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In this paper we study the saddle point optimality conditions and Lagrange
duality in multiobjective optimization for generalized subconvex-like functions. We
obtain results which will allow us to characterize the solutions for multiobjective
programming problems from the saddle point conditions and allow us to relate
them to the dual problem solutions which will be adequately defined. We also
define a new dual problem for the multiobjective programming problem with the
special property of being a scalar programming problem. � 2001 Academic Press

1. INTRODUCTION

Lagrange duality is an attractive topic in optimization theory. In the past
few years, several studies have been dedicated to this subject, discussing it

� �within the multiobjective optimization theory framework 1, 2, 5, 9, 11, 12 .
One of the basic questions is how to weaken the assumptions of the known
results, as well as defining adequate dual problems that might facilitate the
search for solutions of multiobjective optimization problems.

The vector optimization problem considered in this paper can be formu-
lated as

VOP Min f xŽ . Ž .
s.t. g x � 0,Ž .

nx � S � � ,

where f : S � � n � � p and g : S � � n � � m.
Let us denote by X the set of feasible points for this problem, that is,

� n Ž . 4X � x � S � � such that g x � 0 .
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There does not exist a unique solution concept for vectorial program-
ming problems such as occurs for scalar programming problems. Amongst
the numerous definitions of solutions for multiobjective optimization prob-
lems which exist in the literature, we will emphasize those we consider the
most important, and those will be the ones used in this work.

ŽDEFINITION 1.1. x � X is said to be an efficient solution a weakly
. Ž .efficient solution of Problem VOP if there exists no other feasible x

Ž . Ž . Ž Ž . Ž ..such that f x 	 f x f x � f x .

Kuhn and Tucker noted that some efficient solutions presented an
undesirable property with respect to the ratio between the marginal profit
of an objective function and the loss of some other. To these solutions,
they introduced the concept of the noninferior proper solution. Subse-

� �quently, Geoffrion 6 modified the concept slightly and defined the
properly efficient solutions for a multiobjective problem as follows.

DEFINITION 1.2. x � X is said to be a properly efficient solution of
Ž .Problem VOP if it is efficient and if there exists a scalar M � 0 such

that, for each i, we have

f x 
 f xŽ . Ž .i i
� M

f x 
 f xŽ . Ž .j j

Ž . Ž . Ž . Ž .for some j such that f x � f x whenever x � X and f x � f x .j j i i

This paper consists of six parts. In Section 2, some basic definitions and
theorems are first introduced. Sections 3 and 4 discuss saddle point
theorems for multiobjective programming problems. Section 5 addresses
the Lagrange duality, and Section 6 introduces a new dual problem for the
multiobjective problem with the special property of being a scalar pro-
gramming problem. Some conclusions are given in Section 7.

2. BASIC RESULTS AND PRELIMINARIES

First, we introduce a few notations and definitions.
Ž .T Ž .T pLet x � x , . . . , x , y � y , . . . , y � � , then1 p 1 p

x � y iff x � y , i � 1, . . . , p;i i

x � y iff x 	 y , i � 1, . . . , p;i i

x 	 y iff x 	 y , i � 1, . . . , p ,i i

with strict inequality holding for at least one i;

x � y iff x � y , i � 1, . . . , p.i i
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If f : S � � n � � p, we denote by f the ith component of f ; i.e.,i
Ž . Ž Ž . Ž ..Tf x � f x , . . . , f x .1 p

� �Yang 15 defined the concept of generalized subconvex-like functions
and provided an alternative theorem for these functions.

DEFINITION 2.1. Let f : S � � n � � p. f is said to be generalized
p Ž .subconvex-like on S if �u � � , u � 0, such that �� � 0, 1 , � x , x � S,1 2

and �� � 0, � x � S, �� � 0 such that3

� u � � f x � 1 
 � f x � � f x .Ž . Ž . Ž . Ž .1 2 3

For these functions was proved the following generalized alternative
� �theorem 15 .

