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In this paper we study homogenization of a linear system of elastodynamics in an 
elastic body with soft inclusions, which is embedded in a highly oscillating magnetic 
field. We show two limits behaviors according to the magnetic field. On the one hand, 
if the magnetic field has at least two different directions at the interface between the 
hard phase and the soft phase, then the limit of the displacement in the hard phase is 
independent of time, so that the magnetic field induces an infinite effective mass. On 
the other hand, if the magnetic field has a constant direction ξ at the interface, then 
the limit of the displacement in the hard phase involves an additional displacement 
in the direction ξ which is solution to an elastodynamics equation with a memory 
mass, a memory stress tensor and memory external forces depending on the initial 
conditions, which read as time convolutions with some kernel. When the magnetic 
field has the same direction ξ in the soft phase with smooth inclusions, we prove 
that the space-average of the kernel is regular and that the limit of the overall 
displacement in the direction ξ is solution to a viscoelasticity equation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the asymptotic behavior as ε → 0 of the following elastodynamic system posed 
in a bounded cylinder QT = (0, T ) × Ω of R ×R3,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
ttuε − Div

(
Aε

(x
ε

)
e(uε)

)
+ 1

ε
b
(x
ε

)
× ∂tuε = f in QT

uε = 0 on (0, T ) × ∂Ω

uε(0, ·) = u0, ∂tuε(0, ·) = v0 in Ω,

(1.1)
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where the symmetric tensor-valued function Aε takes periodically some value A1 in the hard material Ωε,1
and the value ε2A2 in the soft material Ωε,2, and b is a periodic vector-valued function representing a 
magnetic field which induces the highly oscillating Lorentz force 1/ε b(x/ε) × ∂tuε. The system of elastody-
namics (1.1) is inspired by a coupling magneto-elastodynamics model of [4, Section 9.3]. Here, assuming that 
the elastic body is a poor conductor and that the electric Lorentz force is negligible against the magnetic 
Lorentz force, the coupling leads us to the simpler elastodynamics equation (1.1) with the magnetic Lorentz 
force.

Homogenization of wave equations with varying coefficients was first studied by Colombini, Spagnolo [7], 
and extended by Francfort, Murat [8]. In these works, roughly speaking the varying matrix-rigidity of the 
material is assumed to be uniformly bounded, coercive and does not oscillate in time which leads us to a 
limit wave equation of the same nature. However, when the above uniformity conditions are not satisfied or 
when the rigidity coefficients oscillate in time, the nature of the equation is not in general preserved. On the 
one hand, in the case of an elastodynamics system with soft inclusions Ávila et al. [3] have highlighted the 
appearance at a fixed frequency of an effective negative mass related to the existence of phononic band gaps. 
In the stationary elasticity case with soft inclusions Zhikov and Pasthukova [18] have shown the existence 
of gaps in the continuous spectrum of the homogenized operator. Otherwise, Smyshlyaev [16] (see also [9]
for some extension) has studied elastic waves in highly anisotropic periodic composites. More generally, 
observing that high-contrast composite materials (mixing soft and hard phases) may induce an anisotropic 
mass at a fixed frequency, Milton, Willis [12] have proposed a modification of Newton’s second law in which 
the relation between the force and the acceleration is non-local in time. On the other hand, a nonlocal 
term was obtained in [6] for a wave equation with a first order term with periodic coefficients in space and 
time. More recently, in the absence of soft inclusions, i.e. Aε = A1, the present authors [5] have obtained 
for system (1.1) but in a non-periodic framework a homogenized system involving both an increase of the 
effective mass and a nonlocal term due to a time-oscillating Lorentz force. In this work, the increase of 
mass is due to a highly space-oscillating magnetic field in the spirit of homogenization of the hydrodynamic
problem studied by Tartar [17]. Moreover, the presence in [5] of a time-oscillating magnetic field induces a 
non-local term in the homogenized system.

In the present work, we consider both a highly space-oscillating magnetic field and soft inclusions. More-
over, contrary to [3] and [12] rather than fixing the frequency we study homogenization of the non-stationary 
elastodynamic system (1.1). We obtain two asymptotic behaviors for system (1.1) (see Theorem 2.2) ac-
cording to the following alternative:

• If the magnetic field has two or more different directions at the interface between the soft and the hard 
material, then the displacement in the hard phase χΩε,1uε weakly converges in L2(QT )3 to the stationary 
function |Y1| u0, where Y1 is the cell period of the hard phase. From the point of view of the hard phase 
the strong magnetic field thus induces an isotropic infinite mass which blocks the displacement.

• If the magnetic field has a fixed direction ξ at the interface between the soft and the hard material, 
then the displacement χΩε,1uε weakly converges to |Y1| (u0 +α ξ) in L2(QT )3, where the scalar function 
α is solution to an equation of elastodynamics involving a memory mass, a memory stress tensor and 
memory external forces depending on the initial displacement u0, the initial velocity v0 and the force 
f . The memory terms read as time-convolutions with a matrix-valued kernel K̄ or its derivative ∂tK̄
defined on (0, T ) ×Y2, where Y2 is the cell period of the soft phase. Contrary to the first case, the strong 
magnetic field induces an anisotropic effective mass (in the spirit of [12]) which is only infinite in the 
direction perpendicular to the field.

In the second case, assuming that the magnetic field has the same direction ξ in Y2 and the tensor A2 is 
constant (see Example 2.7), it turns out that the function α can be expressed with some kernel L as the 
time convolution
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α = L ∗t (ū · ξ + G) in QT , (1.2)

where ū is the weak limit of the overall displacement uε in L2(QT )3, and G is a term depending on the 
initial conditions u0, v0 and the external force f . Therefore, the homogenized equation satisfied by α can 
be regarded as a viscoelasticity type equation

{
∂tt(ū · ξ) − divxσ = f · ξ + divx

(
A∗

1ex(u0)ξ
)

in QT

(ū · ξ)(0, ·) = u0 · ξ in Ω,
(1.3)

satisfied by the overall macroscopic displacement ū · ξ in the direction ξ and the stress tensor σ which are 
connected by the relation

σ := A∗
1∇x

(
L ∗t (ū · ξ + G)

)
in QT , (1.4)

for some homogenized elliptic tensor A∗
1 and a positive definite matrix A∗

1 depending on A∗
1.

Homogenization of an elastodynamics equation of type (1.1) was studied by Sánchez-Palencia [14, Sect. 4, 
Chap. 6] (see also [1] for a similar model with time-dependent coefficients) replacing roughly speaking the 
first-order derivative term 1/ε b(x/ε) × ∂tuε by the third-order derivative term div (B(x/ε)ex(∂tuε)), where 
B is some periodic tensor-valued function. Therefore, starting from a viscoelastic behavior given by the 
stress-strain law

σε(t, x) = A(x/ε) ex(uε) + B(x/ε) ex(∂tuε),

Sánchez-Palencia obtained a nonlocal limit viscoelasticity equation with a memory term, which is simi-
lar to equation (1.3). However in our context, we start from the first-order time derivative Lorentz force 
1/ε b(x/ε) × ∂tuε without any a priori viscoelastic behavior, and the limit viscoelasticity equation (1.3)
is only induced by the homogenization process thanks to the combination of the strong oscillating mag-
netic field and the soft inclusions. Such a derivation by homogenization of a viscoelastic behavior from an 
elastodynamic system is original to best of our knowledge.

The proof of Theorem 2.2 is based on a two-scale convergence result (see Theorem 2.1) in the sense of 
Nguetseng-Allaire [13,2]. Here, the main difficulty is to pass to the two-scale limit in the highly oscillating 
Lorentz force, which needs a suitable matrix-valued test function. Then, we deduce from the variational 
formulation of the two-scale limit of system (1.1) the homogenized equation in the direction of the magnetic 
field. This is the most delicate part of the proof which involves some matrix-valued kernel K̄ the derivative 
of which ∂tK̄ is a priori only in L∞(0, T ; L2(Y2))3×3. We prove (see Proposition 2.6) that the space-average 
of K̄ belongs to W 1,∞(0, T )3×3 assuming that the magnetic field b has a constant direction in Y2, the tensor 
A2 is constant in Y2 and Y2 has a smooth boundary. This additional regularity of the kernel allows us to 
derive the limit viscoelasticity equation (1.3).

