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SUMMARY

Two-phase flows composed of fluids exhibiting different microscopic structure are an important class of
engineering materials. The dynamics of these flows are determined by the coupling among three different
length scales: microscopic inside each component, mesoscopic interfacial morphology, and macroscopic
hydrodynamics. Moreover, in the case of complex fluids composed by the mixture between isotropic (New-
tonian fluid) and nematic (liquid crystal) flows, its interfaces exhibit novel dynamics due to anchoring effects
of the liquid crystal molecules on the interface.

Firstly, we have introduced a new differential problem to model nematic–isotropic mixtures, taking into
account viscous, mixing, nematic, and anchoring effects and reformulating the corresponding stress tensors
in order to derive a dissipative energy law. Then, we provide two new linear unconditionally energy-stable
splitting schemes. Moreover, we present several numerical simulations in order to show the efficiency of the
proposed numerical schemes and the influence of the different types of anchoring effects in the dynamics of
the system. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of interfacial dynamics between two different components has become the key role to
understand the behavior of many interesting systems, with applications in science, engineering, and
industry. For instance, the dynamics of an interface that separates two (or more) materials arise
naturally in hydrodynamics applications or in solidification processes. We can find a big amount of
applications related to phase separation, like liquid crystals, vesicle membranes deformation, image
processing, and tumor growth.

An efficient and physically relevant approach for solving interface problems is due to the diffuse
interface theory, which is based on describing the interfaces by layers of small thickness and whose
structure is determined through a non-local mixing energy that captures the balance of molecular
forces, where this energy represents the competition for mixing and de-mixing processes. These
ideas were already considered by van der Waals [1] and can be considered the foundation of the
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phase-field theory for phase transition and critical phenomena. In the diffuse interface theory, the
surface motion can be derived as the dissipation of a phase field’s free energy functional E".�/,

�t D
ıE".�/

ı�
;

where � denotes the so-called phase-field function that is used to localize the components inside
the system, assuming that � takes different stable values for each phase (for instance, � D 1 in one
phase and � D �1 in the other one). The key point is to consider that in the interfacial regions,
the function varies smoothly, making feasible to define the function � in the whole domain. This
fact provides many interesting properties like easiness of coupling with physical variables, indif-
ference to morphological singularities in the interface, or the possibility of considering a global
space discretization.

In this work, we are interested in the diffuse interface approach to represent mixtures composed
of isotropic fluids and nematic liquid crystals. Liquid crystals can be viewed as a state of matter that
exhibits properties between liquids and solids. Macroscopically, liquid crystals behave like liquids,
but in the microscopic scale, their molecules have an orientational property due to elasticity effects
(i.e., liquid crystals can be viewed as anisotropic liquids). There are several types of liquid crystals
and can be classified as thermotropic and lyotropic, whose change of state depends on varying the
temperature or the concentration, respectively.

Examples of liquid crystals can be widely found in nature and technological applications. For
instance, most contemporary electronic devices use liquid crystals for their displays, and lyotropic
liquid-crystalline phases can be found in living systems, forming proteins and cell membranes.
There are two main groups of thermotropic liquid crystals (Figure 1): nematic and smectic. On one
hand, nematic phases are formed by rod-shaped molecules with no positional order, although their
molecules are able to self-align in order to have a long-range directional order parallel with respect
to their long axes. On the other hand, smectic phases (which are found at lower temperatures than
the nematic ones) are positionally ordered along one direction forming well-defined layers that can
slide over one another, acting like liquids within each layer. In particular, in smectic-A phases, the
molecules are oriented along the normal vector of the layers, while in smectic-C phases, they are
tilted away from the normal vector of the layer. For further information on the physics and properties
of the different liquid crystals, we refer the reader to [2].

In order to understand the behavior of the models representing complex fluids composed of
mixtures of isotropic fluids and nematic liquid crystals, it is needed to combine ideas from fluid
dynamics, phase-field models, mixtures of fluids, and nematic liquid crystals. The amount of liter-
ature related to these topics is extremely huge, and it is impossible to make a fair description of
all the results or approaches that can be considered. For that reason, we just mention here some

Figure 1. Different phases of thermotropic liquid crystals.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 537

overviews on the state of the art on the study of phase-field models [3], mixtures of fluids [4], and
mathematical study (theoretically and numerically) of liquid crystals [5, 6].

In recent times, the interest of studying systems representing the interaction between Newtonian
and nematic fluids has grown considerably in both the mathematics and the physics communities.
There have been different approaches to simulate this type of models. The authors of [7] study the
kinetics of the nematic–isotropic transition in a two-dimensional liquid crystal by using a lattice
Boltzmann scheme that couples the tensor order parameter and the flow, finding that the time depen-
dences of the correlation function, energy density, and number of topological defects arise from
dynamic scaling laws. In [8], the authors considered another ideas, using the Landau–de Gennes
free energy to calculate the interaction between long cylindrical colloids and the nematic–isotropic
interface. In [9], it is presented an approach to compute the shape and internal structure of two-
dimensional nematic drops. Using these techniques, they are able to calculate the director field for a
given domain shape. In [10], the authors explore experimentally the structure of nuclei and topolog-
ical defects in the phase transition between the nematic and isotropic phases in lyotropic chromonic
liquid crystals, demonstrating the important role played by the surface anisotropy in morphogene-
sis of phase transitions in liquid crystals. Another coupling that has recently attracted attention in
the community is the one between isotropic fluids with cholesteric liquid crystals. It is known that
this interface can display a range of unusual properties, such as a layer of topological defects close
to an undulated interface, but the dynamics and composition of this interface remains still poorly
understood. We refer the reader to [11] for a calculation of the structure and surface tension of the
cholesteric–isotropic interface.

From the mathematical point of view, the first attempt to represent this coupling by using a phase-
field approach was presented in [12, 13]. In these works, the authors presented an energy-based
approach that makes it possible to incorporate complex rheology easily, and they also present some
numerical simulations. The authors in [14] explore the coupling among bulk liquid crystal orienta-
tion, surface anchoring, and the flow field, showing that the anchoring energy plays a fundamental
role in the interfacial dynamics of nematic liquids. More recently, in [15], the authors present an
energy-based phase-field model for the coupling of a nematic liquid crystal phase in a viscous fluid
phase, presenting coupled numerical schemes with several simulations. This work was extended
in [16], where the authors presented a splitting numerical scheme for this model. Energy laws are
obtained there for the continuous problem and discrete scheme, designing linear unconditionally
stable numerical schemes. However, in this work, the anchoring effects were not taken into account
in the numerical analysis, and the interpolation function that they consider to localize the nematic
region cannot be arbitrary.

In this work, we study a modification of the model presented in [16] where we take into
account the anchoring effects and an arbitrary interpolation function can be considered to local-
ize the nematic region (in practice, we consider a fifth-order polynomial). We derive new linear
splitting schemes for nematic–isotropic mixtures, taking into account viscous, mixing, nematic,
and anchoring effects, which allows us to split the computation of the three pairs of unknowns
.v; p/ (velocity–pressure), .c; �/ (phase field–chemical potential), and .d ;w/ (director vector–
equilibrium) in three different steps. The derivation of these new decoupled schemes are inspired
by the ideas previously presented in [17–19]. Moreover, we have proven that these formulations
are unconditionally energy stable (independently of the size of space and time meshes considered).
Finally, we present several numerical simulations to illustrate the correct behavior of the proposed
numerical schemes and to show the dependence of the dynamics on the different types of anchoring
effects that can be considered.

This work is organized as follows. In Section 2, we present the model that we are considering
jointly with the main ideas for deriving it and a reformulation of the problem adding some auxil-
iary variables that will allows us to consider C 0 finite elements to discretize the system in space.
Section 3 is devoted to design the new numerical schemes and to show their unconditional energy
stability, detailing the splitting ideas and how to discretize the potentials in a linear and energy-
stable way. In Section 4, we present several numerical experiments in order to show the efficiency
of the proposed numerical schemes and the influence of the anchoring effects on the dynamics of
the system. Finally, in Section 5, we state the conclusions of our work.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
DOI: 10.1002/nme
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538 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

2. THE MODEL

In this section, we describe the multicomponent complex fluid mixture subject of our study,
consisting of two phases: a nematic liquid crystal and a Newtonian fluid.

The model considered is based on the one presented in Reference [12], where the authors pro-
posed a way of deriving models for mixtures of complex fluids. The idea is based on using a
phase-field function to localize inside the domain the region where each component is contained.
The total energy of the system is represented as the sum of the internal energies of each one of
the components plus the mixture energy associated to the phase-field system [20]. Then, the key
point is to consider a phenomenological derivation, giving first a total free energy (that depends
on an average of the considered effects: kinetic, interfacial, nematic, and anchoring) and arriving
at a thermodynamically consistent PDE system with respect to this free energy. These ideas have
been successfully extended to model different complex fluid systems like mixtures, liquid crystals,
biofilms, vesicles membranes, or ion channels [21–28].

