Revealing substitution mechanism in

Eu³⁺:CaMoO₄ and Eu³⁺,Na⁺:CaMoO₄ phosphors.

Ana Isabel Becerro,^{*a} Mathieu Allix,^{*b} Mariano Laguna,^a Daniel González-Mancebo,^a Cecile Genevois,^b Alfonso Caballero,^a Gabriel Lozano,^a Nuria O. Núñez,^a Manuel Ocaña^a

^a Instituto de Ciencia de Materiales de Sevilla (CSIC-US), c/Américo Vespucio, 49, 41092 Seville, Spain

^bCNRS, CEMHTI UPR3079, Universite Orléans, F-45071 Orléans, France.

Abstract

Eu³⁺-doped calcium molybdate is an excellent phosphor for lighting and display devices due to the very intense pure red emission after UV excitation. It has been reported in the literature that the CaMoO₄ unit cell volume expands after Eu³⁺ doping, in spite of the smaller Eu³⁺ ionic radius compared with Ca²⁺. Likewise, several studies found that the emission intensity of the phosphor could be improved by codoping with alkaline ions like Li⁺, Na⁺ or K⁺. None of these studies correlated the apparent volume expansion and luminescence enhancement with the crystal structural details. This paper analyses the aliovalent substitution mechanism and crystal structure of Eu³⁺:CaMoO₄ and Eu³⁺,Na⁺:CaMoO₄ phosphors using complementary techniques like Raman spectroscopy, EXAFS and SPD. We found that the substitution mechanism was different for both systems, with Ca site vacancies forming in the Eu³⁺:CaMoO₄ phosphors and leading to Ca_{1-3x}Eu_{2x□x}MoO₄ compositions, while the Eu³⁺,Na⁺:CaMoO₄ phosphors formed Ca₁₋ 2xEuxNaxMoO4. SPD showed that the cell volume expansion observed with increasing Eu³⁺ content is related to the increase of the Mo-O bond distance due to the higher electronegativity of Eu³⁺ compared with Ca²⁺. Finally, it was shown that the luminescence properties, i.e. lifetime values and quantum yields (the latter reported here for the first time), do not depend on the presence of monovalent ions in the crystal structure but, exclusively, on the Eu³⁺ content of the phosphor. The integral and detailed analysis of the materials presented in this paper, ranging from crystal structure to luminescent properties including elemental composition allows a full draw of the structure-properties relationship that had never been addressed before for CaMoO₄-based phopshors.

^{*} Corresponding authors: <u>anieto@icmse.csic.es</u> (Ana Isabel Becerro) and <u>mathieu.allix@cnrs-orleans.fr</u> (Mathieu Allix)

1. INTRODUCTION

Calcium molybdate (CaMoO₄) is an important photoluminescent material with potential applications in scintillators,¹ photocatalysis,² etc. CaMoO₄ emits light in the blue-green region of the electromagnetic spectrum after excitation with UV light.³ CaMoO₄ crystallizes in the scheelite structure (tetragonal, space group $I4_1/a$), with molybdenum atoms surrounded by four equivalent oxygen (Td symmetry) and Ca atoms coordinated to eight oxygen atoms.⁴ Each CaO₈ polyhedron shares corners with eight adjacent MoO₄ tetrahedra. A schematic structure of CaMoO₄ scheelite is provided in Figure 1. CaMoO₄ is also an interesting host matrix for lanthanide-doped phosphor materials that produces narrow spectral emission lines due to intra 4f electronic transitions. Interestingly, the [MoO₄]²⁻ unit can absorb UV light with a high cross-section and excite the doping lanthanide ion through the so-called energy transfer process, which notably enhances the emission intensity of the lanthanide ions. Among the latter, Eu³⁺ ions are easily substituted for Ca^{2+} into $CaMoO_4$ due to the similar ionic radii of Ca^{2+} (1.12 Å in VIII coordination) and Eu³⁺ (1.066 Å in VIII coordination). The excellent luminescent properties together with the high chemical and thermal stability of the CaMoO4:Eu³⁺ phosphor has attracted a lot of attention in the last decade. Photoluminescence properties CaMoO₄:Eu³⁺ have been extensively studied in bulk samples, 5,6,7,8 of microparticles^{3,9,10,11} and different types of nanoparticles.^{12,13,14,15} However, very little attention has been paid to the substitution mechanism and crystal structure of Eu³⁺:CaMoO₄ phosphors. In our recent paper on the photoluminescence of peanut-like CaMoO4:1%Eu³⁺ architectures, we found that the unit cell parameters of the Eu³⁺-doped sample were slightly higher than those of the undoped material, in spite of the smaller ionic radius of Eu³⁺ compared with Ca²⁺ in eight-fold coordination.¹¹ Some other authors have also noticed such a volume increase with Eu³⁺ doping in Eu³⁺:CaMoO₄ phosphors,^{6,9,16} although none of them has carried out a deep structural study to envisage the substitution mechanism and the resulting crystal structure. Likewise, several authors have reported that the emission of CaMoO4:Eu³⁺ was enhanced by co-doping with Na⁺, Li⁺ or K^{+, 5,17} However, none of these studies correlated the apparent luminescence enhancement with the actual elemental composition of the samples and the crystal structure derived from the substitution mechanism of Ca²⁺ by Eu³⁺, Na⁺, Li⁺ or K⁺.

