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Abstract

In a previous paper, we studied the homogenization of a sequence of parabolic linear Dirichlet problems, when
the coefficients and the domains vary arbitrarily. Here, we improve the convergence result given in this paper by
showing the strong convergence in L2 every time. This is applied to obtain an existence result for control problems
in optimal design written in a relaxed form. The control variables are the material and the shape.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We are interested in the asymptotic behavior of a sequence of parabolic Dirichlet problems when the
coefficients and the open sets where they are posed simultaneously vary. Specifically, for T > 0, � ⊂ RN ,
open, An : � × (0, T ) → RN×N , elliptic and bounded, �n ⊂ � open, and f ∈ L2(0, T ; H−1(�)), let us
consider the homogenization problem

�t yn − div An(x, t)∇yn = f in � × (0, T ),
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y = 0 on (� × {0}) ∪ (�� × (0, T )). (1.1)

We do not introduce any hypotheses about �n (only the fact that they are all contained in �). For An, we
only assume it to be uniformly elliptic, and bounded. As it is usual in the homogenization of Dirichlet
problems in varying domains (see, e.g., [5,6,9–18,26,27]), it is proved in [9] that the limit problem of
(1.1) does not have the same structure. In the place of an equation such as

�t y − div A(x, t)∇y = f in � × (0, T ),

we find a bounded and elliptic matrix A, a nonnegative measure � and a positive and bounded �-measurable
function F, such that the limit equation is

�t y − div A(x, t)∇y + F(x, t)y� = f in � × (0, T ). (1.2)

The measure � vanishes on the sets of capacity zero, and then the functions in H 1
0 (�) have a representative

which is well defined for it. However, it is not in general in H−1(�), and not even a Radon measure. So,
Eq. (1.2) does not hold in general in the sense of the distributions. Thus, we will prefer to write it in a
variational form better than as a partial differential equation.

The above result is closely related to the fact that a control problem like

min
�̃⊂� open

∫
�

|y − yd |2 dx

{
�t y − �y = f in �̃ × (0, T ),

y = 0 on (� × {0}) ∪ (�� × (0, T )),

with yd in L2(�), and f in L2(0, T ; H−1(�)), does not have a solution in general.
At the place of (1.1), we will prefer to consider the problem

yn ∈ L2(0, T ; H 1
0 (�) ∩ L2

�n
(�)), yn(x, 0) = 0 a.e. in �,

〈�t yn, v〉 +
∫

�
An(x, t)∇yn∇v dx +

∫
�

Fn(x, t)ynv d�n = 〈f, v〉 in D′(0, T ),

∀v ∈ L2(0, T ; H 1
0 (�) ∩ L2

�n
(�)), (1.3)

where An and f are as in (1.1), �n is a sequence of nonnegative Borel measures which vanish on the sets
of capacity zero, and Fn are in L∞

�n
(�), uniformly positive, and bounded. Following Dal Maso and Mosco

[16], we remark that if �n is a sequence of open sets contained in �, then, defining �n as

�n(B) =
{+∞ if Cap(B ∩ (�\�n), �) > 0,

0 if Cap(B ∩ (�\�n), �) = 0,
∀B ⊂ � Borel,

and, e.g., Fn = ��n
, problem (1.1) is equivalent to (1.3), and so (1.3) generalizes (1.1).

The homogenization problem (1.1) has been studied in [9] (see also [5,17], for elliptic problems, and [6]
for nonlinear parabolic problems where the coefficients do not depend on the time), where the existence
of a limit problem is proved (for a subsequence), which has the same structure as (1.3). The convergence
of yn is proved to hold strong in L2(� × (0, T )) and weak in L2(0, T ; H 1

0 (�n)). In the present paper, let
us also show that for every t ∈ [0, T ], yn(., t) converges strongly in L2(�). As an application of these
results, we prove the existence of solutions for control problems in the coefficients and the domains.
These problems must be written in a relaxed form. In other cases, it is well known that a solution does
not exist in general (see, e.g., [3,7,22]). We refer to [1,3,4,7,8,21,22,24] for the study of control problems
in optimal design.
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2. Notations

We denote by � ⊂ RN a bounded open set, by QR , R > 0, the cylinder QR = � × (0, R), and by QS
R ,

0 < R < S, the cylinder QR = � × (R, S).
For a measure �̂ in QR , we denote by L

p

�̂ (QR), 1�p� + ∞, the usual Lebesgue spaces relatives to �̂.
If �̂ is the Lebesgue measure, we write Lp(QR). Analogously, for a measure � in �, we use the notations
L

p
��, Lp(�).
For a normed space X, x ∈ X, x′ ∈ X′ (the dual space of X), we denote by 〈x′, x〉x′,x the duality

product between x′ and x. When the spaces are understood, we just write 〈x′, x〉.
For every B ⊂ �, Cap(B, �) denotes the capacity of B (in �), which is defined as the infimum of∫

�
|∇u|2 dx

over the set of u ∈ H 1
0 (�) such that u�1 a.e. in a neighborhood of B.