1.1. Notation

• Y denotes the unit cube (0, 1)3 of R3.
• Ω denotes a regular (satisfying at least the interior cone condition) bounded open set of R3, and QT

the cylinder (0, T ) × Ω for T > 0.
• |E| denotes the Lebesgue measure of a measurable set E of R3.
• · denotes the scalar product in R3, : denotes the scalar product in R3×3, and | · | denotes the associated 

norm in both cases.
• (e1, e2, e3) denotes the canonical basis of R3.
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• R3×3 denotes the set of the (3 × 3) real matrices, and R3×3
s denotes the set of symmetric matrices in 

R3×3).
• I denotes the unit matrix of R3×3.
• For ξ, η ∈ R3, ξ ⊗ η denotes the matrix in R3×3 with entries ξi ηj , and ξ � η the symmetrized matrix of 

ξ ⊗ η.
• L (E) denotes the set of linear mappings from a vector space E into itself.
• A denotes any Y -periodic symmetric tensor-valued function in L∞(Y ; L (R3×3

s )) which is uniformly 
elliptic, i.e. there exists a constant a > 0 such that

A(y)M : M ≥ aM : M, a.e. y ∈ Y, ∀M ∈ R3×3
s . (1.5)

• e(u) denotes the symmetrized gradient of a vector-valued function u.
• Div denotes the vector-valued divergence operator taking the divergence of each row of a matrix-valued 

function.
• C∞

c (U) denotes the set of smooth functions with compact support in an open set U of R3.
• Lp

� (Y ), resp. W 1,p
� (Y ), denotes the set of the Y -periodic functions defined in R3 which belong to Lp

loc(R3), 
resp. W 1,p

loc (R3).
• → denotes a strong convergence, ⇀ a weak convergence, and 2s

⇀ the two-scale convergence.
• oε(1) denotes a sequence of ε which converges to zero as ε → 0, and which may vary from line to line.
• C denotes a positive constant which may vary from line to line.

Recall the definition of the two-scale convergence of Nguetseng-Allaire in the case of an open cylinder 
QT = (0, T ) × Ω of R ×R3.

Definition 1.1 ([13,2]). A bounded sequence vε(t, x) in L2(QT ) is said to two-scale converge to the function 
v(t, x, y) in L2(QT ; L2

� (Y )) if

∀ϕ ∈ C∞
c (QT ;C∞

� (Y )), lim
ε→0

∫
QT

vε(t, x)ϕ
(
t, x,

x

ε

)
dtdx =

∫
QT×Y

v(t, x, y)ϕ(t, x, y) dtdxdy,

where C∞
c (QT ; C∞

� (Y )) denotes the set of functions ϕ(x, y) in C∞(QT ×R3) compactly supported in x ∈ QT

and Y -periodic in y. In particular, this implies that

vε(t, x) ⇀
∫
Y

v(t, x, y) dy in L2(QT ).

2. Statement of the result

2.1. Formulation of the problem

Let Y be the unit cube in R3, let Y2 be a smooth open set such that Y2 ⊂ Y , and such that Y1 := Y \ Y2
is a connected set. Then, for a given regular (satisfying at least the interior cone condition) bounded open 
set Ω of R3, define the open sets

Ωε,1 := Ω \
⋃

k∈Z3

ε (k + Y2), Ωε,2 := Ω \ Ωε,1.

For a given T > 0, we also define the cylinder
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QT := (0, T ) × Ω.

Let A1 ∈ L∞
� (Y1; L (R3×3

s )), A2 ∈ L∞
� (Y2; L (R3×3

s )) be two uniformly elliptic periodic symmetric tensor-
valued functions (see (1.5)), and b ∈ L∞

� (Y )3 be a Y -periodic vector-valued function. Then, for f ∈ L2(QT )3, 
u0 ∈ H1

0 (Ω)3 and v0 ∈ L2(Ω)3, we consider the problem of elastodynamics

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2

dt2

∫
Ω

uε · v dx +
∫

Ωε,1

A1

(x
ε

)
e(uε) : e(v) dx + ε2

∫
Ωε,2

A2

(x
ε

)
e(uε) : e(v) dx

+ 1
ε

∫
Ω

(
b
(x
ε

)
× ∂tuε

)
· v dx =

∫
Ω

f · v dx in Ω, ∀ v ∈ H1
0 (Ω)3

uε = 0 on (0, T ) × ∂Ω

uε(0, ·) = u0, ∂tuε(0, ·) = v0 in Ω,

(2.1)

which denoting

Aε := χY1A1 + ε2χY2A2,

can also be written as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
ttuε − Div

(
Aε

(x
ε

)
e(uε)

)
+ 1

ε
b
(x
ε

)
× ∂tuε = f in QT

uε = 0 on (0, T ) × ∂Ω

uε(0, ·) = u0, ∂tuε(0, ·) = v0 in Ω.

(2.2)

The weak variational formulation (2.1) has a unique solution in W 1,∞(0, T ; L2(Ω))3 ∩ L∞(0, T ; H1
0 (Ω))3

(see, e.g., [11, Chapter 3, Section 8]).

2.2. Statement of the results

The following result provides a variational problem in terms of the two-scale limits of uε, ∂tuε and e(uε).

Theorem 2.1. Assume that the magnetic field b satisfies the equality

∫
Y1

b dy = 0. (2.3)

Then, we have the following two-scale convergences

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uε
2s
⇀ u1 + u2

∂tuε
2s
⇀ ∂tu1 + ∂tu2

χΩε,1e(uε)
2s
⇀ χY1

(
ex(u1) + ey(u3)

)
χΩε,2ε e(uε)

2s
⇀ ey(u2),

(2.4)

where the functions u1, u2, u3 satisfy the conditions
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u1 ∈ W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1
0 (Ω))3, u1(0, ·) = u0 in Ω,

u2 ∈ W 1,∞(0, T ;L2(Ω;L2(Y2)))3 ∩ L∞(0, T ;L2(Ω;H1
0 (Y2)))3, u2(0, ·, ·) = 0 in Ω × Y2,

u3 ∈ L∞(0, T ;L2(Ω;H1
� (Y1)))3,

b(y) ×
(
u1(t, x) + u2(t, x, y)

)
= b(y) × u0(x) a.e. (t, x, y) ∈ QT × Y2.

(2.5)

The functions u1, u2, u3 are the unique solutions satisfying (2.5), up to a rigid displacement y �→ λ(t, x)
for u3, to the variational problem

−
∫

QT×Y

(∂tu1 + ∂tu2) · (∂tϕ1 + ∂tϕ2) dtdxdy −
∫

Ω×Y

v0 · (ϕ1 + ϕ2)(0, x, y) dxdy

+
∫

QT×Y1

A1
(
ex(u1) + ey(u3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

∫
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy

+
∫

QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy −
∫

QT×Y1

(b× u3) · ∂tϕ1 dtdxdy

=
∫

QT×Y

f · (ϕ1 + ϕ2) dtdxdy,

(2.6)

for any functions ϕ1, ϕ2, ϕ3 satisfying⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1 ∈ W 1,1(0, T ;L2(Ω))3 ∩ L1(0, T ;H1
0 (Ω))3, ϕ1(T, ·) = 0 in Ω,

ϕ2 ∈ W 1,1(0, T ;L2(Ω × Y2))3 ∩ L1(0, T ;L2(Ω;H1
0 (Y2)))3, ϕ2(T, ·, ·) = 0 in Ω × Y2,

ϕ3 ∈ L1(0, T ;L2(Ω;H1
� (Y1)))3,

b(y) ×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2.

(2.7)

The next result provides a limit equation for the function u1 which represents the macroscopic displace-
ment in the hard material 1.