Ž .THEOREM 2.1 Generalized Alternative Theorem . Let S be a nonempty
set in � n and let f : S � � p be a generalized subcon�ex-like function on S.
Then either

Ž . Ž .i f x � 0 has a solution x � S, or
Ž . T Ž . pii w f x � 0 for all x � S, for some w � � , w � 0,

but both alternati�es are ne�er true.

Note 2.1. In the previous theorem, we can suppose that wTe � 1 since
Ž p . Tif not, defining � � w� Ý w , we have that � e � 1, and this � verifiesj�1 j

T Ž .that � f x � 0 � x � S.

Now we show some useful properties of the generalized subconvex-like
functions that will be used subsequently.

LEMMA 2.1. If f is a generalized subcon�ex-like function and M � 0, then
Mf is a generalized subcon�ex-like function with respect to the same point.

p Ž .Proof. If there exists u � � , u � 0, such that �� � 0, 1 , � x , x � S,1 2
and �� � 0, � x � S and �� � 0 such that3

� u � � f x � 1 
 � f x � � f x ,Ž . Ž . Ž . Ž .1 2 3

then for u� � Mu � 0 and �� � M� � 0, Mf is generalized subconvex-like
on S with respect to the same point x .3

LEMMA 2.2. Let f : S � � p be a generalized subcon�ex-like function on
S. Then for all i, j � 1, . . . , p, f � f is a generalized subcon�ex-like functioni j
with respect to the same point.

Proof. If f is generalized subconvex-like, then for any i, j � 1, . . . , p
Ž .there exist u , u � 0 such that �� � 0, 1 , � x , x � S, and �� � 0i j 1 2

� x � S, �� � 0 such that3

� u � � f x � 1 
 � f x � � f xŽ . Ž . Ž . Ž .i i 1 i 2 i 3
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and

� u � � f x � 1 
 � f x � � f x .Ž . Ž . Ž . Ž .j j 1 j 2 j 3

Then, taking u � u � u � 0 we have that f � f is generalized subcon-i j i j
vex-like.

Generalized subconvex-like functions present a special type of irregular-
ity, which no other generalized convex function presents. If f is general-
ized subconvex-like and a � � p, then the function a � f does not have to
be a generalized subconvex-like function, as is shown in the following
example.

Ž . Ž .EXAMPLE 2.1. Let f x, y � x, y , and f be generalized subconvex-like
2 � 4 Ž . Ž . Ž .on S � � 
 0 	 x 	 1, 0 	 y 	 1 . But f x, y 
 1, 1 � x 
 1, y 
 1�

Ž .is not a generalized subconvex-like function on S because for x , y �1 1
1Ž . Ž . Ž .1, 0 , x , y � 0, 1 , and � � there would have to exist a u � 0 and a2 2 2

� � 0 such that �� � 0,

1 1
� u , u � 
 , 
 � � x 
 1, y 
 1 with x , y � S.Ž . Ž . Ž .1 2 3 3 3 3ž /2 2

But this is impossible.

3. EFFICIENCY CONDITIONS

In order to operationalize the concept of solutions for a multiobjective
programming problem we should relate them to familiar concepts. The
most common strategy is to characterize them in terms of optimal solu-

� �tions of appropriate scalar optimization problems 3, 10 . Among the many
Ž .possible ways of obtaining a scalar problem associated with VOP , the

following is known as a scalar weighting problem.

VP Min �T f xŽ . Ž .�

s.t. g x � 0,Ž .
nx � S � � ,

� p p 4where � � LL � � � � �� � 0 and Ý � � 1 .j j�1 j

� �Geoffrion 6 established the following fundamental result.

Ž . Ž .THEOREM 3.1. Let � � 0 � � 0 be fixed. If x is optimal in VP , then x�

Ž . Ž .is properly efficient weakly efficient in VOP .

Assuming that f and g are convex functions and that S is a convex set,
Geoffrion also established the converse of the above theorem. This result
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is based on Gordan’s alternative theorem. Hence by replacing Gordan’s
Žalternative theorem with the Generalized Alternative Theorem Theorem

.2.1 we obtain the following result.