Let us present in detail the derivation of a mixture of a nematic liquid crystal and a Newtonian
fluid, where for the sake of simplicity we assume that both fluids have the same constant density
�Nem D �Iso D 1. We consider a bounded domain� � RM ; .M D 2; 3/, whose boundary will be
represented by � (i.e., � WD @�), and we introduce a phase-field function c.x; t / that will be used
to localize the components along the domain �, such that

c.x; t / D

²
�1 Newtonian fluid ;
1 nematic liquid crystal :

We define the total energy of the system as the addition of the energies related to each component
plus the energy associated to the mixture in the interface between both phases:

Etot .u; c;d/ D Ekin.u/C �mixEmix.c/C �nemEnem.d ; c/C �anchEanch.d ; c/; (2.1)

whereEkin.u/ denotes the kinetic energy of the system,Emix.c/ denotes the mixing energy associ-
ated to the mixture process, Enem.d ; c/ denotes the elastic energy due to the nematic liquid crystal
(that also contains a penalization part related to the unitary constraint of the director vector), and
Eanch.d ; c/ denotes the anchoring energy that represents the influence of the interfacial effects on
the orientation of the nematic liquid crystal molecules in the interface between both components.
Moreover, parameters �mix , �nem, and �anch are introduced to balance the effect of each energy in
the system. In particular, the energy terms reads

Ekin.u/ D
1

2

Z
�

juj2dx;

Emix.c/ D

Z
�

�
1

2
jrcj2 C F.c/

�
dx;

Enem.d ; c/ D

Z
�

I.c/

�
1

2
jrd j2 CG.d/

�
dx;

and the anchoring energy will take different forms depending on the anchoring effect considered,

Eanch.d ; c/ D

8̂̂̂<̂
ˆ̂:
0 no anchoring;
1

2

Z
�

�
jd � rcj2

�
dx parallel anchoring;

1

2

Z
�

�
jd j2jrcj2 � jd � rcj2

�
dx homeotropic anchoring:

For the functionals F.c/ and G.d/, we assume the following double-well potentials, which, in both
cases, have their minimums (and consequently their equilibrium states) at˙1:

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
DOI: 10.1002/nme
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 539

F.c/ D
1

4"2
.c2 � 1/2 and G.d/ D

1

4�2
.jd j2 � 1/2I (2.2)

and we represent their derivatives as f .c/ WD F 0.c/ and g.d/ WD G0.d/.

Remark 2.1
Although the functionals F.c/ and G.d/ look similar, their role and their physical meanings are
different. The functional G.d/ comes from the penalization of the constraint jd j D 1; that is, it is
classical in the nematic liquid crystal framework; on the other hand, F.c/ characterizes two different
phases by its minima at c D ˙1. There are other possible choices of the double-well potential like
the logarithmic potential Flog W .�1; 1/! R ([29])

Flog.c/ D
	

2
Œ.1C c/ log.1C c/C .1 � c/ log.1 � c/
C

	c

2
.1C c/.1 � c/; (2.3)

where 	; 	c are positive constants with 	c > 	 . It follows that Flog has a double-well form with
minima at c D ˙ˇ (binodal points) for some ˇ < 1 (close to 1 in the case of 	c much larger than
	). Near c D 0, this potential leads to the usual approximation of the free energy as quartic poly-
nomial given by F.c/. In contrast with the quartic approximation, the derivatives of Flog become
unbounded at c D ˙1. The results presented in the paper can be trivially extended to this type of
logarithmic functional by using a truncated potential of Flog similarly to the truncated potential of
F given in (3.19).

The functional I.c/ 2 Œ0; 1
 represents the volume fraction of liquid crystal, and its derivative
will be denoted by i.c/ WD I 0.c/. This functional could take different definitions always satisfying
the following properties:

� I 2 C 2.R/,
� I.c/ D 0 if c 6 �1,
� I.c/ D 1 if c > 1,
� I.c/ 2 .0; 1/ if c 2 .�1; 1/.

For instance, we will consider the following interpolation function (Figure 2):

I.c/ WD

8̂̂<̂
:̂
1

16
.c C 1/3 .3c2 � 9c C 8/ if c 2 .�1; 1/ ,

1 if c > 1 ,

0 if c 6 �1 ;

(2.4)

and its derivative is defined as

i.c/ WD I 0.c/ D

8<:
15

16
.c C 1/2 .c � 1/2 if c 2 .�1; 1/ ,

0 otherwise .

It is known that for the three systems that we are combining in our formulation (namely, isotropic
Newtonian fluid, nematic liquid crystal, and phase-field model), their governing equations satisfy a
dissipative energy law. In fact, when each system is isolated, they have the ‘dissipative energy laws’:

� Navier–Stokes model

d

dt
Ekin.u/C 2

Z
�

�jDuj2dx D 0 ;

whereDu WD .ruCrut /=2 and � > 0 denotes the dynamic viscosity coefficient.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
DOI: 10.1002/nme
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Figure 2. Interpolator I.c/ in interval Œ0; 1
.

� Cahn–Hilliard model

d

dt
Emix.c/C

Z
�

�mix

ˇ̌̌̌
r
ıEmix

ıc

ˇ̌̌̌2
dx D 0 ;

where �mix > 0 represents the mobility coefficient.
� Nematic liquid crystal model

d

dt
ŒEkin.u/C �nemEnem.d ; c/
C 2

Z
�

�jDuj2dx C

Z
�

�nem

ˇ̌̌̌
ıEtot

ıd

ˇ̌̌̌2
dx D 0 ;

where .ı � =ıd/ denotes the variational derivative with respect to d and �nem > 0 is the
relaxation time coefficient.

In general, .ıE=ı�/ denotes the identification with a function in � of the variational derivative
operator of a certain functional E with respect to the variable �, which is defined asZ

�

ıE

ı�
N� dx D

�
ıE

ı�
; N�

�
D lim

�!0

E.� C 
 N�/ �E.�/



;

for all regular with compact support functions N�.
Now, we are going to derive the coupled system. This can be carried out combining ideas from

the least action principle and the maximum dissipation principle [12, 13], arriving at the following
PDE system: 8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

ut C u � ruCrp � r � �tot D 0 ;
r � u D 0 ;

d t C .u � r/d C �nem

�
ıEtot

ıd

�
D 0 ;

ct C u � rc � r �

�
�mixr

ıEtot

ıc

�
D 0 :

(2.5)

The PDE system (2.5) is supplemented with the following initial and boundary conditions:

ujtD0 D u0; d jtD0 D d0; cjtD0 D c0 in �;
uj@� D .I.c/rd/nj@� D 0 in .0; T /;
@c

@n

ˇ̌̌̌
@�

D

�
r
ıEtot

ıc

�
� n

ˇ̌̌̌
@�

D 0 in .0; T /;
(2.6)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
DOI: 10.1002/nme
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 541

where n denotes the outwards normal vector to the boundary @�. The expressions for the
identification function for each variational derivative in (2.5) will be introduced as two
new variables,

w WD
ıEtot

ıd
D �nem

ıEnem

ıd
C �anch

ıEanch

ıd

D �nem .�r � .I.c/rd/C I.c/g.d//C �anch
ıEanch

ıd
;

(2.7)

and

� WD
ıEtot

ıc
D �mix

ıEmix

ıc
C �nem

ıEnem

ıc
C �anch

ıEanch

ıc

D �mix .��c C f .c//C �nemI
0.c/

�
1

2
jrd j2 CG.d/

�
C �anch

ıEanch

ıc
;

(2.8)

where the anchoring terms will depend on each of the following cases:

ıEanch

ıd
D

8<:
0 no anchoring ;
.d � rc/rc parallel anch. ;
jrcj2d � .d � rc/rc homeotropic anch. :

(2.9)

and

ıEanch

ıc
D

8<:
0 no anchoring ;
�r � Œ.d � rc/d 
 parallel anch. ;
�r � Œjd j2rc � .d � rc/d 
 homeotropic anch.

(2.10)

Finally, the stress tensor of the coupled system (2.5) reads

�tot D �vis C �mix C �nem C �anch ;

where

�vis D2 �Du in � � .0; T /;

�mix D� �mixrc ˝rc in � � .0; T /; (2.11)

�nem D ��nemI.c/.rd/
trd in � � .0; T /; (2.12)

and

.�anch/ij D �anch

8<: 0 no anchoring;
� .d � rc/ .rc ˝ d/ parallel anch.;
�jd j2 rc ˝rc C .d � rc/ .rc ˝ d/ homeotropic anch:

Hereafter,˝ denotes the tensorial product, for instance, .rc ˝ d/ij D @ic dj .

Remark 2.2
The viscosities of each component of the mixture could be different. In order to capture this possi-
bility, we consider the coefficient � depending on the phase function c; therefore, hereafter, we will
denote �.c/ instead of �, where �.c/ is a positive function.

The effect of the stress tensor �r ��tot can be rewritten in order to arrive at a simpler formulation
of the model, where these new terms are going to be easier to handle.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
DOI: 10.1002/nme
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Lemma 2.3 (Reformulation of the stress tensor)
It holds

� r � �mix � r � �nem � r � �anch D ��rc � .rd/
twCr' in � � .0; T / ; (2.13)

where

' D �nem I.c/

�
1

2
jrd j2 CG.d/

�
C �mix

�
1

2
jrcj2 C F.c/

�
C
�anch

2
W.d ; c/ ;

and

W.d ; c/ D

8<:
0 no anchoring;
jd � rcj2 parallel anch.;�
jd j2 jrcj2 � jd � rcj2

	
homeotropic anch:

(2.14)

Proof
See Appendix. �

By applying Lemma 2.3 and using the variables w and �, system (2.5) can be reformulated as8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

ut C u � ruCrep � r � .2�.c/Du/ � �rc � .rd/tw D 0 ;

r � u D 0 ;

d t C .u � r/d C �nemw D 0 ;

�nemŒ�r � .I.c/rd/C I.c/g.d/
C �anch
ıEanch

ıd
�w D 0 ;

ct C u � rc � r � .�mixr�/ D 0 ;

�mixŒ��c C f .c/
C �nemI
0.c/

�
1

2
jrd j2 CG.d/

�
C�anch

ıEanch

ıc
� � D 0 ;

(2.15)

where .ıEanch=ıd/ and .ıEanch=ıc/ were previously computed in (2.9) and (2.10), respectively,
and the following modified potential appears:

ep WD p C ' :
Taking into account the equalities²

��rc D �r.c �/C cr� ;
u � rc D r � .c u/ ;

(in the second relation, the incompressibility constraint r � u D 0 has been used), we can redefine
again the pressure term as

bp WD ep � c � :
For simplicity of notation, we write in the following p instead ofbp.

