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Abstract

We develop a semi-discrete particle method for Volterra dislocation currents in which the particles, or
monopoles, represent an element of line and carry a Burgers vector. The monopoles move according to
mobility kinetics driven by elastic and applied forces. The divergence constraint of Volterra dislocation
currents is enforced weakly through mesh-free interpolation and an explicit linear connectivity, or ’sequence’,
between the monopoles need not be defined. In this sense, the method is ’line-free’, i. e., it sidesteps
the need to track dislocation lines. This attribute offers significant computational advantages in terms
of simplicity, robustness and efficiency, especially as regards the tracking of complex dislocation patterns,
including topological transitions. We illustrate the range and scope of the method, by means of an example
of application concerned with the plastic hardening of nano-sized grains under monotonic loading.

Keywords: Dislocation dynamics, Dislocation transport, Discrete dislocations, Method of monopoles,
Particle methods

1. Introduction

Particle methods have attained considerable accep-
tance for the discretization and numerical solution
of transport problems. For the most part, particle
methods have been developed for scalar densities such
as mass, concentration and heat [1, 2]. In this setting,
particles maybe regarded as Dirac-delta approxima-
tions of otherwise continuous measures, or densities.
However, there are many transport problems of in-
terest where the measure being transported is con-
centrated on lines or surfaces and may carry a vector
’charge’. Such measures are often closed, i. e., have
no boundary and, therefore, satisfy divergence or curl
constraints. A case in point concerns Volterra dislo-
cations, whose Nye measure is concentrated on lines

∗Corresponding author
Email address: ortiz@caltech.edu (M. Ortiz)

that carry a conserved vector charge, the Burgers vec-
tor. These types of measures are collectively referred
to as currents. In contrast to scalar measures, par-
ticle methods for general currents is comparatively
much less developed.20

Deffo et al. [3] have developed a particle method
for Volterra dislocation currents in which the parti-
cles, or monopoles, represent an element of line and
carry a Burgers vector. The monopoles move accord-
ing to mobility kinetics driven by elastic and applied25

forces. The divergence constraint of Volterra dislo-
cation currents is enforced weakly through mesh-free
interpolation. The fundamental difference with tra-
ditional approximation schemes based on segments
is that an explicit linear connectivity, or ’sequence’,30

between the monopoles need not be defined. In-
stead, the monopoles move as an unstructured sys-
tem of particles subject to the weak divergence con-
straint. In this sense, the method is ’line-free’, i. e.,
it sidesteps the need to track dislocation lines. This35
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attribute offers significant computational advantages
in terms of simplicity, robustness and efficiency, espe-
cially as regards the tracking of complex dislocation
patterns, including topological transitions.

The formulation of Deffo et al. [3] is fully discrete,
in the sense that both space and time are jointly dis-
cretized. In addition, time discretization is effected
using optimal transport tools such as the Wasser-
stein distance. In the present work, we reformulate
the method is semi-discrete form, i. e., we discretize
the dislocation transport problem in space but not
in time. By keeping time continuous, the resulting
semi-discrete theory is analytically simple and reveals
more clearly the structure of the monopole discretiza-
tion. In addition, the semi-discrete formulation lends
itself to the application of general time integration
schemes, explicit and implicit. We illustrate these
trade-offs, and the range and scope of the method,
by means of an example of application concerned
with the plastic hardening of nano-sized grains un-
der monotonic loading.

