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For the scalar programming problem, some characterizations for optimal solu-
tions are known. In these characterizations convexity properties play a very
important role. In this work, we study characterizations for multiobjective program-
ming problem solutions when functions belonging to the problem are differen-
tiable. These characterizations need some conditions of convexity. In differentiable
scalar programming problems the concept of invexity is very important. We prove
that it is also necessary for the multiobjective programming problem and give some
characterizations of multiobjective programming problem solutions under weaker
conditions. We define analogous concepts to those of stationary points and to the
conditions of Kuhn]Tucker and Fritz]John for the multiobjective programming
problem. Q 1999 Academic Press

1. INTRODUCTION

Ž .In general, the vector optimization problem VOP is represented as the
following vector-minimization problem:

VOP Minimize f x s f x , . . . , f xŽ . Ž . Ž . Ž .Ž .1 p

nsubject to x g S : R .

Unlike problems with a unique objective, in which there may exist an
optimal solution to the effect that it minimizes the objective function, in
the multiobjective programming problem there does not necessarily exist a
point which may be optimal for all objectives. To this effect the solution

w xconcept introduced by Pareto 15 in which the concept of efficient points
is defined must be understood.
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DEFINITION 1.1. A feasible point, x, is said to be an efficient solution, if
Ž . Ž .and only if there does not exist another x g S such that f x F f x fori i

i s 1, . . . , p with strict inequality holding for at least one i.

At times, locating the efficient points is quite costly. As a result, there
appears a more general concept such as that of the weakly efficient
solution, which, under certain conditions, presents topological properties

w xthat are not given in the set of efficient points 13 .

DEFINITION 1.2. A feasible point, x, is said to be a weakly efficient
solution WEP, if and only if there does not exist another x g S such that
Ž . Ž .f x - f x for all i s 1, . . . , p.i i

It is easy to verify that every efficient point is a weakly efficient point.
The following convention for equalities and inequalities will be used. If

x, y g R n, then

x s y iff x s y i s 1, . . . , n;i i

x O y iff x F y i s 1, . . . , n;i i

x F y iff x F y i s 1, . . . , n ,i i

with strict inequality holding for at least one i;

x - y iff x - y i s 1, . . . , n.i i

The study of the solutions of a multiobjective problem may be ap-
proached from two aspects: one, trying to relate them with the solutions to
the scalar problems, whose resolution has been studied extensively and
another, trying to locate conditions which are easier to deal with computa-
tionally and which guarantee efficiency. As much in one case as in the
other, the convexity concept plays an important role as a fundamental
condition in obtaining the desired results.

In the past few years extensive literature relative to the other families of
more general functions to substitute the convex functions in the mathe-
matical programming has grown immensely. Such functions are called
generalized convex functions. Within these and because of their impor-

w xtance, we point out the invex functions, defined by Hanson 7 and Craven
w x w x w x w x w x w x w x4 and studied extensively by other authors 1 , 10 , 18 , 17 , 11 , 19 .

DEFINITION 1.3. Let u : S : R n ª R be a differentiable function on
the open set S. Then u is invex on S with respect to h if for all x , x g S1 2

Ž . nthere exists h x , x g R such that:1 2

T
u x y u x G h x , x =u x .Ž . Ž . Ž . Ž .1 2 1 2 2
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There are simple extensions of invex functions to pseudoinvex and
quasinvex functions, respectively.

DEFINITION 1.4. Let u : S : R n ª R be a differentiable function on
the open set S. Then u is pseudoinvex on S with respect to h if for all

Ž . nx , x g S there exists h x , x g R such that:1 2 1 2

T
h x , x =u x G 0 « u x y u x G 0.Ž . Ž . Ž . Ž .1 2 2 1 2

It is clear that:

convexity « pseudoconvexity « invexity « pseudoinvexity.

For the scalar functions the class of invex functions and the class of
w xpseudoinvex functions coincide 2 .