In this paper, we study the aliovalent substitution mechanism and the crystal structure of $Eu^{3+}:CaMoO_4$ and $Eu^{3+},Na^+:CaMoO_4$ phosphors. From a structural point of view, there should be a charge balance mechanism when substituting one Ca^{2+} ion by one Eu^{3+} ion in $Eu^{3+}:CaMoO_4$. Two possible mechanisms to maintain charge neutrality in these materials with aliovalent ionic substitution include *i*) Ca-site vacancies ($3Ca_{Ca} \rightarrow 2Eu_{Ca} + V_{Ca}$) forming $Ca_{1-3x}Eu_{2x}\square_xMoO_4$ (where \square represents a vacant Ca site) or *ii*) interstitial oxygen atoms ($2Ca_{Ca} \rightarrow 2Eu_{Ca} + O_i^{"}$) forming $Ca_{1-x}Eu_xMoO_{4+x/2}$. A third possible mechanism to maintain electrical neutrality involves the co-doping of the CaMoO_4 scheelite structure with Eu^{3+} and an alkaline cation (A^+) like Na⁺, Li⁺ or K⁺ to form Ca_{1-2x}Eu_xA_xMoO_4, as reported in the case of calcium wolframate.¹⁸ In order to figure out the substitution mechanism, two series of samples (with and without sodium in the reaction medium) were synthesized using a liquid-based method followed by calcination. The nominal

Eu/(Eu+Ca) mol % ratio was varied from 0 to 50% in both series. Elemental analyses and Raman spectroscopy were used to envisage the ionic substitution mechanism, while synchrotron powder diffraction and EXAFS were employed to analyze the resulting crystal structures and ascertain the substitution mechanism. Finally, the influence of Eu^{3+} , Na⁺ and vacancy contents on the photoluminescence emission intensity were examined in detail while lifetime and quantum yield measurements were carried out to analyze the effects of the substitution mechanism.

2. EXPERIMENTAL SECTION

2.1. Reagents

Calcium nitrate (Ca(NO₃)₂·4H₂O, Aldrich, 99%), europium nitrate (Eu(NO₃)₃·5H₂O, Aldrich, 99.9%), sodium molybdate (Na₂MoO₄, Aldrich, \geq 98%) and ammonium molybdate ((NH₄)₂MoO₄, Aldrich, \geq 98%) were selected as precursors. Glycerol (Aldrich, \geq 99.5%) and miliQ water were used as solvent. All chemicals were used as received.

