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Abstract

Onmne of the areas of Statistics in which the influence analysis has been widely studied
is the multiple linear regression model. Nevertheless, the influence diagnostics
proposed in this context cannot be applied to regression in complex survey, under
randomized imference, since the 1i.d. case dees not mcorporate any probability
weighting or population structure, such as clustering, stratification or measures of
size into the analysis,

In this paper we introduce sowmwe influence diagnostics in regression in complex
survey. They are built on the conditional bias concept {(Moreno-Rebollo et al,,
1899}, We ewphasize the similarities and differences of the proposed measures
with respect to the existing ones for the i.i.d. case.
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1 Introduction

An important aspect in any statistical analysis is the study of the sensitivity
of ity conclusions fo perturbations of the assumed model. In general terms,
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this is the objective of the influence analysis. A large number of papers on
influence analysis are centered on the study of diagnostics that are intended
1o detect observations impacting notably on the conclusions, in the sense
that ifs presence or absence can cause a considerable eflect on the inference.
Such observations are known as influential observations.

Most influence diagnostics have been developed to the linear regression
model, under the usual hypothesis, that from now on, we will call model-
based regression. Some classic books on this topic are Belsley et al. (1980},
Cook and Weisherg (1982) and Chatterjee and Hadi (1988). One could
think of applying the diagnostics proposed in this context to study the in-
fluence in regression in complex surveys under design-based inference, that
from now on we will call design-based regression. Nevertheless, when the
sample is obtained from a complex survey the assumed hypotheses in model-
based regression are not satisfied. In addition, model-based regression does
not incorporate any probability weighting or population structure, such as
clustering, stratification or measures of size, into the analysis. Therefore,
as Smith (1987} affirms “conventional model-based influence diagnostics
do not have immediate application fo randomization inference for sample
survey’.

In the context of sampling from finite populations under design-based
inference, the influence analysis has been scarcely treated. One of the first
works in this area is that of Smith (1987). Other authors have obtained
influence diagnostics in survey sampling by applying to this field ideas
previously employed for the i.i.d. case. In this line we can cite the works
by Gwet and Rivest (1992), Hulliger (1995), Deville (1999} and Moreno-
Rebollo et al. (1999). None of these papers deal with influence in design-
based regression.

The main purpose of this paper is to propose influence diagnosiics in
design-based regression.

With this aim we have organized the paper as follows. In Section 2 we
consider design-based regression, emphasizing the differences with respect
to model-based regression. Since most of the influence measures in model-
hased regression are functions of a measure of leverage and some fype of
residual (see for example Barrett and Ling, 1992; Caroni, 1987; Chatterjee
and Hadi, 1986), in Section 3 we introduce analogues of these measures
for design-based regression. In next section, we will see how the proposed
diagnostics combine them.
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By using the concept of conditional bias, Mufioz Pichardo et al. {1993)
and Mufioz Pichardo et al. (2000) have obtained, in a unified way, a large
number of model-based influence measures for the general linear model,
which were previously proposed by several authors. each using a different
argumeni. By properly adapting the approach followed by these authors
we introduce influence measures for design-based regression. With this
aim, in Section 4 we first calculate the condifional bias for our problem
and compare the obtained results with ifs counterpart in model-based re-
gression. Second. since the condifienal bias is a population parameter, to
obtain influence measures from if, we need an esfimator. We consider two
estimators. Third, as the condifional bias and therefore its estimations are
g-vectors, we propose several influence diagnostics by normalizing the esti-
mators previously considered, so that the observations can be ordered in a
meaningful way.

In Section 5, fo illustrate fhe proposed diagnostics we apply them fo
two examples: an artificial data set and a real data set. Finally, the last
section summarizes and highlights the contributions of the paper.

Before ending this secfion we iniroduce some notation. Let
U = {u,...,ux} be a finite population and let m = {my,..., my}. where
my, € R? is the vecior of survey variables for the kth population unit,
E=1,...,N. In the fixed-population, design-based approach to sampling,
the values {m,...,my } are viewed as a collection of fixed, unknown con-
stants. In order to estimate a population parameter ¢ = (i)}, the values
of the variables of interest are obgerved in a sample s of units selected from
the population according to a probability distribution, P(-), that charac-
terizes a sampling design, D. All expectations in this paper are taken with
respect to P(-}, unless we indicate the contrary. Let w;p = P(uy € s} and
7p; = Plug,u; € s) denote the first and second order inclusion probabil-

ities, respectively. Let I,k = 1,..., N, be the random variables defined
as I(s) = 1if up € s and I (s) = 0 otherwise, and let Ay; = Cov(y, ;).
k.j=1,...,N. Along this paper we will assume that 7, >0,k =1,... N.

Let THT denote the Horvitz-Thompson (HT) estimator of the pepuidtlon
total T'(m) = Ek:}mkr

THTfZ—IA =k

™ Tk
k U8 k

By simplicity of notation, we denote 2;\11 by >, and Zu;,.e Chy Yoo
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2 Regression in complex surveys

In model-based regression, the inference is based on a model that describes
the relationship between the explanatory variables X;...., X, and the re-
sponse variable, Y. In particular, in the linear model-based regression, it
is assumed that Y = XJ+ 2, where Y is an n x 1 vector of observed
values, X is an n x ¢ matrix of known values for the n cases. Fis a g x 1
vector of unknown parameters and £ is an n x 1 vector of iid. random
errors having mean zero and variance . In this framework, the ordinary
least squares estimator of the parametfer vector iz 7 = (XiX)f1 XY,
the fitted values are defined by ¥y = xig with x! the 7th row of X and
VarM(g) = g? (X*X)il, where Varys () denotes the variance with respect
to the assumed hypothesis in model-based regression.