Now, we formally deduce the two main properties of this problem, namely, the conservation of
the total volume

R
� c.t;x/ dx and the dissipativity of the total energy Etot .

By integrating Equation (2.15/5 over �, we recover the conservation of volume (standard for
Cahn–Hilliard models):

d

dt

Z
�

c.t;x/ dx D 0 :

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 543

On the other hand, multiplying (2.15)1 by u, (2.15)2 by p, (2.15)3 by w, (2.15)4 by d t , (2.15)5 by
�, and (2.15)6 by ct , integrating over �, using the boundary conditions (2.6), accounting (2.7) and
(2.8), and using the chain rule�

ıEtot

ıd
;d t

�
C

�
ıEtot

ıc
; ct

�
D
d

dt
Œ�nemEnem.d ; c/C �mixEmix.c/C �anchEanch.d ; c/
 ;

the following (dissipative) energy law holds:

d

dt
Etot .u;d ; c/C 2

Z
�

�jDuj2dx C �nem

Z
�

jwj2dx C �mix

Z
�

jr�j2dx D 0 : (2.16)

In particular, this energy law implies the dissipative character of the free energy Etot .u;d ; c/
defined in (2.1) as the sum of the kinetic, mixing, elastic, and anchoring energies.

Remark 2.4
It is possible to consider other types of boundary conditions and still maintain an energy law
like (2.16). Indeed, the same type of energy law can be derived changing the non-slip boundary
conditions uj@� D 0 by the slip-friction boundary conditions,

u � nj@� D 0 ;


.�totn/tg � ˛.u � uext /tg

�ˇ̌
@�
D 0 in .0; T /;

where tg denotes the tangential part to the boundary @�, uext is the external velocity, and ˛ > 0 is
a friction coefficient. The key point is to take into account the following relations:

u � nj@� D 0 ) .' I/tg j@�D O ;

rc � nj@� D 0 ) �mixnj@� D 0 ;
.I.c/rd/nj@� D 0 ) �nemnj@� D 0 ;
rc � nj@� D 0 ) �anchnj@� D 0 ;

where I and O denote the identity and null matrix, respectively. In fact, it holds

�totn j@� D �visn jI

hence, the energy law can be directly deduced.

From energy law (2.16), we deduce the following regularity for a (possible) solution:8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

u 2 L1.0; T IL2.�// \ L2.0; T IH1.�//;

w 2 L2.0; T IL2.�//;

rc 2 L1.0; T IL2.�//; r� 2 L2.0; T IL2.�//;R
� F.c/dx 2 L

1.0; T /;R
� I.c/

�
1
2
jrd j2 CG.d/

	
dx 2 L1.0; T /

Eanch.c;d/ 2 L
1.0; T /:

(2.17)

In particular, from
R
� F.c/dx 2 L

1.0; T / and
R
� I.c/G.d/ dx 2 L

1.0; T /, and the inequalities

F.c/ > 1

8"2

�
c4 � 2

	
; G.d/ > 1

8�2

�
jd j4 � 2

	
;

we can deduce the estimates

c 2 L1.0; T IH 1.�//;

Z
�

I.c/ jd j4 2 L1.0; T /: (2.18)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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544 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

Remark 2.5
In order to obtain a regularity result for d in the whole domain �, we can multiply (2.15)3 by d in
and (2.15)4 by d , arriving at

1

2

d

dt

Z
�

jd j2 C �nem

Z
�

w � d D 0: (2.19)

On the other hand, testing (2.15)4 by d ,Z
�

w �d D �nem

Z
�

I.c/ jrd j2 dxC�nem

Z
�

I.c/ g.d/ �d dxC�anch

Z
�

ıEanch

ıd
�d : (2.20)

Notice that
Z
�

I.c/ jrd j2 dx > 0 and

Z
�

ıEanch

ıd
� d D

8̂̂<̂
:̂

0 no anchoring;R
� jd � rcj

2 parallel anchoring;R
�
jrcj2jd j2 � jd � rcj2 homeotropic anchoring:

9>>=>>; D 2Eanch.c;d/ > 0:
In order to bound the second term of (2.20), taking into account that

g.d/ � d D

8̂̂̂<̂
ˆ̂:

2

�2
.jd j � 1/ jd j2 if jd j > 1;

2

�2
.jd j2 � 1/ jd j2 if jd j 6 1;

then one has
Z
�

I.c/ g.d/ � d > 0 if jd j > 1, and the term
2

�2

Z
�

I.c/ jd j2 can be bounded on the

right-hand side if jd j 6 1. In fact, because I.c/ 6 1,

�nem
2

�2

Z
�

I.c/ jd j2 6 �nem
2

�2

Z
�

jd j2 :

Then, (2.19) and (2.20) yield

1

2

d

dt

Z
�

jd j2 6 �nem
2

�2

Z
�

jd j2 I

hence, using the Gronwall’s lemma, we arrive at

d 2 L1.0; T IL2.�//: (2.21)

3. NUMERICAL SCHEMES

The purpose of this section is to design efficient numerical schemes for model (2.15). We are
interested in using finite element approximations in space and finite differences in time, while the
resulting scheme satisfies the conservation of

R
� c and a discrete version of continuous energy law

(2.16). To this end, we present a first order in time, one-step, linear unconditionally energy-stable
(see the concept of energy stability in Definition 3.1 in the succeeding text) numerical scheme that
combines ideas for approximating linearly the potentials f .c/, i.c/, and g.d/ with splitting ideas

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 545

to decouple the computation of the fluid part from the phase-field one and from the nematic part
maintaining the energy stability. Let V h � Ph � Dh � W h � Ch �Mh be conformed finite ele-
ment spaces inH 1

0.�/�L
2
0.�/�H

1.�/�L2.�/�H 1.�/�H 1.�/ corresponding to a regular
and quasi-uniform triangulation Th of the domain � with polyhedric boundary @�. For the sake
of simplicity, we skip the use of the subscript h to denote functions that are discrete in space. For
simplicity, we describe the time discretization using a uniform partition of the time interval Œ0; T 
:
tn D nk, where k D T=N denotes the (fixed) time step. In general, given .un; pn;dn;wn; cn; �n/,
an approximation of a regular enough solution (if it exists) at t D tn, we have to compute
.unC1; pnC1;dnC1;wnC1; cnC1; �nC1/ as an approximation at t D tnC1.

We recall here the concept of energy stability already introduced for other energy-based systems
[3, 18, 30, 31].

Definition 3.1
A numerical scheme is energy stable if it holds

ıtEtot .u
nC1;dnC1; cnC1/C 2

Z
�

�.cnC1/jDunC1j2dx C �nem

Z
�

jwnC1j2dx

C�mix

Z
�

jr�nC1j2dx 6 0 8n :
(3.1)

In particular, energy-stable schemes satisfy the energy decreasing in time property

Etot .u
nC1;dnC1; cnC1/ 6 Etot .un;dn; cn/ 8n :

Hereafter, we denote the discrete time derivative as

ıta
nC1 WD

anC1 � an

k
:

3.1. Description of the scheme

3.1.1. A coupled nonlinear first-order implicit scheme. The first idea that comes to mind
to approximate problem (2.15) is to develop an implicit scheme such that as follows: Let
.un; pn;dn;wn; cn; �n/ 2 V h � Ph �Dh �W h � Ch �Mh be known and
find .unC1; pnC1;dnC1;wnC1; cnC1; �nC1/ satisfying the following discrete variational problem,8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

�
unC1 � un

k
; Nu

�
C
�
.unC1 � r/unC1; Nu

	
� .pnC1;r � Nu/C 2.�DunC1;D Nu/

�
�
.rdnC1/twnC1; Nu

	
C .cnC1 r�nC1; Nu/ D 0 ;

.r � unC1; Np/ D 0 ; 
dnC1 � dn

k
; Nw

!
C
�
.unC1 � r/dnC1; Nw

	
C �nem.w

nC1; Nw/ D 0 ;

�nem.I.c
nC1/rdnC1;r Nd/C �nem.I.c

nC1/g.dnC1/; Nd/

C�anch

�
ıEanch

ıd
.cnC1;dnC1/; Nd

�
� .wnC1; Nd/ D 0 ;�

cnC1 � cn

k
; N�

�
� .cnC1 unC1;r N�/C �mix.r�

nC1;r N�/ D 0 ;

�mix.rc
nC1;r Nc/C �mix.f .c

nC1/; Nc/C �nem

 
i.cnC1/

"
jrdnC1j2

2
CG.dnC1/

#
; Nc

!
C�anch

�
ıEanch

ıc
.cnC1;dnC1/; Nc

�
� .�nC1; Nc/ D 0 ;

(3.2)

for each . Nu; Np; Nw; Nd ; N�; Nc/ 2 V h � Ph �W h �Dh �Mh � Ch. Hereafter, .�; �/ denotes the inner
product in L2.�/, and k � kL2 denotes the corresponding L2.�/-norm.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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546 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

The main disadvantages of this approach are that the computational cost of using scheme (3.2) is
very high because all the equations are coupled, it is not clear that any iterative method to approx-
imate the nonlinear scheme will converge because of the several nonlinearities in the system, and
it is not known if this scheme will satisfy a discrete version of energy law (2.16) to assure the
energy stability.