Ž .THEOREM 3.2. Let x be a properly efficient solution in VOP and let
pŽ .f 
 f x be generalized subcon�ex-like on X. Then there exists � � � ,

Ž .� � 0, such that x is optimal in VP .�

Proof. If x is properly efficient, then there exists a scalar M � 0 such
that, for each i � 1, . . . , p, the system

f x � f x ,Ž . Ž .i i

f x �Mf x � f x � Mf x for all j � iŽ . Ž . Ž . Ž .i j i j

admits no solution in X. By Lemma 2.1 and Lemma 2.2 and the General-
ized Alternative Theorem, for each i � 1, . . . , p there exist w i � �, w i � 0,
with Ý p w i � 1, such thatj�1 j

i i i iw f x � w f x � Mf x � w f x � w f x � Mf x ,Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .Ý Ýi i j i j i i j i j
j�i j�i

or equivalently
i if x � M w f x � f x � M w f x , 2Ž . Ž . Ž . Ž . Ž .Ý Ýi j j i j j

j�i j�i

for each i � 1, . . . , p and for all x � X.
Ž .Summing 2 over i yields, after some rearrangement,
p p

i i1 � M w f x � 1 � M w f x ,Ž . Ž .Ý Ý Ý Ýj j j jž / ž /
j�1 i�j j�1 i�j

for all x � X.
iŽ . Ž .Then, taking � � 1 � MÝ w , x is optimal in VP .j i� j j �

The next theorem proves an analogous result for weakly efficient solu-
tions.

Ž .THEOREM 3.3. Let x be a weakly efficient solution in VOP , and let
pŽ .f 
 f x be generalized subcon�ex-like on X. Then there exists � � � ,

Ž .� � 0, such that x is optimal in VP .�

Proof. If x is a weakly efficient solution, then the system

f x 
 f x � 0, i � 1, . . . , p ,Ž . Ž .i i

has no solution at x � X. By the Generalized Alternative Theorem, there
exists � � 0 such that

T� f x 
 f x � 0 � x � X ,Ž . Ž .Ž .
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which implies that

T T� f x � � f x � x � X .Ž . Ž .

Ž .Thus x is the optimal solution for VP .�

We remark that no assumption on the convexity of the set X is made in
the above theorems.

4. SADDLE POINTS CONDITIONS

For scalar mathematical programming the relationships between the
solutions of a constrained scalar programming problem and the points
which fulfill certain conditions known as the saddle point optimality

� �criteria are well known 8 . In this section we extend these results to
multiobjective programming problems. To do this we begin by giving new
definitions of saddle points for the vector case.

n p mŽ .DEFINITION 4.1. x, r, � � � �� �� is said to be a �ector
Ž . Ž .Fritz�John saddle point for Problem VOP if r, � � 0, and the following

inequalities hold �� 
 0 and � x � S:

T T T T T Tr f x � � g x 	 r f x � � g x 	 r f x � � g x . 3Ž . Ž . Ž . Ž . Ž . Ž . Ž .

n p mŽ .DEFINITION 4.2. x, r, � � � �� �� is said to be a �ector
Ž . Ž .Kuhn�Tucker saddle point for Problem VOP if r, � � 0, r � 0, and the

following inequalities hold �� 
 0 and � x � S:

T T T T T Tr f x � � g x 	 r f x � � g x 	 r f x � � g x . 4Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Let us note that Definition 4.1 and Definition 4.2 coincide with the
Fritz�John and Kuhn�Tucker saddle-point definitions if f is a numerical
function.

The above definitions have several advantages over those already exist-
� �ing in the literature 2, 4, 7, 13, 14, 16 . First, the multiplier for the

restrictions is a vector and not a function or a matrix. Second and more
important, the vector saddle point conditions are scalar conditions, not
vector conditions. Thus, it is not necessary to solve any vector problem in
order to find the vector saddle points, which simplifies the task.

Ž .Problem VOP is said to satisfy the generalized Slater constraint
Ž .qualification if there exists a x � X such that g x � 0. We use thisˆ ˆ

constraint qualification to prove the following result that relates vector
Kuhn�Tucker saddle points with vector Fritz�John saddle points.
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Ž .LEMMA 4.1. If x, r, � is a �ector Fritz�John saddle point and the
Ž .generalized Slater constraint qualification is satisfied, then x, r, � is a �ector

Kuhn�Tucker saddle point.

