
Physica D 415 (2021) 132768

o
t
T
i
B

c
f
F
t
i
a
i
o
t
n

t
l
l
i

(

h
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

Fluid vesicles with internal nematic order
Francisco Guillén-González a,1, María Ángeles Rodríguez-Bellido a,1, Giordano Tierra b,∗,1

a Departamento de Ecuaciones Diferenciales y Análisis Numérico and IMUS, Universidad de Sevilla, Facultad de Matemáticas, Campus de Reina
Mercedes, C/ Tarfia, s/n- 41012 Seville, Spain
b Department of Mathematics, University of North Texas, Denton, TX 76203, USA

a r t i c l e i n f o

Article history:
Received 18 March 2020
Received in revised form 31 August 2020
Accepted 10 October 2020
Available online 22 October 2020
Communicated by C. Josserand

Keywords:
Diffuse interface/phase field
Liquid crystals
Two phase flow
Vesicle membrane

a b s t r a c t

Models of flows containing vesicles membranes with liquid crystalline phases have been widely studied
in recent times due to its connection with biological applications.

In this work we propose a new model to represent the interaction between flows and vesicle
membranes with internal nematic order and preferential orientation of their molecules in the
membrane. In fact, the dynamics of the system is determined by the dissipation of an energy that
regulates the competition between different effects, through the kinetic, bending, elastic and anchoring
energies.

Moreover we introduce a new numerical scheme to approximate the model, that is unconditionally
energy stable. Additionally, we present several numerical results in order to show the well behavior
of the proposed scheme and the dynamics of this type of vesicle membranes.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Vesicle membranes can be defined as closed structures made
f bilayers (usually two lipid monolayers with anchored proteins)
hat separates an aqueous compartment from a surrounding fluid.
he study of their structural changes, dynamics and deformation
s presenting a growing interest due to its applications to Biology,
iophysics and Bioengineering [1–4].
In addition, these materials are coupled with environmental

onditions, that might include interactions with different type of
lows, thermotropic effects and electric or magnetic fields [4,5].
or instance, the dynamical behavior of fluid vesicles in various
ypes of external hydrodynamic flow is determined by a complex
nterplay between membrane elasticity, hydrodynamic forces,
nd thermal fluctuations acting at microscopic length scales and
t is fundamental for understanding the dynamics of these soft
bjects. We refer the reader to [6] for a nice review on these
ype of dynamics and to the works [7–9] for experimental and
umerical studies of the motion of vesicles through constrictions.
In particular, there is a growing interest on understanding

he coupling of vesicle membranes with anisotropic flows of the
iquid crystal type in which they are immersed or filled. In fact,
iquid crystals-type of flow play an important role in the dynam-
cs of biological components [10–12]. For instance, in [13] it is
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shown that extracellular matrices of fibrous tissues in plants and
animals are very similar to cholesteric liquid crystals, although it
is important to keep in mind that the living cells present in those
systems introduce additional difficulties to model such type of
systems in an effective way. Moreover, liquid crystalline phases
are found in many biological materials, such as actin, DNA, cellu-
lose, collagen...and they can be responsible for the deformation of
cell membranes [14]. There are also evidences [15] that actin and
tubulin networks (both liquid crystalline materials) are capable
of deforming the shape of cells until they reach an equilibrium
(anisotropic shape) and the magnitude of the deformation is
determined by a balance of elastic and surface forces. Moreover,
active nematic film of microtubules and molecular motors encap-
sulated within a shape-changing lipid vesicle exhibit a myriad of
dynamical states produced by a combination of activity, topo-
logical constraints and vesicle deformability [16]. Additionally,
vesicles formed from block copolymers with liquid-crystalline
side chains reveal a rich variety of vesicle morphologies, and
the authors of Xing et al. [17] have developed a model to study
the morphology of the membrane structure with internal ne-
matic and smectic order. Furthermore, it has been shown that
biological cell dynamics have intricate properties when they are
immersed in nematic liquid crystals [18–20].

The shape of the vesicle membranes can be modeled by using
the minimizers of different surface energies, such as the bending
elastic energy, which are associated to the equilibrium shapes
when vesicle membranes are not interacting with external fields.
This idea together with localizing the membrane using the diffuse
interface approach has been used to develop gradient flow mod-

els [21–29] that have been studied analytically and numerically

https://doi.org/10.1016/j.physd.2020.132768
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ith and without coupling with external fields (check [30–38]
nd the references therein). Moreover, these type of phase field
odels have shown to be very versatile in its application to cell
otility [39].
This work is an extension of the work analyzed in [40], where

model to represent vesicle membranes with nematic order and
aking into account anchoring effects was presented and studied.
n this new approach we also include the interaction of the
embrane with internal and external flows (they might be flows
ith different properties) to represent a more realistic setting,
hat leads to a richer phenomenology [6]. In fact, the ideas can be
iewed as an extension of the vesicle membrane model studied
n [37] (that comes from the interesting work presented in [26]).
e consider a vesicle membrane containing (or immersed in)
nematic liquid crystal flow, whose orientation, its interaction
ith the membrane (anchoring effects) and its interaction with
he surrounding flow will determine the dynamics and equilib-
ium configurations of the system. The coupling between the
xternal flow and the internal liquid crystal part will be treated
s a phase field system, and derived using similar arguments
o the ones presented in [41], where the authors presented and
tudied a model for complex fluids composed by the mixture
etween isotropic (Newtonian fluid) and nematic (liquid crystal)
lows taking into account anchoring effects of the liquid crystal
olecules on the interface between both fluids.
The paper is organized as follows: We present the model that

e are considering and the main ideas to derive such a model
n Section 2. Then, we develop a new numerical splitting scheme
ver this model on Section 3. In a first step, an approximation
nly in space is made, which conserves the unconditional energy
tability property of the continuous model. After that, a complete
iscrete approximation (in space and time) is developed resulting
n a numerical scheme that also preserves the unconditionally
nergy stability property. Numerical results are presented in
ection 4 to illustrate the type of dynamics that can be ob-
ained using the proposed numerical scheme. Finally, we state the
onclusions of our work in Section 5.

. The model

As previously mentioned, we consider a phase field system to
odel the interaction between the fluid settled in the internal
art of the vesicle membrane and the external one. We denote
y φ(x, t) the phase field variable which is used to localize the
nterior (φ = 1) and the exterior (φ = −1) of the mem-
rane. The dynamics of the membrane are derived through the
nergetic variational approach with respect to the total energy
Etot (u, φ, d)) of the system, that relates the kinetic, bending,
nematic and anchoring energies.

The bending energy is the energy stored in the vesicle mem-
rane shape, and usually is represented by using the Helfrich
ending energy:

(Γ ) = κ0

∫
Γ

1
2
(H(x) − k(x))2 dσ (x) + κ̄

∫
Γ

K (x)dσ (x) ,

being Γ ⊂ R3 a smooth, compact surface without boundary
representing the membrane of the vesicle (the domain occupied
by the whole vesicle will be denoted by Ω), dσ (x) the surface
ifferential, κ0 and κ̄ two bending rigidity coefficients and k(x) a
iven function representing the spontaneous curvature. Functions
(x) = k1(x) + k2(x) and K (x) = k1(x) · k2(x) are defined using
1(x) and k2(x) the principles curvatures at each point x.
In this work, we consider a bounded domain Ω ⊂ RM (M =

, 3), whose boundary will be represented by ∂Ω . We replace the
elfrich energy equation by the bending energy associated to a
hase field function used to localize the membrane. In particular,
 λ

2

we follow the approach presented in [26,42] where the bending
energy is consistent with the general framework of the energetic
variational approach (EVA), takes into account the spontaneous
curvature of the membrane and converges to the Helfrich one
when ε → 0 [43], where ε > 0 is a parameter related with the
interfacial width of the vesicle membrane. The bending energy
considered along this paper is defined as

Eben(φ) :=
ε

2

∫
Ω

(
∆φ −

1
ε2 G(φ)

)2

dx =
ε

2

∫
Ω

ω2dx , (2.1)

here

:= −∆φ +
1
ε2 G(φ) , G(φ) := F ′(φ) − εk(x)H ′(φ) (2.2)

with

F (φ) :=
1
4
(φ2

− 1)2 , H(φ) :=
1
3
φ3

− φ,

eing F (φ) the Ginzburg–Landau potential, k(x) a given func-
ion representing the spontaneous curvature and H(φ) a function
hat appears when the spontaneous curvature is considered. The
olume and surface area of the vesicle are defined as

V (φ) :=
1
2

∫
Ω

(φ + 1) dx and

B(φ) :=

∫
Ω

(
ε

2
|∇φ|

2
+

1
ε
F (φ)

)
dx ,

(2.3)

espectively. We want to develop a model such that the volume
nd surface area of the vesicles remain constant in time, that is,
e need to enforce somehow these constraints in our model. In
articular, instead of enforcing directly that the volume remains
onstant in time, we will enforce that A(φ) remains constant,
here

