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Abstract

The main purpose of this paper is to justify rigorously the following assertion: A viscous

fluid cannot slip on a wall covered by microscopic asperities because, due to the viscous

dissipation, the surface irregularities bring to rest the fluid particles in contact with the wall. In

mathematical terms, this corresponds to an asymptotic property established in this paper for

any family of fields that slip on oscillating boundaries and remain uniformly bounded in the

H1-norm.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

This paper is devoted to justify rigorously the fact that, asymptotically, a fluid
cannot slip on a wall covered by microscopic asperities: the slip condition, i.e. the
requirement

u � n ¼ 0 on the wall;

where u is the velocity and n ¼ nðxÞ is a normal vector at a boundary point x; which
expresses the fact that the wall is not permeable to the fluid particles, provides
sufficient information to ensure that, as the size of asperities goes to 0, the fluid
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satisfies the no-slip condition, i.e.

u ¼ 0 on the wall:

This was noticed and justified for a 2D periodic Stokes flow in [11] and was
mathematically proved for a 3D periodic Navier–Stokes flow in [1]. However, the
periodicity of the flow at the microscopic scale assumed in these papers is very
restrictive. Indeed, it prevents any vortex or any other structure larger than asperities
to occur and it implies that the mean velocity over a period is a Couette flow (this
enables a satisfactory analysis in this case with a particular proof based on scaling
arguments, see [1]).

In the present paper, we will give a mathematical proof of the previous assertion
for any 3D flow whatever the governing equation (in fact, no equation is prescribed).
This can be viewed as a property of the limit u0 of a family of vector fields ue that slip

on a boundary covered by asperities of size e; with an enstrophy
R
jruej2 dx that

remains bounded as e-0 (Theorem 1).
Roughly speaking, this is due to the fact that sliping with a non-zero velocity

dissipates energy on asperities because the direction of velocity suddenly varies as the
slope does. For instance, in a 2D domain with a serrated boundary whose slope is
alternately þ1 and �1; if the horizontal velocity is v; then the vertical velocity is
alternately þv and �v: When the size e of asperities goes to 0, the energy dissipated
by each asperity goes to 0 but not fast enough to compensate the fact that there are
many of them. Therefore, the total dissipation grows to infinity and the unique
possibility for enstrophy to be uniformly bounded is that the limit velocity vanishes
on the wall. A rigorous formulation of this assertion will be given in (8).

We will also prove that our general result applies to a flow governed by the
Navier–Stokes equations together with Navier’s law

u � n ¼ 0; ðs � nÞtan þ ku ¼ 0;

where s denotes the stress tensor and the subscript tan denotes the tangential
component, i.e. ftan ¼ f � ð f � nÞn for any vector field f : Of course, the second
previous equality means that the friction forces on the wall are proportional to the
tangential velocity. Indeed, in this situation the enstrophy remains bounded as e-0
and, therefore, the limit velocity u0 vanishes on the limit boundary whatever the
friction coefficient k (see Theorem 2). This generalizes, to non-periodic flows, the
above-mentioned results of [1,11].

It is worth mentioning that this result is in contradiction with a statement in [8],
but the argument used in that reference is false, as we will explain in Remark 5, at the
end of Section 4.

Our argument relies on the internal viscous dissipation in the fluid and the
geometry of the domain only. It does not require any dissipation of energy due to the
friction (or molecular interaction) of the fluid particles in contact with the solid
walls.
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The effective relative importance of surface roughness and fluid/solid molecular
interactions is discussed in [14]. There, the authors show that roughness dominates
except for very smooth walls. The reader is referred to [5,7] for an analysis of
molecular interaction by molecular dynamics simulation and to [3] for a similar
analysis in the case of a two-component fluid.

The flow at the surface of a porous medium is extensively discussed in [6] and
references therein. In this case our argument does not apply, since the slip condition
u � n ¼ 0 is not imposed. In particular, we do not find in the limit the no-slip
condition when a rugose interface is modeled by Fourier’s law

s � n þ ku ¼ 0 on the wall

(see [2], where a homogeneized friction coefficient k0 is obtained in the limit).
Let us finally mention that many physical and numerical experiments have shown

that, when a fluid flows between two plates, the occurrence of asperities on the walls
is not irrelevant. In particular, it is known that small riblets (tiny asperities parallel to
the flow) can be used to reduce considerably the drag experienced by the fluid; see
[4,12] and references therein.