Proof. Let us suppose that r � 0, then the vector Fritz�John saddle
point conditions are

T T T� g x 	 � g x 	 � g x , 5Ž . Ž . Ž . Ž .

Ž .�� 
 0 and � x � S. For � � 0, the inequalities 5 become

T T0 	 � g x 	 � g x , 6Ž . Ž . Ž .
T Ž .� x � S. Therefore, 0 	 � g x for all x � S.

Since the generalized Slater constraint qualification is satisfied, there
TŽ . Ž . Ž .exists a x � S such that g x � 0. Then for this x, � g x � 0. But, by 6 ,ˆ ˆ ˆ ˆ

T Ž .� g x � 0, and this is a contradiction.ˆ
The following result proves that vector Kuhn�Tucker saddle points are

Ž .weakly efficient points for VOP without requiring additional conditions,
as in the scalar case.

Ž .THEOREM 4.1. If x, r, � is a �ector Kuhn�Tucker saddle point, then x is
Ž .weakly efficient for VOP .

Ž . Ž .Proof. If r � 0, by 4 , x, r solves a Kuhn�Tucker saddle point
Ž .problem for the scalar programming problem VP , and thus x is optimalr

Ž .for VP . As r � 0, from Theorem 3.1, x is a weakly efficient point forr
Ž .VOP .

Under a certain convexity condition the following result shows the
reverse of the above theorem.

Ž Ž . .THEOREM 4.2. Let f 
 f x , g be a generalized subcon�ex-like function
Ž .on S, and let x be a weakly efficient solution to VOP . Then there exists

Ž . Ž . Ž .r, � � 0 such that x, r, � is a �ector Fritz�John saddle point for VOP .

Ž .Proof. If x is a weakly efficient solution for VOP then the system

f x 
 f x � 0Ž . Ž .
g x � 0Ž .

has no solution in S, therefore the system

f x 
 f x � 0Ž . Ž .
g x � 0Ž .

has no solution in S.
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p�mŽ . Ž .By Theorem 2.1, there exist r, � � � with r, � � 0 such that

T T Tr f x � � g x � r f x � x � S. 7Ž . Ž . Ž . Ž .
In particular, we have that

T� g x � 0. 8Ž . Ž .
Because x is feasible we also have

T� g x 	 0. 9Ž . Ž .
TŽ . Ž . Ž . Ž .By 8 and 9 we have that � g x � 0. Hence, by 7

T T T T T T Tr f x � � g x � r f x � � g x � r f x � r f x � � g xŽ . Ž . Ž . Ž . Ž . Ž . Ž .
� x � S and �� 
 0, and thus x is a vector Fritz�John saddle point.

From Lemma 4.1 and Theorem 4.2 we have the following.

Ž Ž . .THEOREM 4.3. Let f 
 f x , g be a generalized subcon�ex-like function
Ž .and let x be a weakly efficient solution. Suppose that the Problem VOP
Ž .satisfies the generalized Slater constraint qualification. Then there exists r, �

Ž . Ž .� 0 such that x, r, � is a �ector Kuhn�Tucker saddle point for VOP .

From Theorem 3.1 it is easy to show the following result for properly
efficient solutions.

Ž .THEOREM 4.4. Let x, r, � be a �ector Kuhn�Tucker saddle point with
Ž .r � 0, then x is a properly efficient solution for VOP .

As before, under generalized convexity conditions, we prove the reverse.

THEOREM 4.5. Suppose that x is a properly efficient solution of Problem
Ž . Ž Ž . .VOP . If f 
 f x , g is generalized subcon�ex-like on S and the general-
ized Slater qualification constraint is satisfied, then there exist r � 0 and � 
 0

Ž . Ž .such that x, r, � is a �ector Kuhn�Tucker saddle point for VOP .