(φ) :=

∫
Ω

φ dx ,

because the two constraints are equivalent. We are going to
follow the approach considered in [37,40], where the volume
conservation is enforced exactly by taking a H−1-gradient flow
(by using a Cahn–Hilliard-type model which directly enforce the
volume conservation property) while the conservation of the
surface area will be approximated by introducing a penalization
term in the bending energy. In particular, the energy terms read:

Ebp(φ) := Eben(φ) +
1
2η

(
B(φ) − β

)2
, (2.4)

ith Eben(φ) defined in (2.1), η > 0 being the penalization
arameter, B(φ) the surface area of the vesicle given in (2.3) and
> 0 the desired surface area of the system.
Let u(x, t) be the fluid velocity field (internal or external to

he vesicle membrane) and d(x, t) the mean director vector of
he liquid crystal molecules. The total energy of the considered
ystem is:

tot (u, φ, d) = Ekin(u)+ λbpEbp(φ)+ λnemEnem(d, φ)+ λanch Eanch(d, φ) ,

(2.5)

where Ekin(u) =
1
2

∫
Ω

|u|
2 dx denotes the kinetic energy associ-

ated to the fluid velocity u, Ebp(φ) the penalized bending energy
iven in (2.4), Enem(d, φ) the elastic energy due to the nematic
iquid crystal (that also contains a penalization part related to the
nitary constraint of the director vector |d| = 1) and Eanch(d, φ)
he anchoring energy that represents the influence of the in-
erfacial effects on the orientation of the nematic liquid crystal
olecules on the surface of the membrane. Positive parameters
, λ and λ are introduced to balance the effect of each
bp nem anch
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nergy in the system. On the other hand, the nematic energy is
escribed as

nem(d, φ) :=

∫
Ω

I(φ)
(
1
2
|∇d|

2
+ P(d)

)
dx ,

where the function P(d) (whose derivative will be denoted as
(d) := P ′(d)) is defined as the following double-well potential
hose minimums (and consequently their equilibrium states) are

ocated at |d| = 1:

(d) :=
1

4η2
d
(|d|

2
− 1)2 ,

with ηd > 0 being a penalization parameter. The volume fraction
of the liquid crystal will be denoted by I(φ) (I(φ) ∈ [0, 1]) and we
will consider that it takes the same form previously introduced
in [40,41], with its derivative denoted by i(φ) := I ′(φ). This
function I(φ) is introduced in order to being able to define the
nematic energy globally in the whole domain Ω , but vanishing
in the newtonian part, being equal to one in the liquid crystal
part, and a regular intermediate function over the membrane
(matching the newtonian and the nematic part). Concretely, the
volume fraction I(φ) is defined as follows:

I(φ) :=

⎧⎪⎪⎨⎪⎪⎩
1
16

(φ + 1)3 (3φ2
− 9φ + 8) if φ ∈ (−1, 1) ,

1 if φ ≥ 1,
0 if φ ≤ −1 ,

hose derivative is given by

(φ) := I ′(φ) =

⎧⎨⎩
15
16

(φ + 1)2 (φ − 1)2 if φ ∈ (−1, 1) ,

0 in other case .

Finally, the anchoring energy has the form:

Eanch(d, φ) :=
1
2

∫
Ω

(
δ1|d|

2
|∇φ|

2
+ δ2 |d · ∇φ|

2) dx ,

ith (δ1, δ2) depending on the anchoring effect considered:

δ1, δ2) =

{ (0, 0) No anchoring ,

(0, 1) Parallel anch. ,
(1, −1) Homeotropic anch. .

(2.6)

bserve that the anchoring energy is defined in the whole domain
but it only acts on the membrane, because ∇φ ≈ 0 inside and

utside the membrane.
Now, we are going to derive the coupled system, considering

t as a thermodynamically consistent complex fluid composed by
wo different fluids separated by a elastic interface of a certain
idth (in this case the vesicle membrane). Our approach is based
n using the energetic variational framework (see [44,45] for de-
ails), which has proved itself useful to design thermodynamically
onsistent models in several applications such as liquid crystals,
ixtures of fluids, biofilms or blood clots, to name a few [46–49].
his can be done combining ideas from the Least Action Principle
LAP) and the Maximum Dissipation Principle (MDP), arriving at
he following PDE system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut + (u · ∇)u + ∇p − ∇ · σtot = 0 ,

∇ · u = 0 ,

dt + (u · ∇)d + γnem

(
δEtot
δd

)
= 0 ,

φt + (u · ∇)φ − ∇ ·

(
γben∇

δEtot
)

= 0 .

(2.7)
δφ n

3

The expressions for each variational derivative in (2.7) will be
introduced as two new variables:

z :=
δEtot
δd

= λnem
δEnem
δd

+ λanch
δEanch
δd

= λnem

(
−∇ · (I(φ)∇d) + I(φ) p(d)

)
+ λanch

δEanch
δd

,

nd

:=
δEtot
δφ

= λbp
δEbp
δφ

+ λnem
δEnem
δφ

+ λanch
δEanch
δφ

= λbp

(
−ε ∆ω +

1
ε
G′(φ)ω

+
1
η
(B(φ) − β)

(
−ε∆φ +

1
ε
F ′(φ)

))
+ λnemI ′(φ)

(
1
2
|∇d|

2
+ P(d)

)
+ λanch

δEanch
δφ

,

where the anchoring terms will depend on the case considered
((δ1, δ2) as in (2.6)):

δEanch
δd

= δ1|∇φ|
2d + δ2(d · ∇φ)∇φ , (2.8)

nd
δEanch
δφ

= ∇ ·
(
δ1|d|

2
∇φ + δ2(d · ∇φ) d

)
. (2.9)

inally, the stress tensor of the coupled system (2.7) reads:

tot = σvis + σbp + σnem + σanch,

here

σvis = 2 ν(φ)Du ,

σbp = σb + σp = λbp ε

[
− ∇φ ⊗ ∇ω + (∇2φ)ω

−
1
η

(
B(φ) − β

)
(∇φ ⊗ ∇φ)

]
,

σnem = −λnemI(φ)(∇d)t∇d ,

(recall that ω was introduced in (2.2)) and

(σanch)ij

= λanch

⎧⎨⎩
0 No anchoring ,

− (d · ∇φ) (∇φ ⊗ d) Parallel anch. ,
−|d|

2
∇φ ⊗ ∇φ + (d · ∇φ) (∇φ ⊗ d) Homeotropic anch. .

ereafter, ⊗ denotes the tensorial product, for instance (∇φ ⊗

)ij = ∂iφ dj.
Observe that (2.7) is a highly nonlinear system: there are

onvective terms ((u · ∇)u, (u · ∇)d and (u · ∇)φ), and most of
he terms involved on the variational derivatives of the energy
δEtot
δd

and
δEtot
δφ

) and of the tensor σtot are also nonlinear terms.

The highly nonlinear character of the system requires a suitable
(non-trivial) numerical approximation in order to catch the main
features of the continuous model.

Remark 2.1. Since the viscosities of each component of the mix-
ture could be different, in order to simplify, we have considered
the viscosity coefficient ν depending on the phase function φ,
where ν(φ) is a strictly positive function such that ν(−1) = νNw

the viscosity of the newtonian fluid) and ν(1) = νLc (the viscosity
of the nematic liquid crystal)

The effect of the stress tensor −∇ · σtot can be rewritten in
rder to arrive at a simpler formulation of the model, where these
ew terms are going to be easier to handle.
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emma 2.2 (Reformulation of the Stress Tensor). It holds:

∇ · σbp − ∇ · σnem − ∇ · σanch = −µ ∇φ − (∇d)tz + ∇ϕ,

where

ϕ = λnem I(φ)
(
1
2

|∇d|
2
+ P(d)

)
+ λbp

(
ε

2
ω2

+
1
η

(
B(φ) − β

) ( ε

2
|∇φ|

2
+

1
ε
F (φ)

))
+

λanch

2
W (d, φ) ,

nd

(d, φ) =

⎧⎨⎩
0 No anchoring ,

|d · ∇φ|
2 Parallel anch. ,(

|d|
2
|∇φ|

2
− |d · ∇φ|

2) Homeotropic anch. .

roof. We focus on the terms related with ∇ · σbp, due to the
act that the rest of the operations are equivalent to the ones
resented in [41].
Decomposing the purely bending part and the penalized one

s follows

bp = µb + µp = λbp

(
−ε ∆ω +

1
ε
G′(φ)ω

)

+ λbp
1
η
(B(φ) − β)

(
−ε∆φ +

1
ε
F ′(φ)

)
ϕbp = ϕb + ϕp = λbp

( ε

2
ω2
)

+ λbp
1
η

×
(
B(φ) − β

) ( ε

2
|∇φ|

2
+

1
ε
F (φ)

)
.

σbp = σb + σp = λbp ε

(
−∇φ ⊗ ∇ω + (∇2φ)ω

)
− λbp ε

1
η

(
B(φ) − β

)
(∇φ ⊗ ∇φ) ,

t suffices to prove that

· σb = µb ∇φ − ∇ϕb and ∇ · σp = µp ∇φ − ∇ϕp.