2. Volterra dislocations

2.1. The Nye dislocation density

We specifically consider a distribution of Volterra
dislocations, characterized by a collection of ori-
ented dislocation lines described locally by paramet-
ric equations x(s) in terms of a local parameter s, not
necessarily the arc-length, and carrying a local Burg-
ers vector b(s). A rigorous mathematical treatment
of dislocation densities as currents may be found in
[4, 5]. To every element of dislocation line we can
associate a differential of Nye dislocation density

dαij(s) = bi(s)dxj(s) = bi(s)tj(s) ds, (1)

where
ti(s) = x′i(s) (2)

is tangent to the dislocation line. We note that rep-
resentation (1) is invariant under reparameterization
of the dislocation line. The dislocation line sepa-
rates regions of constant displacement jump within
slip surfaces and, therefore, the Nye dislocation den-
sity α is closed or divergence-free. This closeness

or divergence-free condition in turn implies that the65

dislocation line has no boundary, i. e., dislocations
cannot terminate in the bulk but must instead form
closed loops or networks or exit through the bound-
ary. It also implies Frank’s rule for dislocation junc-
tions (cf., e. g., [6]).70

2.2. The energy of Volterra dislocations

Formally, the elastic energy of a dislocation density
α in a homogeneous infinite solid is

E(α) = min
β

∫
W (β) dV, (3a)

subject to: βik,lelkj = αij , (3b)

where β is the elastic distortion of the lattice,

W (β) =
1

2
cijklβijβkl (4)

is the elastic strain energy, with elastic moduli cijkl =
cklij = cjikl = cijlk, eijk is the Levi-Civita permu-
tation tensor, dV is the element of volume and the
integral extends to the infinite domain of the solid.75

In areas of the solid free of dislocations, β can be
identified with the local displacement gradient ∇u.

As is well-known, the elastic energy (3a) diverges
logarithmically for Volterra dislocations. In order to
eliminate this divergence, proper account needs to be
taken of the structure of the dislocation core. A sim-
ple core model, and attendant energy regularization
threreof, can be formulated by spreading, or mollify-
ing, a Volterra dislocation density α into [3]

αε(x) =

∫
φε(x− x′) dα(x′) ≡ φε ∗α(x), (5)

where ∗ denotes the convolution operator and

φε(x) =
1

4πε2r
e−|x|/ε, (6)

is a mollifier that fits the dislocation lines with a core
of size ε. The regularized energy of a Volterra dislo-
cation density α is, then,

Eε(α) = E(αε), (7)

with E(αε) given by (3a). We note that Eε(α) is
now finite since E(αε) is evaluated for a dislocation
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density αε with a finite core size ε. A derivation of
this core regularization from strain-gradient elasticity
may be found in [3]. For isotropic linear elasticity, the
energy (7) specializes to [6, 3]

Eε(α) =

− µ

4π

∫

Γ

∫

Γ

Sεε (b× b′) · (t× t′) ds ds′

+
µ

8π

∫

Γ

∫

Γ

Sεε (b · t)(b′ · t′) ds ds′+

µ

8π(1− ν)

∫

Γ

∫

Γ

(b× t) · T εε · (b′ × t′) ds ds′,

(8)

where µ is the shear modulus, ν Poisson’s ratio,

Sεε(x,x′) =
2ε− (r + 2ε)e−r/ε

2εr
, (9a)

Rεε(x,x′) =
r2 + 4ε2 − ε(r + 4ε)e−r/ε

r
, (9b)

T εεij (x,x′) =
∂2Rεε

∂xi∂x′j
, (9c)

and r = |x− x′|.

2.3. Dislocation transport

Next we consider a collection of moving Volterra
dislocation lines described by parametric equations
x(s, t) and carrying a local Burgers vector b(s, t),
where s is a fixed local parameter, e. g., the arc-length
measured over a reference configuration of the dislo-
cation line, and t denotes time. Moving dislocations
satisfy the transport equation (cf. [7], eqs. (32.2) and
(38.4))

α̇ij − ejlkemnk(vmαin),l = 0, (10)

where v(s, t) is the dislocation velocity. We note that,
in view of the representation (1), only the component
of v(s, t) perpendicular to the dislocation line has an
effect on the dislocation density, as expected. We
also note that, for Volterra dislocations concentrated
on lines, eq. (10) needs to be understood distribu-
tionally, or in a weighted sense. Formally taking the
divergence of the transport equation (10) gives