Ž .Proof. If x is a properly efficient solution for VOP , the system

f x 
 f x � 0Ž . Ž .i i

f x �Mf x 
 f x 
Mf x � 0 for all j � iŽ . Ž . Ž . Ž .i j i j

g x � 0Ž .
admits no solution in S for each i � 1, . . . , p. Thus there exist r i � � p

i m Ž i i. p iand � � � , with r , � � 0, and Ý r � 1, for each i � 1, . . . , p, suchj�1 j
that

i i if x � M r f x � � g x � f x � M r f x � x � S. 10Ž . Ž . Ž . Ž . Ž . Ž .Ý Ýi j j i j j
j�i j�i
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iŽ . Ž .From 10 , x � x � � g x � 0 for all i � 1, . . . , p. On the other hand,
i Ž .� g x 	 0 for all i � 1, . . . , p. Therefore

i� g x � 0. 11Ž . Ž .

Ž . Ž .Summing over i yields 10 , and by 11 we get

p p
i i1 � M r f x � � g xŽ . Ž .Ý Ý Ýj jž /

j�1 i�j i�1

p p
i i� 1 � M r f x � � g x .Ž . Ž .Ý Ý Ýj jž / ž /

j�1 i�j i�1

iAssuming that r � 1 � MÝ r � 0 for each j � 1, . . . , p and � �j i� j j
Ý p � i, we havei�1

T T T Tr f x � � g x � r f x � � g xŽ . Ž . Ž . Ž .
T T T� r f x � r f x � � g x ,Ž . Ž . Ž .

nfor all x � S and for all � � � with � 
 0.

5. LAGRANGE DUALITY FOR A
MULTIOBJECTIVE PROBLEM

We define the vector-valued Lagrange function with respect to Problem
Ž .VOP as

L x , � � f x � �Tg x e, x , � � S � LL ,Ž . Ž . Ž . Ž .

Ž . p � m T 4where e � 1, . . . , 1 � � and LL � � � � �� � 0, � e � 1 .i
Ž .Let us denote by WW � the set of weakly efficient solutions for the

following vectorial programming problem:

Min L x , �Ž .
s.t. x � S.

Ž . � Ž . T Ž . Ž .4Let 	 � � f x � � g x e with x � WW � .
Ž .For VOP , the corresponding Lagrange dual problem is the following:

DVP Max 	 �Ž . Ž .
s.t. � � LL .

Ž . Ž .Now we prove the classical duality theorems between VOP and DVP .
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Ž .THEOREM 5.1 Weak Duality Theorem . For any x � X and y �
Ž . Ž .� 	 � , we ha�e that y � f x .�� LL

Ž . Ž .Proof. Let y � � 	 � . There exists a � � LL such that y � 	 � .�� LL

Hence, there does not exist an x � S such that

y � f x � �Tg x e. 12Ž . Ž . Ž .

Ž .Since g x � 0 for any x � X and � � 0 for each i � 1, . . . , p, we havei

�Tg x 	 0.Ž .

Ž . Ž . T Ž .If y � f x� for some x� � X, then y � f x� � � g x� e, which contra-
Ž . Ž .dicts 12 . Therefore y � f x for all x � X.

Ž .THEOREM 5.2 Strong Duality Theorem . Let x be a weakly efficient
Ž . Ž Ž . .solution of Problem VOP . Suppose that f 
 f x , g is generalized subcon-

�ex-like on S and that the generalized Slater constraint qualification is satis-
Ž . Ž .fied. Then f x is a weakly efficient solution of Problem DVP .

Proof. As we are under the hypotheses of Theorem 4.3, there exists
T T T TŽ . Ž . Ž . Ž . Ž .r, � � 0, r � 0, such that r f x � � g x 	 r f x � � g x , � x � S.

TŽ . Ž .Since x � S and g x � 0 we have that � g x � 0, and thus

T Tr f x 
 f x � � g x � 0 � x � S. 13Ž . Ž . Ž . Ž .Ž .

Ž .Now we will show that f x is a weakly efficient solution for the vector
optimization problem

TMin f x � � g x � L x , �Ž . Ž . Ž .
s.t. x � S.