2.2. Synthesis method

Eu³⁺:CaMoO₄ samples containing different amounts of Eu³⁺ were synthesized using the method reported by Laguna et al.¹¹ followed by calcination at 900 °C for 5 hours. Briefly, the method consisted of the aging, at 120 °C for 20 hours, a glycerol/H₂O (4/1 volumetric ratio) solution containing calcium and europium nitrates and (NH₄)₂MoO₄ (0.05 M). Different Eu contents, expressed as Eu/(Eu+Ca) molar ratio, were used (0%, 10%, 30% and 50%) while keeping constant (0.01 M) the Eu+Ca concentration in the solution. The resulting dispersions were centrifuged to remove the supernatants, washed with ethanol and dried at 60°C. The white powders obtained were then calcined in alumina crucibles at 900°C for 5 hours. Na₂MoO₄ was also used as Mo source to investigate the effect of Na⁺ on the structure of the obtained materials. All the other experimental parameters were constant with respect to the Na-free samples.

Samples synthesized from ammonium molybdate will thereafter be named AMo-x while those synthesized from sodium molybdate will be called NaMo-x, where x indicates the nominal Eu/(Ca+Eu) molar ratio.

2.3. Characterization techniques

Elemental composition of the samples was analyzed by energy dispersive X-ray spectroscopy using an EDX Bruker X Flash Detector 4010 attached to a SEM microscope (FEGSEM, Hitachi S4800, 20 kVHitachi4800). The analyses were carried out on powder samples. An acquisition time as long as 10 minutes was used to record each spectrum, in order to obtain reliable quantitative results. EDS analyses were also performed at the TEM in order to confirm these results at the nanometer scale.

Laboratory X-ray diffraction patterns were recorded on a PANalytical X'Pert Pro diffractometer equipped with an X-Celerator detector. Data were collected over an angular range of 10 to 70 °20 using 0.05° steps.

Raman spectra (200–2000 cm⁻¹) were recorded on a Lab-RAM Horiba Jobin Yvon spectrometer equipped with a CCD detector and a diode-pumped solid state laser (785 nm) at 5 mW. All samples were analyzed during 100 s of exposure time using a 100 μ m aperture hole.

High-intensity and high-resolution synchrotron powder diffraction (SPD) data were carried out on the 11BM beamline at the Advanced Photon Source, Argonne National Laboratory, US. Data were collected at room temperature on a spinning sample (60 Hz) over the $0.5 - 50^{\circ} 2\theta$ range with a 0.001° step using a $\lambda = 0.412708$ Å wavelength.

The X-ray absorption spectra (XAS spectra) were recorded at the BM25 beam line (SPLINE) of the ESRF synchrotron (Grenoble, France). The spectra were acquired at room temperature at the Mo K-edge (19.8-20.8 keV) and Eu L3-edge (6.8-7.8 keV) in transmission mode using self-supported wafers of the powder samples prepared using the optimum weight to maximize the signal-to-noise ratio in the ionization chambers (log I0/I1z1). Standard Mo and Fe foils were introduced for energy calibration of both edges after the second ionization chamber (I1) and measured simultaneously. The EXAFS region of the XAS spectra were mathematical extracted from the general XAS spectra, and the oscillations were Fourier transformed in the ranges 2.5-15.0 Å⁻¹ (Mo K-edge) and 3.0-11.0 Å⁻¹ (Eu L3-edge). Reference spectra for MoO₂, MoO₃, (NH₄)₂MoO₄ and Eu₂O₃ were recorded using commercial samples.

Excitation and emission spectra of the Eu³⁺-containing samples were measured in a Horiba Jobin Yvon spectrofluorimeter (Fluorolog3). The samples were filling a hole (8 mm diameter) practiced in a methacrylate holder and cover with a quartz slide. This arrangement allows not only keeping an approximately constant amount of sample, but also preserving the geometry for reproducible luminescence measurements. The excitation/emission slits used to record the excitation and emission spectra were 0.6/1 nm and 1/0.6 nm, respectively. All spectra were recorded using 1 nm steps and they were corrected to account for the spectral response of the experimental setup. Eu³⁺ decay curves were collected in the same fluorimeter with a pulsed lamp at λ_{exc} = 270 nm while recording the luminescence decay at $\lambda_{em} = 614$ nm, associated to the ${}^{5}D_{0} - {}^{7}F_{2}$ transition of Eu^{3+} . The photoluminescence quantum yield (QY), defined as the ratio between photons emitted and absorbed, was determined by an absolute method. The measurements were carried out using a FLS100 Edinburgh fluorimeter equipped with an integrating sphere. Spectra were recorded at an excitation wavelength of 295 nm corresponding to the excitation band of the molybdate matrix. An emission wavelength of 614 nm was used, which corresponds to the most intense emission band of Eu^{3+} . The powder samples were deposited on a circular sample holder. A scattering plug made of the same material as the sphere was used as blank.