Next, we consider the regression problem in complex survey, In this con-
text, we will denote by z to the vector of explanafory variables. We assume
that each population unif ug,, &k = 1,2,..., N, has associated ¢ + 1 un-
known characteristics, m! = (y;, 2.}, where z;, = ( 20 22 ... 2y )5
The main objective of regression in complex surveys is to estimate the re-
gression vector, 3=( 5 3 ... 7, ). whichis obtained through fitting

- P _ -~ -~ T PR 3 o - p— -
the hyperplane y = byzy + ... + gz, to the IV population poinis by means
of ordinary least squares, that is,

q_ . : £1.42
[ = arg min Yi — Zpb)".
mbE]R@' . ( k )

Note that we have denoted by 7 the regression parameter in both contexts,
although its meaning is different in each case.

Let By = gy — 2, 3 denote the kth population residual. These residuals
satisfy that ), z,Fy = 0, or equivalently, T3 =t, where T = > zkzi,
and t =5 2y, We assume that T is nonsingular and therefore 3 =
T~'t. Since both T and t are population totals, we can estimate them by
their HT estimators,

-~ 1 " 1
T:Z _—zkzi, t= —Zi Y

=~ Tk . T

So, if T is nonsingular, we can consider the following estimator of 3,

e

4. =T %.
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An alternative way to obiain 37 is as follows: since @ = argminy, 7(b).
where 7(b ) S i (yi — 2ib)* a population total, we can estimate 3 by
means of 3% = argminy, 7(b). where 7(b) = Y. (yp — z.b)? L 7= is the HT

estimator of 7(b). Obviously, :3\1 = i and therefore,

where e = yp—z,, dm denotes the kth sample residual.

We remark that the properties of 3, are determined by the probability
distribution P(), according to which the sample is selected, and those of 3
are determined by the assumed h\ﬂpothems on the model. For example, ;3’
is an unblased estimator, but in general, 7, is not an unbiased estimator,
and their variances have very different expressions.

The influence study in a statistical analysis can include various aspects.
We will centfer in the influence study on 3;.

3 Leverage and residuals

In model-based regression, the ¢th sample unit is said to be a high leverage
point if the coefficient of y; in the expression of 7, = x!3, given by h;
= x>0, xpxl) 1x, is large. In other words, the value of y; dominates
= XD py XuXp i, I ge. 1 words, the > of y; dominates
;. Geometrically this means that x; is far from the rest of the x; in the
sample, i.e., x; is an outlier in the space of the explanatory variables.

Analogously, in design-based regression one can took for those sample

units having a large effect in its fitted value, ¥, = 2; J If we denote by
Y. = (g;b "')ie we hcwe that Y, = H,Y,, where H, = (hijlijes
with hy; = 2L (3, Zkzk/fﬁk) zj/wj. H, is an 1dempotent n X n-matrix

with rank ¢, but it is not a symmetric matrix, in general. This makes if

hard fo interpret those points with ;';.,-.,- large. To facilitate its inferpretation,
2.1

T

with v, = yk/rai/z and w, — Zk_/ﬂ'k_ ,Vk € 5. That is, the problem of least
sguares estimation of 3 in design-based regression is identical to the problem

remember that :\W = argminy, ) _(y, —2.b) = argminy, Y (v, —wib),

of least sguares estimation of J in model-based regression, replacing y;
by v; and z; by w;. Hence, since V, = P.V,, where P, = (p;;) with

-1 - . .
Pij = W; (Z“ W;!.Wi) w;. a unit in the sample, say u;, is a high leverage
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point if p;; is large. Note that p; = h“,Va € s. The advantage of considering
P, instead of H‘s is that P, is a synunetric idempotent n x no matrix for any
sampling designn. This makes the geometric inferpretation easy: a large R
means that w; is far from the rest of the w; in the sample, which implies
that z; is far from the rest of the z; in the sample or that m; is quite less
than the rest of the 7; or both.

Hence, in design-based regression, the leverage points do not only de-
pend on the relative position of the explanatory variables, as it occurs in
model-based regression, but also on their first order inclusion probabilities.
Trivially, if the sampling design is such that 7, = ¢ > ¢, the model-hased
leverage points and the design-based leverage points coincide,

In the model-based context differen{ kind of residuals are employed fo
detect the presence of outliers with respect to regression. Bagically, they
are of two types: the ordinary residuals, which are the difference between
y; and 7; and the standardized residuals, in which each ordinary residual
ig divided by a quantity thai is proportional to its standard deviation. A
sample point, say the ith sample point, with a large residual means that
the behaviour of y; in relation to x; is quite different from the rest of the
sample points.

Analogously, in design-based regression, one can examine the residuals:
either the ordinary residuals, ¢; = y;, — Ui = y; — 2. 3,, or some standardized

residuals as
€4

Vcn"( )1/2

ry —

i

Since Var(e;) = z!Var(3; }z;, we will consider the following estimator of
Var(e;), Var(e;) = szar(J )z;, and so we need an estimator of Var(3:).

From the first order Taylor’s approximaiion for :3\7 arcound 5,

G A =8+T ' -T (3.1)
the following approximation to the variance-covariance matrix of ‘: is ob-
tained

Var(3 = Vdr( Uy =T lLT !
with

N N
ZZ JA;‘J ZgiZi.
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Assuming 7p; > Ok, = 1,..., N, we have the following estimator of

Var(,i’ir), (e.g. Sérndal et al.,, 1992, p. 194)

H

.