α̇ij,j = ejlkemnk(vmαin),lj = 0, (11)

which shows that dislocation transport is divergence-
preserving. In particular, if the dislocation density
is divergence-free initially, it subsequently remains so
for all time. Differentiating (2) with respect to time,
we obtain the identity

ṫi(s, t) = v′i(s, t), (12)

which governs the local reorientation and stretch-
ing of the dislocation line. The identity sets forth
a non-holonomic kinematic constraint that ties the
rate of change of the elements of line t(s, t), including
stretching and reorientation, to the velocity v(s, t) of
the dislocation line. It is also readily verified [3], us-
ing representation (2), that, for continuous evolutions
in the absence of topological transitions, the kine-
matic constraint (12) is locally equivalent the trans-
port equation (10) provided that, in addition,

ḃi(s, t) = 0, (13)

which is a statement of conservation of Burgers vec-80

tor.

2.4. Configurational forces

A classical calculation shows that the Peach-Köhler
force is the configurational driving force for v(s, t).
The standard derivation may be adapted to account
for the core regularization (5). To this end, we be-
gin by enforcing the constraint (3b) by means of La-
grange multipliers, leading to the Lagrangian

Lε(β, χ;α) =∫ (
W (β) + χij(βik,lelkj − αεij)

)
dV.

(14)

The corresponding stationarity equations are

σεik = χεij,lelkj , (15a)

αεij = βεik,lelkj , (15b)

where βε and χε are the elastic distortion and La-
grange multiplier at equilibrium, and

σεik =
∂W

∂βik
(βε) = cikjlβ

ε
jl (16)
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is the stress field at equilibrium. We note that (15a)
identifies χε as the Airy stress function. Taking rates
in (3a) and using (3b) and (15) further gives

Ėε =

∫
σεikβ̇

ε
ik dV =

∫
χεij dα̇

ε
ij , (17)

which shows that the Airy stress function χε is the
configurational force driving the dislocation density
αε. Further inserting the transport equation (10)
into (17) and using (15a), we obtain

Ėε =

∫
χεijdα̇

ε
ij =

∫
χεij(φ

ε ∗ dα̇ij) =

∫
(φε ∗ χεij) dα̇ij =

∫
(φε ∗ χεij),l ejlkemnkvm dαin =

∫
(φε ∗ σεik)emnkvm dαin =

∫
σεεikenmkvm dαin =

∫

Γ

σεεikenmkvmbitn ds =

∫

Γ

f εεmvm ds, (18)

where
σεεik = φε ∗ σεik = φε ∗ φε ∗ σik (19)

and
f εεm = σεεikenmkbitn (20)

are a twice-regularized equilibrium stress and Peach-
Köhler force per unit dislocation length.

2.5. Dislocation mobility

Assuming Onsager kinetics, the dislocation motion
is then governed by a mobility law of the type

vi = Diψ
∗(f εε), (21)

where ψ∗(f) is a dual kinetic potential and Di de-
notes partial differentiation. Alternatively, we may
express the mobility law in inverse form as

f εεi = Diψ(v), (22)

where the kinetic potential ψ(v) is the Legendre
transform of ψ∗(f). A simple example of kinetics
is supplied by a linear mobility law, in which case

ψ∗(f εε) =
M

2
|f εε|2, (23)

where M is the dislocation mobility. For instance,
if the rate-limiting mechanism is phonon drag, then
M = 1/B, where B the phonon drag coefficient [6].