3. RESULTS AND DISCUSSION

3.1. Laboratory X-ray diffraction

The long-range order structure of the samples was analyzed by XRD. The XRD patterns of the samples synthesized from the ammonium molybdenum precursor (AMo-x samples) are shown in Figure 2a. All reflections in the pattern of the undoped material (AMo-0) could be indexed using the tetragonal CaMoO4 scheelite structure (S.G. 141/a, PDF 00-029-0351). The patterns of the doped samples were very similar to each other and to the one of the undoped material, and showed exclusively reflections corresponding to the scheelite structure. Therefore, substitution of Ca^{2+} by Eu^{3+} did not cause any long-range order change in the scheelite structure. The reflections were however shifted towards lower 2 θ angles with increasing Eu³⁺ content, as clearly observed in the inset of Figure 2a, which shows the 57.5 - 58.5 $^{\circ}2\theta$ portion of the patterns. The observed shifting indicates an expansion of the unit cell volume, which is unexpected given the lower ionic radius of Eu³⁺ (1.066 Å in VIII coordination) compared with Ca²⁺ (1.12 Å in VIII coordination). Such a volume increase in Eu³⁺:CaMoO₄ phosphors with increasing Eu³⁺ content was previously reported, although the origin of such behavior was never explained.^{6,9,11,16} The XRD patterns of the samples synthesized from Na₂MO₄ (NaMo-x samples) are shown in Figure 2b. They exhibit a very similar behavior to the one described above for the AMo samples, showing exclusively scheelite reflections that shift to lower 2θ values with increasing Eu³⁺ content.

3.2. Elemental analyses

Elemental compositions of the samples synthesized from the ammonium molybdenum precursor (AMo-x samples) and from the sodium molybdenum precursor (NaMo-x samples) were obtained by EDX spectroscopy and are given in molar ratio with respect to Mo in Table 1. Figure 3a shows the occupation of the A site (Ca site in the pristine CaMoO₄ structure) calculated as Ca+Eu content in AMo samples and as Ca+Eu+Na content in NaMo samples. It can be observed that the A site is fully occupied in NaMo samples, i.e., all data points are close to the green line that represents full occupation (=1). However, the A site occupation in AMo samples decreases with increasing Eu³⁺ content, which is a clear indication of the existence of Ca vacancies in this case. Figure 3b represents the charge on the A site calculated on the basis of the Ca^{2+} , Eu^{3+} and Na^{+} contents of Table 1 for the samples in the AMo and NaMo series. Samples in both series show a charge value for the A site very close to 2 (green line), which indicates charge balance in all samples. Combination of data in Figures 3a and 3b supports a substitution mechanism in AMo samples consisting of the creation of Ca site vacancies forming Cal-3xEu2xDxMoO4 versus the second possible mechanism suggested in the introduction section, which was based on the insertion of interstitial oxygen atoms. On the other hand, the substitution of Ca²⁺ by Eu³⁺ in NaMo samples does not seem to lead to the creation of Ca vacancies but the charge balance would be reached, in this case, by co-doping with Na⁺ ions to form Ca_{1-2x}Eu_xNa_xMoO₄ compositions. The formula unit calculated for each sample following the suggested substitution mechanisms is given on Table 1. Finally, the experimental Eu³⁺ content of each sample has been plotted in Figure 3c versus the nominal values for both series. The nominal values correspond to Eu contents based on the Eu/(Eu+Ca) molar ratios used in the synthesis (0, 10%, 30 and 50%, green line in the figure), assuming substitution of 1 mol of Ca^{2+} by 1 mol of Eu^{3+} . Observation of Figure **3c** reveals that *i*) experimental values are lower than nominal ones (green line) in both series and *ii*) Eu^{3+} contents in NaMo samples are even lower than in AMo samples. As described above, the elemental composition data suggest a substitution of 3 moles of Ca^{2+} with 2 moles of Eu^{3+} in AMo samples, and the substitution of 2 moles of Ca^{2+} with 1 mol of Eu^{3+} in NaMo samples. In both cases, therefore, the experimental Eu^{3+} content is expected to be lower than the nominal one. Likewise, on the basis of the proposed substitution mechanisms, the Eu^{3+} content in NaMo samples is expected to be lower than in AMo samples, in good agreement with the data points in **Figure 3c**.