DEFINITION 1.5. Let u : S : R n ª R be a differentiable function on
the open set S. Then u is quasinvex on S with respect to h if for all

Ž . nx , x g S there exists h x , x g R such that:1 2 1 2

T
u x y u x F 0 « h x , x =u x F 0.Ž . Ž . Ž . Ž .1 2 1 2 2

And it is easy show that: invexity « quasinvexity¥quasiconvexity.
w xMartin 12 studied how these concepts take part in the resolution of the

scalar mathematical programming problems of the following forms:

P Minimize u xŽ . Ž .
nsubject to x g S : R

and

CP Minimize u xŽ . Ž .
subject to g x F 0 j s 1, . . . , mŽ .j

nx g S : R

where u : S ª R and g : S ª R m are differentiable functions on an open
set S : R n.

A point x g S is said to be a stationary point or critical point for u if
Ž .=u x s 0.

mŽ .The point x, u g S = R with x g S and u G 0 for j s 1, . . . , m isj
Ž .said to be a Kuhn]Tucker stationary point for CP if

T=u x q u =g x s 0,Ž . Ž .
Tu g x s 0.Ž .
g x F 0Ž .
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w xFor unconstrained problems, Martin 12 proved the following result.

THEOREM 1.1. A function, u , is in¨ex in S if and only if e¨ery critical
point of u is a global minimizer of u in S.

However, for constrained problems the invexity defined by Hanson is a
sufficient condition but not a necessary condition for every Kuhn]Tucker
point to be a global minimizer.

w xMartin 12 defined a weaker invexity notion, called Kuhn]Tucker
invexity or KT-invexity, which is both necessary and sufficient to establish
the Kuhn]Tucker conditions.

Ž .DEFINITION 1.6. The problem CP is said to be KT-invex on the
Ž .feasible set with respect to h if for any x , x g S with g x O 0 and1 2 1

Ž . Ž . ng x O 0 there exists h x , x g R such that2 1 2

T
u x y u x G h x , x =u x ,Ž . Ž . Ž . Ž .1 2 1 2 2

Tyh x , x =g x G 0 ; i g I x .Ž . Ž . Ž .1 2 i 2 2

Ž . � Ž . 4where I x s i: i s 1, . . . , m such that g x s 0 .2 i 2

For scalar constrained problems, Martin gave the following result.

Ž .THEOREM 1.2. E¨ery Kuhn]Tucker stationary point of problem CP is a
Ž .global minimizer if and only if CP is KT-in¨ex.

2. UNCONSTRAINED MULTIOBJECTIVE PROGRAMMING
PROBLEMS

In this section, we characterize the solutions for an unconstrained
multiobjective programming problem. As in the scalar case, the concept of
invexity function plays an important role. Definition 2.1 generalizes the
concept of invexity for the p-dimensional case.

DEFINITION 2.1. Let f : S : R n ª R p be a differentiable function on
the open set S. Then f is a vector invex function on S with respect to h if

Ž . nfor all x , x g S there exists h x , x g R such that:1 2 1 2

f x y f x G =f x h x , xŽ . Ž . Ž . Ž .1 2 2 1 2

Ž . p=nwhere =f x g MM whose rows are gradient vectors of each component2
function valued at the point x .2

Since our purpose is to establish conditions for multiobjective problems,
similar to those given by Kuhn]Tucker for the scalar problems, we need to
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define a concept analogous to the stationary point or critical point for the
scalar function.

DEFINITION 2.2. A feasible point, x g S, is said to be a vector critical
Ž . ppoint VCP to VOP if there exists a vector l g R with l G 0 such that

T Ž .l =f x s 0.

Scalar stationary points are those whose vector gradients are zero. For
vector problems, the vector critical points are those such that there exists a
non-negative linear combination of the gradient vectors of each compo-
nent objective function, valued at that point, equal to zero.

w x Ž .Craven 3 established the following theorem for VOP .

Ž .THEOREM 2.1. Let x be a weakly efficient solution for problem VOP .
T Ž .Then there exists l G 0 such that l =f x s 0.

Then, every weakly efficient solution is a vector critical point, but to
establish the reciprocal we need some convexity hypotheses.