2.6. Rate problem
Eq. (26), together with (20) define a rate problem

for the dislocation velocity v(s, t) at time t, given the
dislocation geometry x(s, t) at the same time. The
rate problem can be expressed variationally by means
of the energy-dissipation functional

F ε(v(t);x(t)) =

∫

Γ

ψ(v(s, t)) ds+

∫

Γ

(
f εεm(s,x(t)) + f ext

m (s, t)
)
vm(s, t) ds,

(24)

to be minimized with respect to v(s, t) at given
x(s, t). In writing (24), we denote by x(t) and v(t)
the functions x(·, t) and v(·, t) defined over the entire
dislocation line Γ. We also allow for an externally ap-
plied Peach-Koehler force of the form

f ext(s, t) =
(
σext(t)b(s, t)

)
× t(s, t), (25)

where σext(t) is a time-dependent applied stress.90

The Euler-Lagrange equations corresponding to
the rate-functional (24) follow as

f εεi (s,x(t)) + f ext
i (s, t) = Diψ(v(s, t)), (26)

which extends the mobility law (26) to the case of
applied stresses. The requirement that eq. (26) hold
for all times defines an evolution problem for the dis-
location geometry x(t).

3. Monopole discretization95

A natural and computationally convenient spatial
discretization of the dislocation measure is as a linear
combination of dislocation monopoles [3], i. e.,

α(t) =

M∑

a=1

ba(t)⊗ ξa(t) δxa(t), (27)

where xa(t) is the position of monopole a at time
t, ba(t) its Burgers vector, ξa(t) its element of
line, δxa(t) is the Dirac-delta distribution centered at
xa(t), and M is the number of dislocation monopoles,
cf. Fig. 1. We may regard each monopole as a parti-100

cle carrying a dyad composed of a Burgers vector and
an element of line. It bears emphasis that the ansatz
(27) represents an unstructured monopole ensemble.
In particular, no connectivity or sequencing between
the monopoles is implied by the representation.105
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Figure 1: Discretization of a circular loop into monopoles.
Monopole a is located at xa(t) and carries an element of line
ξa(t) and a Burgers vector ba(t).

3.1. Discrete transport equations

For the monopole ensemble, the discrete counter-
part of the transport equations (12) and (13) is

ḃa(t) = 0, (28a)

ξ̇a(t) = ∇va(t)ξa(t), (28b)

where
va(t) = ẋa(t) (29)

is the velocity of monopole a. From these rela-
tions, we see that, barring topological transitions, the
monopoles carry a constant Burgers vector, eq. (28a),
and that the reorientation and stretching of the ele-
ments of line is determined by the tangential gradi-
ent of the velocity field, eq. (28b). The computation
of the latter requires an interpolation scheme of the
general form

v(x, t) =

M∑

a=1

va(t)Na(x, t), (30)

where {Na, 1, . . . ,M} are shape functions satisfying
the first-order consistency condition

M∑

a=1

Na(x, t) = 1. (31)

Differentiating (30), we further obtain

∇v(x, t) =
M∑

a=1

va(t)⊗∇Na(x, t). (32)

Inserting (32) into (28b) gives

ξ̇a(t) =

M∑

b=1

(
∇Nb(xa, t) · ξa(t)

)
vb(t), (33)

which fully discretizes the kinematic constraint (28b).
In keeping with the objective of a line-free method,

we choose a mesh-free scheme for the interpolation
(30) of the velocity v(x, t). In calculations we specif-
ically use the max-ent shape functions [8]

Na(x, t) =
1

Z(x, t)
exp

(
−βa

2
|x− xa(t)|2

)
, (34)

where

Z(x, t) =
M∑

a=1

exp

(
−βa

2
|x− xa(t)|2

)
(35)

is the partition function. We note that, by the mesh-
free character of the shape functions (34), eq. (33)
does not entail any ordering or connectivity between110

the monopoles and the method is line-free, as desired.
In (34), the distance 1/

√
βa sets the range of inter-

action for monopole a. Thus, only those monopoles
that are at a distance of order 1/

√
βa interact with

monopole a, which renders the kinematic constraint115

(33) local.