3.3. Raman spectroscopy

Figures 4a and 4b show the Raman spectra obtained for the samples in the AMo and NaMo systems. The spectra of the AMo-0 and NaMo-0 (pure CaMoO4 matrix) are identical to each other and exhibit three sets of very narrow bands in the 900-750 cm⁻¹, 400-250 cm⁻¹ and 250-100 cm⁻¹ intervals. All of them can be assigned to the CaMoO4 scheelite structure, which further confirms the phase purity of both samples.¹⁹ The first group of bands, with maxima at 875, 844 and 790 cm⁻¹, are due to the stretching modes of Mo-O bonds in MoO4 tetrahedra while the bending modes in such tetrahedra give rise to the second group of bands with maxima at 400, 388, 320 and 264 cm⁻¹. The third group of bands located at wavenumbers < 250 cm⁻¹, with maxima at 202, 187, 140 and 108 cm⁻¹, is composed of translational and rotational bands associated with the interactions between the Ca²⁺ cation and the MoO4 tetrahedra.¹⁹

Increasing Eu^{3+} content in the AMo series gave rise to the broadening of all bands in the spectra and to the appearance of additional absorption bands in the Mo-O stretching modes region, with maxima at 896, 921 and 938 cm⁻¹, whose intensity significantly increased with increasing Eu^{3+} content. Similar bands were observed in the analogous Gd:CdMoO₄ system and were assigned to distorted MoO₄ tetrahedra caused by cationic vacancies in the neighboring (Cd,Gd)O₈ polyhedra.²⁰ In our case, these bands could therefore be due to the distortion of MoO₄ tetrahedra caused by cationic vacancies in (Ca,Eu)O₈ polyhedra. In addition, a clear shift of the bands associated with the interactions between the Ca²⁺ cation and the MoO₄ tetrahedra towards lower frequency values can be observed with increasing Eu^{3+} content (magnified region plotted as inset in Figure 4a), which suggests the presence of Eu^{3+} in the neighboring polyhedra. All these observations agree well with the substitution mechanism proposed in the previous section, where Ca²⁺ is replaced with Eu^{3+} ions and vacancies.

The Raman spectra in the NaMo series also show an additional band in the region corresponding to the stretching modes of Mo-O bonds, although with much lower intensity when compared with the AMo series. This is in agreement with much less distorted MoO₄ tetrahedra as compared with the AMo series, the distortion being likely due to the presence of Na⁺ in the neighboring CaO₈ polyhedra. Likewise, a similar shift of the bands associated with the interactions between the Ca²⁺ cation and the MoO₄ tetrahedra can also be observed in this series (magnified region plotted as inset in Figure 4b), which indicates the replacement of Ca²⁺ with Eu³⁺ and Na⁺, as suggested by the elemental composition analyses shown previously.