3.1.2. Splitting in time schemes. Our aim is to design efficient and accurate numerical schemes to
approximate (2.15). The main advantage of our work is to design linear schemes that decouple the
computation of the complete system into smaller sub-systems, maintaining the energy stability via
a discrete version of the energy law (2.16).

We have found two possibilities to decouple computations for nematic part .dnC1;wnC1/ from
the phase-field part .cnC1; �nC1/ and from the fluid part .unC1; pnC1/. In the following, we will
detail both numerical schemes, but we will show in detail the energy stability just for one of the
proposed schemes, because energy stability of the second scheme can be obtained just applying the
same ideas.

3.1.3. d-c-u scheme. Let .un; pn;dn;wn; cn; �n/ 2 V h �Ph �Dh �W h �Ch �Mh be known.

Step 1
Find .dnC1;wnC1/ 2 Dh �W h such that, for each . Nd ; Nw/ 2 Dh �W h;8̂̂̂<̂

ˆ̂:
 
dnC1 � dn

k
; Nw

!
C ..u? � r/dn; Nw/C �nem.w

nC1; Nw/ D 0 ;

�nem
�
I.cn/rdnC1;r Nd

	
C �nem

�
I.cn/gk.d

nC1;dn/; Nd
	

C�anch
�
�d .d

nC1; cn/; Nd
	
� .wnC1; Nd/ D 0 ;

(3.3)

where

u? WD un C 2 k .rdn/twnC1 ; (3.4)

gk.d
nC1;dn/ denotes a first-order approximation of g.d.tnC1//, and �d .d

nC1; cn/ represents a

first-order approximation of
ıEanch

ıd
.d.tnC1/; c.tnC1//:

�d .d ; c/ WD
ıEanch

ıd
.d ; c/ D ı1jrcj

2 d C ı2 .d � rc/rc ; (3.5)

where .ı1; ı2/ will take different forms depending on the anchoring effect, that is,

.ı1; ı2/ D

8<: .0; 0/ no anchoring;
.0; 1/ parallel anch.;
.1;�1/ homeotropic anch:

(3.6)

Step 2
Find .cnC1; �nC1/ 2 Ch �Mh such that, for each . Nc; N�/ 2 Ch �Mh,8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

�
cnC1 � cn

k
; N�

�
� .cnu??;r N�/C �mix.r�

nC1;r N�/ D 0 ;

�mix.rc
nC1;r Nc/C �mix.fk.c

nC1; cn/; Nc/

C�nem

�
ik.c

nC1; cn/

�
1

2
jrdnC1j2 CG.dnC1/



; Nc

�
C�anch

�
�c.d

nC1; cnC1/;r Nc
	
� .�nC1; Nc/ D 0 ;

(3.7)

where

u?? WD un � 2 k cnr�nC1 ; (3.8)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 547

fk.c
nC1; cn/ denotes a first-order approximation of f .c.tnC1//, and �r � .�c.d ; c// D

ıEanch

ıc
.d ; c/, that is,

�c.d ; c/ D ı1 jd j
2 rc C ı2 .d � rc/d ; (3.9)

where the values of .ı1; ı2/ are defined in (3.6), which depend on the type of anchoring.

Step 3
Find .unC1; pnC1/ 2 V h � Ph such that, for each . Nu; Np/ 2 V h � Ph,8̂̂<̂

:̂
�
unC1 �bu

k
; Nu

�
C c.un;unC1; Nu/ � .pnC1;r � Nu/

C2 .�.cnC1/DunC1;D Nu/ D 0 ;

.r � unC1; Np/ D 0 ;

(3.10)

where

bu WD u? C u??

2
: (3.11)

It is easy to deduce, taking N� D 1 in step 2, the conservation property of the scheme:Z
�

cnC1 dx D

Z
�

cn dx: (3.12)

On the other hand, the following result gives a local in time discrete energy law, which will be the
first step to prove the energy stability of the scheme.

Theorem 3.2
Schemes (3.3)–(3.11) satisfy the following local in time discrete energy law:

ıtE.d
nC1; cnC1;unC1/C �nem kw

nC1k2
L2
C �mixkr�

nC1k2
L2
C 2 k�.cnC1/1=2DunC1k2

L2

CNDnC1
u CNDnC1

elast
.cn/CNDnC1

penal
.cn/CNDnC1

philic

CNDnC1
phobic

CNDnC1
interp.d

nC1/CNDnC1
anch

D 0;
(3.13)

where the numerical dissipation terms are8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂:

NDnC1
u D 1

2k

�
kunC1 �buk2

L2
C
kbu�u?k2

L2
Ckbu�u??k2

L2

2

C
ku?�unk2

L2
Cku??�unk2

L2

2

�
;

NDnC1
elast

.c/ D �nem
k

2

Z
�

I.c/
ˇ̌
ıtrd

nC1
ˇ̌2
dx;

NDnC1
penal

.c/ D �nem
R
� I.c/

�
gk.d

nC1;dn/ � ıtd
nC1 � ıtG.d

nC1/
	
dx;

NDnC1
philic

D �mix
k

2

R
�

ˇ̌
ıtrc

nC1
ˇ̌2
dx;

NDnC1
phobic

D �mix
R
�

�
fk.c

nC1; cn/ ıtc
nC1 � ıtF.c

nC1/
	
dx;

NDnC1
interp.d/ D �nem

R
�

�
jrd j2

2
CG.d/

�
�
�
ik.c

nC1; cn/ ıtc
nC1 � ıtI.c

nC1/
	
dx;

(3.14)

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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548 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

and

NDnC1
anch

D �anch
k

2

R
�



ı1
�
jıtd

nC1j2jrcnj2 C jdnC1j2jıtrc
nC1j2

	
C ı2

�
jıtd

nC1 � rcnj2 C jdnC1 � rıtc
nC1j2

	�
dx;

with the values of .ı1; ı2/ depending on the type of anchoring defined in (3.6).

Proof
See Appendix. �

Remark 3.3
In practice, for the numerical computations, there is no need to introduce the extra unknowns
u?;u??, andbu; they are only used as a tool to show the energy stability of the scheme.

3.1.4. c-d-u scheme. Let .un; pn;dn;wn; cn; �n/ 2 V h �Ph �Dh �W h �Ch �Mh be known.

Step 1: Find .cnC1; �nC1/ 2 Ch �Mh such that, for each . Nc; N�/ 2 Ch �Mh,

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�
cnC1 � cn

k
; N�

�
� .cnu??;r N�/C �mix.r�

nC1;r N�/ D 0 ;

�mix.rc
nC1;r Nc/C �mix.fk.c

nC1; cn/; Nc/

C�nem

�
ik.c

nC1; cn/

�
1

2
jrdnj2 CG.dn/



; Nc

�
C�anch

�
�c.d

n; cnC1/;r Nc
	
� .�nC1; Nc/ D 0 ;

(3.15)

where u?? and �c.d ; c/ are defined in (3.8) and (3.9), respectively.
Step 2: Find .dnC1;wnC1/ 2 Dh �W h such that, for each . Nd ; Nw/ 2 Dh �W h;

8̂̂̂<̂
ˆ̂:

 
dnC1 � dn

k
; Nw

!
C ..u? � r/dn; Nw/C �nem.w

nC1; Nw/ D 0 ;

�nem
�
I.cnC1/rdnC1;r Nd

	
C �nem

�
I.cnC1/gk.d

nC1;dn/; Nd
	

C�anch
�
�d .d

nC1; cnC1/; Nd
	
� .wnC1; Nd/ D 0 ;

(3.16)

where u? and �d .d ; c/ are defined in (3.4) and (3.5), respectively.
Step 3: Find .unC1; pnC1/ 2 V h � Ph such that, for each . Nu; Np/ 2 V h � Ph,

8̂̂<̂
:̂
�
unC1 �bu

k
; Nu

�
C c.un;unC1; Nu/ � .pnC1;r � Nu/

C2 .�.cnC1/DunC1;D Nu/ D 0;

.r � unC1; Np/ D 0;

(3.17)

wherebu WD u? C u??

2
:

Again, this scheme has the conservative property (3.12) and the local discrete energy law given
by the following result.

Theorem 3.4
Schemes (3.15)–(3.17) satisfy the following local discrete energy law:

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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ıtE.d
nC1; cnC1;unC1/C �nem kw

nC1k2
L2
C �mixkr�

nC1k2
L2
C 2 k�.cnC1/1=2DunC1k2

L2

CNDnC1
u CNDnC1

elast
.cnC1/CNDnC1

penal
.cnC1/CNDnC1

philic

CNDnC1
phobic

CNDnC1
interp.d

n/CND
nC1

anch D 0;
(3.18)

where NDnC1
u ; NDnC1

elast
.cnC1/; NDnC1

penal
.cnC1/; NDnC1

philic
; NDnC1

phobic
, and NDnC1

interp.d
n/ are

given in (3.14) and ND
nC1

anch is defined as

ND
nC1

anch D �anch
k

2

Z
�

ı1

�
jdnj2jıtrc

nC1j2 C jıtd
nC1j2jrcnC1j2

	
Cı2

�
jdn � rıtc

nC1j2 C jıtd
nC1 � rcnC1j2

	�
dx:

Again, the values of .ı1; ı2/ depending on the type of anchoring were defined in (3.6).