If this was not the case, there would exist x � S such that0

Tf x 
 f x � � g x e � 0.Ž . Ž . Ž .0 0

TWe can suppose that r e � 1 and thus that

T Tr f x 
 f x � � g x � 0,Ž . Ž . Ž .Ž .0 0

Ž . Ž . Ž .which contradicts expression 13 . Therefore f x � 	 � .
Ž . Ž .Now, if f x is not a weakly efficient point of Problem DVP , there

Ž . Ž .exists a y� � � 	 � such that f x � y�. Let �� be such that y� ��� LL

Ž . Ž . Ž . Ž .	 �� . Since ��g x 	 0, we have f x � ��g x � y�, which contradicts
Ž . Ž . Ž .y� � 	 �� . So f x is a weakly efficient point of Problem DVP .



OSUNA-GOMEZ, RUFIAN-LIZANA, AND RUIZ-CANALES´ ´ ´472

6. SCALAR LAGRANGE DUALITY FOR A
MULTIOBJECTIVE PROBLEM

Ž .We define the dual problem for VOP as

D Max l r , �Ž . Ž .1
ms.t. � 
 0, � � � ,

Ž . � T Ž . T Ž . 4 pwhere l r, � � INF r f x � � g x : x � S and r � � , r � 0.
This formulation of the Lagrangian dual problem for the vector case

� � Ž .simplifies remarkably those studied up to now 4, 7, 14 , since l r, � is
defined as the infimum of a scalar function.

We have defined the dual problem excluding the case r � 0, since if
r � 0 the objective function f does not appear in the dual problem.

As in the scalar programming problems, the next weak duality theorem
Ž . Ž .is established amongst the VOP and D feasible solutions withoutl

additional hypotheses.

Ž . pTHEOREM 6.1 Weak Duality Theorem . If x � X, r � � , r � 0,0 0 0
m T Ž . Ž .and � � � , � 
 0, then r f x � l r , � .0 0 0 0 0 0

Proof. We have that

l r , � � INF rT f x � � T g x : x � S 	 rT f x � � T g x .Ž . Ž . Ž . Ž . Ž .� 40 0 0 0 0 0 0 0

Ž . T Ž .On the other hand, as g x � 0 and � 
 0, � g x 	 0. Therefore0 0 0 0

l r , � 	 rT x .Ž . Ž .0 0 0 0

From Theorem 6.1, we have the following corollaries.

� T Ž . 4 � Ž . 4COROLLARY 6.1.1. INF r f x : x � X � SUP l r , � : � 
 0 � r � 0.0 0 0

T p mŽ . Ž .COROLLARY 6.1.2. If r f x 	 l r, � , where r � � with r � 0, � � �
Ž .with � 
 0, and x � X, then � is optimal in D and x is weakly efficient inl

Ž .VOP .

Ž .Proof. From Theorem 6.1, we have that for all VOP feasible points
T Ž . Ž .r f x � l r, � .

T T TŽ . Ž . Ž . Ž .If in addition l r, � � r f x , then r f x � r f x , � x � X with r � 0.
Therefore x is an optimal solution for a scalar weighting problem with

Ž .r � 0, and this guarantees that x is weakly efficient in VOP .
TŽ . Ž . Ž .On the other hand, l r, � 	 r f x 	 l r, � , �� � 0. Then � is optimal

Ž .in D .l
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From Corollary 6.1.2 the following result is immediate.
T Ž . Ž .COROLLARY 6.1.3. If r f x 	 l r, � with r � 0, � 
 0, and x � X,

Ž . Ž .then � is optimal in D and x is properly efficient in VOP .l

� Ž . 4 Ž .COROLLARY 6.1.4. If SUP l r, � : � 
 0 � �
 then VOP is infeasi-
ble.

T Ž .Proof. For all x � X, � 
 0, and r � 0, it is verified that r f x �
Ž .l r, � , and then

Tr f x � SUP L r , � : � 
 0 � �
.� 4Ž . Ž .
T Ž .This implies that r f x � �
, for all x � X ; therefore the scalar weight-

ing problem is infeasible. Since the feasible sets of both problems coincide,
Ž .VOP is an infeasible problem.