3.4. Extended X-ray absorption Fine Structure (EXAFS) study

The Mo K-edge EXAFS oscillations extracted from the XAS spectra and the Fourier transformed functions obtained for the undoped and Eu³⁺-doped samples in the AMo (AMo-0, AMo-30 and AMo-50) and NaMo (NaMo-0, NaMo-30 and NaMo-50) systems are presented in **Figure 5a**. The fitting analysis of the main peak at around 1.35 Å in the FT function (without shift-phase correction), corresponding to the first Mo–O coordination shell yields the parameter values reported on **Table 2a**. It can be observed that, although the Mo-O distances remain at 1.78 Å within an estimated error of ±0.02 Å for all samples, the Debye-Waller factors notably increase from the parent samples (AMo-0 and NaMo-0) to the Eu-containing ones, the values being higher for the AMo samples. This result must be a consequence of changes in the type of cations in the neighboring *A* polyhedra, which are occupied by Ca²⁺, Eu³⁺ and vacancies in the AMo samples and by Ca²⁺, Eu³⁺ and Na⁺ in the NaMo ones. This different chemical surrounding consequently cause an increase in the static disorder in the Mo-O tetrahedra, more pronounced in the AMo-series, in agreement with the Raman observations.

On the other hand, the Eu L3-edge EXAFS oscillations extracted from the XAS spectra and the Fourier transformed functions obtained for the Eu-containing samples in the AMo (AMo-30 and AMo-50) and NaMo (AMo-30 and NaMo-50) systems are plotted in **Figure 5b**. The fitting analysis of the main peak at around 1.93 Å in the FT function (without shift-phase correction), corresponding to the first Eu–O coordination shell, yields ~8 neighbors atoms at 2.4 Å for all AMo and NaMo samples at any Eu content (**Table 2b**). These data are in agreement with Eu³⁺ ions occupying the *Ca* crystallographic sites in the CaMoO₄ scheelite structure. The Eu-O distance derived from the fitting analysis is in the range 2.40 – 2.41 Å for all four samples, which is sensibly lower than the average Ca-O distance in the parent structure (2.46Å)⁴, in agreement with the higher electronegativity and lower ionic radius of Eu³⁺ compared with Ca²⁺.

In summary, the analysis of Mo and Eu EXAFS spectra reveal that a certain local disorder takes place in the MoO4 tetrahedron when Eu is incorporated into the scheelite structure, although Mo-O distances do not change, at least within the error of the measurement. Meanwhile, the Eu EXAFS spectra reveal that the Ca polyhedron is shrunk as a consequence of Eu³⁺ occupying Ca sites.

3.5. Synchrotron Powder Diffraction (SPD)

In order to gain deeper insight on the crystallographic structure of the $Ca_{1-3x}Eu_{2x}\Box_{x}MoO_{4}$ and $Ca_{1-2x}Eu_{x}Na_{x}MoO_{4}$ solid solutions, as well as to clarify the origin of the observed expansion of the unit cell when replacing smaller Eu^{3+} for bigger Ca^{2+} , high resolution synchrotron powder diffraction patterns were recorded on all compositions of both AMo and NaMo systems.

Rietveld refinements were performed firstly on the AMo samples using the tetragonal scheelite structure as a starting model (space group $I4_1/a$), with Ca²⁺, Eu³⁺ and vacancies randomly distributed in the unique Ca site of the parent CaMoO₄ structure. Attending to the Ca_{1-3x}Eu_{2x□x}MoO₄ formula described above, established from elemental analyses and

Raman spectroscopy, the following constraints have been used during the refinement: i) the vacancy content corresponds to half of the Eu^{3+} content and *ii*) the Ca^{2+} content was constrained so that the Ca site is fully occupied by Ca²⁺, Eu³⁺ and vacancies. On the other hand, the Rietveld refinements of the NaMo series were also performed using the tetragonal scheelite structure as the starting model, with Ca²⁺, Eu³⁺ and Na⁺ randomly distributed on the unique Ca site of the parent structure. In this case, attending to the expected substitution mechanism (Ca_{1-2x}Eu_xNa_xMoO₄), the constraints used during the refinement process were: i) the Eu^{3+} content was equal to the Na⁺ content (electro neutrality constraint) and *ii*) the Ca site was considered as fully occupied with either Ca^{2+} , Eu³⁺ or Na⁺. This way we could determine the Eu³⁺ content in each sample. The final refined synchrotron powder diffraction diagrams for the AMo-30 and NaMo-30 compositions are shown in Figure 6, as an example, while Figures S1-S3 show the refined diagrams for the rest of compositions. The formula units derived from the site occupation factors obtained for Ca²⁺, Eu³⁺ and Na⁺ in the Rietveld analyses are given in the last column of Table 1. Comparison of the last two columns of Table 1 reveals that the formula units obtained from the Rietveld refinements are very similar to those obtained from EDX analyses, which confirms the substitution mechanisms proposed above for both AMo and NaMo systems.