Theorem 2.2. Assume that condition (2.3) holds and that

b 
= 0 a.e. in Y2, b ∈ H1(Y2)3 and b⊗ b

|b|2 ∈ H1(Y2)3×3. (2.8)

Then, we have the following alternative:

• If

dim
(
Span

{
b(y) : y ∈ ∂Y2}

)
≥ 2, (2.9)

then

u1(t, x) = u0(x) a.e. (t, x) ∈ QT , (2.10)

and there exists a matrix-valued kernel K̄ : (0, T ) × Y2 → R3×3 given by (3.22) below, with
{

K̄(t, y)(R3) ⊂ R b(y) a.e. (t, y) ∈ (0, T ) × Y2,

K̄ ∈ L∞(0, T ;H1(Y ))3×3 ∩W 1,∞(0, T ;L2(Y ))3×3 ∩W 2,∞(0, T ;H−1(Y ))3×3,
(2.11)
0 2 2 2
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such that

u2(t, x, y) = K̄(t, y) v0(x) +
t∫

0

K̄(t− s, y) f(s, x) ds a.e. (t, x, y) ∈ QT × Y2. (2.12)

• If b|∂Y2 has a fixed direction ξ with |ξ| = 1, then we have

u1(t, x) − u0(x) = α(t, x) ξ a.e. (t, x) ∈ QT , (2.13)

u2(t, x, y) = K̄(t, y) v0(x) +
t∫

0

K̄(t− s, y) f(s, x) ds−
t∫

0

∂tK̄(t− s, y) ∂sα(s, x)ξ ds,

−
(
I − b(y) ⊗ b(y)

|b(y)|2
)
α(t, x) ξ a.e. (t, x, y) ∈ QT × Y2,

(2.14)

and the function α is the unique solution in W 1,∞(0, T ; L2(Ω)) ∩ L∞(0, T ; H1
0 (Ω)) to the problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tt

⎡
⎣M∗α−

t∫
0

K̄1(t− s) ∂sα(s, x) ds

⎤
⎦ + λ∗ · ∇x(∂tα) − divx(A∗

1∇xα)

+ c∗α−
t∫

0

⎛
⎝∫

Y2

A2(ey∂tK̄(t− s, y) ξ) : ey(b̂) dy

⎞
⎠ ∂sα(s, x) ds = μ∗ · f + F in QT

α(0, ·) = 0 in Ω,

(2.15)

where

b̂(y) := b(y) ⊗ b(y)
|b(y)|2 ξ, for y ∈ Y2, (2.16)

K̄1(t) :=
∫
Y2

∂tK̄(t, y) : (ξ � ξ) dy, for t ∈ (0, T ), (2.17)

F is the memory force term acting on the initial displacement u0, the initial velocity v0 and the original 
force f given by

F (t, x) := − ∂tt

⎡
⎣∫
Y2

K̄(t, y) :
(
ξ ⊗ v0(x)

)
dy

⎤
⎦−

∫
Y2

A2ey
(
K̄(t, y) v0(x)

)
: ey(b̂) dy

− ∂tt

⎡
⎣∫
Y2

⎛
⎝ t∫

0

K̄(t− s, y) f(s, x) ds

⎞
⎠ · ξ dy

⎤
⎦

−
∫
Y2

A2ey

⎛
⎝ t∫

0

K̄(t− s, y) f(s, x) ds

⎞
⎠ : ey(b̂) dy + divx

(
A∗

1e(u0)ξ
)
,

(2.18)

and M∗, c∗ > 0, λ∗, μ∗ ∈ R3, A∗
1 ∈ L (R3×3

s ) which is elliptic, A∗
1 ∈ R3×3

s which is positive definite, 
are the homogenized quantities defined by (3.31) and (3.32) below.
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Theorem 2.1 and Theorem 2.2 are proved in Section 3.
As a consequence of Theorem 2.1 and Theorem 2.2 we get the weak limits of the displacement uε in each 

material.

Corollary 2.3.

• If (2.9) is satisfied, we have

⎧⎪⎪⎨
⎪⎪⎩

χΩε,1uε ⇀ |Y1|u0(x) L2(QT )3

χΩε,2uε ⇀ |Y2|u0(x) +
∫
Y2

u2(t, x, y) dy L2(QT )3, (2.19)

where u2 is given by (2.12).
• Otherwise, we have

⎧⎪⎪⎨
⎪⎪⎩

χΩε,1uε ⇀ |Y1|
(
u0(x) + α(t, x) ξ

)
L2(QT )3

χΩε,2uε ⇀ |Y2|
(
u0(x) + α(t, x) ξ

)
+
∫
Y2

u2(t, x, y) dy L2(QT )3, (2.20)

where α is the solution to problem (2.15) and u2 is given by (2.14).

Remark 2.4. The strong magnetic field b induces an effective mass which is:

• Infinite when b has at least two directions at the interface between the two materials. In this case the 
macroscopic displacement u1 in material 1 remains equal to the initial displacement u0.

• Infinite in the vector space ξ⊥ when b has a fixed direction ξ at the interface between the two materials. 
In this case, the macroscopic displacement u1 is solution to the homogenized equation (2.15) in the 
direction ξ involving, through the kernel K̄, a memory mass, a memory stress tensor, and memory 
external forces depending both on the initial velocity v0 and the original force f .

On the one hand, in the absence of magnetic field and for a fixed frequency Ávila et al. [3] showed the possible 
appearance of a negative mass related to phononic band gaps due to similar soft inclusions in the elastic 
matrix. On the other hand, in the absence of soft inclusions the authors [5] showed the increase of mass due 
to the magnetic field. Here, the simultaneous presence of a strong magnetic field and soft inclusions leads 
us to an elastodynamics equation in the direction of the magnetic field involving various memory effects. In 
the Example 2.7 below we study a simpler case where the limit equation reads as a kind of viscoelasticity 
equation in the direction of the magnetic field.

Remark 2.5. When b has a fixed direction ξ at the interface between the two materials, by (2.11) and (2.17)
the kernel K̄1 is in L∞(0, T )3×3. If moreover K̄1 belongs to W 1,1(0, T )3×3, then integrating by parts we get 
that

t∫
0

K̄1(t− s) ∂sα(s, x) ds = K̄1(0)α(t, x) +
t∫

0

∂tK̄1(t− s)α(s, x) ds.

Therefore, the entry in square brackets of (2.15)
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(M∗ − K̄1(0))α(t, x) −
t∫

0

∂tK̄1(t− s)α(s, x) ds (2.21)

can be regarded as a product mass × displacement in the direction ξ, where the effective mass is the 
difference of the isotropic constant mass M∗ − K̄1(0) and the memory mass induced by the kernel ∂tK̄1. If 
we only consider the constant mass in (2.21), then the formula (3.32) for M∗ yields

M∗ − K̄1(0) = |Y1| + m∗ +
∫
Y2

|b̂|2dy − K̄1(0).

On the other hand, using the expression (2.17) for K̄1, computing the derivative of the series expansion 
(3.22) of K̄ and taking into account the definition (3.20) of hj and h̄j , we get

K̄1(0) =
∞∑
i=1

∫
Y2

(
hi(y) ⊗ h̄i

)
:
(
ξ ⊗ ξ

)
dy

=
∞∑
i=1

∣∣∣∣∣∣
∫
Y2

hi · ξ dy

∣∣∣∣∣∣
2

=
∞∑
i=1

∣∣∣∣∣∣
∫
Y2

hi · b̂ dy

∣∣∣∣∣∣
2

=
∫
Y2

|b̂|2dy.

Thus, we have

M∗ − K̄1(0) = |Y1| + m∗,

where by (3.31) m∗ ≥ 0. Actually, we may have m∗ = 0 (see Example 2.7 below) so that

0 < M∗ − K̄1(0) = |Y1| < 1 = the initial mass in equation (2.2). (2.22)

In this case we obtain an apparent decrease of the effective mass contrary to the increase of mass in [5] in the 
absence of soft inclusions. However, the presence of soft inclusions in [3] may induce an arbitrary (possibly 
negative) mass in some regime but at a fixed frequency. Therefore, a definition of the effective mass in the 
limit equation (2.15) seems delicate to specify due to the memory term in (2.21). In the particular situation 
of Example 2.7 below we will give another interpretation of this memory term.

The following result gives a particular case where Remark 2.5 applies.

Proposition 2.6. Assume that the vector-valued tensor A2 is constant in Y2, the vector-valued function b
has a constant direction ξ in Y2, i.e. b̂ = ξ in Y2, and Y2 has a C2 boundary. Then, the kernel K̄1 is in 
W 1,∞(0, T ).