Proof
The same arguments presented in the proof of Theorem 3.2 were followed. �

3.2. How to define fk.cnC1; cn/, gk.d
nC1;dn/, ik.cnC1; cn/ to obtain linear unconditionally

energy-stable schemes

There are many ways of handling the double-well potential term appearing in phase-field and
nematic liquid crystal frameworks. Indeed, in the last years, a vast amount of literature has been
devoted to derive new approximations, where each of these approximations has their own advantages
and disadvantages. For a recent review on this topic, we refer the reader to [3].

We are interested in designing linear schemes; therefore, we need to consider a linear dependence
of fk.cnC1; cn/, gk.d

nC1;dn/, and ik.cnC1; cn/ with respect to the unknowns cnC1 and dnC1,
such that the resulting scheme be energy stable. In this work, the key idea to define fk.cnC1; cn/ and
gk.d

nC1;dn/ is to replace the original double-well potentials F.c/ and G.d/ by potentials QF .c/
and QG.d/, which coincide with F.c/ and G.d/ in the interval Œ�1; 1
 but are truncated otherwise
by means of a quadratic growth, allowing us to control the numerical dissipation as was performed
in [19]. Furthermore, the resulting way of designing the potential approximations can be naturally
extended to ik.cnC1; cn/ because I.c/ can be viewed as a truncated potential (see (2.4)). Without
loss of generality, all the arguments considered to derive system (2.15) can be naturally extended by
using potentials QF .c/ and QG.d/ instead of F.c/ and G.d/.

3.2.1. Potential fk.cnC1; cn/. We change the potential F.c/ in (2.2) by a truncated version QF .c/ 2
C 2.R/ with quadratic growth for jcj > 1, as follows:

QF .c/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1

"2
.c C 1/2 if c 6 �1 ,

1

4"2
.c2 � 1/2 if c 2 Œ�1; 1
 ,

1

"2
.c � 1/2 if c > 1 .

(3.19)

Therefore, by differentiating,

Qf .c/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2

"2
.c C 1/ if c 6 �1 ,

1

"2
.c2 � 1/ c if c 2 Œ�1; 1
 ,

2

"2
.c � 1/ if c > 1 ,
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and

Qf 0.c/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2

"2
if c 6 �1 ,

1

"2
.3c2 � 1/ if c 2 Œ�1; 1
 ,

2

"2
if c > 1 .

(3.20)

Then, the proposed approximation of the potential term fk.c
nC1; cn/ reads

fk.c
nC1; cn/ WD Qf .cn/C

1

2

��� Qf 0���
1
.cnC1 � cn/ : (3.21)

Notice that fk.cnC1; cn/ is a first-order approximation of f .c.tnC1//. In particular, taking into

account the expression of Qf 0 in (3.20), it is clear that k Qf 0k1 D
2

"2
and then (3.21) is written as

fk.c
nC1; cn/ D Qf .cn/C

1

"2
.cnC1 � cn/ : (3.22)

Lemma 3.5
Let QF 2 C 2.R/ defined in (3.19) and fk.cnC1; cn/ in (3.21). Then, the term NDnC1

phobic
given in

(3.14) satisfies

NDnC1
phobic

> 0 8n :

Proof
See Appendix. �

Remark 3.6
The choice in (3.22) does not coincide with the frequently considered concave–convex decomposi-
tion (e.g., [32, 33]),

fk.c
nC1; cn/ D Qfc.c

nC1/C Qfe.c
n/ ; (3.23)

based on the decomposition QF .c/ D QFc.c/C QFe.c/ with

QFc.c/ WD
1

"2
.c2 C 1/; QFe.c/ WD QF .c/ � QFc.c/ D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

2

"2
c if c 6 �1 ,

1

"2

�
1

4
c4 �

3

2
c2 �

3

4

�
if c 2 Œ�1; 1
 ,

�
2

"2
c if c > 1 ,

and defining Qfc.c/ D QF 0c.c/ and Qfe.c/ D QF 0e.c/. In fact,

Qfc.c/ D
2

"2
c ; Qfe.c/ D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

2

"2
if c 6 �1 ,

1

"2
.c3 � 3c/ if c 2 Œ�1; 1
 ,

�
2

"2
if c > 1 .
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Observe that decomposition (3.23) can also be written as

fk.c
nC1; cn/ D Qf .cn/C

2

"2
.cnC1 � cn/ :

Therefore, comparing with (3.22) in this case, a higher numerical dissipation term is introduced�
2
"2
.cnC1 � cn/ instead of 1

"2
.cnC1 � cn/

�
.

3.2.2. Potential ik.cnC1; cn/. We can just extend the ideas presented for the potential fk.cnC1; cn/
to define ik.cnC1; cn/, because the potential I.c/ defined in (2.4) is already a truncated potential
and, in particular, it satisfies

i 0.c/ D

8<:
15

4
.c2 � 1/ c if c 2 .�1; 1/,

0 in other case.
(3.24)

Then, the proposed first-order approximation ik.cnC1; cn/ of the potential term i.c.tnC1// reads

ik.c
nC1; cn/ WD i.cn/C

1

2
ki 0k1 .c

nC1 � cn/ : (3.25)

In particular, from (3.24), it is clear that ki 0k1 D .5
p
3/=6 and then

ik.c
nC1; cn/ D i.cn/C

5
p
3

12
.cnC1 � cn/ : (3.26)

Lemma 3.7
Let I 2 C 2.R/ defined in (2.4) and ik.cnC1; cn/ in (3.25). Then, the term NDnC1

interp.d/ given in
(3.14) satisfies

NDnC1
interp.d/ > 0 8n :

Proof
The same arguments presented in the proof of Lemma 3.5 were followed. �

3.2.3. Potential gk.d
nC1;dn/. We replace the definition of G.d/ given in (2.2) by a truncated

version QG.d/ 2 C2.R3/ with quadratic growth if jd j > 1, as follows:

QG.d/ D

8̂̂̂<̂
ˆ̂:
1

�2
.jd j � 1/2 if jd j > 1 ,

1

4�2
.jd j2 � 1/2 if jd j 6 1 .

(3.27)

Therefore, its first derivative is

Qg.d/ D

8̂̂̂<̂
ˆ̂:
2

�2
.jd j � 1/

d

jd j
if jd j > 1 ,

1

�2
.jd j2 � 1/d if jd j 6 1 ,

and the Hessian matrix is

Hd QGij .d/ D

8̂̂̂<̂
ˆ̂:
1

�2

�
2

jd j3
d i dj C 2

.jd j � 1/

jd j
ıij

�
if jd j > 1 ,

1

�2

�
2d i dj C

�
jd j2 � 1

	
ıij
	

if jd j 6 1 .
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552 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

Then, the proposed first-order approximation gk.d
nC1;dn/ of the potential term g.d.tnC1// reads

gk.d
nC1;dn/ D Qg.dn/C

1

2
k Qg0k1 .d

nC1 � dn/ : (3.28)

Lemma 3.8
Let QG 2 C 2.R3/ defined in (3.27) and gk.d

nC1;dn/ in (3.28). It holds

NDnC1
penal

.c/ > 0 8n :

Proof
See Appendix. �

Now, we are in position to state the following energy-stability result.

Theorem 3.9
Schemes (3.3)–(3.11) and (3.15)–(3.17) using the potential approximations (3.22), (3.26), and (3.28)
are linear and unconditionally energy stable (see Definition (3.1)).

Proof
The linearity of both schemes is trivial. We are going to assure the energy stability of the schemes,
because all the numerical dissipation terms will be positive or zero. By definition, it is clear that

NDnC1
u > 0 ; NDnC1

elast
.cn/ > 0 ; NDnC1

elast
.cnC1/ > 0 ; and NDnC1

philic
> 0 :

Moreover, by Lemmas 3.5, 3.7, and 3.8, it is clear that

NDnC1
penal

.cn/ > 0 ; NDnC1
penal

.cnC1/ > 0 ; NDnC1
phobic

> 0 ; and NDnC1
interp.d/ > 0 :

Finally, taking into account the relation jaj2jbj2 � ja � bj2 > 0 ; it is easy to show

NDnC1
anch
> 0 and ND

nC1

anch > 0 : �

Remark 3.10
Adding the local in time discrete energy law (3.1), it is possible to obtain the global estimates (2.17),
(2.18), and (2.21) following the same argument carried out at the end of Section 2. In particular,
in order to derive the estimate like (2.21) for .dn/ in the whole domain, we have to impose the
constraintDh � W h and to use the discrete Gronwall’s lemma.

3.3. Well-posedness of the schemes

We study the well-posedness of all the sub-steps of the c-d-u scheme (the corresponding proofs for
the d-c-u scheme can be derived just following the same arguments).

Lemma 3.11
If 1 2 Ch, then there exist a unique solution .cnC1; �nC1/ of (3.15) using the potential
approximations (3.22) and (3.26) for fk.cnC1; cn/ and ik.cnC1; cn/, respectively.