3.2. Discretized force field

In order to discretize the rate functional (24), we
begin by deriving the discrete configurational forces
acting on the monopoles. To this end, we discretize
the energy by inserting the monopole representation
(27) into (8), with the result [3]

Eε({x}, {ξ}) =
M∑

a=1

Eεa +
M∑

a=1

M∑

b=1
b 6=a

Eεab, (36)

where we write {x} = {xa}Ma=1 and {ξ} = {ξa}Ma=1

for short, and

Eεab = − µ

4π
Sεε(xa,xb)(ba × bb) · (ξa × ξb)+

µ

8π
Sεε(xa,xb)(ba · ξa)(bb · ξb)+
µ

8π(1− ν)
(ba × ξa) · T εε(xa,xb) · (bb × ξb),

(37)
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is the interaction energy between monopoles a and
b. In addition, the self-energy of the monopoles is
obtained by taking the limit of xb → xa, with the
result

Eεa =
µ

8π

1

2ε
(ba · ξa)2 +

µ

8π(1− ν)

1

3ε
|ba × ξa|2. (38)

We note that the self-energy of the monopoles is finite
but diverges as ε→ 0, as expected. The first (second)
term in (38) is the energy of the screw (edge) compo-
nent of the monopole. We see that screw monopoles
(ba × ξa = 0) are energetically preferable if ν > 1/3
and edge monopoles (ba · ξa = 0) are energetically
preferable if ν < 1/3.

The discrete configurational forces acting on the
monopoles can now be computed directly from (36),
by taking variations with respect to the monopole co-
ordinates {x} while simultaneously taking the kine-
matic constraint (33) into account, with the result

f εεa =
∂Eε

∂xa
=

(
∂Eε

∂xa

)

exp

+
M∑

b=1

∂Eε

∂ξb

∂ξb
∂xa

=

(
∂Eε

∂xa

)

exp

+
M∑

b=1

∂Eε

∂ξb
∇Na(xb) · ξb,

(39)

where (∂Eε/∂xa)exp denotes the derivative of Eε

with respect to its explicit dependence on the
monopole coordinates {x}. We note that the elastic
configurational forces f εεa on the monopoles comprise
a direct term, corresponding to the direct dependence
of Eε on the monopole positions, and a geometri-
cal term resulting from the dependence of Eε on the
monopole elements of line.

3.3. Discretized rate problem

Inserting the monopole ansatz into (24), we obtain
the discrete rate functional

F ε({v(t)}; {x(t)}) =
M∑

a=1

ψ(va(t)) |ξa(t)|

+
M∑

a=1

(
f εεa ({x(t)}) + f ext

a (t)
)
· va(t).

(40)

The corresponding Euler-Lagrange equations are

Dψ(va(t))|ξa(t)|+ f εεa ({x(t)}) + f ext
a (t) = 0, (41)

which, together with kinematic update (33) for the
dislocation line elements, govern the motion of the135

monopoles.
In calculations, the macroscopic plastic strain rate

induced by the motion of the dislocations is of inter-
est. Such macroscopic plastic strain rate follows from
a work argument as ([3])

ε̇p(t) = − 1

V

M∑

a=1

ba(t)� (ξa(t)× va(t)), (42)

where � denotes the symmetric dyadic product.

4. Numerical examples

We proceed to illustrate the range and scope of the
line-free monopole method just outlined by means of140

a representative example, namely, the plastic hard-
ening of nano-sized grains under monotonic loading.
The grain-size dependence of strength is well-known
to exhibit a reverse Hall-Petch effect, i.e. it decreases
with decreasing grain size [9, 10, 11]. The major-145

ity of the experimental work on this area focuses on
polycrystals with grain sizes up to 100 nm [12, 9].

Figure 2: BCC grain containing a circular prismatic loop nu-
cleated on the (0-11) plane and expanding under the action of
an applied uniaxial stress (001).

We specifically consider the case of a single BCC
grain embedded in an elastic matrix. The grain has
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Table 1: Material properties for tungsten (W) (cf. [6]).