The structural parameters resulting from the Rietveld refinements are given in Table 3. Figure 7a shows that the unit cell volume increases approximately linearly with increasing Eu³⁺ content in both systems. The cell volume increase observed in the NaMo samples with increasing Eu³⁺ content could be partially explained by the substitution mechanism itself, where one Na⁺ ion (ionic radius in VIII coordination= 1.18 Å) compensates and exceeds the expected volume decrease produced by the substitution of 2 Ca^{2+} ions (1.12 Å) by one Eu³⁺ (1.066 Å). However, the increase in the AO₈ polyhedra volume caused by this size difference is not big enough to explain the observed cell volume increase in this system. An additional factor must be playing a role in determining the unit cell volume of the Eu-containing samples, which is especially necessary to explain the case of the AMo system, where no Na⁺ is present to compensate the small Eu^{3+} radius. The key factor to explain the cell volume increase in both systems could be found on the different electronegativity values of Eu³⁺ and Ca²⁺, which could influence the MoO₄ polyhedra volume and, eventually, the unit cell volume. The higher electronegativity of Eu³⁺ compared to Ca²⁺ is expected to attract oxygen ions apart from Mo⁶⁺ leading to an increase of the Mo-O distance, thus increasing the MoO₄ tetrahedron volume and consequently increasing the unit cell volume. The structure refinement shows, in fact, a very slight increase in the Mo-O distance (global increase is inside the EXAFS error) (Figure 7b), more noticeable in the AMo system because of its higher Eu content. This slight increase in the Mo-O distance leads to an increase of 1.7% and 2.5% in the MoO₄ tetrahedron volumes in the NaMo and AMo systems, respectively, (Table 3), that are sufficient to explain the observed 0.7% and 1.2% increase in unit cell volume observed in both series.

3.6. Luminescence properties

The excitation spectra of the samples in the AMo and NaMo systems, recorded while monitoring the characteristic Eu³⁺ emission at 614 nm, are shown in Figures 8a and 8b. All the spectra show the characteristic intra-4f transition lines of Eu^{3+} with maximum intensity at 395 nm (${}^{7}F_{0} \rightarrow {}^{5}L_{6}$) and 465 nm (${}^{7}F_{0} \rightarrow {}^{5}D_{2}$). A broad band can be observed in the 250-350 nm interval, which has been usually assigned to the charge transfer (CT) absorption in MoO_4^{2-} groups in which an oxygen 2p electron goes into one of the empty Mo 4d orbitals.^{5,14,21,22} The presence of the CT band in the excitation spectra while monitoring the Eu³⁺ emission clearly indicates the existence of energy transfer from MoO_4^{2-} to Eu^{3+} . The CT band shows a clear asymmetry in the excitation spectra of the AMo samples, with maxima at 265 nm and 295 nm, which is less pronounced in the NaMo spectra. Lv et al.,²² in their analysis of the excitation spectrum of 3%Eu³⁺-doped CaMoO₄, also noticed that the CT band was asymmetric; the band was fitted with two Gaussian curves (with maxima at 270 nm and 300 nm) that were assigned to the ${}^{1}A_{1} \rightarrow {}^{1}T_{2}$ and ${}^{1}A_{1} \rightarrow {}^{1}T_{1}$ transitions of the MoO₄²⁻ ions, respectively. It is important to say that, although several authors have assigned this broad band to the Eu-O charge transfer band,^{8,12} this assignation has been however discarded on the basis of the expected value (238 nm) for the Eu-O charge transfer energy estimated for scheelites from Jorgensen equation.²³