Proof
See Appendix. �

Lemma 3.12
If Dh � W h, then there exist a unique solution .dnC1;wnC1/ of (3.16) using the potential
approximation (3.28) for gk.d

nC1;dn/.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 553

Proof
See Appendix. �

Lemma 3.13
If the pair of finite element spaces .V h; Ph/ satisfies the discrete inf-sup condition

9ˇ > 0 such that kpkL2 6 ˇ sup
Nu2Vhn¹�º

.p;r � Nu/

kNukH1
8p 2 Ph ; (3.29)

then there exist a unique solution .unC1; pnC1/ of (3.17).

Proof
See Appendix. �

3.4. Some possibilities for discrete spaces

We now specify some examples of finite element subspaces to approximate our numerical scheme.

� In order to obtain O.h2/ accuracy for the unknowns .u; p;d ;w; c; �/ 2 H 1.�/ � L2.�/ �
H 1.�/ �L2.�/ �H 1.�/ �H 1.�/, the natural choice is

.u; p/ � P2 � P1 ; .c; �/ � P2 � P2 ; and .d ;w/ � P2 � P1 : (3.30)

The problem of this approach is that the constraintDh � W h does not hold.
� In order to obtain O.h/ accuracy for the unknowns .u; p;d ;w; c; �/ 2 H 1.�/ � L2.�/ �
H 1.�/ �L2.�/ �H 1.�/ �H 1.�/, the natural choice is

.u; p/ � P1 � P0 ; .c; �/ � P1 � P1 ; and .d ;w/ � P1 � P0 : (3.31)

The problems of this approach are that the constraint Dh � W h does not hold and the spaces
for the velocity–pressure pair does not satisfy the discrete inf-sup condition (3.29).
� We propose the following choice for the discrete spaces:

.u; p/ � P2 � P1 ; .c; �/ � P1 � P1 ; and .d ;w/ � P1 � P1 ; (3.32)

which have O.h/ accuracy and satisfy the assumptions of Lemmas 3.11, 3.12, and 3.13.

4. NUMERICAL SIMULATIONS

In this section, we present numerical experiments to show the effectiveness of the numerical schemes
and the approximation of the potentials derived in the paper. In particular, we have considered
the c-d-u scheme presented in Section 3.1.4, where the potential terms have been approximated
considering the ideas introduced in Section 3.2. All the simulations have been carried out in two
dimensions using FREEFEM++ software [34], and we consider the choice for the discrete spaces
presented in (3.32). The discrete and physical parameters are presented in Table I, where for
simplicity we are considering constant viscosity �.c/ D �0.

Moreover, the boundary conditions considered in all the simulations are

uj@� D .I.c/rd/nj@� D 0;
@c

@n

ˇ̌̌̌
@�

D
@�

@n

ˇ̌̌̌
@�

D 0 ; (4.1)

Table I. Parameters.

� Œ0; T 
 h dt �0 �nem �mix �anch �nem �mix " �

Œ�1; 1
2 Œ0; 10
 2=90 0.001 1.0 0.1 0.01 0.1 0.5 0.01 0.05 0.075

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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554 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

and the velocity is initially set to zero (u D 0) in all the cases. For all the simulations, we present
the evolution in time of the total energies jointly with the dynamic of the phase-field function c and
the director vector d . In the figures, we have omitted the velocity field u, because our experiments
have been designed such that the kinetic energy is not playing a main role in the behavior of the
system, in order to be able to identify the influence of the rest of the terms.

We are interested in how the competition between the different energies involved in the defini-
tion of the total energy (2.1) (i.e., the competition between the different processes) influences the
behavior of the system. To this end, we have compared the behavior of the three possible choices
of the anchoring energy (no anchoring, parallel, and homeotropic) in three different settings. In the
first experiment, we focus on the equilibrium configurations that can be obtained with homogeneous
director vector fields, while in the second and third cases, the initial condition has been designed
combining ideas from numerical experiments for phase-field models and for nematic liquid crystals.

4.1. Experiment 1. Circular droplet of nematic liquid crystal without defects in an isotropic fluid

We consider the spatial domain Œ�1; 1
 � Œ�1; 1
 and the time interval Œ0; 10
. In the first one, we
consider a circular droplet of nematic liquid crystal in an isotropic fluid filling the domain, where
initially the director vector d is parallel to the y-axis. In this case, we observe how the dynamic is
completely different depending on the type of anchoring. In Figure 3, we plot the results obtained for
no anchoring, parallel, and homeotropic anchoring, respectively. It is clear how the anchoring energy
influences the dynamic of the system, arriving at completely different equilibrium configurations,
while in all the cases, the total energy of the system is decreasing until it reaches an equilibrium
state (Figure 4).

4.2. Experiment 2. Circular droplet of nematic liquid crystal with defects in an isotropic fluid

In the second experiment, instead of a circular shape filled with a uniform director vector, we have
considered an elliptic nematic droplet with two defect points at .˙1=2; 0/, a Hedgehog defect at
.1=2; 0/ and an anti-Hedgehog defect at .�1=2; 0/. This initial configuration for d has been widely
used in the literature related to numerical approximation of nematic liquid crystals (we refer to
Reference [3] for a review and related references on this topic) and is generated by using the function

Figure 3. Experiment 1. Dynamic of phase-field function c and director vector field d at time t D
0:0; 1:0; 5:0; 10:0. First row, no anchoring; second row, parallel; and third row, homeotropic.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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0 2 4 6 8 10 12
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

TOTAL ENERGY −−  CASE 1
No Anchoring
Parallel
Homeotropic

Figure 4. Experiment 1. Total energy for the parallel, homeotropic, and no anchoring.

Figure 5. Experiment 2. No anchoring: (from left to right and up to down) dynamic of phase field c and
director vector d at time t D 0:0; 0:3; 0:5; 1:0; 1:5; 2:5; 5:0; 10:0.

Figure 6. Experiment 2. Parallel anchoring: (from left to right and up to down) dynamic of phase field c and
director vector d at time t D 0:0; 0:3; 0:5; 1:0; 1:5; 2:5; 5:0; 10:0.

d0.x/ D I.c/bd=qjbd j2 C 0:052; with bd D .x2 C y2 � 0:25; y/ : (4.2)

In this case, there are three main processes that are competing: In order to minimize the mixing
energy, the system should arrive to a circular configuration, while to minimize the elastic energy, the

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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556 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

system should annihilate the defects. Finally, to minimize the anchoring energy, the system should
arrive to the equilibrium states observed in the three cases considered in Figure 3.

The results obtained are presented in Figures 5, 6, and 7. Moreover, we plot the evolution of the
total energy of each case in Figure 8. It is interesting to see how the evolution of the three cases

Figure 7. Experiment 2. Homeotropic anchoring: (from left to right and up to down) dynamic of phase field
c and director vector d at time t D 0:0; 0:3; 0:5; 1:0; 1:5; 2:5; 5:0; 10:0.

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time

TOTAL ENERGY −−  CASE 2
No Anchoring
Parallel
Homeotropic

Figure 8. Experiment 2. Total energy for the parallel, homeotropic, and no anchoring.

Figure 9. Comparison of the equilibrium configurations using different meshes. First row, 60 � 60; sec-
ond row, 120 � 120. Phase field c and director vector d at time t D 10:0 for no anchoring, parallel, and

homeotropic (from left to right).

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 557

is completely different. When no anchoring energy is considered (Figure 5), the system annihilates
the defects in a symmetric way, arriving at an equilibrium state formed by a circular-shaped droplet
with a uniform director vector d parallel to the x-axis. If the anchoring energy is not zero, we
observe different dynamics. On one hand, the parallel anchoring (Figure 6) enforces a constraint to
the director vector on the interface that plays an important role on the way of how the defects are
annihilated, and we observe how the system is evolving to an equilibrium state that is different to
the observed in the first experiment (Figure 3). On the other hand, the choice of the homeotropic
anchoring (Figure 7) also imposes a constraint on the possible behavior of the director vector on
the interface, and in this case, it is not feasible to annihilate both defects. As a result, instead of
the configuration obtained in the first experiment, the equilibrium state corresponds to a circular
nematic droplet with a defect in the center.
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Figure 10. (From left to right) Comparison of the total energy using different meshes for the no anchoring
case in the interval t 2 Œ0; 10
 and a zoom at t 2 Œ5; 10
.
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Figure 11. (From left to right) Comparison of the total energy using different meshes for the parallel case in
the interval t 2 Œ0; 10
 and a zoom at t 2 Œ5; 10
.
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Figure 12. (From left to right) Comparison of the total energy using different meshes for the homeotropic
case in the interval t 2 Œ0; 10
 and a zoom at t 2 Œ2; 10
.
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558 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

4.2.1. Stability and computational cost of the results. In order to study the stability of the computed
results, we have carried out the simulations using different meshes. In particular, we have compared
the results using the same parameters of Section 4.2 with a coarser (60 � 60) and a finer mesh
(120 � 120). The equilibrium configurations are shown in Figure 9, and the comparison of the total
energy in each case is presented in Figures 10, 11, and 12. In all the cases, we obtain the same
dynamics, and as expected, there is numerical convergence when the mesh is refined.