Up to now no hypotheses have been imposed on the functions of the
problem. For generalized subconvex-like functions we obtain the following
result.

Ž .THEOREM 6.2 Strong Duality Theorem . If x is a weakly efficient point
Ž . Ž Ž . .for VOP and f 
 f x , g is a generalized subcon�ex-like function, then

Ž . Ž .there exist r, � � 0 such that � is an optimal solution for D andl
T Ž . Ž .r f x � l r, � .

Ž . Ž Ž . .Proof. If x is a weakly efficient solution for VOP and f 
 f x , g is
a generalized subconvex-like function, from Theorem 4.2 there exist r and

Ž . Ž .� with r, � � 0, verifying that x, r, � is a vector Fritz�John saddle point
Ž .for VOP ; that is,

T T T T T Tr f x � � g x 	 r f x � � g x 	 r f x � � g xŽ . Ž . Ž . Ž . Ž . Ž .
� x � S, �� 
 0. 14Ž .

By definition,

T Tl r , � � INF r f x � � g x : x � S� 4Ž . Ž . Ž .
T T T T	 r f x � � g x 	 r f x � � g xŽ . Ž . Ž . Ž .

T T� INF r f x � � g x � L r , � .� 4Ž . Ž . Ž .

Ž . Ž .Then l r, � 	 l r, � , �� 
 0, and so � is an optimal solution for the dual
problem.

T Ž . Ž .On the other hand, � g x � 0. By the second inequality in 14 ,

T T Tl r , � � r f x � � g x � r f x .Ž . Ž . Ž . Ž .
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Ž .Finally, up to now we have considered r � 0; if r � 0, 14 becomes

T T T� g x 	 � g x 	 � g x � x � S, �� 
 0.Ž . Ž . Ž .

Ž .From the second of these inequalities, � is an optimal solution for D ,l
T Ž .and from the first inequality we have that � g x � 0, which coincides

T Ž .with r f x .

Without convexity hypotheses we prove the next theorem.

Ž . Ž .THEOREM 6.3 Inverse Duality . Let r � 0, � 
 0, such that l r, � �
T Ž . Ž .r f x for a feasible point x. Then x is weakly efficient for VOP .

Proof. By definition,

T T T Tl r , � � INF r f x � � g x : x � S 	 r f x � � g x .� 4Ž . Ž . Ž . Ž . Ž .
T T TŽ . Ž . Ž . Ž .We are assuming that l r, � � r f x 	 r f x � � g x , and thus 0 	

T T TŽ . Ž . Ž .� g x . Because x is feasible, we have that � g x 	 0. Hence � g x � 0.
Then �� 
 0 we have that

T T T Tr f x � � g x 	 r f x � � g x . 15Ž . Ž . Ž . Ž . Ž .

On the other hand,

T T T T TINF r f x � � g x : x � S � r f x � r f x � � g x .� 4Ž . Ž . Ž . Ž . Ž .

Then for all x � S,

T T T Tr f x � � g x � r f x � � g x . 16Ž . Ž . Ž . Ž . Ž .

Ž . Ž . Ž .From 15 and 16 we have that x, r, � is a vector Kuhn�Tucker saddle
Ž . Ž .point and therefore x is weakly efficient in VOP Theorem 4.1 .

From Theorem 4.4 we have the following result for properly efficient
solutions.

Ž . Ž .THEOREM 6.4 Inverse Duality . If r � 0, � 
 0 such that l r, � �
T Ž . Ž .r f x for x � X, then x is properly efficient in VOP .

7. CONCLUSIONS

In this paper we presented new definitions of saddle point conditions for
vector optimization problems. Using these definitions, which are scalar
conditions, we characterize the solutions of multiobjective programming
problems satisfying a weakened convexity condition. We also defined a
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scalar dual problem for multiobjective programming problems not as-
sumed to be differentiable. Based on these definitions we proved associ-
ated duality theorems which weaken the convexity hypotheses; the func-
tions in the multiobjective programming are assumed to be generalized
subconvex-like functions.
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