
|---------|------------|----------|--------------|---------|------------------------|

| Liver related death                            | OR (95% CI)                         | P value    |  |  |  |
|------------------------------------------------|-------------------------------------|------------|--|--|--|
| MELD score                                     | 1.153 (1.071–1.240)                 | < 0.001    |  |  |  |
| Comorbidity burden                             |                                     |            |  |  |  |
| No/mild comorbidity (CCI $\leq$ 1) (Reference) | _                                   | —          |  |  |  |
| Significant comorbidity (CCI > 1)              | 5.721 (1.459–22.429)                | 0.012      |  |  |  |
| Albumin (g/dL)                                 | 0.530 (0.292–0.962)                 | 0.037      |  |  |  |
| Overall mortality                              | OR (95% CI)                         | P value    |  |  |  |
| MELD score                                     | 1.116 (1.066-1.168)                 | < 0.001    |  |  |  |
| Comorbidity burden                             |                                     |            |  |  |  |
| No/mild comorbidity (CCI $\leq$ 1) (Reference) | _                                   |            |  |  |  |
| Significant comorbidity<br>(CCl > 1)           | 4.188 (1.738–10.091)                | 0.001      |  |  |  |
| Albumin (g/dL)                                 | 0.739 (0.502–1.089)                 | 0.126      |  |  |  |
| CCI. Charlson Comorbidity Index                | : CI. confidence interval: DILI. dr | ug-induced |  |  |  |

CCI, Charlson Comorbidity Index; CI, confidence interval; DILI, drug-induced liver injury; MELD, Model for End-Stage Liver Disease; OR, odds ratio.

dynamic changes accompanying an aging liver and reduced renal excretion,<sup>5,26</sup> an impaired liver regeneration may contribute.<sup>27</sup>

A higher comorbidity burden in the elderly population may also explain the more severe DILI course and higher non–liver-related mortality. A recent study found that a high comorbidity burden is a strong predictor for mortality in patients with DILI.<sup>22</sup> Indeed, our data validates the 6-month predictive model of mortality proposed,<sup>22</sup> but only for liver-related fatalities. Interestingly, the albumin component of the model did not perform as a predictor for overall mortality (i.e., including non–liver-related death), which indirectly supports the accuracy of the contributory determinants of mortality in the current study.<sup>28</sup> On the other hand, despite a more severe course, the proportion of Hy's law cases did not differ between the groups, the percentage being roughly 10% lower in all elderly age groups compared with the young. This can be related to the predominance of a cholestatic injury pattern suggesting that different approaches to predict a severe DILI outcome in the elderly need to be explored.

Our analysis reinforces the previously described influence of older age in the phenotypic presentation of DILI increasing the odds for a cholestatic presentation.<sup>9,10,14</sup> Furthermore, the odds for presenting this pattern of liver injury were almost 5 times higher in the oldest-old compared with youngest group. Importantly, 65 years seemed to be the best cutoff point for a significantly increased risk of cholestatic DILI, independently of potential confounders such as the number of comedications and the use of amoxicillin-clavulanate, which in fact was the most commonly involved causative agent across age groups. Interestingly, a similar age-dependent change in the clinical signature and biochemical injury pattern compared with younger patients was observed among top culprit drugs of different pharmacological groups, including statins (atorvastatin), nonsteroidal anti-inflammatory drugs (ibuprofen), antibiotics (levofloxacin), and antithrombotic agents (ticlopidine). Hence, the more frequent cholestatic pattern of injury in older DILI patients seems to be a phenotypic characteristic specifically driven by the host.

The mechanisms underlying the increased risk of cholestatic injury in older patients are still unclear.

In our study, and contrary to the Onji *et al.* hypothesis,<sup>14</sup> neither a longer time to DILI onset nor a diagnosis of chronic heart failure, albeit present in a higher number of elderly patients, increased the odds for cholestatic injury. Remarkably, the pattern of damage of a given drug can change with increasing age, a feature only demonstrated for amoxicillin-clavulanate so far.<sup>29,30</sup> In addition, genetic factors, particularly *HLA* class I and II alleles, have also been found to influence the phenotypic drug signature.<sup>31-33</sup> An alternative explanation includes the interference with an underlying aging process such as a diminished renal clearance and biliary function, which may favor a more cholestatic liver reaction to drugs.<sup>29</sup> This also would apply for amoxicillin-clavulanate, whose prolonged canalicular excretion and exposure of the bile duct cells might favor an immune response.<sup>34</sup> Previous research indeed noted a higher reporting frequency of DILI events due to drugs with biliary pump inhibition potential and biliary excretion in the elderly.<sup>26,35</sup> Indeed, we do not know the mechanism for shift to cholestatic phenotype with several individual drugs. Although pharmacokinetic changes are age dependent, how this or other age-related factors might contribute to this at this time are unknown. More research is needed to better explain the increased risk of cholestatic DILI in older patients and to develop biomarkers for cholestatic DILI.