Var(3,) = T'LT ™},

where

o €€, A,g
L= E E L Zk_Zj.

T ki
U C8UFES ki ki

Note that the expression of le"(:ir) is not as simple as Vary, (3)

4 Influence diagnostics from conditional bias

4.1 Conditional bias in survey sampling: Estimation

Given a random sample Y7, ..., Y, from a distribution function F. a statistic
R = R(Y1....,Y,) aud asample realization 1, ..., ., Muiioz Pichardo et al.
(1995) define the conditional bias of B given the ith observation as

Er (RY; =y) — Er (R),

where Fp denotes the expectation with respect fo the distribution F. By
using this concept, Muiioz Pichardo et al. (1993) and Muiioz Pichardo et al.
(2000) have obtained in a unified way a large number of influence measures
which were previously proposed by several authors, each using a different
argument.

In survey sampling, under design-based inference, in order to study
the effect that the presence of the element u; in the sample s has on the
estimator 0 = 6{s), Moreno-Rebollo et al. (1999) define the conditional bias

of 8 due to the presence of u; (0 < 7; < 1) in the sample as

)

S{I; = 1;6) assesses the variation in the expected value of ¢ under a per-
turbation of the sampling design. The perturbation consists of restricting
the sampling design to the samples containing u;.

A_

S, =1:0y=E@ |1, =1) - E(

—

In general, S(/; = 1;0) is a population parameter. Therefore, to obtain
influence measures from i we must estimate if. As Moreno-Rebollo et al.
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(1999) argue, the estimation should be carried out through the conditional
sampling design, given the presence of w; in the sample, 1)y, characterized
by the probability function P;(+), defined by Py;(s) = Pﬂ(f} if u; € 5, Pi(s) =

0, otherwise. The first order inciusion probabilities for [J)y; are given by

T‘kii = 7!'4[4]‘./7('1'4.

In particular, the conditional bias of ‘fH-T is (Moreno-Rebollo et al.,

1999)

- FAYTS
S(I = 1. Tyr) = LI (4.1)
T Tk
Since S(I; = lg'fHT) is linear in the observed variables my, it can be
estimated by its H'T estimator in Dy,
- - Ajk
Sgr(l; = 1,7, = ..
HT( i ; HT) Zﬂ'ik . %

Note that §HT(L; =1 ‘fHT), like S(I; = 1; TH-T), depends on the sampling
design through the first and second order inclusion probabilities.

For any sampling design of fixed size, n, and for any estimator 'é“(”})
where the superscript (n) means that the estimator is designed for a sam-
ple of size n, Moreno-Rebollo et al. (2002) have proposed the following
estimator of $(I; = 1;6))

S, = 150) = (1 = m {015 - 22 S g
Py(s)

(4.2)
where Py (s — {w;}) is the probability of selecting the sample s — {u;},
of size n — 1, in the design of fixed size n — 1 on Uy = U — {u;}. This
estimator can be seen as a finite population version of the sample influence
curve (Cook and Weisherg, 1982, Chapter 3). Its application requires,
besides the first and second order inclusion probabilities, knowledge of the
probability distribution that defines the sampling design.

4.2 Conditional bias of Bﬂ

In order to interpret S(I; = 1;4,), to compare it with its counterpart in
model-based regression and to propose an estimator, we will approximate
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S5 = 1; :3:) by S(I; = 1, gg) with 32 given by (3.1}. Taking into account.
that
S = 1Y) = T[S = 15%) - S = 1,T) 4] (4.3)

and since from {4.1)

S(I, = 1;t) = Z

it is obtained that

zoye aud S =1.7T)= Z B z,zL, (4.4)

W " Wy T
i R 7] itk

, N
S(L = 1«7}) ~ S(L = 130) = 'T_j (Z ik E;C Zk) .

Wy T

™

S~ 1) - T (Z3 | ‘)_ET st 3 T .
~ Tk
IF L—{U,;
(45)

It is interesting to compare S(I; = 1; 3) with its analogous in model-

7

based regression, whose expression is (.5 ee Mugioz Pichardo et al., 1993)

As Y 1 Epz, = 0. we also have the following expression for S(I; = 1; 3“)

Ei%_}xi, (46)

where T = oy xkxt and g = Y; — x}3. Comparing (4.5} and (4.6) we
observe the following facts: (L‘o) depends only on &;, whereas (4.5) is a
linear combination of E, T 'z, & = 1,2,...,N. The coeflicients in this
linear combination are determined by the first and second order inclusion
probabilities associated with the sampling design. The ferm associated
with u; in the right-hand side of (4.5) is the analogue of (4.6) divided by =;
and therefore, this term increases as w; decreases. The second term in the
right-hand side of (4.5} can be interpreted as a consequence of the violation
of the independence hypothesis in complex survey, where the presence of
an observation in the sample may affect the inclusion probabilities of the
remaining population units. On the coefficients of E, T~ 'z, in this second
term, 7:7' we ohserve that:

Thi . . ) . . . ) ) ;
° T—k' is pull iff the sampling design is such that the elements u; and

u; cannot appear simultaneousiy in the sample, that is, iff m;;, = 6.
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Tk‘E‘J

. ? is > 1, = 1or < 1iff Ay is > 0, = 0 or < 0, respectively, or
equivalently, iff the first order inclasion probability of the element u,,
is greater, equal or smaller, in the condifional design, given wu,, than
that in the original one. In many sampling designs, A, < 0 and in
these designs E;/ T 'z; dominates S(I; = 1; &) since it has the highest
weight, because its coefficient is greater than 1 while the coefficient
of BT 'z, Vk #£ 4, is less than 1.