First we check the purely bending part and after the penalized
one. Indeed, on the one hand

(∇ · (∇φ ⊗∇ω))i = ∂iφ ∆ω + ∂ijφ ∂jω = ∂iφ ∆ω + ∂j(∂ijφ ω)−∆∂iφ ω,

hence

∇ ·σb = λbp ε∇ · (−∇φ ⊗∇ω + (∇2φ)ω) = λbp ε(−∇φ ∆ω +∆∇φ ω)

and on the other hand

µb ∇φ − ∇ϕb = λbp

(
−ε ∆ω +

1
ε
G′(φ)ω

)
∇φ − λbp ∇

( ε

2
ω2
)

= λbp

(
−ε ∆ω +

1
ε
G′(φ)ω

)
∇φ − λbpε ω

(
−∆∇φ +

1
ε2 G

′(φ)∇φ

)
= λbp ε(−∇φ ∆ω + ∆∇φ ω).

Consequently, one has the equality ∇ · σb = µb ∇φ − ∇ϕb.
In order to prove ∇·σp = µp ∇φ−∇ϕp we follow the following

computations

(µp ∇φ − ∇ϕp)i = λbp
1
η
(B(φ) − β)

(
−ε∆φ +

1
ε
F ′(φ)

)
∂iφ

− λbp
1 (

B(φ) − β
)
∂i

(
ε
|∇φ|

2
+

1
F (φ)

)

η 2 ε o

4

= λbp
1
η
(B(φ) − β)

[(
−ε∆φ +

1
ε
F ′(φ)

)
∂iφ

−

(
ε∇φ · ∇∂iφ +

1
ε
F ′(φ)∂iφ

)]
= λbpε

1
η
(B(φ) − β)

[
−∆φ ∂iφ − ∂j(∂iφ ∂jφ) + ∆φ ∂iφ

]
= λbpε

1
η
(B(φ) − β)(∇ · (∇φ ⊗ ∇φ))i.

hence the equality ∇ · σp = µp ∇φ − ∇ϕp holds. ■

By applying Lemma 2.2, using the variational derivative vari-
bles z and µ, and taking into account the following relations (to
ssure the conservation of volume of the numerical schemes):

µ∇φ = ∇(φµ) − φ∇µ ,

u · ∇φ = ∇ · (φ u) ,

ystem (2.7) can be reformulated as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + u · ∇u + ∇p̃ − ∇ · (2ν(φ)Du) + φ ∇µ − (∇d)tz = 0 ,

∇ · u = 0 ,

dt + (u · ∇)d + γnemz = 0 ,

λnem[−∇ · (I(φ)∇d) + I(φ) p(d)] + λanch
δEanch
δd

− z = 0 ,

φt + ∇ · (φ u) − ∇ · (γben∇µ) = 0 ,

λbp

(
−ε ∆ω +

1
ε
G′(φ)ω +

1
η
(B(φ) − β)

(
−ε∆φ +

1
ε
F ′(φ)

))
+λnemI ′(φ)

(
1
2
|∇d|

2
+ P(d)

)
+ λanch

δEanch
δφ

− µ = 0 ,

εω + ε∆φ −
1
ε
G(φ) = 0 ,

(2.10)

here (δEanch/δd) and (δEanch/δφ) were previously defined in
2.8) and (2.9) respectively, γnem, γben > 0 are time relaxation
arameters and the following modified potential appears:

:= p + ϕ − φ µ.

The first two equations in the nonlinear coupled system (2.10)
re devoted to the movement of the fluid, and apart of the effects
ncluded in the standard Navier–Stokes system, they also includes
he contribution of the nematic liquid crystal and the vesicle
embrane to the dynamics of the fluid through the terms (∇d)tz
nd φ ∇µ, respectively. The third and fourth equations represent
he dynamics of the nematic liquid crystal part (remember that
represents the orientation of the average orientation of the

ematic molecules) and it includes nonlinear transport effects
ue to the fluid velocity u and nonlinear interactions with the
hase field unknown through the volume fraction I(φ) and the
nchoring effects. Finally, the last three equations in (2.10) are de-
oted to the dynamics of the vesicle membrane and they include
onlinear transport effects due to the fluid velocity u, a global
onlinearity related with the penalization of the conservation of
urface constraint (the term (1/η)(B(φ)−β)(−ε∆φ+ (1/ε)F ′(φ)))
nd nonlinear contributions of the liquid crystal to the dynamics
f the vesicle.
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The PDE system (2.10) is supplemented with the following
initial and boundary conditions:

u|t=0= u0, d|t=0= d0, φ|t=0= φ0 in Ω,

u|∂Ω=
(
I(φ)∇d

)
· n
⏐⏐
∂Ω

= 0, ∇µ · n|∂Ω = 0 in (0, T ),
φ|∂Ω = −1 , ∇φ · n|∂Ω = 0 , in (0, T ),

(2.11)

where n denotes the outwards normal vector to the boundary
∂Ω , and T > 0 will be the final time observed for the solu-
tion of the system (2.10)–(2.11). Following the phenomenological
derivation of the model, the boundary conditions have been taken
in such a way that starting from (2.10)–(2.11) and considering
adequate test functions the energy law (2.12) can be obtained.

Lemma 2.3. Problem (2.10)–(2.11) satisfies the following dissipa-
tive energy law,

d
dt

Ẽtot (u(t), φ(t), d(t), ω(t)) +

√2ν(φ(t))∇u(t)
2
L2

+ γben ∥∇µ(t)∥2
L2 + γnem ∥z(t)∥2

L2 = 0 , (2.12)

where the following modified energy appears

Etot (u, φ, d, ω) = Ekin(u) + λbp̃Ebp(φ, ω) + λnemEnem(d, φ)
+ λanch Eanch(d, φ),

with

Ebp(φ, ω) =
ε

2

∫
Ω

ω2dx +
1
2η

(
B(φ) − β

)2
.

Proof. Testing (2.10)1 by u, (2.10)2 by p, (2.10)3 by z , (2.10)4 by
dt (2.10)5 by µ, (2.10)6 by φt and ((2.10)7)t by λbpω, and adding
these relations we easily derive the energy law (2.12). ■

3. Numerical scheme

The aim of this section is to design unconditionally energy-
stable schemes for approximating system (2.10), that is, we
focus on designing numerical schemes that satisfy a dissipative
energy law, similar to (2.12), without imposing restrictions over
the discrete parameters involved.

3.1. A generic FE space-discrete scheme

Let

Vh × Ph × Dh × Zh × Φh × Mh × Wh ⊂ H1
0 (Ω) × L20(Ω) × H1(Ω)

× L2(Ω) × H1(Ω) × H1(Ω) × H1(Ω)

be conformed finite element spaces associated to a regular and
quasi-uniform triangulation Th of the domain Ω whose poly-
hedric boundary is denoted by ∂Ω . Hereafter

(
·, ·
)
denotes the

L2(Ω)-scalar product. For the sake of simplicity we skip the use
of the subscript h to denote functions that are discrete in space.

Then the Finite Element approximation of problem (2.10)
reads: Find

(u(t), p(t), d(t), z(t), φ(t), µ(t), ω(t)) ∈ Vh × Ph
× Dh × Zh × Φh × Mh × Wh

such that

u
⏐⏐
t=0 = PUhu0 , d

⏐⏐
t=0 = PDhd0 , φ

⏐⏐
t=0 = PΦhφ0 , in Ω ,

(3.13)
5

(with PX denoting the L2-projection into the space X) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ut , ū

)
+ c(u, u, ū) + (∇p, ū)

+2
(
ν(φ)Du, D̄u

)
+ (φ ∇µ, ū) −

(
(∇d)tz, ū

)
= 0 ,

(∇ · u, p̄) = 0 ,(
dt , z̄

)
+
(
(u · ∇)d, z̄

)
+ γnem(z, z̄) = 0 ,

λnem
(
I(φ)∇d, ∇d̄

)
+ λnem

(
I(φ) p(d), d̄

)
+λanch

(
δEanch
δd

, d̄
)

− (z, d̄) = 0 ,(
φt , µ̄

)
− (φ u, ∇µ̄) + γben (∇µ, ∇µ̄) = 0 ,

λbp

(
ε (∇ω, ∇φ̄) +

1
ε

(
G′(φ)ω, φ̄

))
+

λbp

η
(B(φ) − β)

(
ε(∇φ, ∇φ̄) +

1
ε
(F ′(φ), φ̄)

)
+λnem

(
i(φ)

(1
2
|∇d|

2
+ P(d)

)
, φ̄

)
+λanch

(
δEanch
δφ

, φ̄

)
− (µ, φ̄) = 0 ,

ε(ω, ω̄) − ε(∇φ, ∇ω̄) −
1
ε

(
G(φ), ω̄

)
= 0 ,

(3.14)

for any

(ū, p̄, d̄, z̄, φ̄, µ̄, ω̄) ∈ Vh × Ph × Dh × Zh × Φh × Mh × Wh,

ith c
(
·, ·, ·

)
being the trilinear antisymmetric form defined

as

c(u, v,w) :=

(
(u ·∇)v,w

)
+

1
2

(
(∇ ·u)v,w

)
∀ u, v, w ∈ Uh .