Our data also add to prior knowledge, indicating a more prolonged recovery of cholestatic DILI in the older population,<sup>36</sup> and that older age is a risk factor for chronic DILI.<sup>37</sup> However, according to our data, DILI was less prevalent at older ages captured by enrollment in the registry.

The strength of the study is a well-characterized cohort of DILI patients with an adequate follow-up. The large number of DILI cases in the elderly patients enrolled in the registry has enabled stratification of older DILI populations in three age groups, demonstrating at the same time the suitability of the proposed age classification. Although our results do emphasize the potential distinct phenotype of DILI in the oldest-old patients, the number of subjects in this group was limited and the results should be further validated in large DILI cohorts.<sup>38</sup> A factor that was not taken into account was the frailty of the patients. Frailty is defined as a multidimensional condition that makes a patient, when exposed to a stressor, vulnerable to adverse health outcomes.<sup>39,40</sup> An underlying phenotype of frailty may also be an explanation for the more severe DILI course in the older population, yet this should be verified in additional studies.

In summary, elderly patients with DILI have a high comorbidity burden, are polymedicated, and have a significant increase in non-liver-related mortality as shown by the predictive capacity of MELD and CCI in the 6-month mortality. This supports a possible contributing role of DILI in non-liver-related deaths. The oldest-old is a unique group of patients in their response to DILI, with a large proportion of female cases and a more severe liver injury, reinforcing the need for further characterization of DILI in the distinct oldest-old category.

#### SUPPORTING INFORMATION

Supplementary information accompanies this paper on the *Clinical Pharmacology & Therapeutics* website (www.cpt-journal.com).

#### ACKNOWLEDGMENTS

This publication is based upon work from COST Action "CA17112-Prospective European Drug-Induced Liver Injury Network" supported by COST (European Cooperation in Science and Technology). https://www. cost.eu

The authors R.A.W., I.A.-A., I.M.-C., E.B., H.N., M.R.-D., J.S.-C., A.O.-A., M.G.-C., R.J.A. and M.I.L. are members of this COST Action.

#### FUNDING

The present study has been supported by grants of Instituto de Salud Carlos III (ISCIII) cofounded by Fondo Europeo de Desarrollo Regional (FEDER) (contract numbers: PI 18/01804; PT17/0017/0020) and Agencia Española del Medicamento. SCReN and CIBERehd are funded by ISCIII. J.S.-C. holds a Rio Hortega (CM17/00243) and M.R.-D. holds a "Joan Rodes" (JR16/00015) research contract from the National Health System, ISCIII. R.A.W. held a University of Málaga visiting scientist scholarship.

#### **CONFLICT OF INTERESTS**

The authors declared no competing interests for this work.

#### **AUTHOR CONTRIBUTIONS**

R.A.W., I.A.-A., N.K., R.J.A., and M.I.L. wrote the manuscript. R.A.W., I.A.-A., I.M.-C., R.J.A., and M.I.L. designed the research. J.S.-C., M.R.-D., E.B., H.N., A.O.-A., M.G.-C., G.S., M.J.-P., H.H., and S.B. performed the research. R.A.W., I.A.-A., E.B., and I.M.-C. analyzed the data.

© 2020 The Authors. Clinical Pharmacology & Therapeutics

© 2020 American Society for Clinical Pharmacology and Therapeutics

- Andrade, R.J. et al. European Association for the Study of the Liver (EASL) clinical practice guidelines: drug-induced liver injury. J Hepatol. 70, 1222–1261 (2019).
- Andrade, R.J. et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 5, 58 (2019).
- He, W., Goodkind, D. & Kowal, P. U.S. Census Bureau, International Population Reports, P95/16-1, An Aging World: 2015. (US Government Publishing Office, Washington, DC, 2016).
- 4. Campion, E.W. The oldest old. *N Engl J Med.* **330**, 1819–1820 (1994).
- McLean, A.J. & Le Couteur, D.G. Aging biology and geriatric clinical pharmacology. *Pharmacol Rev.* 56, 163–184 (2004).
- Mitchell, S.J. & Hilmer, S.N. Drug-induced liver injury in older adults. *Ther. Adv. Drug Saf.* 1, 65–77 (2010).
- Lucena, M.I., Sanabria, J., García-Cortes, M., Stephens, C. & Andrade, R.J. Drug-induced liver injury in the older people. *Lancet Gastroenterol. Hepatol.* 5, 862–874 (2020).
- Hoofnagle, J.H. & Navarro, V.J. Drug-induced liver injury: Icelandic lessons. Gastroenterology 144, 1335–1336 (2013).
- Chalasani, N. et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology 148, 1340–1352.e7 (2015).
- Lucena, M.I. et al. Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. *Hepatology* 49, 2001–2009 (2009).
- Chuang, T.-J. *et al.* The differences of metabolic syndrome in elderly subgroups: a special focus on young-old, old-old and oldest old. *Arch. Gerontol. Geriatr.* 65, 92–97 (2016).
- Reeve, E., Wiese, M.D. & Mangoni, A.A. Alterations in drug disposition in older adults. *Expert Opin. Drug Metab. Toxicol.* **11**, 491–508 (2015).
- Abernethy, D.R. Drug therapy in the elderly. In *Principles of Clinical Pharmacology*, 2nd edn (eds. Atkinson, A. Jr, Abernethy, D.R., Daniels, C.E. & Dedrick, R.L.) 375–388 (Academic Press, New York, 2007).