As we have seen before, S(I; = 1; ,{{:) is a linear combination of B, Tz,
k=1,2,...N, but there is some cases where it only depends on E;T 'z;.
We say thal a sampling design is independent if my, = 7 7, Yk #£ 4. Ex-
amples of independent designs are the Poisson and the Bernoulli designs,
If a design is independent then

1- Wy

S(L‘. = 1;}?“) = E; Tiizi,
T

Simple Random Sampling (SRS(N,n)) is not an independent design, but
since it satfisfies that ‘i—‘;‘ is constant ¥k # ¢, we have that

N 1-

= —fEiTilzi,

N-1f

S(Li=10) =
with f = n/N the sampling fraction, that only depends on E;, T}z,

4.3 Estimating the conditional bias

As we have previously indicated, the conditional bias is a population pa-
rameter and therefore, to obtain influence diagnostics from it we need an
estimator. In this Section we will consider two estimators of S(I; = 1; 3, ).

From the approximation (4.3) for S(f; = 11) and taking inte account
that the estimation should be carried oui on fhe condifional sampling de-
sign, Dy;, we first consider the following estimator

.

g(L = 137;) = Til [gHT(I, = 1%}\) — §HT(L = 1’%)3”51:; .

i

where §r§z is the least squares estimator of 7 in the conditional sampling de-
gign, that is, iéi = 'f‘_ffii From (4.4) the following alternative expression

!
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is obtained

Tike Tk

. S A
S(L = 1!37() = Tiil (Z k Crii Zk‘.) )

where ¢ = yp — Ziﬁwii = Ui — Yrii. Taking into account that )~ €Ly zk?
= 0, we have that

. - . 1
‘S([i = 1‘ fdﬂ) = T;} ( —_— e‘k%i Z;c) (4.7)
=TT (’3; - 'ig) . (4.8)

Looking at {4.7) we (:onciuée that S (=1, 3 )is a linear combination of
terms of the form ﬁké-i.T; 'z, where the coefficients are ﬂ—. From (4.8) we

observe that S (I; = 1, _;.3W) depends on the difference ;3,-, - Jdﬂgl; , that ig, of
the differenice between the estimators of 4 in the original design, D, and in
the conditional design, given w;, D;,. This difference is analogous to thai
appearing in the case-deletion dldgnostl(,s,_ but while in the case-deletion
diagnostics the original estimator is compared with the oue obtained by
omitting an observation, here we compare the original estimator with that
obtained by imposing that u; € s.

Second, when the sampling design is of fixed size, n, we can consider

the estimator proposed by Moreno-Rebollo et al. (2002) in (4.2), which in
this case equals

Stz =15 = (- {0 - B2 D e},

with
1

T —1 1 1
Arl(s — {u}) = Z T Z,.2, Z m ZpYk |

s—{uq} Ty s—{ud "

{(n—

where 7, ) represents the first order inclusion probability in the design
of fixed size n — 1 on U. Unlike S({; = 1; 4, ), S{f; = 1; -} can be viewed
as a case-deletion diagnestic in survey sampling.
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To conclude this subsection we give the expressions of the above pro-
posed estimators in the SRS{N n):

- o N-—-n =~ )
Sl = 1,5,) = mﬁigﬂ‘ﬁ %, (4.9)

—

S(Li=13)=(1—f) [Jﬂ(s) ~ (s {-u,i})} . (4.10)
An alternative expression of (4.10) is given by

1 ~
= f’.iTi"EZi.
- h,,;,‘

S(I =1,3,) = %

Except for the finite population correction factor, f/{1 — f}, s (I, = 1; 3;)
coincides with the estimator of the condifional bias of 3, given ¥, = y;,
proposed by Mutioz Pichardo et al. (1995} in model-based regression, whose
expression is
1 . S

—6;“”.[1_1)(5‘ = .d — d{,),

1—hy "
where e} =y, — ng and ,3/\(1-} is the least squares estimate of [ when the
ith case is omitied from the study.

4.4 Influence diagnostics from the estimation of the conditional
bias

Since S{f; = 1;371), and ifs estimafors, are g veclors, a way to obtain
influence diagnostics is by normalizing the considered estimators, so that
the obhservations can be ordered in a meaningful way. One of the methods
to carry out this normalization, which is commonly used in model-based
regression, is through a seminorm as (e.g. Chatterjee and Hadi, 1986)

x'Mx

x|l =

for appropriate choices of M and ¢, where M is a positive semidefinite
g x g—matrix and ¢ € R is a positive constant. A large value of ||S g.,-
= 1: 5, )|lm.. indicates that the ith observation has a high influence on g,

relative to M and ¢. A similar interpretation applies to | 5 (I, = 1; ?T)HM(
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Several influence diagnostics have been proposed in model-based re-
gression normalizing 3 — %, where 3, is the least square estimator of 3
obtained by omitting the ith observation,

By = argmin > (e — xib)?,
ke

considering M = X'X = T, or the analogue of this matrix in the reduced
sample, and ¢ an estimator of ¢? from the whole sample or under the
omission. A justification to this choice of M and ¢ is found in the fact that

Varyy (3) = g° (X£X)_1 — 2T 1

By analogy, we can define influence diagnostics in design-based regres-
sion following this procedure by considering for example M = {Vdr(d !
—TL 'Tande=1or M=T and ¢ = = ¢; OF ¢ = ¢z, Where

. 2
2
1 Z ey 1 Z Crli
(;1 = — an(_i C’Q = —_—
n—4 T n—o "Tr’iEL
& s

The reason for these choices of the constant ¢ is that, as said before, in
model-based regression a common choice of ¢ is an estimator of 0%, Al-
though the variance o does not have an analogous in design-based regres-
sion, we can construct dndioouea of some of its estimators as follows. An
unbiased estimator of o? is

) 1
52 = S,
q
where . .
SC,. = kZi(gA — x,iE)Z = mti)n ];(yk_ — xib)z.