(3.15)

We assume that the following inf–sup stability condition for the
discrete velocity–pressure spaces (Uh, Ph) holds :

sup
u∈Uh\{0}

(p, ∇ · u)
∥u∥H1

0

≥ β∥p∥L2 ∀ p ∈ Ph . (3.16)

here are many choices of (Uh, Ph) that satisfy condition (3.16),
or instance the pair (Uh, Ph) can be considered either as the
ini-element ((P1 − bubble) × P1) or the Taylor–Hood element
P2 × P1) [50]. Moreover, since there are no constraints for the
hoices of (Dh, Zh, Φh,Mh,Wh), we can define this set for instance
onsidering P1 × P1 × P1 × P1 × P1.

emma 3.1. Any solution (d(t), z(t), φ(t), µ(t), ω(t)) of the space-
iscrete scheme (3.14) satisfies the following space-discrete version
f the energy law (2.12):

d
dt

Ẽtot (u(t), φ(t), d(t), ω(t)) +

√2ν(φ(t))∇u(t)
2
L2

+ γben ∥∇µ(t)∥2
L2 + γnem ∥z(t)∥2

L2 = 0 . (3.17)

roof. Taking in (3.14) as test functions

ū, p̄, z̄, d̄, µ̄, φ̄) = (u(t), p(t), z(t), dt (t), µ(t), φt (t))
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dding with ((3.14)7)t by λbpω, and using the antisymmetric
roperty

(u(t), u(t), u(t)) = 0,

e arrive at (3.17). ■

.2. Fully discrete scheme

In this section we present a fully discrete numerical scheme
o approximate the nonlinear problem (2.10), discretizing in time
he nonlinear FE space-discrete problem presented in (3.14). For
implicity, we assume a uniform partition of the time interval
0, T ]: tn = n∆t , with ∆t = T/N denoting the time step,
t denoting the discrete time derivative and an+

1
2 denoting the

idpoint approximation:

tan+1
:=

an+1
− an

∆t
and an+

1
2 :=

an+1
+ an

2
.

e consider a first order in time approximation of the time
erivatives and for the remaining terms in the system we use
dequate implicit and semi-implicit approximations. Moreover,
n order to reduce the computational cost of the scheme we
ave split the computation of the system into three different sub-
teps. Apart from being more computationally efficient, another
dvantage of solving a splitting scheme instead of a fully coupled
ne is that this approach allows us to bypass dealing with some of
he nonlinearities that relates unknowns that now are computed
n different sub-steps. The proposed numerical scheme reads:

Initialization:
Let u0

= u|t=0, φ0
= φ|t=0, d0

= d|t=0 given in (3.13) and
ω0

∈ Wh such that

ε
(
ω0, ω̄

)
− ε

(
∇φ0, ∇ω̄

)
−

1
ε

(
G(φ0), ω̄

)
= 0 ∀ ω̄ ∈ Wh.

Step n + 1:
Given (φn, dn, wn) ∈ Φh × Dh × Wh.

ubstep 1: Find (dn+1, zn+1) ∈ Dh×Zh such that, for each (d̄, z̄) ∈

Dh × Zh⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
dn+1

− dn

∆t
, z̄
)

+

(
(u⋆

· ∇)dn, z̄
)

+γnem(zn+1, z̄) = 0 ,

λnem

(
I(φn)∇dn+1, ∇d̄

)
+λnem

(
I(φn)p∆t (dn+1, dn), d̄

)
+ λanch

×

(
Λd(dn+1, φn), d̄

)
− (zn+1, d̄) = 0 ,

(3.18)

where

u⋆
:= un

+ 2∆t (∇dn)tzn+1,

Λd(dn+1, φn) and p∆t (dn+1, dn) denote first order approx-

imations of
δEanch
δd

(d(tn+1), φ(tn+1)) and p(d(tn+1)), respec-
tively. In fact,

Λd(d, φ) :=
δEanch
δd

(d, φ) = δ1|∇φ|
2 d + δ2 (d · ∇φ)∇φ,

with (δ1, δ2) chosen as in (2.6).
ubstep 2: Find (φn+1, µn+1, ωn+1) ∈ Φh ×Mh ×Wh such that for

any (φ̄, µ̄, ω̄) ∈ Φ × M × W :
h h h

6

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φn+1

− φn

∆t
, µ̄

)
− (φnu⋆⋆, ∇µ̄)

+γben(∇µn+1, ∇µ̄) = 0 ,

λbpε(∇ωn+1, ∇φ̄) +
λbp

ε

(
G∆t
sec(φ

n+1, φn)ωn+1, φ̄
)

+
λbp

η

(
B(φn+1) + B(φn)

2
− β

)
(
ε(∇φn+ 1

2 , ∇φ̄) +
1
ε
(F∆t

sec (φ
n+1, φn), φ̄)

)
+λanch

(
Λφ(dn+1, φn+1), ∇φ̄

)
+λnem

(
i∆t (φn+1, φn)

[
1
2
|∇dn+1

|
2

+P(dn+1)
]

, φ̄

)
− (µn+1, φ̄) = 0 ,

ε
(
ωn+1, ω̄

)
− ε

(
∇φn+1, ∇ω̄

)
−

1
ε

(
G(φn+1), ω̄

)
= 0 ,

(3.19)

where

u⋆⋆
:= un

− 2∆t φn
∇µn+1,

i∆t (φn+1, φn) and −∇ ·Λφ(dn+1, φn+1) represent first order

approximations of i(φ(tn+1)) and
δEanch
δφ

(d(tn+1), φ(tn+1)),

respectively. In fact,

Λφ(d, φ) := δ1 |d|
2
∇φ + δ2 (d · ∇φ) d,

with the values of (δ1, δ2) defined in (2.6). Moreover,
F∆t
sec (φ

n+1, φn) and G∆t
sec(φ

n+1, φn) denote the nonlinear se-
cant type approximations (see [51–53] and the references
therein for different ways of handling these type of poten-
tials):

F∆t
sec (φ

n+1, φn) :=
F (φn+1) − F (φn)

φn+1 − φn

=
1
4
(φn+1

+ φn)((φn+1)2 + (φn)2 − 2)

(3.20)

and

G∆t
sec(φ

n+1, φn) :=
G(φn+1) − G(φn)

φn+1 − φn = (φn+1
− φn)2

+ 3
(
φn+1φn

− 1 − εk(x)(φn+1
+ φn)

)
. (3.21)

Substep 3 : Find (un+1, pn+1) ∈ Uh×Ph such that for any (ū, p̄) ∈

Uh × Ph:⎧⎪⎪⎨⎪⎪⎩
1

∆t

(
un+1

− û, ū
)
+ c(un, un+1, ū)

+(2ν(φn+1)Dun+1,Dū) − (pn+1, ∇ · ū) = 0 ,

(∇ · un+1, p) = 0 ,

(3.22)

where

û :=
u⋆

+ u⋆⋆

2
= un

+ ∆t
(
(∇dn)tzn+1

− φn
∇µn+1

)
,

(3.23)

and c
(
·, ·, ·

)
is the trilinear antisymmetric form defined in

(3.15).
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.3. Mass conservation

emma 3.2. Scheme (3.19) satisfies the conservation of mass, that is,

Ω

φn+1
=

∫
Ω

φn
= . . . =

∫
Ω

φ0.

roof. Testing (3.19)1 by µ̄ = 1. ■

.4. Energy stability

emma 3.3. Scheme (3.18)–(3.23) satisfies the following discrete
nergy law (which is a discrete version of the energy law (2.12)),

δt Ẽtot
(
un+1, φn+1, dn+1, ωn+1

)
+

√2ν(φn+1)Dun+1
2
L2

+γben∥∇µn+1
∥
2
L2

+ γnem∥zn+1
∥
2
L2

+NDn+1
u + NDn+1

ω + NDn+1
elast + NDn+1

penal + NDn+1
interp + NDn+1

anch = 0 ,

(3.24)

where the following numerical dissipation terms appear:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NDn+1
u =

1
4∆t

(
2∥un+1

− û∥
2
L2 + ∥̂u − u⋆

∥
2
L2 + ∥̂u − u⋆⋆

∥
2
L2

+∥u⋆
− un

∥
2
L2

+ ∥u⋆⋆
− un

∥
2
L2
)

,

NDn+1
ω = λbp

ε ∆t
2

∥δtω
n+1

∥
2
L2 ,

NDn+1
elast = λnem

∆t
2

∫
Ω

I(φn)
⏐⏐δt∇dn+1

⏐⏐2 dx ,

NDn+1
penal = λnem

∫
Ω

I(φn)
(
p∆t (dn+1, dn)

·δtdn+1
− δtP(dn+1)

)
dx ,

NDn+1
interp = λnem

∫
Ω

(
|∇dn+1

|
2

2
+ G(dn+1)

)
×
(
i∆t (φn+1, φn) δtφn+1

− δt I(φn+1)
)
dx ,

nd

Dn+1
anch = λanch

∆t
2

∫
Ω

[
δ1

(
|δtdn+1

|
2
|∇φn

|
2
+ |dn+1

|
2
|δt∇φn+1

|
2
)

+δ2

(
|δtdn+1

· ∇φn
|
2

+|dn+1
· ∇δtφ

n+1
|
2
)]

dx ,

with the values of (δ1, δ2) depending on the type of anchoring
defined in (2.6).