The proof of Proposition 2.6 is given in Section 3.

Example 2.7. Consider a particular case where there exists a unit vector ξ ∈ R3 and a scalar function 
γ ∈ H1

� (Y ) such that

b(y) = γ(y) ξ a.e. y ∈ Y,

∫
Y1

γ(y) dy = 0, γ(y) 
= 0 a.e. y ∈ Y2.

From formulas (3.26), (3.31) and (3.32) below we can deduce that
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M∗ = 1, c∗ = 0, λ∗ = 0, μ∗ = ξ. (2.23)

Then, by the two-scale convergence (2.4) combined with (2.13) and (2.14) the weak limit ū of uε in L2(QT )3
is given by

ū(t, x) = u0(x) +

⎛
⎝α(t, x) −

t∫
0

K̄1(t− s) ∂sα(s, x) ds

⎞
⎠ ξ

+ ¯̄K(t) v0(x) +
t∫

0

¯̄K(t− s) f(s, x) ds

a.e. (t, x) ∈ QT , (2.24)

where

¯̄K(t) :=
∫
Y2

K̄(t, y) dy for t ∈ (0, T ).

Then, equation (2.15) reduces to

{
∂tt(ū · ξ) − divx(A∗

1∇xα) = f · ξ + divx

(
A∗

1ex(u0)ξ
)

in QT

ū(0, x) · ξ = u0(x) · ξ in Ω.
(2.25)

Moreover, under the assumptions of Proposition 2.6 we have by (2.22) and (2.23)

K̄1(0) = |Y2|,

where by (2.24) the function α satisfies the Volterra equation

α(t, x) −
t∫

0

K̄1(t− s) ∂sα(s, x) ds

= (ū · ξ)(t, x) −

⎛
⎝u0(x) + ¯̄K(t) v0(x) +

t∫
0

¯̄K(t− s) f(s, x) ds

⎞
⎠ · ξ.

By virtue of [15, Theorem 16, Chap. 3] there exists a distribution L ∈ D ′(0, ∞) such that the solution α to 
the above Volterra equation can be expressed with the kernel L as

α(t, x) =
t∫

0

L(t− s) (ū · ξ)(s, x) ds

−
t∫

0

L(t− s)

⎛
⎝u0(x) + ¯̄K(s) v0(x) +

s∫
0

¯̄K(s− r) f(r, x) dr

⎞
⎠ · ξ ds.

Therefore, noting that the former relation reads as (1.2), equation (2.25) leads us to equation (1.3) together 
with the stress law (1.4) which can be regarded as a kind of viscoelasticity equation satisfied by the limit 
displacement ū · ξ in the direction of the magnetic field with a memory term depending on the initial 
conditions u0, v0 and the force f .
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3. Proof of the results

3.1. Proof of Theorem 2.1

Let us start showing some a priori estimate satisfied by the solution uε to equation (2.2). For this 
purpose, we firstly assume that for some fixed ε > 0, the functions f , u0 and v0 satisfy the following 
regularity conditions:

f ∈ W 1,∞(0, T ;L2(Ω))3, v0 ∈ H1
0 (Ω)3, −Div

(
Aε

(x
ε

)
e(u0)

)
+ 1

ε
b
(x
ε

)
× v0 ∈ L2(Ω)3. (3.1)

Then, the solution uε to (2.2) belongs to W 2,∞(0, T ; L2(Ω))3 ∩W 1,∞(0, T ; H1
0 (Ω))3, and ∂tuε is the unique 

solution in W 1,∞(0, T ; L2(Ω))3 ∩ L∞(0, T ; H1
0 (Ω))3 to equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2
tt

(
∂tuε

)
− Div

(
Aε

(x
ε

)
e
(
∂tuε

))
+ 1

ε
b
(x
ε

)
× ∂t(∂tuε) = ∂tf in QT

∂tuε = 0 on (0, T ) × ∂Ω

∂tuε(0, ·) = v0, ∂t
(
∂tuε

)
(0, ·) = Div

(
Aε

(x
ε

)
e(u0)

)
− 1

ε
b
(x
ε

)
× v0 + f(0, ·) in Ω.

This allows us to take ∂tuε as test function in (2.2). Hence, integrating on (0, t) × Ω for each t ∈ [0, T ], we 
deduce the estimate

‖uε‖W 1,∞(0,T ;L2(Ω))3 + ‖e(uε)‖L∞(0,T ;L2(Ωε,1))3×3 + ε ‖e(uε)‖L∞(0,T ;L2(Ωε,2))3×3

≤ C
(
‖f‖L2(QT )3 + ‖u0‖H1

0 (Ω)3 + ‖v0‖L2(Ω)3
)
,

(3.2)

where C is a positive constant only depending on T , A1, A2. Now, for functions f ∈ L2(QT )3, u0 ∈ H1
0 (Ω)3

and v0 ∈ L2(Ω)3, consider a sequence (fn)n∈N in W 1,∞(0, T ; L2(Ω))3 converging strongly to f in L2(QT )3, 
a sequence (v0

n)n∈N in H1
0 (Ω)3 converging strongly to v0 in L2(Ω)3 and a sequence (gn)n∈N in L2(Ω)3 with

gn → −Div
(
Aε

(x
ε

)
e(u0)

)
+ 1

ε
b
(x
ε

)
× v0 strongly in H−1(Ω)3.

Then, defining u0
n for n ∈ N, as the unique solution in H1

0 (Ω)3 to the elasticity equation

⎧⎨
⎩

−Div
(
Aε

(x
ε

)
e(u0

n)
)

+ 1
ε
b
(x
ε

)
× v0

n = gn in Ω

u0
n = 0 on ∂Ω,

the functions fn, u0
n and v0

n satisfy conditions (3.1). Also note that for a fixed ε > 0, the sequence (u0
n)n∈N

converges strongly in H1
0 (Ω)3 to u0. Hence, estimate (3.2) holds true for the solution uε,n to the equation 

(2.2) with data fn, u0
n and v0

n. Finally, passing to the limit as n → ∞ in this estimate, we get that estimate 
(3.2) is still valid for data f ∈ L2(QT )3, u0 ∈ H1

0 (Ω)3 and v0 ∈ L2(Ω)3.
Thanks to estimate (3.2) the two-scale convergence theory of Nguetseng-Allaire [2,13] provides the ex-

istence of functions u ∈ W 1,∞(0, T ; L2(Ω; L2
� (Y )))3 ∩ L∞(0, T ; L2(Ω; H1

� (Y )))3 and u3 ∈ L∞(0, T ; L2(Ω;
H1

� (Y )))3 such that u = u(t, x, y) is independent of y in Y1. Then, defining u1(t, x) := χY1(y) u(t, x, y) for 
a.e. (t, x, y) ∈ (0, T ) × Ω × Y1, the function u1 belongs to L∞(0, T ; H1

0 (Ω))3 and

uε
2s
⇀ u, ∂tuε

2s
⇀ ∂tu χΩε,1e(uε)

2s
⇀ χY1

(
ex(u1) + ey(u3)

)
, χΩε,2ε e(uε)

2s
⇀ ey(u).

Taking u2 = u − u1, the functions u1, u2, u3 satisfy the three first conditions of (2.5) and condition (2.4).
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Let us use (2.4) to pass to the limit in (2.2). First, we obtain the initial condition for u1, u2 at t = 0. For 
this purpose we take δ > 0 and ϕ ∈ C0(Ω; L2

� (Y ))3. We have

δ∫
0

∫
Ω

(
uε(s, x) − u0(x)

)
· ϕ

(
x,

x

ε

)
dxds =

δ∫
0

s∫
0

∫
Ω

∂tuε(r, x) · ϕ
(
x,

x

ε

)
dxdrds,

which passing to the limit in ε and using Fubini’s theorem yields

δ∫
0

∫
Ω

∫
Y

(u1 + u2 − u0) · ϕdydxds =
δ∫

0

∫
Ω

∫
Y

(δ − r)∂t(u1 + u2) · ϕdydxdr,

and thus ∣∣∣∣∣∣
δ∫

0

∫
Ω

∫
Y

(u1 + u2 − u0) · ϕdydxds

∣∣∣∣∣∣
≤ δ

⎛
⎝ δ∫

0

∫
Ω

∫
Y

|∂t(u1 + u2)|2 dydxdt

⎞
⎠

1
2
⎛
⎝ δ∫

0

∫
Ω

∫
Y

|ϕ|2 dydxdt

⎞
⎠

1
2

.