A function u : � → R is said to be quasi-continuous if for every � > 0 there exists N ⊂ �, with
C(N, �) < �, such that the restriction of u to �\N is continuous. It is well known that every function
u ∈ H 1

0 (�) has a quasi-continuous representative (see [19,20,30]). We always identify u with its quasi-
continuous representative.

A set � ⊂ � is said to be quasi-open, if for every � > 0 there exists N with C(N, �) < � such that �∪N

is open.
We denote by M2

0(�) the class of all nonnegative Borel measures which vanish on the sets of capacity
zero and satisfy

�(B) = inf{�(�) : � quasi-open, B ⊆ � ⊆ �}, ∀B ⊂ � Borel.

For a measure � ∈ M2
0(�), we denote by �̂ the measure in QT defined by �̂ = � ⊗ dt.

Definition 2.1. For T > 0, and two constants � > � > 0, we denote by M
�
�(QT ) (see [23]) the set of all

the matrices A in L∞(QT )N×N , such that

(i) A(x, t)����|�|2, ∀� ∈ RN , a.e. (x, t) ∈ QT .
(ii) A−1(x, t)����−1|�|2, ∀� ∈ RN , a.e. (x, t) ∈ QT .

We also denote by F
�
�(QT ) the set of pairs (F, �) such that � ∈ M2

0(�), F belongs to L∞
�̂ (QT ), and

��F(x, t)��, �̂-a.e. in QT . (2.4)

Remark 2.2. We recall (see [23]) that (ii) implies

(iii) |A(x, t)|��, a.e. (x, t) ∈ QT .

Reciprocally, if A satisfies (i) and (iii), then

A−1(x, t)���
�

�2 |�|2, ∀� ∈ RN, a.e. (x, t) ∈ QT .
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3. Homogenization results

We recall in this section the following compactness result, which gives the homogenization of (1.3)
(see also [5,18], for the case of elliptic equations, and [6] for the case of nonlinear parabolic problems
with coefficients independent of the time variable.

Theorem 3.1. For T > 0, � > � > 0, and two sequences An ∈ M
�
�(QT ) and (Fn, �n) ∈ F

�
�(QT ), there

exist a subsequence of n, still denoted by n, A ∈ M
�
�(QT ) and (F, �) ∈ F

�
�(QT ), such that for every

distribution f ∈ L2(0, T ; H−1(�)), the solution yn of (1.3) converges weakly in L2(0, T ; H 1
0 (�)) and

strongly in L2(QT ) to the unique solution y of

y ∈ L2(0, T ; H 1
0 (�) ∩ L2

�(�)), y(x, 0) = 0 a.e. in �,

〈�t y, v〉 +
∫

�
A(x, t)∇y∇v dx +

∫
�

F(x, t)yv d� = 〈f, v〉 in D′(0, T ),

∀v ∈ L2(0, T ; H 1
0 (�) ∩ L2

�(�)). (3.5)

The matrix A coincides with the H-limit of An (see, e.g., [23,25,28]), and then, it does not depend on
(Fn, �n). The measure � can be chosen (note that only the product F� is uniquely defined) as the unique
element of M2

0(�) (see [15]), such that the unique solution wn of

wn ∈ H 1
0 (�) ∩ L2

�n
(�),∫

�
∇wn∇v dx +

∫
�

wnv d�n =
∫

�
wnv dx,

∀v ∈ H 1
0 (�) ∩ L2

�n
(�)

converges weakly in H 1
0 (�) to the unique solution w of

w ∈ H 1
0 (�) ∩ L2

�(�),∫
�

∇w∇v dx +
∫

�
wv d� =

∫
�

wv dx,

∀v ∈ H 1
0 (�) ∩ L2

�(�), (3.6)

and then, it can be chosen independently of An and Fn.