Proof. For the sake of simplicity we will only show the case
of homeotropic anchoring (the parallel anchoring case can be
studied using the same arguments while the no anchoring case
is just a trivial generalization).

Taking (z̄, d̄) = (zn+1, δtdn+1) in (3.18), we obtain:

γnem∥zn+1
∥
2
L2

+ NDn+1
elast + NDn+1

penal +

(
(u⋆

· ∇)dn, zn+1
)

+λnem

∫
Ω

I(φn) δt

(
|∇dn+1

|
2

2
+ P(dn+1)

)
dx

+
λanch

2∆t
δ1

∫
Ω

[
|∇φn

|
2
|dn+1

|
2
− |∇φn

|
2
|dn

|
2
]
dx

λanch

2∆t
δ2

∫
Ω

[
|dn+1

· ∇φn
|
2
− |dn

· ∇φn
|
2
]
dx

λanch

2
∆t
∫

Ω

[
δ1|δtdn+1

|
2
|∇φn+1

|
2
+ δ2|δtdn+1

· ∇φn
|
2
]
dx = 0 .

(3.25)
7

n the other hand, taking (µ̄, φ̄) = (µn+1, δtφ
n+1) in (3.19)1,2,

dding the resulting expressions and taking into account the
efinition of F∆t

sec (φ
n+1, φn) and G∆t

sec(φ
n+1, φn) given in (3.20) and

3.21), that is,
1
ε

(
G∆t
sec(φ

n+1, φn)ωn+1, δtφ
n+1
)

=
1

ε ∆t

(
G(φn+1) − G(φn), ωn+1) ,(

ε(∇φn+ 1
2 , ∇δtφ

n+1) +
1
ε
(F∆t

sec (φ
n+1, φn), δtφn+1)

)
= B(φn+1) − B(φn),

we obtain

γben∥∇µn+1
∥
2
L2 + ε(∇ωn+1, ∇δtφ

n+1) − (φnu⋆⋆, ∇µn+1)

+
1

ε ∆t

(
G(φn+1) − G(φn), ωn+1)

+
1
2η

δt

(
B(φn+1) − β

)2
+ NDn+1

interp

+λnem

∫
Ω

(
|∇dn+1

|
2

2
+ G(dn+1)

)
δt I(φn+1)dx

+
λanch

2∆t
δ1

∫
Ω

[
|∇φn+1

|
2
|dn+1

|
2
− |∇φn

|
2
|dn+1

|
2
]
dx

+
λanch

2∆t
δ2

∫
Ω

[
|dn+1

· ∇φn+1
|
2
− |dn+1

· ∇φn
|
2
]
dx

+
λanch

2
∆t
∫

Ω

[
δ1|dn+1

|
2
|∇δtφ

n+1
|
2
+ δ2|dn+1

· ∇δtφ
n+1

|
2
]
dx

= 0 .

(3.26)

ubtracting (3.19)3,split-23 for previous time step, and dividing by
t , we obtain

(δtωn+1, ω̄) − ε
(
∇δtφ

n+1, ∇ω̄
)
−

1
ε ∆t

(
G(φn+1) − G(φn), ω̄

)
= 0.

Then taking ω̄ = ωn+1, we obtain
ε

2
δt∥ω

n+1
∥
2
L2 + NDn+1

ω − ε
(
∇δtφ

n+1, ∇ωn+1)
−

1
ε ∆t

(
G(φn+1) − G(φn), ωn+1)

= 0 . (3.27)

Adding relations (3.26) and (3.27), the terms ε
(
∇δtφ

n+1, ∇ωn+1
)

nd 1
ε ∆t

(
G(φn+1) − G(φn), ωn+1

)
cancel, hence we derive :

δt Ẽbp(ωn+1, φn+1) + γben∥∇µn+1
∥
2
L2 + NDn+1

ω + NDn+1
interp

+λnem

∫
Ω

(
|∇dn+1

|
2

2
+ G(dn+1)

)
δt I(φn+1)dx

+
λanch

2∆t
δ1

∫
Ω

[
|∇φn+1

|
2
|dn+1

|
2
− |∇φn

|
2
|dn+1

|
2
]
dx

+
λanch

2∆t
δ2

∫
Ω

[
|dn+1

· ∇φn+1
|
2
− |dn+1

· ∇φn
|
2
]
dx

+
λanch

2
∆t
∫

Ω

[
δ1|dn+1

|
2
|∇δtφ

n+1
|
2
+ δ2|dn+1

· ∇δtφ
n+1

|
2
]
dx

= 0 .

(3.28)

Following the same argument presented in Proof of Theorem 32
in [41] we obtain

1
∆t

(
1
2
∥un+1

∥
2
L2 −

1
2
∥un

∥
2
L2

)
+∥
√
2ν(φn+1)∇un+1

∥
2
L2

+ NDn+1
u

+(φnu⋆⋆, ∇µn+1) −
(
(u⋆

· ∇)dn, zn+1)
= 0 .

(3.29)

Adding expressions (3.25), (3.28) and (3.29), we arrive at the
desired equality (3.24). ■
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emark 3.4. From (3.24) it is clear that scheme (3.18)–(3.19)–
3.22) is unconditional energy-stable with respect to the modified
nergy Ẽtot (u, φ, d, ω), that is

Etot (un+1, φn+1, dn+1, ωn+1) ≤ Ẽtot (un, φn, dn, ωn) ∀ n,

if we consider approximations of the nonlinear terms
p∆t (dn+1, dn) and i∆t (φn+1, φn) such that

NDn+1
penal ≥ 0 and NDn+1

interp ≥ 0 . (3.30)

There are several ways of achieving this goal, but we will consider
the approximations introduced in [41] (where it is shown that
these approximations satisfy (3.30))

p∆t (dn+1, dn) = p̃(dn) +
1
2

∥̃p′(d)∥∞ (dn+1
− dn) ,

i∆t (cn+1, cn) = i(cn) +
5
√
3

12
(cn+1

− cn) ,
(3.31)

with

p(d) =

⎧⎪⎪⎨⎪⎪⎩
2
η2
d

(|d| − 1)
d
|d|

if |d| ≥ 1 ,

1
η2
d
(|d|

2
− 1) d if |d| ≤ 1 .

Lemma 3.5. Scheme (3.18)–(3.19)–(3.22) considering the approx-
imations of p∆t (dn+1, dn) and i∆t (φn+1, φn) presented in (3.31) is
unconditionally energy-stable with respect to Ẽtot (u, φ, d, ω).

4. Simulations

The aim of this section is to present the results of several
numerical simulations to display the type of dynamics exhibited
by the proposed model as well as to illustrate the efficiency and
accuracy of the numerical scheme derived in the paper. In partic-
ular, we have considered the scheme presented in (3.18)–(3.19)–
(3.22) with the boundary conditions presented in (2.11) unless
mentioned otherwise, using the approximations of p∆t (dn+1, dn)
and i∆t (φn+1, φn) presented in (3.31) and for the sake of simplicity
we only consider the case with no spontaneous curvature (k(x) =

).
All the simulations have been carried out in 2D domains using

reeFem++ software [54] and the discrete spaces considered are
P × P ) for the pair (U , P ) (Taylor–Hood element) and P for
2 1 h h 1

8

Table 1
Parameters considered in Example I.
h ∆t λbp λnem λanch γnem γben ε ηd η νNw νLc

1/100 10−5 0.01 100.1 100.1 0.5 0.01 0.01 0.075 10−5 1.0 1.0

Dh, Zh, Φh,Mh and Wh. In the first example we demonstrate how
the anchoring effects play an important role in the shapes of the
vesicles. Then, in the second example we perform a numerical
test to prove the accuracy of the proposed scheme. After that,
we study how in the case of vesicles filled with nematic liquid
crystal, the internal configuration of the liquid crystal also plays
an important role on the achievable shapes of the vesicles. In
the rest of the examples we focus on the interaction of the
vesicles with the flow, showing that our approach is able to
capture interesting features such as rotation of the vesicles in
rotating fluids, deformation through constrictions and axisym-
metric shapes of the bullet-like shape (with a convex rear end)
and the parachute-like shape (with a concave rear end) when the
vesicles are transported by Poiseuille flows.