Taking into account that i = argminy, y_ (yx — 2, b)Q }1 the analogue of
SC. in design-based regression can be taken SC., where

2
. —6 3
S5C. = min E (g — ZE;b)Q' = Z - :
b Tp T
" &

which justifies the choice of ¢ = ¢;. Another usual choice of ¢ in model-
based regression is

52, = ! Sa
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where
T

SC = Z(yk - Xi.ﬁ(i})z.
k=1
If instead of considering the omission we consider the conditional design
Dy; (recall the discussion on expression (4.8)) and reasoning as before we
obtain ¢g.

Other choices of M are possible. Table 1 displays several influence
diagnostics obtained for different choices of M and ¢ = 1.

Table 1. Inflnence diagnostics obtained for different choices of M and ¢ = 1

M 1S = 1580 ) |I5n 2

A sl (ﬁh - Z?A-ga)z _ (ek N 61&“56)2
M, = T, T™'T; Z——Z,—

B Y3 - Tk
~ Y — i
M; =Ty; > (B~ G 27( )hk-;féeﬁjﬁai
kel
M. — T (5 — Yali (@f - {\Jil) LA Lpp—1
a Z TR 2t i 2

u,kEs
f!.jES

M= Ve (B)) | 2 W 0) 05— 0) iy,

For the choices of M in Table 1, all the obtfained influence diagnostics
depend on the differences between the fitted values in the original design
and in the conditional design, ), — Q};éi, or equivalently, on the residuals,
er — €, on the elements of the matrix H and on the first and second
order inclusion probabilities. In general, the expressions of the resultant
diagnostics are more complex than the ones obtained in model-based re-
gression. This I8 a consequence of the relations of dependence among the
observations in each context.
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The diagnostic |S(I, = 1; 3\?)”%«11(1 is formally the simplest one and it
is interesting to compare it with Cook’s distance, proposed by Cook (1977)
as an influence diagnostic in model-based regression, given by

- -~ [ .
55 (¥ )

qo?

: (4.11)

Cook’s distance is proportional to the euclidean norm of (? — ?(‘?J)f while
Hg(f, =1 g.r)Himq is proportional to the norm of (\7 - ?EL) with respect
to the diagonal matrix diag{. . .T;l ... }, that is, while the diagnostic (4.11)
gives the same importance to all observations, in Hg (1; = 1, :L)Hidlq the
weight of each observation is inversely proportional to its first order inclu-
sion probability.

o

Analogously, influence measures can be defined from S(I; = 1; 5 ).

4.5 SRS and independent designs

The generality of the expressions in Table 1 makes hard its interpreta-
tion. In this subsection we evaluate them in some particular designs: the
SRS(N,n) and independent designs. Each of them has a characteristic
in common with the i.i.d. case: in a SRS the variables I; are identically
distributed and in the case of an independent design they are independent.

The results in Table 2 are obtained from the expressions of S(I; = 1; ET)

in a SRS and in the independent designs, given by (4.9} for a SRS and by

N — 1—m

S =13 4,)

-1
- eigi Téb Z;

i
for independent designs, and taking into account thai in a SRS: e =
1 . . L _ N-np. ., F—1., _  n=1 1 A DV p o
et where g; = 3—hy, and ng‘, %= R —lﬂmT z;, and that for
independent designs: e;; = ;foii,- where 7,; = (1 — w;)h; and TE._;]Z?A
T ]
=L T*]z,,j.

F—Ti

In the case of a SRS the diagnostics associated with the mafrices My,
Mo and M;. except for a constant factor, can be expressed as a product
of the form dj(gi)e?. j = 1,2.3, with d;{z) = oyt Lhe functions

d;i(gi}, 7 = 1,2,3, are increasing in g; since g; € [0,1] and they also
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Table 2: Influence diagnostics in SRS({N, n) and independent designs

1S{I: = 1 3 Zn
SRS Independent
(N —n) Gii 5 -7 7y :
MI 7 5 12 — 26,‘3
(17\ — 1)f (1 — gii) UF: (1 — ’ii)
N -—njn-1 Gii : l-m 7
M, | ¢ : )(22) 2 T Ti
(f\ — 1) f (1 — g;‘;:,) i (1 — fu)
M (N —n)(n—1)? Tii o 1-—m 7w 7
. - e e
4 N —1)Ff3 1*(1'-,;41 5 1*71"{.41
Y
(N —n)? 1 9 4o (1 — ) 1 2 ef-1
M (N —1)?2f2 (1L — g; ) faly e 2 (TR a5

satisfy that dy < ds < ds. Therefore, we can conciude that in these three
cases the influence diagnostics are multiplicative functions of a measure of
leverage and of the residual e;. and they differ in the impact of the leverage
on the diagnostic, since dy < dy < ds.