Ž .THEOREM 2.2. Let x be a ¨ector critical point to problem VOP and f an
in¨ex function at x with respect to h, then x is a weakly efficient solution for
Ž .VOP .

T Ž .Proof. If x is a VCP, then there exists l G 0 such that l =f x s 0.
By Gordan’s theorem, the system

T
=f x u - 0Ž .

does not have a solution at u g R n.
Ž .From the invexity of f at x we have that ; x g S, there exists h x, x

such that
f x y f x G =f x h x , x .Ž . Ž . Ž . Ž .

Ž . Ž .Then, there will not exist any x g S such that f x - f x . Therefore x
Ž .is a weakly efficient solution for VOP .

The usual way to solve multiobjective programming problems is to relate
its weakly efficient solutions to the optimal solutions for scalar problems

w xwhose resolution has already been studied. Ruız and Rufian 16 have´ ´
characterized weakly efficient solutions in the case of nondifferentiable
functions. In this work we characterize these solutions when the functions
are differentiable.

One of the most known scalar problems associated with multiobjective
programming problems is the weighting problem whose formulation has
the following form:

P Minimize lT f xŽ . Ž .l

nsubject to x g S : R

where l g R p.
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It has been proved that every solution of weighting scalar problem with
l G 0 is a weakly efficient solution, but the reciprocal is not always true
w x5 .

THEOREM 2.3. If f is in¨ex on an open set S, then all weakly efficient
solutions sol̈ e a weighting scalar problem with l G 0.

pProof. Let x be a WEP; then there exists l g R with l G 0 such that
T Ž .l =f x s 0.

TOn the other hand, if f is invex at x with respect to h, then l f is also
Ž .an invex function with respect to h, so for any x g S there exists h x, x

g R n such that

T T Tl f x y l f x G l =f x h x , x s 0.Ž . Ž . Ž . Ž .

T TŽ . Ž .Then l f x G l f x , ; x g S. And so, x is optimal solution for P , withl

l G 0.

Under the invexity condition, we have seen that the vector critical
points, the weakly efficient solutions and the optimal solutions for weight-
ing scalar problems coincide.

Now we will show that the invexity condition is not only a sufficient but
also a necessary condition for all these classes of points to be equivalent.

THEOREM 2.4. Each ¨ector critical point is a weakly efficient solution and
sol̈ e a weighting scalar problem if and only if the objectï e function is in¨ex.

wProof. The sufficient part has already been proved theorem 2.2, theo-
xrem 2.3 .

Let us suppose that the three classes of points are equivalent; then the
following system has no solution for any x, x g S

0 1w xn N l s 0
=f x f x y f xŽ . Ž . Ž .

n ) 0, l G 0.

By Gordan’s alternative theorem, the system

h0 1
- 0

=f x f x y f xŽ . Ž . Ž . j

nhas solution at h g R and j g R ; x, x g S. This implies that

j - 0
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and

=f x h q j f x y f x - 0.Ž . Ž . Ž .Ž .

Putting h s hryj we obtain that, for all x, x g S, there exists a vector
Ž .function h x, x such that

f x y f x P =f x h x , x .Ž . Ž . Ž . Ž .

Therefore, f is invex on S.

We have proved that if the vector objective function is invex, then all
w xvector critical points are weakly efficient solutions theorem 2.2 . That

equivalence is true under weaker conditions. To prove this assertion, we
first define the pseudoinvexity concept for vector functions.

DEFINITION 2.3. Let f : S : R n ª R p be a differentiable function on
the open set S. Then f is a vector pseudoinvex function on S with respect

Ž . nto h if for all x , x g S there exists h x , x g R such that:1 2 1 2

f x y f x - 0 « =f x h x , x - 0.Ž . Ž . Ž . Ž .1 2 2 1 2

It is clear that if f is invex, f is pseudoinvex too.

THEOREM 2.5. All ¨ector critical points are weakly efficient solutions if
and only if f is a ¨ector pseudoin̈ ex function on S.