4.1. Example I. Anchoring effects

In this first example we study the influence of the anchoring
effects in the dynamics of the system. We consider initially cir-
cular configurations of the vesicles and we study the evolution
of the system depending on the different anchoring cases consid-
ered. The domain considered for this example is a square (Ω =

0, 1]2), the imposed surface area of the vesicle corresponds with
he initial one (that is, β = B(φ0)) and the discrete and physical
arameters are presented in Table 1. We have considered two
ifferent types of simulations, ones where the vesicles are filled
ith newtonian fluid and immersed in a nematic liquid crystal
nd the other way around, that is, ones where the vesicles are
illed with nematic liquid crystal and immersed in a newtonian
luid. The initial configurations considered for the simulations are
resented in Fig. 1. The equilibrium configurations obtained for
he three types of anchoring effects in each case are presented
n Figs. 2 and 3, where it is observed that the considered choice
f parameters produces that the anchoring effects are strong
nough to deform the vesicle to accommodate their influence.
he evolution of Ẽ (total energy), E (kinetic energy),

∫
φ
tot kin Ω
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H

H

Fig. 2. Equilibrium configurations of φ (vesicle) and d (nematic liquid crystal orientation) using as initial condition the configuration in the left side of Fig. 1. Left:
omeotropic Anchoring ((δ1, δ2) = (1, −1)). Center: No Anchoring ((δ1, δ2) = (0, 0)). Right: Parallel Anchoring ((δ1, δ2) = (0, 1)).
Fig. 3. Equilibrium configurations of φ (vesicle) and d (nematic liquid crystal orientation) using as initial condition the configuration in the right side of Fig. 1. Left:
omeotropic Anchoring ((δ1, δ2) = (1, −1)). Center: No Anchoring ((δ1, δ2) = (0, 0)). Right: Parallel Anchoring ((δ1, δ2) = (0, 1)).
(volume) and B(φ) (surface) are presented in Figs. 4 and 5, respec-
tively. These results show that the deformation of the systems
to accommodate the anchoring effects produce movement of the
fluid part, movement that results in an increasing kinetic energy
but maintaining the expected decreasing property of the total
energy (this is expected in the original problem due to (2.12) and
numerically due to (3.24)). Moreover, the surface of the resulting
vesicles are close to the original ones although they are not
exactly conserved. This is due to the fact that this conservation
of surface is imposed through an energy that forms part of the
total energy. Minimizing the total energy (that represents the
combination of very different effects) does not imply that the
system will arrive to a configuration where all the sub-energies
achieve their possible minimums, because there is a combination
of interests (for instance perfectly achieved conservation of sur-
face could lead to configurations that are not satisfactory to the
anchoring energy). Finally we can observe that the volume of the
systems remain constant as expected (check Lemma 3.2).

4.2. Example II. Accuracy study

In this second example a numerical error estimate in time is
estimated. The domain considered for this example is a square
(Ω = [0, 1]2), the imposed surface area of the vesicle corresponds
with the initial one (that is, β = B(φ0)), the initial configura-
tion is the one presented in the left side of Fig. 1, the physical
parameters for this test are the ones used in Example I, that is
the ones detailed in Table 1, we consider homeotropic anchoring
9

((δ1, δ2) = (1, −1)) and the final time considered is T = 10−4.
The parameters are chosen in such a way that the dynamic
is not at equilibrium yet. We compute the EOC (Experimental
Order of Convergence) using as reference (or exact) solution the
one obtained by solving the system using scheme discretization
parameters h = 1/200 and ∆t = 10−8, configuration that is
presented in Fig. 6.

We now introduce some additional notation. The individual
errors using discrete norms and the convergence rate between
two consecutive time steps of size ∆t and ∆̃t are defined as

e2(θ ) :=
∥θexact − θh∥L2(Ω)

∥θexact∥L2(Ω)
, e1(θ ) :=

∥θexact − θh∥H1(Ω)

∥θexact∥H1(Ω)
and

ri(·) :=

[
log
(
ei(·)
ẽi(·)

)]/[
log
(

∆t
∆̃t

)]
.

The convergence history for a sequence of time steps using
h = 1/200 is presented in Table 2. We can observe that all the
unknowns show a good performance from the order of conver-
gence point of view, because all the unknowns seem to achieve
order one (higher orders of convergence are not expected for
splitting schemes like the one we are considering). On the other
hand, some of the errors might seem high and this is related
with a combination of several facts: (1) the system that we are
approximating is highly nonlinear; (2) we are comparing the
solutions in a challenging setting, where the system has not
achieved an equilibrium yet.
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Fig. 4. Example I. Results considering as initial condition the configuration in the left side of Fig. 1. Top Left: Evolution of Total Energy. Top Right: Evolution of
Kinetic Energy. Bottom Left: Evolution of B(φ). Bottom Right: Evolution of

∫
Ω

φ.

Fig. 5. Example I. Results considering as initial condition the configuration in the right side of Fig. 1. Top Left: Evolution of Total Energy. Top Right: Evolution of
Kinetic Energy. Bottom Left: Evolution of B(φ). Bottom Right: Evolution of

∫
Ω

φ.

10
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Fig. 6. Example II. Reference solution considered for computing the Experimental Order of Convergence of the scheme with h = 1/200 and ∆t = 10−8 . Left: φ

vesicle) and d (nematic liquid crystal orientation), Center: φ (vesicle) and u (velocity), Right: |u| (velocity magnitude).
Table 2
Example II. Experimental absolute errors and order of convergences using the physical parameters detailed in Table 1 with h = 1/200
and reference solution computed using h = 1/200 and ∆t = 10−8 .
∆t e2(d) r2(d) e1(d) r1(d) e2(z) r2(z) e2(φ) r2(φ) e1(φ) r1(φ)

1 × 10−5 0.0303 − 0.0549 − 0.2938 − 0.0300 − 0.0106 −

5 × 10−6 0.0187 0.6975 0.0389 0.4978 0.1530 0.9413 0.0218 0.4600 0.0077 0.4573
2 × 10−6 0.0097 0.7174 0.0221 0.6188 0.0696 0.8597 0.0125 0.6063 0.0044 0.6051
10−6 0.0056 0.7865 0.0132 0.7424 0.0384 0.8568 0.0075 0.7424 0.0026 0.7420
10−7 0.0006 0.9415 0.0016 0.9291 0.0042 0.9639 0.0009 0.9316 0.0003 0.9316

∆t e2(µ) r2(µ) e1(µ) r1(µ) e2(ω) r2(ω) e1(ω) r1(ω)

1 × 10−5 1.0352 − 0.0009 − 0.1197 − 0.0939 −

5 × 10−6 0.3733 1.4713 0.00036 1.3290 0.0799 0.5826 0.0664 0.4987
2 × 10−6 0.0770 1.7234 0.0001 1.3179 0.0445 0.6385 0.0383 0.6010
10−6 0.0200 1.9438 0.000048 1.1393 0.0265 0.7479 0.0231 0.7300
10−7 0.0031 0.8039 0.000005 0.9753 0.0031 0.9307 0.0027 0.9248

∆t e2(u) r2(u) e1(u) r1(u) e2(p) r2(p)

1 × 10−5 0.2856 − 0.0254 − 0.3995 −

5 × 10−6 0.1921 0.5719 0.0187 0.4387 0.2002 0.9966
2 × 10−6 0.1017 0.6938 0.0111 0.5750 0.0806 0.9932
10−6 0.0588 0.7908 0.0068 0.7122 0.0406 0.9900
10−7 0.0067 0.9404 0.0008 0.9169 0.0038 1.0278
4.3. Example III. Evolution of defects inside a circular vesicle

In this example we study the evolution of circular vesicles
illed with nematic liquid crystal immersed in an isotropic fluid,
here the initial configuration of the liquid crystal includes two
efects, a hedgehog and an anti-hedgehog one. The domain con-
idered for this example is a square (Ω = [0, 1]2), the imposed
urface area of the vesicle corresponds with the initial one (that
s, β = B(φ0)) and the discrete and physical parameters are the
nes presented in Table 1 (the same values that were considered
n Example I).

In Figs. 7–9 we present the dynamics for the different types
f anchoring effects considered (homeotropic anchoring, no an-
horing and parallel anchoring, respectively). In the three cases
he systems are trying to eliminate the two defects to decrease
he total energy of the system, producing movement on the fluid
art of the system, and this movement contributes to push the
efects closer to the interface, where they can be eliminated.
nterestingly, in the homeotropic case not both defects can be
liminated, due to the fact that the initial configuration of d
nematic liquid crystal orientation) is close to be optimal from the
nchoring effect point of view, and with this choice of parameters
t seems energetically better for the system to maintain the defect
n order not to increase the anchoring energy while trying to
liminate it. In fact, what the system does is to move the defect to
he center, producing that the anchoring energy with this radial
11
configuration is going to be very small. It is interesting to note
that these equilibrium configurations are in accordance with the
experimental and numerical results presented in [15]. The evolu-
tion of Ẽtot (total energy), Ekin (kinetic energy),

∫
Ω

φ (volume) and
B(φ) (surface) are presented in Fig. 10. We observe that the total
energy of the systems decrease in time, corroborating the results
of Lemma 3.3. The volume of the system is exactly conserved (as
expected) and the surface of the vesicles is not exactly conserved
but it remains in a range of values close to the desired one (again,
this is due to the fact that we are imposing the conservation of
surface through the energy).