Using that u1 + u2 belongs to C0([0, T ]; L2(Ω; L2
� (Y )))3, we can divide by δ the former inequality and take 

the limit as δ tends to zero, which implies that

u1(0, x) + u2(0, x, y) = u0(x) a.e. (x, y) ∈ Ω × Y.

Hence, recalling that u2 belongs to L∞(0, T ; L2(Ω; H1
0 (Y2)))3, we obtain

u1(0, x) = u0(x), u2(0, x, y) = 0 a.e. (x, y) ∈ Ω × Y. (3.3)

First, we take ε ϕ2(t, x, x/ε) with ϕ2 ∈ C1
c ([0, T ); H1

0 (Y2; C1(Ω)))3 as test function in (2.2). By virtue 
of [2, Remark 1.5] ϕ2 is an admissible test function for two-scale convergence. Note that we make no 
regularity assumption with respect to the variable y in order to preserve the pointwise condition (2.7) for 
the regularization final step. Then, passing to the limit in (2.2) with the two-scale limits (2.4) we get that

∫
QT×Y2

b× (∂tu1 + ∂tu2) · ϕ2 dtdxdy = 0,

or equivalently,

b(y) ×
(
∂tu1(t, x) + ∂tu2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2, (3.4)

which is the last equality in (2.5).
Now, for

{
ϕ1 ∈ C1

c ([0, T ) × Ω)3, ϕ2 ∈ C1
c ([0, T );H1

0 (Y2;C1(Ω)))3, ϕ3 ∈ C1
c ([0, T );H1

� (Y ;C1(Ω)))3,

with b(y) ×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.5)

we put
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ϕε(t, x) = ϕ1(t, x) + ϕ2

(
t, x,

x

ε

)
+ εϕ3

(
t, x,

x

ε

)

as test function in (2.2), and we pass to the limit. The main difficulty comes from the term

1
ε

∫
QT

(
b
(x
ε

)
× ∂tuε

)
·
(
ϕ1(t, x) + ϕ2

(
t, x,

x

ε

)
+ εϕ3

(
t, x,

x

ε

))
dtdx.

First, using (2.4) and (3.4), we have
∫
QT

(
b
(x
ε

)
× ∂tuε

)
· ϕ3

(
t, x,

x

ε

)
dx =

∫
QT×Y

(
b× (∂tu1 + ∂tu2)

)
· ϕ3 dtdxdy + oε(1)

=
∫

QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy + oε(1).

For the remaining term, note that by virtue of Lax Milgram’s theorem combined with Korn’s inequality, 
condition (2.3) implies that there exists a unique vector-valued function U i in H1

� (Y1; R3)/R3 (i.e., up to 
an additive constant vector) solution to the Neumann elasticity problem whose variational formulation is

∀V ∈ H1
� (Y1;R3)/R3,

∫
Y1

e(U i)(y) : e(V )(y) dy =
∫
Y1

(b(y) × ei) · V (y) dy,

where (e1, e2, e3) is the canonical basis of R3. Hence, the symmetric matrix-valued function Gi := e(U i) ∈
L2
� (Y1; R3×3

s ) for i = 1, 2, 3, is solution to the equation

{
b× ei = −Div (Gi) in Y1

Gi ν = 0 on ∂Y2.
(3.6)

Then, by (3.5) and (2.1) we can write

1
ε

∫
QT

(
b
(x
ε

)
× ∂tuε

)
·
(
ϕ1(t, x) + ϕ2

(
t, x,

x

ε

))
dtdx

= 1
ε

∫
(0,T )×Ωε,1

(
b
(x
ε

)
× ∂tϕ1

)
· uε dtdx + 1

ε

∫
Ωε,1

(
b
(x
ε

)
× ϕ1(0, x)

)
· u0 dx

= −
3∑

i=1

∫
(0,T )×Ωε,1

Divx

[
Gi

(x
ε

)]
· uε ∂tϕ1,i dtdx−

3∑
i=1

∫
Ωε,1

Divx

[
Gi

(x
ε

)]
· u0 ϕ1,i(0, x) dx

=
3∑

i=1

∫
(0,T )×Ωε,1

Gi
(x
ε

)
: e(uε) ∂tϕ1,i dtdx +

3∑
i=1

∫
(0,T )×Ωε,1

Gi
(x
ε

)
:
(
uε �∇x∂tϕ1,i

)
dtdx

+
3∑

i=1

∫
Ωε,1

Gi
(x
ε

)
: e(u0)ϕ1,i(0, x) dx +

3∑
i=1

∫
Ωε,1

Gi
(x
ε

)
:
(
u0 �∇xϕ1,i(0, x)

)
dx

=
3∑

i=1

⎛
⎝ ∫

Gi :
(
ex(u1∂tϕ1,i) + ey(u3)∂tϕ1,i

)
dtdxdy +

∫
Gi : ex(u0ϕ1,i) dxdy

⎞
⎠ + oε(1),
QT×Y1 Ω×Y1
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which using the definition (3.6) of G, (3.3) and (2.3) yields

lim
ε→0

1
ε

∫
QT

(
b
(x
ε

)
× ∂tuε

)
·
(
ϕ1(t, x) + ϕ2

(
t, x,

x

ε

))
dtdx = −

∫
QT×Y1

(
b× u3

)
· ∂tϕ1 dtdxdy.

Then, taking into account this equality we have for any functions ϕ1, ϕ2, ϕ3 satisfying (3.5),

−
∫

QT×Y

(∂tu1 + ∂tu2) · (∂tϕ1 + ∂tϕ2) dtdxdy −
∫

Ω×Y

v0 · (ϕ1 + ϕ2)(0, x, y) dxdy

+
∫

QT×Y1

A1
(
ex(u1) + ey(u3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

∫
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy

+
∫

QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy −
∫

QT×Y1

(b× u3) · ∂tϕ1dtdxdy

=
∫

QT×Y

f · (ϕ1 + ϕ2) dtdxdy,

where u1, u2 satisfy (3.4).
Finally, recall that the convolution by a sequence of mollifiers in C∞

c (R × R3) with respect to 
the variables (t, x) of a function ϕ(t, x, y) in L1(0, T ; L2(Ω; H1

� (Y )))3 gives a sequence of functions in 
C1([0, T ]; H1

� (Y ; C1(Ω)))3 (also taking into account the interior cone property of Ω combined with a parti-
tion of unity for the convolution with respect to the variable x) which strongly converges to ϕ(t, x, y). Hence, 
by a density argument based on such a regularization the previous equation which holds for regular functions 
satisfying (3.5) also holds for any functions ϕ1, ϕ2, ϕ3 satisfying (2.7), which yields the desired variational 
problem (2.6). Note that the regularization with respect to the variables (t, x) applied to functions ϕ1, ϕ2, 
ϕ3 satisfying (2.7) preserves the pointwise condition of (2.7) in (3.5), since this pointwise condition involves 
the sole variable y through the vector field b(y).