Proof. Let us suppose that all vector critical are weakly efficient
solutions and let x be a WEP; then the system

f x y f x - 0 i s 1, . . . , pŽ . Ž .i i

has no solution in x g S.
T Ž .On the other hand, if x is a VCP, then 'l such that l =f x s 0.

Applying Gordan’s theorem the next system has no solution at u g R n

T
=f x u - 0 i s 1, . . . , pŽ .i

and the reciprocals are also true. Thus, if there exists x g S such that
nŽ . Ž . Ž . Ž . Ž .f x - f x , then there exists h x, x g R such that =f x h x, x - 0,

And so, f is pseudoinvex on S.
Now, let us assume that f is pseudoinvex on S and suppose that x is a

vector critical point but that it is not a weakly efficient solution. Then
Ž . Ž . Ž . Ž .there exists another point x g S such that f x - f x ; then =f x h x, x

- 0.
p T Ž .On the other hand, there exists l g R , l F 0, such that l =f x s 0.

And this is a contradiction to Gordan’s alternative theorem.
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That theorem coincides with the one proved by Martin for the scalar
w xcase theorem 1.1 since in this case the invex and pseudoinvex functions

coincide.

3. CONSTRAINED MULTIOBJECTIVE PROGRAMMING
PROBLEMS

Consider the following constrained multiobjective programming problem
Ž .CVOP . Often, the feasible set can be represented by functional inequali-
ties as in the following:

COVP Minimize f x s f x , . . . , f xŽ . Ž . Ž . Ž .Ž .1 p

subject to g x O 0Ž .
nx g S : R

where f : S ª R p and g : S ª R m are differentiable functions on the open
set S : R n.

Ž .In this section, we characterize weakly efficient solutions for the CVOP
problem using concepts similar to Fritz]John and Kuhn]Tucker optimality
condition concepts.

DEFINITION 3.1. A feasible point, x g S, is said to be a vector
Ž . Ž .Fritz]John point VFJP to the problem CVOP if there exists a vector

pqmŽ . Ž .l, m g R with l, m G 0 such that:

T Tl =f x q m =g x s 0 1aŽ . Ž . Ž .
tm g x s 0. 1bŽ . Ž .

DEFINITION 3.2. A feasible point, x g S, is said to be a vector
Ž . Ž .Kuhn]Tucker point VKTP to the problem CVOP if there exists a

pqmŽ . Ž .vector l, m g R with l, m G 0 and l / 0 such that:

T Tl =f x q m =g x s 0 2aŽ . Ž . Ž .
tm g x s 0. 2bŽ . Ž .

Observe that in definition 3.2 it is not necessary for l to be strictly
positive; it is sufficient that l / 0.

The following results extend the scalar case in a natural way. In fact, the
above definitions coincide with the Fritz]John and Kuhn]Tucker condi-
tions when f is a numerical function.
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Ž .THEOREM 3.1. Let x be a weakly efficient solution for problem CVOP ;
Ž .then there exist l and m such that x is a ¨ector Fritz]John point for CVOP .

Ž . � Ž . 4Proof. Let I x s j s 1, . . . , m such that g x s 0 . We will provej
p Ž .that there exist l g R with l G 0, and m G 0, for all j g I x holdingj

p

l =f x q m =g x s 0. 3Ž . Ž . Ž .Ý Ýi i j j
is1 Ž .jgI x

Ž . Ž . Ž .Putting m s 0 for all j f I x we obtain 1a and 1b .j
Ž .Let us suppose that 3 has no solution, so there do not exist l and m

Ž .satisfying 3 . By Motzkin’s theorem, the system

T
=f x u - 0 i s 1, . . . , pŽ .i

4Ž .
T

=g x u - 0 j g I xŽ . Ž .j

has a solution at u g R n.
Then there exists u g R n such that for all i we have

f x q hu y f xŽ . Ž .i iT0 ) =f x u s lim .Ž .i hhª0

And so, for all i there exist hi such that:0

if x q h u y f x - 0.Ž .Ž .i 0 i

� i 4Let h s Min h : i s 1, . . . , p be; then0 0

f x q h u y f x - 0 i s 1, . . . , p. 5Ž . Ž .Ž .i 0 i

T� Ž . Ž . 4On the other hand, let J s j g I x such that =g x u - 0 be. For1 j
all j g J we can find a h j such that1 1

j jg x q h u y g x s g x q h u - 0. 6Ž . Ž .Ž . Ž .j 1 j j 1

� j 4Let us take h s Min h : j g J .1 1 1
Ž .As g with j f I x is differentiable, and therefore continuous, andj