Lattice parameter (a) 0.317 nm
Burger’s vector (b) 0.274 nm
Core size (ε) 0.548 nm
Nucleation radius (ρ0) 1.233 nm
Shear modulus (µ) 16.0 × 10−8 N/nm2

Poisson’s ratio (ν) 0.278
CRSS (τ0) 3.457 × 10−10 N/nm2

Mobility (M) 1.456 × 1021 nm2/Ns
GB stiffness (C) 1.02 × 10−10 N/nm2

Critical time step (∆tc) 6.756 × 10−12 s

the shape of a truncated octahedron and the grain
boundary is assumed to be impenetrable to disloca-
tions. The grain deforms by crystallographic slip in
the class of {110}〈111〉 slip system under the action of
a remotely applied uniaxial stress acting in the [001]
direction.

We further focus on polycrystalline BCC tungsten
with grain sizes in the range of 6-42 nm. The lat-
tice parameter a, Burgers vector b = (

√
3/2) a, shear

modulus µ and Poisson’s ratio ν used in calculations
are listed in Table 1. Atomistic simulation of dis-
locations in BCC transition metals [13, 14] further
suggest a core size ε ∼ 2b as a typical value.

We model nucleation by introducing small circular
loops of radius ρ0, commensurate with the annihila-
tion radius of a loop, provided that the total energy
of the system is decreased [3]. Given the small size of
the grains considered, we assume that only one source
is active per grain. For definiteness, we assume that
the dislocation source is located on the plane (01̄1)
and at the center of the grain, Fig. 2. The loop radius
at nucleation is taken to coincide with the annihila-
tion radius of a circular loop, ρ0 = 2.25 ε [3]. The
corresponding equilibrium resolved shear stress is [3]

τ0 = 0.07841× µb

8π(1− ν)ε
, (43)

which evaluates to 3.457 × 10−10 N/nm2, or ∼
0.00216µ, in the ballpark of experimental observation
in bcc transition metals [15, 16, 17].

Dislocation motion is assumed to be controlled by
linear kinetics within the slip plane, with vanishing

climb mobility. If we further assume phonon drag to
be the rate-limiting mechanism, the mobility is M =
1/B, where B is the phonon drag coefficient. For W170

at 300K [18], Bedge ∼ 6.87× 10−22 Ns/nm2, whereas
Bscrew ∼ 9.80 × 10−22 Ns/nm2. In calculations we
take B = Bedge, which gives a mobility M = 1.456×
1021 nm2/Ns.

We integrate in time the discretized governing
equations (41) and (33) using an explicit two-stage
Runge-Kutta method. In order to estimate the stable
time step for explicit time integration, we consider an
annihilating circular loop, in which range the Peach-
Köhler force takes the form [3]

f = − αµb2ρ

8π(1− ν)ε2
, (44)

with α ∼ 4.613 × 10−2. In this range, the mobility
law becomes

dρ

dt
= −M αµb2ρ

8π(1− ν)ε2
≡ −λρ. (45)

Numerical stability then requires

∆t <
1

λ
=

1

M

8π(1− ν)ε2

αµb2
= ∆tc. (46)

Inserting the values of the parameters determined175

above, gives ∆tc = 6.756× 10−12 s.
Finally, the impenetrability condition at the grain

boundary is enforced by means of a potential that
penalizes monopole excursions outside the grain. The
restoring Peach-Köhler force is

f = −Cδ, (47)

where δ is the distance from the dislocation to the
grain and C is a penalty stiffness [19]. Assuming
the restoring force (47) to dominate, the mobility law
becomes

dδ

dt
= −MCδ. (48)

It follows from this analysis that numerical stability
(46) is preserved if

C <
1

M∆tc
. (49)
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(a) (b) (c)

(d) (e) (f)

Figure 3: Evolution of dislocation activity in the 42 nm grain. (a) Initial configuration. (b) Strain 0.0005. (c) Strain 0.002.
(d) Strain 0.005. (e) Strain 0.008. (f) Strain 0.01.

For the values of the parameters determined in the
foregoing, we obtain C < 1.02×10−10 N/nm2, which
sets an upper bound on the stiffness that can be as-
signed to the grain boundary.