4.4. Example IV. Rotation of vesicles

This section is devoted to show that the presented numerical
scheme is able to simulate vesicles rotating as a whole like rigid
bodies, as it is known to happen in the tumbling regime [6].
For simplicity we have considered the case where no anchoring
effects are imposed ((δ1, δ2) = (0, 0)). The domain considered for
this example is a square (Ω = [0, 1]2), the imposed surface area
of the vesicle corresponds with the initial one (that is, β = B(φ0))
and the discrete and physical parameters are the ones presented
in Table 3.

The initial conditions are a elliptical configuration of the vesi-
cle, d0

= (0, 1) and the initial and boundary conditions for the
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t

Fig. 7. Example III. Dynamics of a vesicle filled with nematic liquid crystal immersed in an isotropic fluid with Homeotropic Anchoring ((δ1, δ2) = (1, −1)) at times

= 0, 0.0005, 0.001, 0.0025, 0.01, 0.03. Top: φ (vesicle) and d (nematic liquid crystal orientation). Bottom: φ (vesicle) and u (fluid).
Fig. 8. Example III. Dynamics of a vesicle filled with nematic liquid crystal immersed in an isotropic fluid with No Anchoring ((δ1, δ2) = (0, 0)) at times
t = 0, 0.0005, 0.001, 0.0025, 0.01, 0.03. Top: φ (vesicle) and d (nematic liquid crystal orientation). Bottom: φ (vesicle) and u (fluid).
Fig. 9. Example III. Dynamics of a vesicle filled with nematic liquid crystal immersed in an isotropic fluid with Parallel Anchoring ((δ1, δ2) = (0, 1)) at times
t = 0, 0.0005, 0.001, 0.0025, 0.01, 0.03. Top: φ (vesicle) and d (nematic liquid crystal orientation). Bottom: φ (vesicle) and u (fluid).
fluid velocity are given by

u0
= u|∂Ωtop =

(
2000π cos(πy) sin(πx)2,

− 4000π cos(πx) sin(πx) sin(πy)
)

.

12
The dynamics of the system are presented in Fig. 11 and
the evolution of B(φ) and the volume

∫
Ω

φ in Fig. 12. It can be
observed that with this choice of parameters the vesicle does not
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Fig. 10. Example III. Results considering vesicles filled with nematic liquid crystal immersed in an isotropic fluid. Top Left: Evolution of Total Energy. Top Right:
Evolution of Kinetic Energy. Bottom Left: Evolution of B(φ). Bottom Right: Evolution of

∫
Ω

φ.
Fig. 11. Example IV. Top: Dynamics for a vesicle filled with nematic liquid crystal and immersed in a rotating newtonian fluid at times t =

, 0.00006, 0.00012, 0.00018, 0.00024. Top: φ (vesicle) and d (nematic liquid crystal orientation). Bottom: φ (vesicle) and u (fluid).
t
l
a
t

xperience deformation, although the amount of surface (that is,
(φ)) fluctuates a bit (again this fluctuation is related with the
act that we are not imposing the conservation of B(φ) in an exact
ay). These results suggest that this model can be considered
13
o perform a more detailed study of the dynamics of vesicles in
inear flows, because the rotation of vesicles without deformation
re of key importance to capture the dynamics exhibited in the
ank-treading and tumbling regimes [7].
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l
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Fig. 12. Example VI. Left: Evolution of B(φ). Right: Evolution of
∫

Ω
φ.
Fig. 13. Example V. Dynamics of φ (vesicle) and d (nematic liquid crystal orientation) for a vesicle filled with an isotropic fluid and immersed in a nematic
iquid crystal at times t = 0, 0.0001, 0.0002, 0.0003. Initial condition: d = (0, 1). Top: Homeotropic Anchoring ((δ1, δ2) = (1, −1)). Middle: No Anchoring case
((δ1, δ2) = (0, 0)). Bottom: Parallel Anchoring ((δ1, δ2) = (0, 1)).
Fig. 14. Example V. Dynamics of φ (vesicle) and d (nematic liquid crystal orientation) for a vesicle filled with an isotropic fluid and immersed in a nematic
iquid crystal at times t = 0, 0.0001, 0.0002, 0.0003. Initial condition: d = (1, 0). Top: Homeotropic Anchoring ((δ1, δ2) = (1, −1)). Middle: No Anchoring case
((δ1, δ2) = (0, 0)). Bottom: Parallel Anchoring ((δ1, δ2) = (0, 1)).
4.5. Example V. Vesicles transported by flow

In this example we study the shapes of vesicles in a two-
dimensional Poiseuille flow. The domain considered for this ex-
ample is a rectangle (Ω = [0, 2] × [0, 1]), the imposed surface
area of the vesicle corresponds with the initial one (that is,
14
β = B(φ0)) and the discrete and physical parameters are the
ones presented in Table 4. The initial condition and boundary
conditions for the fluid velocity are given by

u0
= (3000 sin(πy), 0) , u|∂Ωtop= u|∂Ωbottom= (0, 0) and

u| = u| = (3000 sin(πy), 0).
∂Ωleft ∂Ωright
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Fig. 15. Example V. Dynamics of φ (vesicle) and d (nematic liquid crystal orientation) for a vesicle filled with nematic liquid crystal immersed in an isotropic fluid with
at times t = 0, 0.0001, 0.0002, 0.0003. Initial condition: d = (0, 1). Top: Homeotropic Anchoring ((δ1, δ2) = (1, −1)). Middle: No Anchoring case ((δ1, δ2) = (0, 0)).
Bottom: Parallel Anchoring ((δ1, δ2) = (0, 1)).
Fig. 16. Example V. Dynamics of φ (vesicle) and d (nematic liquid crystal orientation) for a vesicle filled with nematic liquid crystal immersed in an isotropic fluid with
at times t = 0, 0.0001, 0.0002, 0.0003. Initial condition: d = (1, 0). Top: Homeotropic Anchoring ((δ1, δ2) = (1, −1)). Middle: No Anchoring case ((δ1, δ2) = (0, 0)).
Bottom: Parallel Anchoring ((δ1, δ2) = (0, 1)).
Table 3
Parameters considered in Example IV.
h ∆t λbp λnem λanch γnem γben ε ηd η νNw νLc

1/100 10−7 1.0 100.1 100.1 0.5 0.01 0.01 0.075 10−5 1.0 105

We have considered two different settings, one where the
esicles are filled with a newtonian fluid and immersed in a
ematic liquid crystal and the other where the vesicles are filled
ith a nematic liquid crystal and immersed in a newtonian fluid.

n both settings we have considered two different initial condi-
ions for the orientation of the nematic liquid crystal molecules,
amely d0

= (0, 1) and d0
= (1, 0). The dynamics of the vesicles

immersed in nematic liquid crystal are presented in Figs. 13, 14
while the dynamics of the vesicles immersed in a newtonian fluid
are presented in Figs. 15, 16. It can be observed that in the all
the cases the vesicles deform to achieve axisymmetric shapes (in
particular bullet-like ones) that are different depending on the
anchoring effect considered. This type of axisymmetric shapes in
the vesicles are expected, because it is known that in a Poiseuille
15
Table 4
Parameters considered in Example V.
h ∆t λbp λnem λanch γnem γben ε ηd η νNw νLc

1/70 10−8 1.0 100.1 100.1 0.5 0.01 0.01 0.075 10−5 1.0 1.0

flow, vesicles migrate towards the tip of the flow where the shear
rate is minimal, adopting a shape which is symmetric relative to
the axis of symmetry of the flow [6]. Interestingly, we can observe
how the shape produced by homeotropic anchoring with initial
condition d(0) = (0, 1) is the same that the shape achieved in
the case of parallel anchoring with initial condition d(0) = (1, 0)
and how the shape produced by parallel anchoring with initial
condition d0

= (0, 1) is the same that the shape achieved in
the case of homeotropic anchoring case with initial condition
d0

= (1, 0).