Ž .g x - 0; thenj

lim g x q hu s g x - 0.Ž . Ž .j j
hª0

j� Ž .4For h s Min h : j f I x we obtain that2 2

g x q h u F 0 j f I x . 7Ž . Ž .Ž .j 2
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� 4 Ž . Ž .Let z s x q hu be where h s Min h , h , h . From 6 and 7 , z is a0 1 2
Ž . Ž .feasible point for CVOP , and so 5 is a contradiction to x being a weakly

efficient point.

If we add a constraint qualification, we can be sure that l is not equal to
zero.

Ž .THEOREM 3.2. Let x be a weakly efficient solution for problem CVOP
and the Kuhn]Tucker constraint qualification is satisfied at x. Then there exist

Ž .l and m such that x is a ¨ector Kuhn]Tucker point for problem CVOP .

Proof. Let us suppose that the following system has no solution

Tl =f x q m g x s 0,Ž . Ž .I

pl g R , l G 0 m G 0, ; j g I x .Ž .j

Then, there exists u g R n such that

T
=f x u - 0 i s 1, . . . , p ,Ž .i

8Ž .
T

=g x u - 0 j g I x .Ž . Ž .j

Hence by the Kuhn]Tucker constraint qualification at x, there exists a
w x Ž .n-dimensional vector function e defined on 0, 1 such that e 0 s x,

Ž . � Ž . 4e t g x g S N g x O 0 for 0 F t F 1, e is differentiable at t s 0, and
w Ž .xde 0 rdt s j u for some j ) 0. Therefore,

=f x - 0 « j =f x u - 0, for some j ) 0 «Ž . Ž .
f e t y f xŽ . Ž .Ž .

« =f e 0 - 0 « lim - 0.Ž .Ž .
ttª0

Therefore, there exists t such that for all t F t we have0 0

f e t - f x ,Ž . Ž .Ž .

Ž . w xand e t is feasible for all t g 0, 1 . Then the above inequality is a
contradiction to weak efficiency of x.

To establish reciprocals of the theorems 3.1 and 3.2, we need a general-
ized convexity hypothesis. As in the scalar case, we prove that KT-invexity
for the optimization problem is sufficient for all vector Kuhn]Tucker
points to be weakly efficient solutions.

We define a KT-invex multiobjective programming problem, properly.

Ž .DEFINITION 3.3. The problem CVOP is said to be a vector KT-invex
problem on the feasible set with respect to h if for any x , x g S with1 2
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Ž . Ž . Ž . ng x O 0 and g x O 0 there exists h x , x g R such that:1 2 1 2

f x y f x G =f x h x , xŽ . Ž . Ž . Ž .1 2 2 1 2

y=g x h x , x G 0 ; i g I x .Ž . Ž . Ž .i 2 1 2 2

Now, we prove the following theorem for vector KT-invex problems.

THEOREM 3.3. E¨ery ¨ector Kuhn]Tucker point is a weakly efficient
Ž .solution if problem CVOP is KT-in¨ex.

Ž .Proof. Let x be a vector Kuhn]Tucker point for CVOP and let us
suppose that this problem is KT-invex. We will see that x is a WEP.

Ž . Ž .If there exists another feasible point x such that f x - f x , then

T0 ) f x y f x P =f x h x , x « l =f x h x , x - 0, ;l G 0Ž . Ž . Ž . Ž . Ž . Ž .
9Ž .