Fig. 3 shows the evolution of dislocation activity
in the 42 nm grain. After nucleation, the new loop
shields the source and its operation is shut off until
the loop becomes sufficiently large. This transient
shielding results in the intermittent emission of loops
from the sources. Remarkably, as the loops grow their
initial circular configuration loses stability and be-
comes wavy. The amplitude of the waviness increases
with further growth until the lobes pinch-off, effec-
tively doubling the loop. The calculations thus sug-
gest that curvature-driven shape instabilities followed
by pinch-off constitute a principal dislocation multi-
plication mechanism in nano-sized grains, where con-

finement effectively shuts off the operation of other
conventional dislocation multiplication mechanisms195

such as double cross glide. As the dislocations reach
the grain boundary, they arrest giving rise to a pile-
up spanning the entire grain.

The confining effect of grain size on dislocation ac-
tivity is shown in Fig. 4. The smallest-sized grain of200

size 6 nm can only fit one dislocation loop, which ef-
fectively shuts off further dislocation nucleation. As
the grain size increases, the extent of dislocation nu-
cleation and grow increases steadily, as does the com-
plexity of the dislocation patterns at equilibrium.205

In particular, the pinch-off instability and disloca-
tion multiplication mechanism is activated for grains
larger than 24 nm and is suppressed in smaller grains

Fig. 5 shows the computed stress-strain curves as
a function of grain size. As the grain size increases,210
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(a) (b) (c) (d)

(e) (f) (g)

Figure 4: Dislocation loop configurations in grains of different sizes at a strain of 1%. (a) 6 nm. (b) 12nm. (c) 18 nm. (d) 24
nm. (e) 30 nm. (f) 36 nm. (g) 42 nm.
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Figure 5: Computed stress-strain curves up to 1% strain for
tungsten nano-grains ranging in size from 6 to 42 nm.

the number of dislocation loops that are nucleated
also increases, as does the size of the dislocation pile-
up. These trends result in a corresponding increase
in the back-stress on the nucleation source, which in
turn requires a comparatively higher level of applied215

stress for its operation.
The resulting dependence of the stress at an offset

strain of 1%, taking as a measure of strength, on the
grain size is further shown in Fig. 6. As may be seen,
the dependence shows the reverse Hall-Petch effect
characteristic of nano-sized grains [10]. A power-law
fit of the form

σ = σ0 + k da, (50)

gives σ0 = −5.557× 10−8, k = 4.040× 10−8 and a =
0.329. This exponent is in the ballpark of observation
[20] and theoretical predictions [10].
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Figure 6: Computed strength (dots) as a function of the inverse
square root of grain size in tungsten nano-grains. Power-law
fit with σ0 = −5.557× 10−8, k = 4.040× 10−8 and a = 0.329.

5. Concluding remarks

The monopole representation of dislocations is re-
markable for its simplicity. The calculations have the
structure of particle methods, where the ’particles’,
or monopoles, carry a Burgers vector and an element
of line. The monopoles then interact through elastic
interaction forces, which can be written down explic-
itly, and move according to a physical mobility law.
In addition, a non-holonomic kinematical constraint,
implemented through simple mesh-free interpolation,
ensures that dislocation stretching and reorientation,
together with the zero-divergence constraint of dislo-
cation lines, are properly taken into account.

The ability of the monopole representation to track
configurational and topological changes is also re-
markable. Thus, the preceding calculations reveal a
possibly new mechanism of dislocation multiplication
operating at the nanoscale, resulting from curvature-
driven loss of stability of the dislocation lines and
subsequent pinch-off. The ability of the method to
describe complex dislocation patterning and scaling
relations is also noteworthy. In particular, the exper-
imentally observed inverse Hall-Petch scaling arises
naturally from the calculations as a result of a paucity
of sources at the nanoscale (’source-starved nano-
crystals’) and the scaling of the backstresses induced

by the equilibrium dislocation pileups.
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