It remains to prove the quasi-uniqueness of the solutions to problem (2.6). Due to the linearity of (2.6)
it is enough to prove that if functions z1, z2, z3 satisfying

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z1 ∈ W 1,1(0, T ;L2(Ω))3 ∩ L1(0, T ;H1
0 (Ω))3, z1(0, ·) = 0 in Ω,

z2 ∈ W 1,1(0, T ;L2(Ω;L2(Y2)))3 ∩ L1(0, T ;L2(Ω;H1
0 (Y2)))3, z2(0, ·, ·) = 0 in Ω × Y2,

z3 ∈ L1(0, T ;L2(Ω;H1
� (Y1)))3,

b(y) ×
(
z1(t, x) + z2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.7)

are solutions to problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∫

QT×Y

(∂tz1 + ∂tz2) · (∂tϕ1 + ∂tϕ2) dtdxdy

+
∫

QT×Y1

A1
(
ex(z1) + ey(z3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

∫
QT×Y2

A2ey(z2) : ey(ϕ2) dtdxdy

+
∫

(b× ∂tz1) · ϕ3 dtdxdy −
∫

(b× z3) · ∂tϕ1 dtdxdy = 0,

(3.8)
QT×Y1 QT×Y1
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for any functions ϕ1, ϕ2, ϕ3 satisfying⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1 ∈ W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1
0 (Ω))3, ϕ1(T, ·) = 0 in Ω,

ϕ2 ∈ W 1,∞(0, T ;L2(Ω × Y2))3 ∩ L∞(0, T ;L2(Ω;H1
0 (Y2)))3, ϕ2(T, ·, ·) = 0 in Ω × Y2,

ϕ3 ∈ L∞(0, T ;L2(Ω;H1
� (Y1)))3,

b(y) ×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.9)

then we have

z1(t, x) = z2(t, x, y) = 0 a.e. (t, x, y) ∈ QT × Y, ey(z3) = 0 a.e. (t, x, y) ∈ QT × Y1. (3.10)

Indeed, the last equality combined with the periodicity in y shows that

z3(t, x, y) = λ(t, x) a.e. (t, x, y) ∈ QT × Y1,

for some λ(t, x) ∈ R3.
To prove this we consider the following dual problem. For any g ∈ L2(QT ×Y )3, let functions ψ1, ψ2, ψ3

satisfying ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ1 ∈ W 1,∞(0, T ;L2(Ω))3 ∩ L∞(0, T ;H1
0 (Ω))3, ψ1(T, ·) = 0,

ψ2 ∈ W 1,∞(0, T ;L2(Ω;L2(Y2)))3 ∩ L∞(0, T ;L2(Ω;H1
0 (Y2)))3, ψ2(T, ·, ·) = 0,

ψ3 ∈ L∞(0, T ;L2(Ω;H1
� (Y1)))3,

b(y) ×
(
ψ1(t, x) + ψ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2,

(3.11)

be solutions to the dual problem to (2.6)

−
∫

QT×Y

(∂tψ1 + ∂tψ2) · (∂tϕ1 + ∂tϕ2) dtdxdy

+
∫

QT×Y1

A1
(
ex(ψ1) + ey(ψ3)

)
:
(
ex(ϕ1) + ey(ϕ3)

)
dtdxdy +

∫
QT×Y2

A2ey(ψ2) : ey(ϕ2) dtdxdy

+
∫

QT×Y1

(b× ∂tψ1) · ϕ3 dtdxdy −
∫

QT×Y1

(b× ψ3) · ∂tϕ1 dtdxdy

=
∫

QT×Y

g · (ϕ1 + ϕ2) dtdxdy,

(3.12)

for any functions ϕ1, ϕ2, ϕ3 satisfying⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ1 ∈ W 1,1(0, T ;L2(Ω))3 ∩ L1(0, T ;H1
0 (Ω))3, ϕ1(0, ·) = 0 in Ω,

ϕ2 ∈ W 1,1(0, T ;L2(Ω × Y2))3 ∩ L1(0, T ;L2(Ω;H1
0 (Y2)))3, ϕ2(0, ·, ·) = 0 in Ω × Y2,

ϕ3 ∈ L1(0, T ;L2(Ω;H1
� (Y1)))3,

b(y) ×
(
ϕ1(t, x) + ϕ2(t, x, y)

)
= 0 a.e. (t, x, y) ∈ QT × Y2.

(3.13)

Using the change of variables s = T − t, the existence of solutions ψ1, ψ2, ψ3 to problem (3.12) follows from 
the existence of solutions z1, z2, z3 to problem (3.8) which is given by the two-scale convergence.



16 M. Briane, J. Casado-Díaz / J. Math. Anal. Appl. 492 (2020) 124472
Then, taking ψ1, ψ2, ψ3 as test functions in (3.8) and taking z1, z2, z3 as test functions in (3.12), we get 
that ∫

QT×Y

g · (z1 + z2) dtdxdy = 0, ∀ g ∈ L2(QT × Y )3,

which implies that

z1(t, x) + z2(t, x, y) = 0 a.e. (t, x, y) ∈ QT × Y.

This combined with z2 ∈ L1(0, T ; L2(Ω; H1
0 (Y2)))3 yields the two first equalities of (3.10). Moreover, taking 

ϕ1 = ϕ2 = 0 in (3.8) we get that

∫
QT×Y1

A1ey(z3) : ey(ϕ3) dtdxdy = 0, ∀ϕ3 ∈ L∞(0, T ;L2(Ω;H1
� (Y1)))3,

which implies the last equality of (3.10).
This concludes the proof of Theorem 2.1.

3.2. Proof of Theorem 2.2

Let us solve problem (2.6). First, we take ϕ1 = ϕ3 = 0, then we get

−
∫

QT×Y2

(∂tu1 + ∂tu2) · ∂tϕ2 dtdxdy −
∫

Ω×Y

v0 · ϕ2(0, x, y) dxdy

+
∫

QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy =
∫

QT×Y

f · ϕ2 dtdxdy,

(3.14)

where ϕ2 is such that b × ϕ2 = 0.
Under assumption (2.8) define the spaces

H2 :=
{
ψ ∈ L2(Y2)3 : ψ × b = 0

}
, V2 := H2 ∩H1

0 (Y2)3.

Then, ϕ2 ∈ W 1,1(0, T ; L2(Ω; H2)) ∩L1(0, T ; L2(Ω; V2)). Moreover, observe that condition (3.4) can be written 
as

∂tu1 + ∂tu2 ∈ H2 a.e. (t, x) ∈ [0, T ) × Ω,

which taking into account (3.3) implies that

u1 + u2 − u0 ∈ V2. (3.15)

Then, define the functions

⎧⎪⎨
⎪⎩

v1(t, x, y) := b(y) ⊗ b(y)
|b|2 u1(t, x), v2(t, x, y) := b(y) ⊗ b(y)

|b(y)|2 u2(t, x, y)

a.e. (t, x, y) ∈ Q × Y ,

(3.16)

T 2
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i.e. v1 and v2 are the orthogonal projections of u1 and u2 on the direction of b, and note that by (3.15) v2
still belongs to L∞(0, T ; L2(Ω; H1

0 (Y2)))3. This allows us to write (2.6) as

−
T∫

0

∫
Y2

(∂tv1 + ∂tv2) · ∂tϕ2 dtdy −
∫
Y2

v0 · ϕ2(0, y) dy

+
T∫

0

∫
Y2

A2ey(v2) : ey(ϕ2) dtdy =
T∫

0

∫
Y2

f · ϕ2 dtdy

a.e. x ∈ Ω, ∀ϕ2 ∈ W 1,1(0, T ;H2) ∩ L1(0, T ;V2).

(3.17)

Choosing ϕ2 with ϕ2(0, ·) = 0, this shows that v1, v2 satisfy

d2

dt2

∫
Y2

(v1 + v2) · ψ2 dy +
∫
Y2

A2ey(v2) : ey(ψ2) dy =
∫
Y2

f · ψ2 dy, ∀ψ2 ∈ V2, (3.18)

which combined with (3.17) yields the initial condition

(∂tv1 + ∂tv2)(0, x, y) = b(y) ⊗ b(y)
|b(y)|2 v0(x) a.e. (t, x, y) ∈ Ω × Y2. (3.19)

Now, let hj , j ≥ 1, be an orthonormal basis in H2 of eigenvectors in V2 associated with the eigenvalues μ2
j

of the spectral problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hj ∈ V2, with h̄j :=
∫
Y2

hj dy

∫
Y2

A2ey(hj) : ey(ψ2) dy = μ2
j

∫
Y2

hj · ψ2 dy, ∀ψ2 ∈ V2.