4.6. Example VI. Vesicles through constrictions

In this section we study the dynamics of vesicles with three
different shapes advected by a flow through a constriction. This
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Fig. 17. Example VI. Initial and equilibrium configurations for φ (vesicle) and d (nematic liquid crystal orientation). Top Left: Initial Condition. Top Right: Equilibrium
onfiguration for No Anchoring ((δ1, δ2) = (0, 0)). Bottom Left: Equilibrium configuration for Homeotropic Anchoring ((δ1, δ2) = (1, −1)). Bottom Right: Equilibrium
configuration for Parallel Anchoring ((δ1, δ2) = (0, 1)).
Fig. 18. Example VI. Left: Evolution of Total Energy. Center: Evolution of B(φ). Right: Evolution of
∫

Ω
φ. In dashed blue line the No Anchoring case ((δ1, δ2) = (0, 0)),

n red dotted line the Homeotropic Anchoring case ((δ1, δ2) = (1, −1)) and in solid black line the Parallel Anchoring case ((δ1, δ2) = (0, 1)).
T
P

ection is divided into two parts: (1) we start neglecting the
luid part of the system and considering as initial condition a
iconcave vesicle with initial orientation of the liquid crystal
ield d0

= (0, 1), and we impose the three different types
f anchoring effects; (2) we will use the resulting equilibrium
onfigurations from (1) as initial conditions for studying the
ynamics of these three different vesicles. Let us remark that
he initial configurations of (1) have been computed in the same
omain and mesh that is considered for the simulations in (2),
n order to avoid difficulties projecting the configurations into
ifferent domains/meshes.

.6.1. Deformation of a vesicle with anchoring effects and no flow
In this part of the section we study the influence of the

nchoring effects on the equilibrium configurations achieved by
he system. The domain considered for this example is a rectangle
Ω = [0, 2]×[0, 1]) with a narrowing in the middle, the imposed
urface area of the vesicle corresponds with the initial one (that
s, β = B(φ0)) and the discrete and physical parameters are the
nes presented in Table 5.
We carry out simulations using the same initial configuration

or φ and d for each of the possible anchoring effects. In partic-
lar, we consider initially φ as a biconcave cell and d parallel
o the y-axis (d = (0, 1)). Moreover, we consider that there is
o flow, in order to isolate the dynamics of the system from
he influence of the flow part. The initial condition considered
16
able 5
arameters.
h ∆t λbp λnem λanch γnem γben ε ηd η T

1/100 10−7 1.0 100.1 100.1 0.5 0.01 0.01 0.075 10−5 3 × 10−4

for the three cases and the obtained equilibrium configurations
are presented in Fig. 17 and the evolution of the energies and
the approximation of the constraints are presented in Fig. 18.
We can observe how the obtained equilibrium configurations are
different in each case, with the homeotropic anchoring moving d
and deforming the vesicle in such a way that the orientation of d
is perpendicular to mostly all the membrane while the shape of
the membrane tries to minimize the curvature. The parallel an-
choring also moves d and deform the membrane but in this case
to obtain a configuration where the orientation of d is parallel
to mostly all the membrane while the shape of the membrane
tries to minimize the curvature. Meanwhile, the no anchoring
case does not produce any visible change on the configuration
of d or φ, because the initial condition is already in a shape that
minimizes the curvature. In the three cases the total energy of the
system is decreasing in time as expected. Interestingly, in all of
the dynamics there is a small readjustment of the surface area
of the vesicle, which is not too surprising due to the fact that
the system is minimizing a total energy (2.5) with contributions
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Fig. 19. Example VI. Dynamics of φ (vesicle) and d (nematic liquid crystal orientation) for vesicles transported by flow at times t =

0, 0.00006, 0.00012, 0.00018, 0.00024, 0.0003, 0.00036 (from Top to Bottom). Left: No Anchoring ((δ1, δ2) = (0, 0)). Center: Homeotropic Anchoring
((δ1, δ2) = (1, −1)). Right: Parallel Anchoring ((δ1, δ2) = (0, 1)).
from different effects and under the considered weights (λnem =

anch ≫ λbp) the system focus on minimizing the nematic and
anchoring part instead of the bending part. Obviously, changes
in the values of λbp, λnem, λanch will lead to completely different
ynamics and probably to different equilibrium configurations.

.6.2. Deformation and advection of vesicles filled with liquid crystal
y a isotropic flow in a channel with a narrowing in the middle
Now we study the dynamics of vesicles advected by a flow in

channel with a narrowing where the vesicles have to deform
n order to go through the narrowing trying to maintain the
17
volume and the imposed surface area. We consider as initial con-
ditions the equilibrium configurations obtained in Section 4.6.1
(see Fig. 17). The flow is a Poiseuille-like flow, that is we are
considering:

u0
= u|∂ΩLeft = u|∂ΩRight = (3000 sin(πy), 0),

u|∂ΩTop = u|∂ΩBottom = (0, 0)

and

ν = ν = 1.0.
Nw Lc
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Fig. 20. Example VI. Left: Evolution of Kinetic Energy. Right: Evolution of Bending Energy. In dashed blue line the No Anchoring case ((δ1, δ2) = (0, 0)), in red dotted
ine the Homeotropic Anchoring case ((δ1, δ2) = (1, −1)) and in solid black line the Parallel Anchoring case ((δ1, δ2) = (0, 1)).
Fig. 21. Example VI. Left: Evolution of Elastic Energy. Right: Evolution of Anchoring Energy. In dashed blue line the No Anchoring case ((δ1, δ2) = (0, 0)), in red
dotted line the Homeotropic Anchoring case ((δ1, δ2) = (1, −1)) and in solid black line the Parallel Anchoring case ((δ1, δ2) = (0, 1)).
Fig. 22. Left: Evolution of
∫

Ω
φ. Right: Evolution of B(φ). In dashed blue line the No Anchoring case ((δ1, δ2) = (0, 0)), in red dotted line the Homeotropic Anchoring

ase ((δ1, δ2) = (1, −1)) and in solid black line the Parallel Anchoring case ((δ1, δ2) = (0, 1)).
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The dynamics of the three cases are presented in Fig. 19,
he kinetic and bending energies of the systems are plotted in
ig. 20 and the nematic and anchoring energies of the systems
re plotted in Fig. 21. Moreover the evolution in time of

∫
Ω

φ and
(φ) are presented in Fig. 22. We can observe that in the three
ases the vesicles exhibit deformation in order to be transported
hrough the narrowing and this fact produces changes in the
urface area of the vesicles (B(φ)). In fact, after the vesicles
o through the narrowing, they deform themselves to a new
arachute-like configuration that keep the original surface area
18
alue. The parachute-like shape is well known to appear when
orking with vesicles in Poiseuille flows [6]. Again, the weight
f the different parts of the energy (λbp, λnem, λanch) determine
he dynamics of the system, and different sets of parameters will
ead to different dynamics. Moreover we can observe that

∫
Ω

φ (a
uantity directly related with the volume of the vesicles) always
emains constant (as expected). It is interesting to note in the case
f considering parallel anchoring, the deformation of the vesicle
hrough the narrowing produces the system to reconfigure itself
n such a way that the orientation of the nematic molecules in
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t
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(

he interface is very different from being parallel to the interface,
nd this fact produces an increase in the anchoring energy, as can
e observed in Fig. 21.

. Conclusions

In this paper we have studied a system that can be used
o represent vesicle membranes immersed in a newtonian fluid
ith internal nematic order as well as to represent vesicle mem-
ranes filled with isotropic fluid and immersed in a nematic liquid
rystal. Firstly, taking into account kinetic, bending, nematic and
nchoring effects we have derived a thermodynamically con-
istent model that includes the contributions of all the effects.
hen, we have derived a splitting numerical scheme that allows
s to split the computation of the unknowns in three differ-
nt sub-steps (reducing the computational cost when compared
ith a coupled scheme), computing first the nematic part (d, z)
director vector-equilibrium), then computing the vesicle part
φ, µ, ω) (phase field variables) and finally the fluid part (u, p)
(velocity–pressure).

We have reported the results of several numerical simulations
using the presented new numerical scheme, showing that the
numerical scheme is efficient and accurate, achieving energy-
stability in all the cases where no external forces are applied to
the system. Moreover, we have demonstrated how the interaction
of the vesicle with the nematic liquid crystal (independently that
if the liquid crystal is inside or outside the vesicle) influences
the achievable shape configurations of the vesicle. Additionally,
the proposed numerical scheme is able to capture interesting
features exhibited by vesicles in experiments such as rotation of
the vesicles in rotating fluids, deformation through constrictions
and axisymmetric shapes when the vesicles are transported by
Poiseuille flows.

Finally, the obtained results suggest that the presented nu-
merical scheme is a good choice to try to addressed interesting
questions by doing a systematically study of the possible dy-
namics and equilibrium configurations that vesicles can exhibit,
due to its efficiency and accuracy. In fact, because the proposed
system is energy-stable, it can be viewed (when no external
forces are applied) as a way of finding minima (or at least critical
points) of the non-convex energy functional. A systematic study
of the minima will provide a better understanding of the possible
equilibrium shapes that vesicles can exhibit. In fact, this model
and the numerical scheme can be used in 3D domains, and
the splitting character of the scheme makes it a better choice
from the computational point of view than any coupled scheme.
Moreover, another interesting set of questions are related with
the interactions with flows, and it will be interesting to study
in detail some of the effects described in the nice review [6],
like tumbling, tank-treading, elongational flow or even to obtain
phase diagrams of vesicles in Poiseuille flows as a function of the
reduced volume and the maximal flow velocity.
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