In the case of an independent design the influence measures obtained
from M. My and M, can be expressed ag 1;7“ d; (T”)f’f The same con-
nient as before can be done on d;{7:),7 = 1, 2,’3, since 7 € [0,1]. There-
fore, in this cage the influence diagnostics associated with My, Ms and M,

are nmaliipticative functions of a measure of leverage, the residual e; and of
1—m;

a decreasing funciion in &y,

5 Examples

We pregent two exampies to illustrate the proposed diagnestics, The first
one iz an artificial bivariate dafa set, where it is easy to identify influential
cases, from the model-based point of view, in a scatter plot. This will
allow us to observe the differences between model-based diagnostics and
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the design-hased diagnostics proposed in this paper. The second example
is a real data set.

5.1 Artificial data set

We have generated an artificial population of size N = 250. The vector
of survey variables is my = (y. 1,2 )" k = 1,...,N. To estimate 73, the
regression parameter of y on the explanatory variables, we have selected
a sample of size n = 50 from the population according to an inclusion
probability proportional to size design, constructed by Sampford's method,
(Sampford, 1967). The sample data are given in Table 3.

Table 3: Artificial data set: (y) response variable, (2} explanatory vari-
able, {w] ]'} mverse of the firgt order inclusion probability

Case U z ?T;E Casge Y z 1r,,.71
1 | 161,01 | 30,01 | 3,50 26 | 113,06 | 12,58 | 5.61
2 | 120,07 | 15.02 | 5,25 27 | 12896 | 17.82 | 4,88
3 | 120,94 | 1795 | 4.85 28 | 12958 | 17,92 | 4,80
4 | 122,68 | 1580 | 5,14 20 | 1237 | 16,45 | 5.00
R RG.72 3,84 7.3% 30 137,35 21,05 | 4,38
6 | 13411 | 1971 | 470 31 | 107,51 | 10,59 | 5.8
7 127 | 30,95 | 5.11 32 | 115,73 | 13,62 | 5.44
8 | 13486 | 19,85 | 1.64 33 141 | 22,22 | 4,47

137,99 | 20,23 | 4,58 34 | 139,38 | 21,44 | 4,52

10 | 11735 | 14,35 | 5,35 35 | 137,45 | 2072 | 4.61
11 | 7e92 | 1706 | 7.87 36 | 127.05 | 3,25 | 4,78
12 | 131,67 | 19,07 | 4,75 37 | 120,91 | 15,7 | 5.25
13 | 119,66 | 15,46 | 5,24 38 121.4 15,9 | 5.20
14 | 117,62 | 146 | 535 30 | 117.82 | 13,88 | 5.39
15 | 12317 | 16,19 | 5,10 40 | 143,95 | 23.16 | 4,40
i6 123.24 15,85 5.13 41 i35 1575 | 4,63
17 | 139,34 | 21,18 | 4.53 42 | 14001 | 22,79 | 4,13
18 | 12464 | 16,67 | 5.03 43 | 126,48 | 17.08 | 4,08
19 | 1ws4z | 113 | 5.74 44 | 135,96 | 20,54 | 4,66
20 | 120,02 | 18,03 | 451 45 | 112,31 | 12,26 | 5.59
21 | 11914 | 15,34 | 5,28 46 | 16541 | 17.06 | 3.82
22 | 122,25 | 15.536 | 5.17 47 | 120,02 | 15.21 | 5.25
{Continued on next page)
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{Table 3. Coutinued from previous page)

Clage Y z | 7w ! Case y z | w;
23 1 131,53 | 18,73 | 4.81 45 124,88 16,77 | 5,03
24 | 12551 | 16,64 | 5,01 49 | 13427 | 1962 | 4.69
25 | 120,71 | 18,48 | 4,85 50 | 107,78 | 11,44 | 5,82
. T a5 & T
160.0 *
1 + 5
24
140.0 = o
* 36 .‘-.. . &= + L]
120,06 = _..‘f. 7 7 . . ) .
. '.\. L " :
o 5=, ‘. .'. . N .
160.0 e . L B
. 5 - *
“ ¥
ae.t = * 11 *1
T T T T T T T T T
160 200 300 Z o 10 20 30 40 50
(a} Scatter plot: = versus y (b} Vertical axis: 1/w;
5 2000 = *n
620 .7 TS
1500
* 36
6,15+
.1 1000
0,10 .36
* 7
. 500 =
.65 = . . .
. . ..'- ‘ o- 15
B e e o o e et G ore o N tereeteteratensnan 0000 Lattenty oot
s 1 =20 a0 ap 50 - S

(¢) Vertical axis: T

{d) Vertical axis: e

Figure 1: Artificial data set {in graphies I1(l:j—1{d}, horizontal axis: cases)

The auxiliary variable is approximately proportional to v, and so from
Figure 1{a) we can get an idea of the first order inclusion probabilities of
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Figure 1 (continuation): Artificial data set (horizontal axis: cases)

the sample units. Nevertheless, the values of 1/7;, k € s, are displayed in

Figure 1(h).