(3.20)

Such an orthonormal basis does exist, since H2 and V2 are closed subspaces of L2(Y2)3 and H1
0 (Y2)3 respec-

tively and V2 is dense in H2 (recalling that by (2.8) b is a non-vanishing function in H1(Y2)3, the subspace 
of V2 composed of functions α b with α ∈ C1

c (Y2), is dense in H2). Hence, the embedding of V2 into H2
remains compact so that the discrete spectral decomposition of a self-adjoint compact operator applies.
Since v2 ∈ V2, we have

v2(t, x, y) =
∞∑
j=1

φj(t, x)hj(y) a.e. (t, x, y) ∈ QT × Y2.

Putting this series in (3.18) with the test function ψ2 = hi, i ≥ 1, adding the term μ2
i v1 · h̄i in both sides 

and taking into account the initial conditions (3.3) and (3.19), we get that

⎧⎪⎨
⎪⎩

∂2

∂t2
(v1 · h̄i + φi) + μ2

i (v1 · h̄i + φi) = (f + μ2
i v1) · h̄i in (0, T ) a.e. x ∈ Ω

(v1 · h̄i + φi)(0, x) = u0(x) · h̄i, ∂t(v1 · h̄i + φi)(0, x) = v0(x) · h̄i,

(3.21)

which leads us to
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(v1 · h̄i + φi)(t, x) =
t∫

0

sin(μi(t− s))
μi

(
f(s, x) + μ2

i v1(s, x)
)
· h̄i ds

+ cos(μit)u0(x) · h̄i + sin(μit)
μi

v0(x) · h̄i.

Integrating by parts and again using (3.3) yields

φi(t, x) = sin(μit)
μi

h̄i · v0(x) +
t∫

0

sin(μi(t− s))
μi

h̄i · f(s, x) ds

−
t∫

0

cos(μi(t− s)) h̄i · ∂sv1(s, x) ds

Hence, by summing with respect to i we get that

v2(t, x, y) =
∞∑
i=1

sin(μit)
μi

(
hi(y) ⊗ h̄i

)
v0(x) +

∞∑
i=1

t∫
0

sin(μi(t− s))
μi

(
hi(y) ⊗ h̄i

)
f(s, x) ds

−
∞∑
i=1

t∫
0

cos(μi(t− s))
(
hi(y) ⊗ h̄i

)
∂sv1(s, x) ds

Finally, defining the kernel

K̄(t, y) :=
∞∑
i=1

sin(μit)
μi

hi(y) ⊗ h̄i, for (t, y) ∈ (0, T ) × Y2, (3.22)

we obtain
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v2(t, x, y) = K̄(t, y) v0(x) +
t∫

0

K̄(t− s, y) f(s, x) ds−
t∫

0

∂tK̄(t− s, y) ∂su1(s, x) ds

a.e. (t, x, y) ∈ QT × Y2.

(3.23)

We have replaced in (3.23) the function v1 by the function u1 which are connected by (3.16), since that for 
a.e. (t, y) ∈ (0, T ) × Y2 the range of K̄(t, y) is contained in the space spanned by b(y). On the other hand, 
note that using the series expansion (3.22) and

∞∑
i=1

|h̄i|2 < ∞,

we can check that

K̄ ∈ L∞(0, T ;V2)3 ∩W 1,∞(0, T ;H2)3 ∩W 2,∞(0, T ;V ′
2)3.

Moreover, since V2 ⊂ H1
0 (Y2)3 and the range of K̄ is contained in the space spanned by b, the kernel satisfies 

the regularity (2.11). Formula (3.23) also gives an expression of u2, since by (3.15) and (3.16) we have
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u2 = v2 +
(
I − b⊗ b

|b|2
)

(u0 − u1) (3.24)

which gives the desired expression (2.14).
Let us now compute the function u3 in problem (2.6). We choose ϕ1 = ϕ2 = 0. We get

∫
QT×Y1

A1
(
ex(u1) + ey(u3)

)
: ey(ϕ3) dtdxdy +

∫
QT×Y1

(b× ∂tu1) · ϕ3 dtdxdy = 0.

Let wjk and ϑj , 1 ≤ j, k ≤ 3, be the vector-valued functions defined by the cell problems

⎧⎪⎪⎨
⎪⎪⎩

wjk ∈ H1
� (Y1)3∫

Y1

A1
(
Ejk + ey(wjk)

)
: ey(ψ) dy = 0, ∀ψ ∈ H1

� (Y1)3,
(3.25)

where (Ejk)1≤j,k≤3 is the canonical basis in R3×3
s ,

⎧⎪⎪⎨
⎪⎪⎩

ϑj ∈ H1
� (Y1)3∫

Y1

A1ey(ϑj) : ey(ψ) dy +
∫
Y1

(b× ej) · ψ dy = 0, ∀ψ ∈ H1
� (Y1)3.

(3.26)

Then, defining W(y) : R3×3 → R3 and V (y) ∈ R3×3 by

W(y)M :=
3∑

j,k=1

mjk wjk(y), V (y)η :=
3∑

j=1
ηj ϑj(y), ∀M ∈ R3×3, ∀ η ∈ R3, (3.27)

the function u3 is given by

u3(t, x, y) = W(y) ex(u1)(t, x) + V (y) ∂tu1(t, x) a.e. (t, x, y) ∈ QT × Y1. (3.28)

3.2.1. Case where magnetic field has one direction on the boundary of the inclusion
Assume that b|∂Y2 has a fixed direction ξ with |ξ| = 1. Then, by (2.5) and (2.8) there exists a scalar 

function α ∈ W 1,∞(0, T ; L2(Ω)) ×L∞(0, T ; H1
0 (Ω)) such that (2.13) holds. For any β ∈ W 2,∞(0, T ; L2(Ω))3×

W 1,∞(0, T ; H1
0 (Ω))3 with β(0, x) = β(T, x) = 0, we define

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1(t, x) := β(t, x) ξ for (t, x, y) ∈ QT × Y

ϕ2(t, x, y) := −
(
I − b(y) ⊗ b(y)

|b(y)|2
)
ϕ1(t, x) for (t, x, y) ∈ QT × Y2

ϕ2(t, x, y) := 0 for (t, x, y) ∈ QT × Y1.

(3.29)

Taking ϕ3 = 0 in (2.6) we have
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−
∫

QT×Y

(∂tu1 + ∂tu2) · (∂tϕ1 + ∂tϕ2) dtdxdy

+
∫

QT×Y1

A1
(
ex(u1) + ey(u3)

)
: ex(ϕ1) dtdxdy +

∫
QT×Y2

A2ey(u2) : ey(ϕ2) dtdxdy

−
∫

QT×Y1

(b× u3) · ∂tϕ1 dtdxdy =
∫

QT×Y

f · (ϕ1 + ϕ2) dtdxdy.

Since by (2.13) u1 = u0 + α ξ and by (3.15)

u1 + u2 − u0 = b⊗ b

|b|2 (u1 + u2 − u0),

by the definitions (3.16) of v2 and (2.16) of b̂ we also have

u1(t, x) + u2(t, x, y) = u0(x) + v2(t, x, y) + α(t, x) b̂(y) a.e. (t, x, y) ∈ QT × Y2. (3.30)

Then, using the expressions (3.28) of u3 and (3.29) of ϕ1, ϕ2, and (2.17) we get that

−
∫
QT

⎛
⎝|Y1| +

∫
Y2

|b̂|2 dy

⎞
⎠ ∂tα∂tβ dtdx +

∫
QT

⎛
⎝∫

Y2

v2 · b̂ dy

⎞
⎠ ∂2

ttβ dtdx

+
∫
QT

A∗
1ex(u0 + α ξ) : ex(β ξ) dtdx +

∫
QT

∂tαV ∗
1 : ex(β ξ) dtdx

+
∫

QT×Y2

A2ey(α b̂ + v2) : ey(β b̂) dtdxdy

−
∫
QT

(
w∗ex(α ξ) + m∗ ∂tα

)
∂tβ dtdx =

∫
QT

f ·

⎛
⎝|Y1| · ξ +

∫
Y2

b̂ dy

⎞
⎠β dtdx,

where A∗
1 ∈ L (R3×3

s ), V ∗
1 ∈ R3×3

s , w∗ : R3×3 → R, m∗ are the homogenized quantities defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗
1 Ejk :=

∫
Y1

A1
(
Ejk + ey(wjk)

)
dy, 1 ≤ j, k ≤ 3,

V ∗
1 :=

3∑
j=1

ξj

∫
Y1

ey(ϑj) dy.

w∗Ejk := ξ ·
∫
Y1

b× wjk dy 1 ≤ j, k ≤ 3

m∗ := ξ ·
∫
Y1

b× (V ξ) dy =
3∑

j,k=1

⎛
⎝∫

Y1

A1ey(ϑj) : ey(ϑk) dy

⎞
⎠ ξj ξk.