Let us improve the above result by showing the following:

Proposition 3.2. In Theorem (3.1), we also have

yn(., t) → y(., t) in L2(�), ∀t ∈ [0, T ]. (3.7)

Proof. Let t be in [0, T ]; there is nothing to prove t = 0. So, we can assume t ∈ (0, T ]. Moreover, it
is not restrictive to assume that yn and y are defined in QS for some S > T , and that Theorem 3.1 holds
with T replaced by S. For this, it will be enough to extend An, and Fn to QS .
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For � > 0, we consider h ∈ (0, min{t/2, (S − t)/2}) such that

‖∇y‖
L2(Qt+2h

t−2h)
+ ‖y‖

L2
�̂
(Qt+2h

t−2h)
+ �

�2 ‖f ‖L2(t−h,t+h;H−1(�)) < �. (3.8)

Since the solutions yn of (1.3) are in C0([0, S]; L2(�)), for every n ∈ N , there exists hn ∈ (0, h)

such that∥∥∥∥yn(., t) − 1

2hn

∫ t+hn

t−hn

yn(., s)

∥∥∥∥
L2(�)

< �. (3.9)

Using (1.3), for every n ∈ N , and a.e. (r, s) ∈ (t − h, t + h)2, we have〈
�yn

�r
(x, r), yn(., r) − yn(., s)

〉
(H 1

0 (�)∩L2
�n

(�))′,H 1
0 (�)∩L2

�n
(�)

+
∫

�
An(x, r)∇yn(x, r)∇(yn(x, r) − yn(x, s)) dx

+
∫

�
Fn(x, r)yn(x, r)(yn(x, r) − yn(x, s)) d�n

= 〈f, yn(., r) − yn(., s)〉H−1(�),H 1
0 (�).

Integrating in r ∈ (q, s), for q ∈ (t − h, s), or in r ∈ (s, q), for q ∈ (s, t + h), we get∫
�

|yn(x, q) − yn(x, s)|2 dx��‖∇yn‖L2(Qt+h
t−h)

‖∇(yn − yn(., s))‖L2(Qt+h
t−h)

+ �‖yn‖L2
�n

(Qt+h
t−h)

‖yn − yn(., s)‖L2
�n

(Qt+h
t−h)

+ ‖f ‖L2(t−h,t+h;H−1(�))‖∇(yn − yn(., s))‖L2(Qt+h
t−h)

,

for a.e. (q, s) ∈ (t − h, t + h)2. Integrating in (q, s) ∈ (t − hn, t + hn) × (t − h, t + h), and dividing by
4hnh we obtain

1

4hnh

∫ t+hn

t−hn

∫ t+h

t−h

∫
�

|yn(x, q) − yn(x, s)|2 dx ds dq

�(�‖∇yn‖L2(Qt+h
t−h)

+ ‖f ‖L2(t−h,t+h;H−1(�)))

×
(

1

2h

∫ t+h

t−h

∫ t+h

t−h

∫
�

|∇(yn(x, s) − yn(x, r))|2 dx ds dr

)1/2

+ �‖yn‖L2
�n

(Qt+h
t−h)

(
1

2h

∫ t+h

t−h

∫ t+h

t−h

∫
�

|yn(x, s) − yn(x, r)|2 d�n ds dr

)1/2

�
√

2(�‖∇yn‖L2(Qt+h
t−h)

+ �‖yn‖L2
�n

(Qt+h
t−h)

+ ‖f ‖L2(t−h,t+h;H−1(�)))

× (‖∇yn‖L2(Qt+h
t−h)

+ ‖yn‖L2
�n

(Qt+h
t−h)

). (3.10)
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Now, for 	 ∈ D(t −2h, t +2h), 	�0, 	=1 in (t −h, t +h), we take the application (x, t) → yn(x, t)	(t)

as test function in (1.3), and the application (x, t) → y(x, t)	(t) as test function in (3.5). Using then that
yn converges to y strongly in L2(QS) and weakly in L2(0, S; H−1(�)), we have∫

QS

An∇yn∇yn	 dx dt +
∫

QS

Fny
2
n	 d�n dt = 1

2

∫
�

y2
n

d	

dt
dx dt + 〈f, yn	〉H−1(�),H 1

0 (�)

→ 1

2

∫
�

y2 d	

dt
dx dt + 〈f, y	〉H−1(�),H 1

0 (�)

=
∫

QS

A∇y∇y	 dx dt +
∫

QS

Fy2	 d� dt .