This paper is organized as follows. The main result (Theorem 1) is stated and
commented in Section 2. It is proved in Section 3. Finally, Section 4 is concerned
with the application of Theorem 1 to a viscous fluid near a wall with asperities.

2. Main result

Let us now present our main result with precision. Let SCR2 be a bounded open
set and assume that, for each e with 0oepe0; the function re is given by

reðx0Þ ¼ r0ðx0Þ þ eZ
x0

e

� �
;

where r0AC1ð %SÞ; r0ðx0ÞXa > 0 and ZAC1ðR2Þ is a periodic function of period ðc1; c2Þ
in the variable y0 ¼ x0=e: Let Ge be the open set

Ge ¼ fxAR3: x0AS; 0ox3oreðx0Þg

and let us put

Re ¼ fxAR3: x0AS; x3 ¼ reðx0Þg

(the oscillating piece of boundary). We also set

G0 ¼ fxAR3: x0AS; 0ox3or0ðx0Þg

(the limit domain) and

R0 ¼ fxAR3: x0AS; x3 ¼ r0ðx0Þg:

J. Casado-Dı́az et al. / J. Differential Equations 189 (2003) 526–537528



Assume that for each e we have ueAðH1ðGeÞÞ3; withZ
Ge

jruej2 dxpb; ð1Þ

where b is independent of e: Also, assume that u0 is a distribution on G0 such that, as
e-0; one has for all c > 0

ue-u0 in ðL2ðocÞÞ3; ð2Þ

where oc ¼ fxAR3: x0AS; 0ox3or0ðx0Þ � cg: Finally, assume that Z varies in any
direction y0; at least at one point z0; that is

8y0AR2; y0a0; there exists z0AR2 and cAR such that Zðz0 þ cy0ÞaZðz0Þ: ð3Þ

Then the following holds:

Theorem 1. If, for every e > 0; we have

ue � ne ¼ 0 on Re; ð4Þ

then

u0 ¼ 0 on R0:

Remark 1. The trace of u0 on R0 is well defined. Indeed, in view of (1) and (2), we
have for all c > 0 Z

oc

jru0j2 dxpb;

whence ru0AðL2ðG0ÞÞ3
3:

Remark 2. A similar result can be proved in any dimension NX2: It is also clear
that, for this theorem to hold, we only need the hypotheses to be satisfied by a
sequence ðuen

Þn; with en-0: On the other hand, the result still holds if we replace (1)

by the weaker assumption Z
Ge

jruejp dxpb; ð5Þ

with p > 1: To see this, it suffices to adapt the argument used in Section 3.

Remark 3. If Z possesses an invariant direction, i.e., if (3) is not satisfied, the
previous result does not hold. More precisely, the arguments used in Section 3 show
that, in that case, one of the following two situations is found:
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* Z is constant; then the unique conclusion is that

u0 � n ¼ 0 on R0:

Indeed, if such a field u0 is prescribed, all assumptions are satisfied by the functions
ueðxÞ ¼ u0ðx1; x2; x3 � eZÞ:
* Z possesses only one invariant direction xinv; then one has

u0 � n ¼ 0 and u0 � x>inv ¼ 0 on R0:

This is the case of a wall covered with riblets: the fluid possibly slides in the direction
xinv of the riblets but not in the orthogonal direction.

The invariance of Z in the direction xinv is equivalent to the fact that Z only

depends on a scalar variable which is y0 � x>inv; that is equivalent to the existence of a

function *Z such that Zðy0Þ ¼ *Zðy0 � x>invÞ for all y0:

Remark 4. The assertions of Theorem 1 and Remark 3 can be gathered together in a
single statement in which (3) is not required: whenever the functions ue satisfy (1), (2)
and (4), one has the following for almost all x in R0:

u0ðxÞAðNðxÞÞ>;

where

NðxÞ ¼ Span nðxÞ � @Z
@x1

ðy0Þ; @Z
@x2

ðy0Þ; 0
� �

: y0Að0; l1Þ 
 ð0; l2Þ
� �

¼ SpanfnðxÞ;Mg

and

M ¼ Span
@Z
@x1

ðy0Þ; @Z
@x2

ðy0Þ; 0
� �

: y0Að0; l1Þ 
 ð0; l2Þ
� �

:

In this statement, again (1) can be replaced by (5). Assumption (3) of Theorem 1 (i.e.
the fact that Z possesses no invariant direction) is equivalent to dim M ¼ 2 and,
therefore, to dim NðxÞ ¼ 3 (since then M is the horizontal plane and nðxÞ is not
horizontal).