Looking at Figure 1{a} we see there are six cases that, from the model-
hased point of view, should be considered as influential: cases 1 and 5
because they are leverage; cases 11 and 46 because they have a large resid-
ual; and cases 7 and 36 because they are leverage and they also have large

residuals.
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Figure 1 (continnation): Artificial data set {horizontal axis: cases)

Next we examine the data from the design-based point of view. Fig-
are 1{c¢) displays the values E“ . Looking at it we can clearly see the effect
ol the design: alihough in model-based context cases 1 and 5 both have al-
most the same hy;, here case 5 is more leverage than case 1. This difference
is due to the fact that 7y is much bigger than 7y, as it can be seen from
Figure 1{(b). Cases 7 and 36 have similar hii because they have similar ;.
Figure 1{d) shows €7, i € 5. We observe that the relative positions of 2,
i € s, are quite similar to those that would be obtained in model-based
regression.
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Figures 1{e)-1{k) display the values of [[S([; = 1; 3 )|, . for (M, ¢)
= (Mi,e1), (My,2), (Ma,c1}, (Mo, ), (Mg, cq), (Mg, cz), (My, 1), re-
spectively. All the diagnostics declare cases 7 and 36 as highly influential,
5 as a moderate influential case and cases 1 and 46 as low influential. Case
11 is classified as high influential by some measures and as moderate influ-
ential by others. Looking at Figures 1(e)-1(j} we observe that the relative
position of case 11 depends on the constant being considered. whose values
are shown in Figure 1(1).

5.2 Real data set

In this subsection we present an example with real data. The considered
population consists of those towns of Andalucia (a region in the south
of Spain) with a number of residents (/) in the interval [200,25000] and
with electric energy consumption (F'C) less than 150000 megawatts per
hour. The population size is N = 708. The response variable (y) is the
declared net rents in the TRPF tax and the explanatory variables are EC
and the number of enterprises (NE). All data are referred to 1999 and
they have been obtained in June 2003 from www. juntadeandalucia.es/
institutodeestadistica.

We have selected a sample according to a proportional probability ag-
gregated size sampling (PPAS) (Hedayat and Sinha, 1991, Chapter 6), with
sample size n — 120 and size variable R. The sample data are given in Ta-
ble 4.

Table 4: Real data set; (IRPF) declared reat in the IRPF tax, (EC)
electric energy cousum, {NE) number of enterprises, (Trfl) inverse of the
first order nclusion probability

Cage IRPF NE EC [ 7 t Clase IRPF NE EC | 7 t
1 | 46834.23 869 | 41,88 | 5,78 61 | 43914.55 1140 | 45.48 | 5,77

2 | 346556 86 | 2,47 | 5,93 62 543,71 15| 036 | 504

3 | 2335240 870 | 15,73 | 5,85 63 5982,06 106 5,62 | 5,92

4 401,15 7 0,21 | 2.94 64 | 1531445 215 | 8811 | ».89

5 | 804056 | 217 | 574 | 5,91 65 | 7451,36 | 157 | 7.29 | 5,90

G 283,11 22 0,57 | 5.94 66 309,99 9 0,31 | 5,94

7| 132423 49 | 1,29 | 5,93 67 | 313008 | 120 | 2,71 | 502

8 | 4562434 | 1071 | 35.61 | 5,81 68 | 4356,83 | 167 | 2,53 | 5,92
(Continued on next page)
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{Table 1. Coutinued from previous page)
Case IRPF | NE | EC | a7! || Case IRPF | NE | EC | #*
G 740,48 27 1.66 [ 5,94 69 15766,15% 429 10,50 | ».87
10 968,55 26 | 0,66 | 5.04 70 550,74 41 | 040 | 5,04
11 ] 16195.34 932 | 18,27 88 ! 141641 39 1
12 hR7.47 146 0,75 5,494 72 3100.63 73 1
13 13770,91 638 17.80 ol 73 5124.90 105 4.86 | 5491
14 538,35 13 (.30 L4944 74 4908,71 130 4
15 | 140362 63 | 0,93 | 593 75 | 7izTae | 100 | 751 | 592
16 543,12 16 0,56 94 76 1400,73 51 )
17 4588,40 113 3,64 92 77 | 11886,25% 232
18 6405,24 175 6,17 JRG 78 1326,76 23
19 2367.04 82 4,60 33510,94 730 | 37,
20 435315 131 3,79 a2 80 2037880 11 17.2
21 13924.62 320 7.86 JBH 81 2AR85.65 570 50,29 | 5.86
22 | 719829 | 153 | 12,83 | 5,90 82 | 398903 79 | 3.4 | 592
23 6055960 127 4,65 | 5,92 83 2243G.52 452 12,94 | 5,87
24 6791,25 223 5.71 5,490 84 4806,47 154 2,99
25 | 10411,80 262 | 13.66 ,90 85 | 13972.06 285 G,78 | 5.88
28 122317 52 .81 43 jals} 15243.33 438 14,57
27 | 683440 | 167 | 6,95 2026,9% 43 | 1,21
28 | 2651741 600 [ 14,36 85 88 84859 .40 210 | 25,77
29 1052,95 31 1,02 L84 849 13366.76 244 8.74
30 | 12300,25 273 7.21 | 5,89 g0 7056,72 327 5,33
3t | 12196,74 | 323 | 1,47 | 588 o1 588,50 25 | 0,46

p]

onoan W W [ ] w o
(e
[ %)
]
ki)
i N B~ B e R
[ I BN
Wiooonoon
wron o
-] =]

o

L W o
(o)
[ 3
o0
DL 3]
Pt =] [N}

o 2

o
o

.50

o
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32 | 19514,96 | 463 | 19,68 | 5.87 92 | 2308,24 52 | 1,56 | 5,92
33 | o9209,04 | 207 | 10,03 | 5.91 93 | 421862 | 212 | 419 | 5.92

o

34 | 132100 a6 | 1,26
35 | 2256906 | 594 | 15,87 95 | 1364,71 36 | 066 | 5,93
36 | 119476 18 | 0,85 46 306,89 18| 034 | 5,04
37 | 1268060 | 246 | 12,01 | 5,90 o7 | 159217 62 | 1,84 | 5,95
38 | 211523 64 | 1,65 | 5.92 a8 333,48 17| 0,33 | 5,04
30 | 3846.65 68 | 332 | 5.93 6o | 179057 35 | 0,80 | 5,93
40 | 243669 46 | 1,97 | 5.93 100 | 1073,20 41| 0,70 | 5,93
41 | 369884 47 | 2,38 | 5,93 101 | 17781,31 | 3500 | 20,63 | 5,80
42 | 132709 30 | 1,46 | 5,94 102 | 402317 | 105 | 2.28 | 502
43 511,02 27 | 0.41 | 5,94 103 | 666954 | 201 | 11,41 | 591