Moreover, we have compared the previous results with a linearized version of the coupled scheme
(3.2) using the coarser mesh (60 � 60). We obtain the same dynamics in both cases (Figures 13–
16), but the computational cost for the coupled scheme is much higher than for the splitting one.
In this case, using a 60 � 60 mesh in a computer with 2 � 2:26 GHz Quad-Core Intel Xeon with

Figure 13. Equilibrium configurations using a linearized coupled numerical scheme for a 60 � 60 mesh.
Phase field c and director vector d at time t D 10:0 for no anchoring, parallel, and homeotropic (from left

to right).
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Figure 14. Comparison of the total energy between coupled and splitting scheme for the no anchoring case.
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Figure 15. Comparison of the total energy between coupled and splitting scheme for the parallel case.
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Figure 16. Comparison of the total energy between coupled and splitting scheme for the homeotropic case.

Figure 17. Experiment 3. No anchoring: (from left to right and up to down) dynamic of phase field c and
director vector d at time t D 0:0; 0:02; 0:03; 0:05; 0:15; 0:25; 0:5; 1:0.

12 Gb 1066 MHz DDR3, each iteration takes around 36 s for the coupled scheme and around 8 s
for the splitting scheme (computing the three sub-steps); that is, in this case, the splitting scheme is
4.5 times faster than the coupled one. In the case of considering a 90 � 90 mesh, one iteration of
the coupled scheme takes 83 s, while the splitting one takes 19 s; that is, in this case, the splitting
scheme is 4.36 times faster than the coupled one.

4.3. Experiment 3. Spinodal decomposition

In the third experiment, we study the pattern formation produced by considering as initial condition
for the three types of anchoring the same random initial data for the phase-field variable c, taking
values between �10�2 and 10�2, in order to simulate a spinodal decomposition. In this case, we
consider the spatial domain Œ0; 1
 � Œ0; 1
 and the time interval Œ0; 1
. The initial director vector is
computed using the following function:

d D I.c/ .sin.x y/ sin.x y/; cos.x y/ cos.x y// :

It can be observed in Figure 17 how the case of not considering anchoring does not produce any
regular pattern in the dynamics of the system. On the contrary, it is clear from Figure 18 that the
parallel anchoring induces the system to create vertical stripes (parallel to the y-axis) in order to
create interfaces that are parallel to the initial orientation vector, as the director vector also aligns
vertically. As it can be observed in Figure 19, by considering homeotropic anchoring, we obtain
something equivalent but with horizontal stripes (parallel to the x-axis) in order to create interfaces
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560 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

that are orthogonal to the director vector. Finally, in Figure 20, we plot the evolution of the total
energy of each case, showing that in all cases, the total energy of the system is decreasing in time in
order to arrive at an equilibrium configuration.

Figure 18. Experiment 3. Parallel anchoring: (from left to right and up to down) dynamic of phase field c
and director vector d at time t D 0:0; 0:02; 0:03; 0:05; 0:15; 0:25; 0:5; 1:0.

Figure 19. Experiment 3. Homeotropic anchoring: (from left to right and up to down) dynamic of phase field
c and director vector d at time t D 0:0; 0:02; 0:03; 0:05; 0:15; 0:25; 0:5; 1:0.
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Figure 20. Experiment 3. Total energy for the parallel, homeotropic, and no anchoring.
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 561

5. CONCLUSIONS

In this paper, we have studied the complex fluid mixture between isotropic (Newtonian fluid) and
nematic flows, taking into account viscous, mixing, nematic, and anchoring effects. Firstly, we
have introduced a new differential problem to model nematic–isotropic mixtures, reformulating
the stress tensors in order to design an efficient numerical approximation. Then, we have derived
two new linear splitting schemes that allow us to decouple the computation of the three pairs of
unknowns .v; p/ (velocity–pressure), .c; �/ (phase field–chemical potential), and .d ;w/ (director
vector–equilibrium). Moreover, we have proven that these formulations are unconditionally energy
stable, because they satisfy a discrete energy law independently of the size of the space and time
meshes considered. The fact of being able to decouple the computations in different linear sub-steps
maintaining the discrete energy law is crucial to carry out relevant numerical experiments under a
feasible computational cost and assuring the accuracy of the computed results.

Several numerical computations using these new numerical schemes have been reported, show-
ing the good performance of the proposed method considering different initial conditions. In all the
cases, the energy stability is numerically achieved, and we illustrate how the anchoring effects char-
acterize the behavior of the system, arriving at equilibrium configurations that have been already
predicted by experimental groups [9, 10].

Finally, there are several interesting open questions that we plan to address in our future research:
comparison of the numerical schemes with realistic experimental settings, derivation of second-
order-in-time splitting schemes, study of the numerical order of convergence of the proposed
numerical scheme, and implementation of three-dimensional numerical simulations.

APPENDIX

Proof of Lemma 2.3
From the contribution of the mixture process to the stress �mix given in (2.11) together with the
definition of � given in (2.8), we deduce the following:

�r � �mix D �mix

�
rc �c C

1

2
rjrcj2

�
D ��mixŒ��c C F

0.c/
rc C �mixr

�
1

2
jrcj2 C F.c/

�
D ��rc C �nemI

0.c/

�
1

2
jrd j2 CG.d/

�
rc C �anch

ıEanch

ıc
rc

C �mixr

�
1

2
jrcj2 C F.c/

�
:

(A.1)

On the other hand, using the definition of w given in (2.7) in the contribution of the nematic part to
the stress �nem, we have

�r � �nem D �nem

�
.rd/tr � .I.c/rd/C I.c/

1

2
rjrd j2

�
D ��nem

�
.rd/t Œ�r � .I.c/rd/C I.c/G0.d/
 � I.c/r

�
1

2
jrd j2 CG.d/

�

D �.rd/twC �anch .rd/

t ıEanch

ıd
C �nemr

�
I.c/

�
1

2
jrd j2 CG.d/

�

� �nemI

0.c/

�
1

2
jrd j2 CG.d/

�
rc:

(A.2)
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562 F. GUILLÉN-GONZÁLEZ, M.A. RODRÍGUEZ-BELLIDO AND G. TIERRA

Moreover, for the anchoring contribution �anch, we detail the calculations in the homeotropic
anchoring case (the parallel case can be treated in an analogous way). Taking first derivatives of
�anch, we have

�@j .�anch/ij D ��anch @j


.d � rc/ dj @ic � jd j

2 @ic @j c
�

D ��anch
�
@j


.d � rc/dj � jd j

2 @j c
�
@ic C .d � rc/dj @

2
ij c � jd j

2 @j c @
2
ij c
	
:

Then, combining the previous expression with the following relations

@i
�
dj @j c

	
D @idj @j c C dj @

2
ij c ;

and

jd j2 @i .jrcj
2/ D @i

�
jd j2 jrcj2

	
� 2 jrcj2 d � @id ;

and taking into account relations (2.9), (2.10), and (2.14), we can arrive at

�r � �anch D ��anch


r �



.d � rc/d � jd j2 rc

�
rc

C .rd/t
�
jrcj2d � .d � rc/rc

	
C
1

2
r
�
jd � rcj2 � jd j2 jrcj2

	

D ��anch

�
.rd/t

ıEanch

ıd
C
ıEanch

ıc
rc

�
C
�anch

2
r.W.d ; c//:

(A.3)

Note that using the same arguments, in the parallel anchoring case, it is possible to deduce

�r � �anch D ��anch

�
.d � rc/ .rd/trc � r � ..d � rc/d/rc �

1

2
r
�
jd � rcj2

	

D ��anch

�
.rd/t

ıEanch

ıd
C
ıEanch

ıc
rc

�
C
�anch

2
r.W.d ; c//:

(A.4)

Finally, adding up expressions (A.1), (A.2), and (A.3) or (A.4) , we arrive at (2.13). �

Proof of Theorem 3.2
For the sake of simplicity, we will only show the case of homeotropic anchoring. Indeed, the parallel
anchoring case can be studied using the same arguments, while the no anchoring case is just a trivial
generalization.

Taking . Nw; Nd/ D .wnC1; ıtd
nC1/ in (3.3), we obtain

�nem kw
nC1k2

L2
CNDnC1

elast
.cn/CNDnC1

penal
.cn/

C �nem

Z
�

I.cn/ ıt

 
jrdnC1j2

2
CG.dnC1/

!
dx

C
�anch

2k
ı1

Z
�



jrcnj2jdnC1j2 � jrcnj2jdnj2 C jrcnj2jdnC1 � dnj2

�
dx

C
�anch

2k
ı2

Z
�



jdnC1 � rcnj2 � jdn � rcnj2 C j.dnC1 � dn/ � rcnj2

�
dx

D �
�
.u? � r/dn;wnC1

	
:

(A.5)
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L.U.E.S.S. SCHEMES FOR ISOTROPIC-NEMATIC FLOWS WITH ANCHORING EFFECTS 563

On the other hand, taking . N�; Nc/ D .�nC1; ıtcnC1/ in (3.7), we obtain

�mixkr�
nC1k2

L2
CNDnC1

philic
CNDnC1

phobic
CNDnC1

interp

C�mix ıtEmix.c
nC1/

C�nem

Z
�

 
jrdnC1j2

2
CG.dnC1/

!
ıtI.c

nC1/dx

C
�anch

2k
ı1

Z
�



jrcnC1j2jdnC1j2 � jrcnj2jdnC1j2 C jr.cnC1 � cn/j2jdnC1j2

�
dx

C
�anch

2k
ı2

Z
�



jdnC1 � rcnC1j2 � jdnC1 � rcnj2 C jdnC1 � r.cnC1 � cn/j2

�
dx

D .cn u??;r�nC1/:

(A.6)

Combining the discrete product derivative equality

ıt
�
anC1 bnC1

	
D ıta

nC1 bn C anC1 ıtb
nC1 ;

together with expressions (A.5) and (A.6), we arrive at

�nem kw
nC1k2

L2
C �mixkr�

nC1k2
L2

CNDnC1
philic

CNDnC1
phobic

CNDnC1
interp CND

nC1
elast

.cn/CNDnC1
penal

.cn/CNDnC1
anch

C�nem ıtEnem.d
nC1; cnC1/C �mix ıtEmix.c

nC1/C �anch ıtEanch.d
nC1; cnC1/

D �..u? � r/dn;wnC1/C .cn u??;r�nC1/:

(A.7)

Taking . Nu; Np/ D .unC1; pnC1/ in (3.10), we obtain

1

k

�
1

2
kunC1k2

L2
�
1

2
kbuk2

L2

�
C

1

2k
kunC1 �buk2

L2
C 2 k�.cn/1=2DunC1k2

L2
D 0 : (A.8)

We can rewrite (3.11) as

bu � u?
2
C
bu � u??