- 14. Onji, M. et al. Clinical characteristics of drug-induced liver injury in the elderly. *Hepatol. Res.* **39**, 546–552 (2009).
- Andrade, R.J. et al. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish Registry over a 10-year period. Gastroenterology **129**, 512–521 (2005).
- European Medicines Agency. ICH topic E7: studies in support of special populations — geriatrics questions and answers <a href="https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-7-studies-support-special-populations-geriatrics-questions-answers-step-5\_en.pdf">https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-7-studies-support-special-populations-geriatrics-questions-answers-step-5\_en.pdf</a>> (2010). Accessed May 19, 2020.
- 17. US Food and Drug Administration. Guidance for industry: E7 studies in support of special populations: geriatrics questions and answers <a href="https://www.fda.gov/media/78220/download">https://www.fda.gov/media/78220/download</a> (2012). Accessed May 19, 2020.
- Charlson, M., Szatrowski, T.P., Peterson, J. & Gold, J. Validation of a combined comorbidity index. *J. Clin. Epidemiol.* 47, 1245–1251 (1994).
- Kaiser Family Foundation. Hospital adjusted expenses per inpatient day <https://www.kff.org/health-costs/state-indic ator/expenses-per-inpatient-day/?currentTimeframe=0&sortM odel=%7B%22colld%22:%22Location%22,%22sort%22:%22asc %22%7D>. Accessed May 25, 2020.
- 20. Aithal, G.P. et al. Case definition and phenotype standardization in drug-induced liver injury. *Clin Pharmacol Ther.* **89**, 806–815 (2011).
- Robles-Diaz, M. et al. Use of Hy's law and a new composite algorithm to predict acute liver failure in patients with druginduced liver injury. Gastroenterology 147, 109–118.e5 (2014).
- Ghabril, M. et al. Development and validation of a model consisting of comorbidity burden to calculate risk of death within 6 months for patients with suspected drug-induced liver injury. *Gastroenterology* **157**, 1245–1252.e3 (2019).
- National Institutes of Health. Revision: NIH policy and guidelines on the inclusion of individuals across the lifespan as participants in research involving human subjects <a href="https://grants.nih.gov/grants/guide/notice-files/NOT-OD-18-116.html">https://grants.nih.gov/ grants/guide/notice-files/NOT-OD-18-116.html</a>> Accessed June 5, 2020.
- 24. Stine, J.G., Sateesh, P. & Lewis, J.H. Drug-induced liver injury in the elderly. *Curr. Gastroenterol. Rep.* **15**, 299 (2013).
- Instituto Nacional de Estadística. Population Projection for Spain, 2014–2064 <a href="https://www.ine.es/en/prensa/np870\_en.pdf">https://www.ine.es/en/prensa/np870\_en.pdf</a>. Accessed June 11, 2019.
- Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 41, 67–76 (2009).
- Schmucker, D.L. & Sanchez, H. Liver regeneration and aging: a current perspective. *Curr. Gerontol. Geriatr. Res.* 2011, 526379 (2011).
- Hayashi, P.H. et al. Death and liver transplantation within 2 years of onset of drug-induced liver injury. *Hepatology* 66, 1275–1285 (2017).
- Lucena, M.I. et al. Determinants of the clinical expression of amoxicillin-clavulanate hepatotoxicity: a prospective series from Spain. Hepatology 44, 850–856 (2006).
- deLemos, A.S. et al. Amoxicillin-clavulanate-induced liver injury. Dig. Dis. Sci. 61, 2406–2416 (2016).
- Stephens, C. et al. HLA alleles influence the clinical signature of amoxicillin-clavulanate hepatotoxicity. PLoS One 8, e68111 (2013).
- Andrade, R.J. et al. HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. *Hepatology* 39, 1603–1612 (2004).
- Nicoletti, P. et al. Association of liver injury from specific drugs, or groups of drugs, with polymorphisms in HLA and other genes in a genome-wide association study. *Gastroenterology* **152**, 1078– 1089 (2017).
- 34. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. *Nat. Rev. Drug Discov.* **4**, 489–499 (2005).
- George, N., Chen, M., Yuen, N., Hunt, C.M. & Suzuki, A. Interplay of gender, age and drug properties on reporting frequency of druginduced liver injury. *Regul. Toxicol. Pharmacol.* 94, 101–107 (2018).
- Fontana, R.J. et al. Persistent liver biochemistry abnormalities are more common in older patients and those with cholestatic drug induced liver injury. Am. J. Gastroenterol. **110**, 1450–1459 (2015).