(Continued on next page)
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(Table 4. Continued from previous page)
Casge IRPF NE EC | m, t Case IRPF NE BEC | 7 t

B4 104 391881 126 | 22,39 [ 5.91
93 105 9830.35 254 6,74

44 | 20034.16 463 [ 18,98
45 116720 31 2,94

o

o

o
@
=

46 | 171916 73 | 148 | 5,93 106 | 2006062 | 490 | 1550 | 5.82
47 439.13 15 | 0,34 | 5,94 107 | 17764,23 | 526 | 15,35 | 5.86
48 | 1149.18 15 | 1,57 | 5,94 108 | 468351 | 123 | 3,28 | 5.2

49 | 1389228 266 9.02
50 1245.35 101 2,83

o

87 109 | 11784.68 281 9,11 | 5.8%
.83 110 | 59513,80 [ 1292 | 40,89 | 5,72

o

51 | 1326,48 55 | 1,13 | 593 | 111 | 343731 80 | 192 | 503
52 5071,14 i33 3.00 5,92 ii2 373649.30 216 15,27 5,89
53 103014 52 0,498 5,943 ii3 HT676,56 555 18,26 5.85
54 | 128860 37 | 099 | 593 || 1i4 | 1052387 | 253 | 12.27 | 5,50
55 288097 94 26,13 5.93 115 4334.25 91 3.09 5,92

56 | 38683.80 | 763 | 41,87 | 5,83 116 | 486820 | 146 [ 3,80 | 5,92
57 | 1154640 | 347 | 6,69 | 5,89 117 | 714844 | 163 | 447 | 591
58 | 298525 | 10 | 382 | 592 118 | 56046,67 | 1016 | 74.24 | 5,75
506 | 321596 | 140 | 225 | 583 118 | 1694718 | 427 [ 21,94 | 5,86
60 | 757328 | 164 | 687 | 5.9 120 | 10837.65 | 410 | 13,74 | 5.88

o

Figures 2{(a} and 2(h} display hi; and e?, i € s, respectively. Looking
at these figures we conclude that cases 64 and 81 are high leverage points
and cases 1, 3, 8, 61, 110 and 118 have moderate leverage; cases 112 and
113 have large residuals and cases 3, 13, 61, 81 and 106 have moderate
residuals.

Figures 2{c}-2{i) display the values of |§§(L = 1‘1)@{( for (M, ¢}
= (My,er), (M, ep), (Ma,c1), (Mg, e2), (Ms,e), (Ma,c2), (My, 1}, re-
spectively. All the considered diagnostics declare case 81 as high influential.
Looking at Figures 2(c¢)-2(h) we see that when ¢ = ¢o the influence of case
113 increases. This is due to the value of ¢5 for this case, as can be seen
from Figure 2(j). As in the artificial data set example, the matrices My,
M, and M; give similar results. The matrix My only changes the relative
position of case 113,

For a PPAS sampling we have that

(s )
Pi(s)  (n- Dt(R) (5.1)
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Figure 2. Real data set (in all graphics, horizontal axis: cases)

where {,(R) is the sample total and T(R) is the population total. Since
for this sampling (5.1) is known, in this example we can also compute

S(I :j;ﬁw) and obtain influence measures from it. We have calcu-
tated ||S(I; = 1,3, )|l3; . for the values of (M, ¢) previously considered.

Comparing Hg(f, = 13m))|i,h with Hg(L =

the influence diagnostics obtained from S (I, = 111) increage the relative
position of case 113, for all the considered choices of (M, ¢). To illustrate

1; 3;)”%\4( we ohserve that

this, see Figures 2(c) and 2(k}.
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Figure 2 (continuation): Real data set

6 Conclusions

In this paper we have defined some influence measures in design-based
regression, area in which the influence analysis has been scarcely treated.

First, we introduce the analogues of leverage and residuals for design-
based regression. In particular, we observe that in design-based regression,
the leverage points do not only depend on the relative position of the ex-
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Figure 2 {continnation): Real data set

planatory variables, as it occurs in model-based regression, but also on their
first order inchasion probabilities.

The diagnostics that we propose are buill by normalizing the condi-
tional bias (Moreno-Rebollo et al., 1999) of 3r, the usual estimator of the
regression parameter in design-based regression. The resultant diagnos-
tics are compared with their counterpart in model-based regression. From
this comparison we chserve that the proposed diagnostics depend on the
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regiduals and leverage, like most model-hased regression influence measures.
However, in design-based regression, the diagnostics also depend on the first
and second order probabilifies associated with the sampling design. That
is. the proposed diagnostics incorporate probability weighting, population
structure or measures of size into the analysis. The results obtained show
clearly what Smith (1987) asserts “conventional model-based influence di-
agnostics do not have immediate application fo randomization inference for
sample survey”.
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