2
D 0 :

Then, multiplying previous expression by 1
k
bu and integrating over �,

1

2k

 
kbuk2

L2
�
ku?k2

L2
C ku??k2

L2

2
C
kbu � u?k2

L2
C kbu � u??k2

L2

2

!
D 0 : (A.9)

We deduce multiplying (3.4) by
1

k
u? and (3.8) by

1

k
u??, respectively:

1

4k

�
ku?k2

L2
� kunk2

L2

	
C

1

4k
ku? � unk2

L2
� ..rdn/twnC1;u?/ D 0 ;

1

4k

�
ku??k2

L2
� kunk2

L2

	
C

1

4k
ku?? � unk2

L2
C .cnr�nC1;u??/ D 0 :
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Then, adding both relations, we obtain

�
1

2k
kunk2 C

1

2k

 
ku?k2

L2
C ku??k2

L2

2

!
C

1

4k

�
ku? � unk2

L2
C ku?? � unk2

L2

	
�
�
.rdn/twnC1;u?

	
C .cn r�nC1;u??/ D 0:

(A.10)

Hence, by adding expressions (A.8), (A.9), and (A.10),

1

2k

�
kunC1k2

L2
� kunk2

L2

	
C 2 k�.cn/1=2DunC1k2

L2

CNDnC1
u � ..rdn/twnC1;u?/C .cnr�nC1;u??/ D 0:

(A.11)

Finally, adding expressions (A.7) and (A.11), we arrive at (3.13). �

Proof of Lemma 3.5
Using the Taylor expansion for C2.R/-functions, we obtain

QF .cnC1/ D QF .cn/C QF 0.cn/ .cnC1 � cn/C
1

2
QF 00.�/ .cnC1 � cn/2 ;

D QF .cn/C Qf .cn/ .cnC1 � cn/C
1

2
Qf 0.�/ .cnC1 � cn/2 ;

for � 2 .cn; cnC1/ or � 2 .cnC1; cn/. In particular, it holds

ıt QF .c
nC1/ D

1

k
Qf .cn/ .cnC1 � cn/C

1

2k
Qf 0.�/ .cnC1 � cn/2 :

On the other hand, by the definition of fk.cnC1; cn/ in (3.21), we have

fk.c
nC1; cn/ ıtc

nC1 D
1

k
Qf .cn/ .cnC1 � cn/C

1

2k
k Qf 0k1 .c

nC1 � cn/2 :

Combining two previous expressions,

NDnC1
phobic

D �mix

Z
�

�
fk.c

nC1; cn/ıtc
nC1 � ıt QF .c

nC1/
	
dx

D �mix
k

2

Z
�

�
k Qf 0k1 � Qf

0.�/
�
jıtc

nC1j2dx > 0 : �

Proof of Lemma 3.8
We use Lemma 4.1 from [19], where it is proven that

1

2
.dnC1 � dn/t Hd QG.d

nC� / .dnC1 � dn/ 6
H QG
2
jdnC1 � dnj2; (A.12)

for H QG > 0 a bound of the L1-norm of the Hessian matrix Hd QG associated to QG.d/ (for instance,
it is also proven in [19] that H QG WD .M 32 C .M 2 �M/22/1=2, being M the space dimension).

On one hand,

QG.dnC1/ D QG.dn/C Qg.dn/ � .dnC1 � dn/C
1

2
.dnC1 � dn/t Hd QG.d

nC� / .dnC1 � dn/ ;

where dnC� D 	 dn C .1 � 	/dnC1, with some 	 2 .0; 1/.
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On the other hand,

gk.d
nC1;dn/ � ıtd

nC1 D
1

k
Qg.dn/ � .dnC1 � dn/C

1

2k
H QG jd

nC1 � dnj2 :

Therefore,

NDnC1
penal

.c/ D �nem

Z
�

I.c/
�
gk.d

nC1;dn/ � ıtd
nC1 � ıt QG.d

nC1/
	
dx

D
�nem

2k

Z
�

I.c/
�
.dnC1 � dn/t

�
H QG I �Hd QG .d

nC� /
�
.dnC1 � dn/

�
dx

is a positive term, thanks to (A.12). �

Proof of Lemma 3.11
Because (3.15) is an algebraic square linear system, it suffices to prove uniqueness. Indeed, let
.cnC11 ; �nC11 / and .cnC12 ; �nC12 / be two possible solutions, and denoting c D cnC11 � cnC12 and
� D �nC11 � �nC12 , we arrive at

8̂̂̂̂
<̂̂
ˆ̂̂̂:

.c; N�/C 2 k2.jcnj2r�;r N�/C �mix k.r�;r N�/ D 0 ;

�mix.rc;r Nc/C
�mix

"2
.c; Nc/

C�nem
5
p
3

12

��
1

2
jrdnj2 CG.dn/

�
c; Nc

�
C�anch.�c.d

n; c/;r Nc/ � .�; Nc/ D 0 ;

(A.13)

where
�
1
2
jrdnj2 CG.dn/

	
> 0 and �c.d

n; c/ was defined in (3.9). Then, taking . N�; Nc/ D .�; c/,
we obtain

2 k2
Z
�

jcnj2jr�j2dx C �mix kkr�k
2
L2
C �mixkrck

2
L2
C
�mix

"2
kck2

L2

C �nem
5
p
3

12

Z
�

�
1

2
jrdnj2 CG.dn/

�
jcj2dx C �anch˚.d

n; c/ D 0 ;

with

˚.d ; c/ D

Z
�

�
ı1 jd j

2 jrcj2 C ı2 jd � rcj
2
	
dx > 0 : (A.14)

Because
1

2
jrdnj2 C G.dn/ > 0, then r� D rc D 0 and c D 0 in �. In particular, � D C D

const . By returning to (A.13)2, we have

.�; Nc/ D C .1; Nc/ D 0 8 Nc 2 Ch:

Therefore, if 1 2 Ch, then C D 0. �

Proof of Lemma 3.12
Because (3.16) is an algebraic square linear system, it suffices to prove uniqueness. Indeed, let�
dnC11 ;wnC11

	
and

�
dnC12 ;wnC12

	
be two possible solutions, and denoting d D dnC11 � dnC12 and

w D wnC11 �wnC12 , we arrive at

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 108:535–567
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8̂<̂
:

.d ; Nw/C 2 k2..rdn/tw; .rdn/t Nw/C �nem k.w; Nw/ D 0 ;

�nem.I.c
nC1/rd ;r Nd/C

�nem

2
keg0k1.I.cnC1/d ; Nd/

C�anch.�d .d ; c
nC1/; Nd/ � .w; Nd/ D 0;

(A.15)

where we remind that I.cnC1/ > 0 and �d .d ; cnC1/ was defined in (3.5). Then, taking . Nw; Nd/ D
.w;d/, we obtain

2 k2krdnwk2 C �nem kkwk
2
L2
C �nem

Z
�

I.cnC1/jrd j2dx

C
�nem

2
keg0k1 Z

�

I.cnC1/jd j2dx C �anch˚.d ; c
nC1/ D 0

for ˚ defined in (A.14). From the previous relation, we obtain w D 0 in �. Then using this
information in (A.15)1, we deduce

.d ; Nw/ D 0 8 Nw 2 W hI

hence, d D 0 in � if we assumeDh � W h. �

Proof of Lemma 3.13
Because (3.17) is an algebraic square linear system, it suffices to prove uniqueness. Indeed, let�
unC11 ; pnC11

	
and

�
unC12 ; pnC12

	
be two possible solutions, and denoting u D unC11 � unC12 and

p D pnC11 � pnC12 , we arrive at´
1

k
.u; Nu/C c.un;u; Nu/ � .p;r � Nu/C 2 .�.cnC1/Du;D Nu/ D 0 ;

.r � u; Np/ D 0 :
(A.16)

Testing by . Nu; Np/ D .u; p/, we obtain

1

k
kuk2

L2
C 2

Z
�

�.cnC1/jDuj2 D 0 ) u D 0 :

Using this information we obtain from (A.16)1,

.p;r � Nu/ D 0 8 Nu 2 V h:

Therefore, assuming that the pair of finite element spaces .V h; Ph/ satisfies the discrete inf-sup
condition (3.29), we can infer p D 0 in �. �
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