- Medina-Caliz, I. et al. Definition and risk factors for chronicity following acute idiosyncratic drug-induced liver injury. J. Hepatol. 65, 532–542 (2016).
- Hunt, C.M., Yuen, N.A., Stirnadel-Farrant, H.A. & Suzuki, A. Agerelated differences in reporting of drug-associated liver injury: data-mining of WHO safety report database. *Regul. Toxicol. Pharmacol.* **70**, 519–526 (2014).
- Miller, E., Abu-Sbeih, H. & Chalasani, N. Drug-induced liver injury in older adults. In *Geriatric Gastroenterology* (eds. Pitchumoni, C.S. & Dharmarajan, T.S.) 1–16 (Springer, New York, 2020).
- Morley, J.E. et al. Frailty consensus: a call to action. J. Am. Med. Dir. Assoc. 14, 392–397 (2013).

## **APPENDIX 1**

#### **Collaborating Spanish Clinical Centers**

Hospital Universitario Virgen de la Victoria, Málaga (coordinating center): R.J. Andrade, M.I. Lucena, C. Stephens, M. García Cortés, M. Robles Díaz, A. Ortega Alonso, J. Pinazo, B. García Muñoz, R. Alcántara, A. Hernández, M.D. García-Escaño, I. Medina-Cáliz, J. Sanabria-Cabrera, I. Alvarez-Alvarez, E. Bonilla, H. Niu, D. Di-Zeo, E. Del Campo.

Hospital Regional Universitario de Málaga: M. Jiménez Pérez, R. González Grande, S. López Ortega, I. Santaella, A. Ocaña, P. Palomino. Hospital Torrecárdenas, Almería: M.C. Fernández, A. Porcel, M.

Casado, M. González Sánchez. Hospital Universitario Virgen del Rocío, Seville: M. Romero-Gómez,

R. Millán-Domínguez, B. Fombuena, R. Gallego, J. Ampuero, J.A. del Campo, R. Calle-Sanz, L. Rojas, A. Rojas, A. Gil Gómez, E. Vilar. Hospital Sant Pau, Barcelona: G. Soriano, C. Guarner, E.M. Román, M.A. Quijada Manuitt, R.M. Antonijoan Arbos.

Hospital Germans Trias i Pujol, Badalona, Barcelona: M. Farré, E. Montané, A.L. Arellano, A.M. Barriocanal, Y. Sanz, R.M. Morillas, M. Sala, H. Masnou Ridaura.

Hospital Parc Tauli, Barcelona: J. Sánchez Delgado, M. Vergara Gómez. Hospital Morales Meseguer, Murcia: H. Hallal, E. García Oltra, J.C.

Titos Arcos, A. Pérez Martínez, C. Sánchez Cobarro, J.M. Egea Caparrós. Hospital Universitario de Donostia, Saint Sebastián: A. Castiella, J.

Arenas, M.I. Gomez Osua, A. Gómez García, F.J. Esandi.

Hospital de Basurto, Bilbao: S. Blanco, P. Martínez Odriozola. Hospital Marqués de Valdecilla, Santander: J. Crespo, P. Iruzubieta, I. Cabezas.

Hospital Virgen del Rocío, Seville: A. Giráldez Gallego, E. del P. Rodríguez Seguel, M. Cuaresma.

Hospital La Fe, Valencia: M. Prieto, I. Conde Amiel, M. Berenguer, M. García-Eliz.

- Complejo Hospitalario Universitario de Albacete, Albacete: J.M. Moreno, P. Martínez-Rodenas, M. Garrido, C. Oliva.
- Hospital 12 de Octubre, Madrid: E. Gómez Domínguez, L. Cabrera, L. Cuevas.
- Hospital Clínic, Barcelona: M. Bruguera, P. Gines, S. Lens, J.C. García, Z. Mariño.
- Hospital Universitario de Canarias, La Laguna, Tenerife: M. Hernández Guerra, M. Moreno San Fiel, C. Boada Fernández del Campo.

Hospital Miguel Servet, Saragossa: J. Fuentes Olmo, E.M. Fernández Bonilla.

Hospital de León, León: F. Jorquera, J. González Gallego.