The existence of exactly one invariant direction examined in Remark 3 (i.e., the
fact that Z depends only on one scalar variable) is equivalent to dim M ¼ 1 and
therefore to dim NðxÞ ¼ 2:

The existence of many invariant directions (i.e., the fact that Z is constant) is
equivalent to dim M ¼ 0 and therefore to dim NðxÞ ¼ 1:
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3. Proof of Theorem 1

In the sequel, C is a generic positive real number that can depend on S; a; b; Z and
r0; but not on e:

First reduction of the problem: The situation is reduced to the case r0 � 1 by means
of the change of variable x/x̂ ¼ ðx0; 1þ ðx3 � r0ðx0ÞÞ=aÞ and restriction to the
subdomain where x̂3 > 0: Consequently, we will assume from now on that r0 � 1;
then, R0 ¼ fðx0; 1Þ: x0ASg:

Second reduction of the problem: For each y0AR2; we set

lðy0Þ ¼ � @Z
@x1

ðy0Þ;� @Z
@x2

ðy0Þ; 1
� �

:

Due to periodicity, Z reaches a maximum over R2; say, at x1: Then lðx1Þ ¼ ð0; 0; 1Þ:
In view of (3), there exist two points x2 and x3 such that lðx1Þ; lðx2Þ and lðx3Þ are

linearly independent. Indeed, if this were not the case, we would have lðxÞ ¼
ðCa;Cb; 1Þ for all x; for some fixed a and b; thus, we would also have the following,
for all y1 and y2;

d

dt
Zðy1 þ tb; y2 � taÞ ¼ b

@Z
@x1

ðy1 þ tb; y2 � taÞ � a
@Z
@x2

ðy1 þ tb; y2 � taÞ

¼ � Cbaþ Cab

¼ 0;

which is in contradiction with (3). Accordingly, it will be sufficient to prove that, for

all y0AR2 and almost all x0AS; one has u0ðx0; 1Þ � lðy0Þ ¼ 0 or, equivalently,

u0ðx0; 1Þ � nðy0Þ ¼ 0; ð6Þ

where nðy0Þ ¼ lðy0Þ=jlðy0Þj: Let us denote by S the ‘‘2D period’’ of Z; i.e. the set

S ¼ ð0; c1Þ 
 ð0; c2Þ;

and let K be an arbitrary nonempty compact subset of S: Since u0AðH1ðG0ÞÞ3; see
Remark 1, a continuous function f0 is defined on ½0; 1� by

f0ðx3Þ ¼
Z

K

Z
S
ju0ðx0; x3Þ � nðy0Þj2 dy0 dx0: ð7Þ

To get (6), it will suffice to prove f ð1Þ ¼ 0: Since f0 is continuous, it will be sufficient
to prove that

1

s

Z 1�s

1�2s

f0ðx3Þ dx3-0 as s-0: ð8Þ
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Proof of (8). Let s be given such that 0oso1=2: Let us choose e > 0 such that
K þ ey0CS for all y0AS; and such that ejjZjjLNðR2Þos: On the other hand, let ðun

e Þn be

a sequence in ðC1ðGeÞÞ3 converging strongly in ðH1ðGeÞÞ3 to ue: Given x3Að1�
2s; 1� sÞ; x0AK and y0AS; we introduce a point zARe which is ‘‘close’’ to x by
putting

z0 ¼ x0 þ ey0; z3 ¼ 1þ eZ
z0

e

� �
:

Then we have

un
e ðx0; x3Þ ¼ un

e ðz0; x3Þ � e
Z 1

0

y0 � rx0un
e ðx0 þ tey0; x3Þ dt

¼ un
e ðz0; z3Þ �

Z z3

x3

@un
e

@x3
ðz0; y3Þ dy3 � e

Z 1

0

y0 � rx0un
e ðx0 þ tey0; x3Þ dt:

Taking scalar products with neðzÞ and using the inequalities jneðzÞjp1; jz3 �
x3jpeZðz0=eÞ � 2spCðeþ sÞ and jy0jpC; we find the following:

jun
e ðx0; x3Þ � neðzÞj2pC jun

e ðz0; z3Þ � neðzÞj2 þ ðeþ sÞ
Z z3

0

@un
e

@x3
ðz0; y3Þ

����
����
2

dy3

 

þ e2
Z 1

0

jrx0un
e ðx0 þ tey0; x3Þj2 dt

�
:

Integrating this inequality with respect to x0 in K ; with respect to y0 in S and finally
with respect to x3 in ð1� 2s; 1� sÞ; we deduce thatZ 1�s

1�2s

Z
S

Z
K

jun
e ðx0; x3Þ � neðzÞj2 dx0 dy0 dx3

pCs

Z
S

Z
K

jun
e ðz0; z3Þ � neðzÞj2 dx0 dy0

þ Csðeþ sÞ
Z
S

Z
K

Z z3

0

@un
e

@x3
ðz0; y3Þ

����
����
2

dy3 dx0 dy0

þ Ce2
Z 1�s

1�2s

Z
S

Z
K

Z 1

0

jrx0un
e ðx0 þ tey0; x3Þj2 dt dx0 dy0 dx3

pCs

Z
S

Z
K

jun
e ðz0; z3Þ � neðzÞj2 dx0 dy0 þ Cðe2 þ s2Þ

Z
Ge

jrun
e ðxÞj

2
dx:

The last inequality is implied by the fact that K þ eSCS: Now, taking limits in this
inequality as n-N; in view of statements (1) and (4) and Fubini’s Theorem, we findZ 1�s

1�2s

Z
K

Z
S
jueðx0; x3Þ � neðzÞj2 dy0 dx0 dx3pCðe2 þ s2Þ: ð9Þ
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The normal to Re at z is neðzÞ ¼ nðz0=eÞ; i.e. nðy0 þ x0=eÞ: Since n is a periodic function
and since its ‘‘2D period’’ is S; this implies, for almost all ðx0; sÞ in K 
 ðs; 2sÞ; the
identity Z

S
jueðx0; x3Þ � neðzÞj2 dy0 ¼

Z
S
jueðx0; x3Þ � nðy0Þj2 dy0:

Then (9) can also be written in the form

Z 1�s

1�2s

Z
K

Z
S
jueðx0; x3Þ � nðy0Þj2 dy0 dx0 dx3pCðe2 þ s2Þ:

Taking limits as e-0; we obtain

1

s

Z 1�s

1�2s

Z
K

Z
S
ju0ðx0; x3Þ � nðy0Þj2 dy0 dx0 dx3pCs:

Consequently, we have proved (8). This ends the proof of Theorem 1. &

4. A consequence: the asymptotic behavior of a viscous fluid near a wall with asperities

Theorem 1 can be used to identify the limit of the solution of the stationary
Navier–Stokes system satisfying Navier’s law on an oscillating boundary. In order to
fix ideas, let us introduce the fluid domains Oe and O0; with

Oe ¼ fxAR3: 0ox3oreðx0Þg

and

O0 ¼ fxAR3: 0ox3oc3g:

Here, re is given by

reðx0Þ ¼ c3 þ eZ
x0

e

� �

(c3 is positive and constant) and ZAC1ðR2Þ is periodic of period ðc1; c2Þ in the
variable y0 ¼ x0=e: We set

Ge ¼ fxAR3: x3 ¼ reðx0Þg

(the upper boundary of Oe), and

G0 ¼ fxAR3: x3 ¼ c3g; P ¼ fxAR3: x3 ¼ 0g:
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Let us consider the stationary Navier–Stokes system in Oe

�nDue þ ðue � rÞue þrpe ¼ 0; r � ue ¼ 0 in Oe; ð10Þ

completed with the slip and friction conditions

ue � ne ¼ 0; ðse � neÞtan þ kue ¼ 0 on Ge ð11Þ

(ne is the unit normal vector on Ge and se is the stress tensor associated to ðue; peÞ),

ue � n ¼ 0; ðse � nÞtan þ kðue � gÞ ¼ 0 on P ð12Þ

(g is a non-zero vector of the form g ¼ ðg1; g2; 0Þ) and the following additional
condition:

ðue; peÞ is x0-periodic; of period ðc1; c2Þ: ð13Þ

Let L be given by

L ¼ maxðc1; c2; c3Þ

(a characteristic length of O0) and let us introduce the associated Reynolds number

Re ¼ Ljgj
n

:

For simplicity, we assume that Re is sufficiently small. Then, system (10)–(13)
possesses exactly one solution

ðue; peÞAðH1
locðOeÞÞ3 
 L2

locðOeÞ:

satisfying Z
Oe-fjx0 joKg

jruej2 dx þ
Z
Oe-fjx0joKg

juej2 dxpbK ð14Þ

for all K > 0; where bK is independent of e (the proof of this assertion is essentially
given in Refs. [1,2]). From (14), it is not difficult to deduce the existence of a function

u0AðH1
locðO0ÞÞ3 such that, at least for a subsequence, we have

ue-u0 weakly in ðH1
locðocÞÞ3 and strongly in ðL2

locðocÞÞ3

for all c > 0; where oc ¼ fxAR3: 0ox3oc3 � cg:
Then, as a consequence of Theorem 1, we obtain the following:

Theorem 2. Assume that Re is sufficiently small, Z satisfies (3) and e-0: Then ue

converges to u0; i.e., together with some p0; the unique solution to the stationary

Navier–Stokes equations

�nDu0 þ ðu0 � rÞu0 þrp0 ¼ 0; r � u0 ¼ 0 in O0;
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completed with the boundary conditions

u0 ¼ 0 on G0

and

u0 � n ¼ 0; ðs0 � nÞtan þ kðu0 � gÞ ¼ 0 on P

and the periodicity requirement

ðu0; p0Þ is x0-periodic; of period ðc1; c2Þ: &

Notice that, in this simple case, u0 and p0 can be computed explicitly. Indeed, one
has

u0 ¼
kðc3 � x3Þ2

ð2nþ kÞc23
g; p0 ¼

2nk
ð2nþ kÞc23

ðg1x1 þ g2x2Þ in O0 ð15Þ

(as usual, p0 is defined up to an additive constant). The convergence of ue towards u0

provides a rigorous justification of the fact that a viscous fluid cannot slip on a wall
with too many asperities.

Remark 5. As we have already indicated, our results are in contradiction with a
result in [8]. In that paper, the oscillations are described in a slightly different way,
but everything can be adapted to our context. A consequence of Theorem 2 in [8] is
that, in the previous situation, at least when Re is sufficiently small, the limit velocity
field should satisfy a friction condition on G0 of the form

ðs0 � nÞtan þ k0u0 ¼ 0 on G0

for some k0 > k: But this is false in view of (15).
The wrong point in the proof of Theorem 2 in [8] is the following. Near the end of

the proof, given a function v0 satisfying

v0AðH1ðO0-X ÞÞ3; r � v0 ¼ 0 in O0-X ; v0 � n ¼ 0 on G0-X ;

where X ¼ fxAR3: 0ox1oc1; 0ox2oc2g; the author claims (but does not prove)
that it may be approached by functions ve such that

veAðH1ðOe-X ÞÞ3; r � ve ¼ 0 in Oe-X ; ve � ne ¼ 0 on Ge-X ;

which converge weakly to v0 in the H1
loc sense and satisfyZ

Ge-X

jvej2 dG-
Z
G0-X

jv0j2 dG as e-0
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and Z
Oe-X

jrvej2 dx-

Z
O0-X

jrv0j2 dx as e-0:

But, in view of Theorem 1, the limit v0 of such a ve must vanish on G0-X : Therefore,
if v0 does not vanish on G0-X ; then such functions ve cannot exist and the proof of
[8] fails.

Remark 6. When a viscous fluid, like air or water, moves at high speed past a wall at
rest, the fluid adheres to the wall and, close to the wall, a thin boundary layer
appears in which the velocity field changes sudddenly in the normal direction, see for
instance [10] or [13]. In these cases, in order to avoid the (complicate) description
and/or computation of the flow variables in such a boundary layer, the no-slip
condition on the wall is frequently replaced by the Navier law (11) with a friction
coefficient k depending on the rugosity of the wall (and possibly on u). A review of
mathematical results in that direction can be found in [9].
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