Since x was assumed a VKTP,

Tl =f x h x , x q m =g x h x , x s 0. 10Ž . Ž . Ž . Ž . Ž .Ý j j
Ž .jgI x

Ž . Ž .From 9 and 10 we have that

m =g x h x , x ) 0. 11Ž . Ž . Ž .Ý j j
Ž .jgI x

Ž .As the problem CVOP is KT-invex, then

y=g x h x , x G 0 ; j g I x .Ž . Ž . Ž .j

Since m G 0,j

ym =g x h x , x G 0 ; j g I x ;Ž . Ž . Ž .j j

therefore

m =g x h x , x F 0.Ž . Ž .Ý j j
Ž .jgI x

Ž .This is a contradiction to 11 .

As for unconstrained multiobjective programming problems, all optimal
solutions for weighting scalar problems with l G 0 are weakly efficient
solutions, but the reciprocal is not always true. We use the above theorem

Ž .to prove that if the problem CVOP is KT-invex, then all weakly efficient
solutions can be found as solutions for a scalar problem. Thus, under the
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KT-invexity condition and if constraint qualification is satisfied, vector
Kuhn]Tucker points, weakly efficient points, and optimal solutions for
weighting problems coincide.

Ž .THEOREM 3.4. If problem CVOP is KT-in¨ex and the Kuhn]Tucker
constraint qualification is satisfied at all weakly efficient solutions, then e¨ery
weakly efficient solution sol̈ es a weighting scalar problem.

Proof. Let be x a WEP; then there exists l G 0 and m P 0 such that

T Tl =f x q m =g x s 0Ž . Ž .
Tm g x s 0.Ž .

Or, equivalently,

T Tl =f x q m =g x s 0Ž . Ž .I I

� Ž . 4where I s i s 1, . . . , m such that g x s 0 . By KT-invexity, for alli
feasible points, x g S, we have

f x y f x P =f x h x , xŽ . Ž . Ž . Ž .
0 P =g x h x , x .Ž . Ž .I

Or, equivalently,

T T Tl f x y l f x P l =f x h x , xŽ . Ž . Ž . Ž .
0 P m =g x h x , x .Ž . Ž .Ý j j

Ž .jgI x

Adding the above inequalities

T T Tl f x y l f x G l =f x h x , x q m =g x h x , x s 0,Ž . Ž . Ž . Ž . Ž . Ž .Ý j j
Ž .jgI x

Ž .for all x g S such that g x O 0. So, x is an optimal solution for P .l

Now, we prove an analogous theorem for vector Kuhn]Tucker points.

THEOREM 3.5. E¨ery ¨ector Kuhn]Tucker point sol̈ es a weighting scalar
Ž .problem if CVOP is KT-in¨ex.

Proof. Let x be a vector Kuhn]Tucker point; then there exist l G 0,
and m P 0 such that

T Tl =f x q m =g x s 0Ž . Ž .
Tm g x s 0.Ž .
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Ž .Hence x, m holds Kuhn]Tucker conditions for the scalar programming
Ž .problem P . Moreover, if problem CVOP is KT-invex, then problem P isl l

w xKT-invex and therefore x is an optimal solution for P theorem 1.2 .l

We prove our second main result.

THEOREM 3.6. E¨ery ¨ector Kuhn]Tucker point is a weakly efficient point
Ž .and sol̈ es a weighting scalar problem if and only if the problem CVOP is

KT-in¨ex.

Proof. In theorem 3.3 and theorem 3.5 we have proved that if the
Ž .problem CVOP is KT-invex, every VKTP is a WEP and solves a P . Letl

us prove the reciprocal.
If every VKTP is a WEP and solves a P , then the following system hasl

Ž . Ž .no solution at n ) 0, l G 0, for all x, x g S, g x O 0 and g x O 0

0 1
=g x 0Ž .w xn N l q y s 0.I=f x f x y f xŽ . Ž . Ž .