So, using the properties of An, Fn, A, and F, we get the following estimate to the right-hand side of (3.10):

lim sup
n→∞

(‖∇yn‖L2(Qt+h
t−h)

+ ‖yn‖L2
�n

(Qt+h
t−h)

)�
�

�
(‖∇y‖

L2(Qt+h
t−h)

+ ‖y‖
L2

�(Q
t+h
t−h)

). (3.11)

Let us now consider the inequality

‖yn(., t) − y(., t)‖L2(�)�
∥∥∥∥yn(, t) − 1

2hn

∫ t+hn

t−hn

yn(., q) dq

∥∥∥∥
L2(�)

+
∥∥∥∥ 1

4hnh

∫ t+hn

t−hn

∫ t+h

t−h

(yn(., q) − yn(., s)) ds dq

∥∥∥∥
L2(�)

+
∥∥∥∥ 1

2h

∫ t+h

t−h

(yn(., s) − y(., s)) ds

∥∥∥∥
L2(�)

+
∥∥∥∥ 1

2h

∫ t+h

t−h

y(., s) ds − y(., t)

∥∥∥∥
L2(�)

.

From the strong convergence in L2(QS) of yn to y, the Cauchy–Schwartz inequality, (3.8)–(3.11), we
can pass to the limit in this inequality to get

lim sup
n→∞

‖yn(., t) − y(., t)‖L2(�)�� +
√

2�3

�2 �2 +
∥∥∥∥ 1

2h

∫ t+h

t−h

y(., s) ds − y(., t)

∥∥∥∥
L2(�)

.

In this inequality h can be chosen as small as we want, since u belongs to C0([0, S]; L2(�)). We can then
pass to the limit when h tends to zero to obtain

lim sup
n→∞

‖yn(., t) − y(., t)‖L2(�)�� +
√

2�3

�2 �2, ∀� > 0,

and then (3.7). �
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4. Existence of solution for optimal design problems

In this section, we investigate the existence of solution for the following control problem:

min
�̃∈O,A∈A

J (y)

{
�t y − div A(x, t)∇y = f in �̃ × (0, T ),

y = 0 on (�̃ × {0}) ∪ (��̃ × (0, T )),
(4.12)

where f belongs to L2(0, T ; H 1
0 (�)), J is a functional in L2(0, T ; H 1

0 (�)) ∩ C0([0, T ]; L2(�)), O is
composed by open subsets of �, and A is a subset of M

�
�(QT ). This type of problems arise in the

optimization of materials (represented by the matrix A) and shapes (represented by the open set �̃). It is
well known that a problem like (4.12) has not a solution in general (see, e.g., [3,7,22]), and then, it is
necessary to take a relaxation. In fact, because from Theorem 3.1, it is problem (3.5) which is stable by
homogenization, it is better to replace (4.12) by

min
(A,(F,�))∈E J (y)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y ∈ L2(0, T ; H 1
0 (�) ∩ L2

�(�)), y(x, 0) = 0, a.e. in �,

〈�t y, v〉 + ∫
� A(x, t)∇y∇v dx

+ ∫
� F(x, t)yv d� = 〈f, v〉 in D′(0, T ),

∀ v ∈ L2(0, T ; H 1
0 (�) ∩ L2

�(�)),

(4.13)

with E a subset of M�
�(QT ) × F

�
�(QT ). Using the direct method of the calculus of variations, Theorem

3.1 and Proposition 3.2 can be immediately proved.

Theorem 4.1. For T > 0, � > � > 0, let E be a subset of M�
�(QT ) × F

�
�(QT ) stable by homogenization,

i.e., such that the limit of a sequence of problems like (1.3), with (An, (Fn, �n)) ∈ E, is of the form (3.5),
with (A, (F, �)) ∈ E, and let J : L2(0, T ; H 1

0 (�)) ∩ C0([0, T ]; L2(�)) → R be a functional which is
semicontinuous in the following sense:

For every sequenceyn ∈ L2(0, T ; H 1
0 (�))∩C0([0, T ]; L2(�)), which is bounded inL2(0, T ; H 1

0 (�))∩
L∞(0, T ; L2(�)), and converges to y ∈ L2(0, T ; H 1

0 (�)) ∩ C0([0, T ]; L2(�)), weakly in L2(0, T ;
H 1

0 (�)), strongly in L2(QT ), and also yn(., t) converges strongly in L2(�) to y(., t), for every t ∈ [0, T ],
we have

lim inf
n→∞ J (yn)�J (y).

Then, for every f ∈ L2(0, T ; H−1(�), problem (4.13) has at least a solution.