(3.31)

This can also be written as
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−
∫
QT

⎛
⎝|Y1| +

∫
Y2

|b̂|2 dy

⎞
⎠ ∂tα∂tβ dtdx +

∫
QT

⎛
⎝∫

Y2

v2 · b̂ dy

⎞
⎠ ∂2

ttβ dtdx

+
∫
QT

A∗
1(ex(u0) + ∇xα� ξ) : (∇xβ � ξ) dtdx +

∫
QT

∂tαV ∗
1 : (∇xβ � ξ) dtdx

+
∫
QT

⎛
⎝∫

Y2

A2ey(b̂) : ey(b̂) dy

⎞
⎠αβ dtdx +

∫
QT

⎛
⎝∫

Y2

A2ey(v2) : ey(b̂) dy

⎞
⎠β dtdx

−
∫
QT

(
w∗(∇xα� ξ) + m∗ ∂tα

)
∂tβ dtdx =

∫
QT

f ·

⎛
⎝|Y1| ξ +

∫
Y2

b̂ dy

⎞
⎠β dtdx.

Defining

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M∗ := |Y1| + m∗ +
∫
Y2

|b̂|2 dy

c∗ :=
∫
Y2

A2ey(b̂) : ey(b̂) dy

λ∗ · ζ := w∗(ξ � ζ) − V ∗
1 ξ · ζ, for ζ ∈ R3

μ∗ := |Y1| ξ +
∫
Y2

b̂ dy

A∗
1ζ := A∗

1(ζ � ξ) ξ, for ζ ∈ R3,

(3.32)

and using the representation (3.23) of v2 the previous variational formulation leads us to the following 
distributional equation

∂tt(M∗α) − ∂tt

⎡
⎣ t∫

0

⎛
⎝∫

Y2

∂tK̄(t− s, y) : (b̂(y) � ξ) dy

⎞
⎠ ∂sα(s, x) ds

⎤
⎦

+λ∗ · ∇x(∂tα) − divx

(
A∗

1∇xα
)

+ c∗α−
∫
Y2

A2ey

⎛
⎝ t∫

0

∂sα(s, x) ∂tK̄(t− s, y) ξ ds

⎞
⎠ : ey(b̂) dy

= − ∂tt

⎡
⎣∫
Y2

K̄(t, y) :
(
b̂(y) ⊗ v0(x)

)
dy

⎤
⎦−

∫
Y2

A2ey
(
K̄(t, y) v0(x)

)
: ey(b̂) dy

+μ∗ · f − ∂tt

⎡
⎣ t∫

0

⎛
⎝∫

Y2

K̄(t− s, y) f(s, x) dy

⎞
⎠ · b̂(y) ds

⎤
⎦

−
∫
Y2

A2ey

⎛
⎝ t∫

0

K̄(t− s, y)f(s, x) ds

⎞
⎠ : ey(b̂) dy + divx

(
A∗

1ex(u0)ξ
)
,

which by the definition (2.11) of the kernel K̄ also can be written as
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∂tt

⎡
⎣M∗α−

t∫
0

⎛
⎝∫

Y2

∂tK̄(t− s, y) : (ξ � ξ) dy

⎞
⎠ ∂sα(s, x) ds

⎤
⎦

+λ∗ · ∇x(∂tα) − divx

(
A∗

1∇xα
)

+ c∗α−
∫
Y2

A2ey

⎛
⎝ t∫

0

∂sα(s, x) ∂tK̄(t− s, y) ξ ds

⎞
⎠ : ey(b̂) dy

= − ∂tt

⎡
⎣∫
Y2

K̄(t, y) :
(
ξ ⊗ v0(x)

)
dy

⎤
⎦−

∫
Y2

A2ey
(
K̄(t, y) v0(x)

)
: ey(b̂) dy + μ∗ · f

− ∂tt

⎡
⎣∫
Y2

⎛
⎝ t∫

0

K̄(t− s, y) f(s, x) ds

⎞
⎠ · ξ dy

⎤
⎦−

∫
Y2

A2ey

⎛
⎝ t∫

0

K̄(t− s, y) f(s, x) ds

⎞
⎠ : ey(b̂) dy

+ divx

(
A∗

1ex(u0)ξ
)
.

This provides the homogenized equation (2.15) satisfied by u1(t, x) = u0(x) + α(t, x) ξ.

3.2.2. Case where magnetic field has two directions on the boundary of the inclusion
Finally, assume that b|∂Y2 has at least two independent directions. Due to the regularity of b equality 

(3.4) yields

b(y) × ∂tu1(t, x) = 0 a.e. (t, x, y) ∈ QT × ∂Y2,

which clearly implies (2.10). Moreover, the proof of formula (2.12) is quite similar to the proof of (2.14) in 
the previous case.

It remains to prove the uniqueness of the solution α to equation (2.15). To this end, consider a solution 
ω ∈ W 1,∞(0, T ; L2(Ω)) ∩ L∞(0, T ; H1

0 (Ω)) of equation (2.15) with nul right-hand side, i.e.
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tt

⎡
⎣M∗ω −

t∫
0

K̄1(t− s) ∂sω(s, x) ds

⎤
⎦ + λ∗ · ∇x(∂tω) − divx(A∗

1∇xω)

+ c∗ω −
∫
Y2

A2ey

⎛
⎝ t∫

0

∂sω(s, x) ∂tK̄(t− s, y) ξ ds

⎞
⎠ : ey(b̂) dy = 0 in QT

ω(0, ·) = 0 in Ω.

Then, going back up the former calculations, the functions z1, z2, z3 given respectively from the definitions 
(2.13), (2.14), (3.28) of u1, u2, u3, by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1(t, x) = ω(t, x) ξ,

z2(t, x, y) = −
t∫

0

∂tK̄(t− s, y) ∂sz1(s, x) ds−
(
I − b(y) ⊗ b(y)

|b(y)|2
)
ω(t, x) ξ,

z3(t, x, y) = W(y) ex(z1)(t, x) + V (y) ∂tz1(t, x),

a.e. (t, x, y) ∈ QT × Y2,

are solutions to the homogeneous variational problem (3.8) whose solutions are given by (3.10). Hence, we 
obtain that ω(t, x) = 0 a.e. (t, x) ∈ QT .
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The proof of Theorem 2.2 is now complete.

3.3. Proof of Proposition 2.6

By (3.20) and the series expansion (3.22) of K̄, the scalar function k̄ := K̄ : (ξ ⊗ ξ) is solution to the 
equation

⎧⎪⎪⎨
⎪⎪⎩

∂2
ttk̄ − div (A2∇k̄) = 0 in (0, T ) × Y2

k̄(t, ·) = 0 on (0, T ) × ∂Y2

k̄(0, ·) = 0, ∂tk̄(0, ·) = 1 in Y2,

(3.33)

where A2 is the positive definite symmetric matrix of R3×3 defined by

A2ζ := A2(ζ � ξ) ξ, for ζ ∈ R3.

By a regularization procedure we may put identical unity as test function in the equation (3.33), which 
after an integration by parts leads us to the formula

∂2
tt

⎛
⎝∫

Y2

k̄(t, y) dy

⎞
⎠ =

∫
∂Y2

A2∇k̄ · ndσ(y).

Then, using the estimate of [10, Theorem 4.1]:

A2∇k̄ · n ∈ L∞(0, T ;L2(∂Y2)),

we get that

∂2
tt

⎛
⎝∫

Y2

k̄(t, y) dy

⎞
⎠ ∈ L∞(0, T ).

This combined with definition (2.17) implies that

K̄1(t) =
∫
Y2

∂tk̄(t, y) dy ∈ W 1,∞(0, T ). � (3.34)
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