Then, by Motzkin’s alternative theorem, the following system has a solu-
Ž . Ž .tion, for all x, x g S with g x O 0 and g x O 0,

h0 1
- 0,

=f x f x y f xŽ . Ž . Ž . j

h
=g x 0Ž . O 0,I j

where h g R n and j g R. Or, equivalently, the system

j - 0

=f x h q j f x y f x - 0Ž . Ž . Ž .Ž .
=g x h O 0Ž .I

has solution at h g R n and j g R.
Ž . Ž .And so, for all x, x g S with g x O 0 and g x O 0, there exists a

Ž .vector function h x, x such that

f x y f x G =f x h x , xŽ . Ž . Ž . Ž .
y=g x h x P 0.Ž . Ž .I

Ž .Thus, the multiobjective programming problem CVOP is KT-invex on
the feasible set.
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As for the unconstrained problems, the KT-invexity is an unnecessarily
Ž .strong condition to all weakly efficient solutions for CVOP to be a vector

Ž .Kuhn]Tucker point for problem CVOP . Let us now define a weaker
generalized convex condition for a vector programming problem.

Ž .DEFINITION 3.4. The problem CVOP is said to be a vector KT-pseu-
Ž .doinvex problem with respect to h if for any x , x g S with g x O 01 2 1

Ž . Ž . nand g x O 0 there exists h x , x g R such that:2 1 2

f x - f x « =f x h x , x - 0Ž . Ž . Ž . Ž .
y=g x h x , x P 0 i g I x .Ž . Ž . Ž .i

And now we prove that this condition is necessary and sufficient for the
set of vector Kuhn]Tucker points and the set of weakly efficient point to
be the same.

THEOREM 3.7. E¨ery ¨ector Kuhn]Tucker point is weakly efficient for
Ž . Ž .CVOP if and only if problem CVOP is a KT-pseudoin̈ ex problem.

Proof. Let us suppose that every vector Kuhn]Tucker point is a weakly
efficient solution. If x is a vector Kuhn]Tucker point, then there exists
l G 0 and m P 0 such that

Tl =f x q m =g x s 0. 12Ž . Ž . Ž .Ý j
Ž .jgI x

By Motzkin’s alternative theorem, the following system does not have any
solution

T
=f x u - 0 i s 1, . . . , pŽ .i

13Ž .
T

=g x u F 0, j g I x .Ž . Ž .j

If x is a VKTP, then x is a WEP and therefore the system

f x y f x - 0 i s 1, . . . , pŽ . Ž .i i
14Ž .

g x O 0Ž .
does not have any solution.

Ž .If x is not a VKTP, then 12 does not have any solution. This implies
Ž . Ž .that 13 has a solution. If x is not a VKTP, then x is not a WEP and 14

Ž . Ž .does not have any solution. Then, for all x g S with g x O 0, if f x -i
Ž . Ž .f x , there exists h x, x such thati

=f x h x , x - 0 i s 1, . . . , pŽ . Ž .i

y=g x h x , x G 0 ; j g I x .Ž . Ž . Ž .j



CONVEXITY IN MULTIOBJECTIVE PROGRAMMING 219

Then we have

; x , x g S g x O 0, g x O 0Ž . Ž .
f x y f x - 0 « =f x h x , x - 0Ž . Ž . Ž . Ž .

y=g x h x , x G 0, ; j g I x .Ž . Ž . Ž .j

Ž .Therefore CVOP is a KT-pseudoinvex problem.
The proof of the reciprocal is analogous to the proof of theorem 3.3.

4. CONCLUSION

In this work, we have analyzed the resolution of the differentiable
multiobjective programming problems from two points of view. We have
studied the relation with the solutions of associated scalar problems, as
well as the search for the conditions of optimality which are easiest to
handle.

As much in one case as in the other, the convexity conditions on the
functions of the problem are fundamental. Just as in scalar programming,
convexity may be substituted by more general conditions. We have studied
the multiobjective programming problems under different invexity defini-
tions.

Invexity allows us to give the necessary and sufficient conditions for
locating the solutions to the general problem starting from the solutions of
a scalar problem or verifying certain conditions of optimality of the type
defined by Kuhn]Tucker and Fritz]John. Some results may therefore be
concluded which were left incomplete in the literature.

This work shows that the results published in the past few years for
scalar programming are transferable to the multiobjective programming,
making it possible to enclose everything within the general scheme which
we have constructed here.
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