As examples of functionals J in the conditions of Theorem 4.1, we have

y →
∫

�
|y(x, T ) − yd |2 dx, yd ∈ L2(�),

y →
∫

Qt

|y(x, T ) − yd |2 dx dt, yd ∈ L2(QT ),

y →
∫

Qt

|∇(y(x, T ) − yd)|2 dx dt, yd ∈ L2(0, T ; H 1
0 (�)),

with respect to subsets E in the conditions of Theorem 4.1. Thanks to Theorem 3.1, we can take E =
M

�
�(QT ) × F

�
�(QT ), but it is too large. In practice we only dispose of a few of materials and shapes.
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Moreover, the question remains whether problem (4.13) is a relaxation of problem (4.12) or not. In this
sense, the following definition is useful:

Definition 4.2. Given a subset E of M�
�(QT )×F

�
�(QT ), we define the closure by homogenization of E,

and we denote it by CH(E), as the set of pairs (A, (F, �)) ∈ M
�
�(QT ) × F

�
�(QT ), such that there exists

(An, (Fn, �n)) ∈ E, which satisfies that for every f ∈ L2(0, T ; H−1(�)), the unique solution of (1.3)
converges weakly in L2(0, T ; H 1

0 (�)) to the unique solution of (3.5).

From Theorem 3.1, it is clear that the closure by homogenization of a set E is stable by homogenization,
and then, it is in the conditions of Theorem 4.1. We easily prove the following:

Proposition 4.3. For T > 0, � > � > 0, let E be a subset of M�
�(QT ) × F

�
�(QT ), and let J : L2(0, T ;

H 1
0 (�)) ∩ C0([0, T ]; L2(�)) → R be a functional which satisfies the following continuity property:
For every sequence yn∈L2(0, T ; H 1

0 (�))∩C0([0, T ]; L2(�)), which is bounded in L2(0, T ; H 1
0 (�))∩

L∞(0, T ; L2(�)), and converges toy∈L2(0, T ; H 1
0 (�))∩C0([0, T ]; L2(�)), weakly inL2(0, T ;H 1

0 (�)),
strongly in L2(QT ), and also yn(., t) converges strongly in L2(�) to y(., t), for every t ∈ [0, T ], we have

lim
n→∞ J (yn) = J (y).

Then, for every distribution f ∈ L2(0, T ; H−1(�)), we get a relaxation of problem 4.13, just by replacing
E by CH(E).

Remark 4.4. The functional

y →
∫

Qt

|∇(y(x, T ) − yd)|2 dx dt, yd ∈ L2(0, T ; H 1
0 (�))

satisfies the assumptions of Theorem 4.1 but not those of Proposition 4.3.

Remark 4.5. Since in Theorem 3.1 A is the homogenized matrix of the sequence An, it is clear that
for E ⊂ M

�
�(QT ) × F

�
�(QT ), the projection of CH(E) on M

�
�(QT ) coincides with the closure by H-

convergence (H-closure) (see, e.g., [23,25,28]) of the projection of E on M
�
�(QT ).

From Proposition 4.3, in order to obtain a relaxation of (4.12), we need to obtain the closure by
homogenization of the set of pairs �̃ ∈ O, A ∈ A, where O is composed of open subsets of �, and A is
contained in M

�
�(QT ). Here, we identify an open set �̃ ⊂ �, with the pair (F, �) ∈ F

�
�(QT ), given by

�(B) =
{+∞ if Cap(B ∩ (�\�̃), �) > 0,

0 if Cap(B ∩ (�\�̃), �) = 0,
∀B ⊂ � Borel,

and F = �+�
2 ��̃.

When E is of the form

E = A × {�̃ : �̃ ⊂ � open},
with A a subset of M�

�(QT ) composed of constant matrices with respect to the time variable, we can use
the results which appear in [2] to prove

CH(E) = Ā × {(F, �) ∈ F�
�(QT ) : F(x, t) constant with respect to t},
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with Ā the H-closure of A. So, in this case the relaxation of problem (4.12) is reduced to the calculus of
the H-closure of A (which is only known to a very few choices of sets A, see, e.g., [1,21,29]). Indeed,
because for � ∈ M2

0(�), and F ∈ L∞
� (�) constant with respect to the time variable, the product F� also

gives a measure in � ∈ M2
0, for the above choice of E, a relaxation of (4.13) is given by

min
(A,�)∈Ā×M2

0(�)

J (y)

⎧⎪⎨
⎪⎩

y ∈ L2(0, T ; H 1
0 (�) ∩ L2

�(�)), y(x, 0) = 0 a.e. in �,

〈�t y, v〉 + ∫
� A(x)∇y∇v dx + ∫

� yv d� = 〈f, v〉 in D′(0, T ),

∀ v ∈ L2(0, T ; H 1
0 (�) ∩ L2

�(�)).
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