The emission spectra of the samples in the AMo and NaMo systems, recorded under an excitation wavelength of 275 nm, are shown in Figures 8c and 8d. All spectra show the same set of sharp emission bands, which are attributed to the characteristic intra 4f transitions of Eu³⁺ ions (${}^{5}D_{0}-{}^{7}F_{J}$ with J = 0, 1, 2, 3, 4). The ${}^{5}D_{0}-{}^{7}F_{1}$ transition corresponds to the magnetic dipole transition, which is insensitive to the crystal field environment of the Eu^{3+} ions, while the electric dipole transition (${}^{5}D_{0}-{}^{7}F_{2}$) is hypersensitive to the site symmetry of the Eu³⁺ ions. If Eu³⁺ is located in a site without inversion symmetry, the ${}^{5}D_{0}-{}^{7}F_{2}$ transition should be dominant. Conversely, the intensity of the ${}^{5}D_{0}-{}^{7}F_{1}$ transition became strong.²⁴ It can be observed in the emission spectra of Figures 8c and 8d that the intensity of the ${}^{5}D_{0}-{}^{7}F_{1}$ transition (at 591 nm) is significantly lower than that of the ${}^{5}D_{0}-{}^{7}F_{1}$ ⁷F₂ transition (double peak at 611 nm and 614nm), indicating the absence of inversion symmetry at the Eu^{3+} sites. This is in agreement with the replacement of Eu^{3+} for Ca^{2+} ions in the scheelite CaMoO₄ crystal structure, which shows S₄ site symmetry (no inversion center) on the Ca sites. Although the symmetry around Eu³⁺ could be altered as a consequence of Ca vacancies or Na⁺ in the AO₈ polyhedra, the fact that the intensity ratio ${}^{5}D_{0}-{}^{7}F_{2}/{}^{5}D_{0}-{}^{7}F_{1}$ does not appreciably change with increasing Eu content indicates the absence of inversion center at the Eu sites. The enormous intensity ratio between both bands gives rise to a high color purity, which is a well-known characteristic of CaMoO₄:Eu³⁺ phosphors.²⁵ The emission intensity of all bands decreases with increasing Eu^{3+} content, suggesting the existence of concentration quenching at 10% Eu^{3+} -doping level.

This indicates that the formation of Ca vacancies does not

To gain more information on the influence of vacancies and Na⁺-content on the luminescence properties, we carried out an analysis of the luminescence dynamics on the Eu-containing samples belonging to both AMo and NaMo series. The decay curves obtained for the ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{2}$ Eu³⁺ transition (614 nm) (**Figures 9a and 9b**) could be fitted, in all samples, by the bi-exponential decay function:

$$I(t) = I_{01} \exp(-t/\tau_1) + I_{02} \exp(-t/\tau_2)$$
(1)

where I(t) is the luminescence intensity, t is the time after excitation and τ_i (i = 1, 2) is the decay time of the i-component with intensity I_{0i}. The fitting parameters are shown in **Table 4**, along with the average lifetime values, $\langle \tau \rangle$, calculated as:

$$\langle \tau \rangle = \frac{\int_{t_1}^{t_f} tI(t)dt}{\int_{t_1}^{t_f} I(t)dt} = \left(\tau_1^2 I_1 + \tau_2^2 I_2\right) / \left(\tau_1 I_1 + \tau_2 I_2\right)$$
(2)

where t_f represents the time required for the luminescence signal to reach the background. The bi-exponential decay observed for all six substituted samples is in agreement with previous reports on this phosphor^{11,14} and has been assigned to Eu³⁺ ions on the particle surface (short lifetime) and in the particle bulk (long lifetime). While the short lifetime values stay practically constant with increasing Eu content in both series, the long lifetime values considerably decrease with increasing Eu content, as expected from concentration quenching effects. **Figure 9c** represents the average lifetime as a function of the experimental Eu³⁺ content for all samples in the AMo and NaMo series. It can be observed that the average lifetime values decrease with increasing Eu³⁺ content following a linear dependence that fits all six samples. This result suggests that the average lifetime is not affected by the substitution mechanism itself, i.e., presence of vacancies or Na⁺ in the crystal structure, but it seems to exclusively depend on the Eu³⁺ concentration of the sample.

In order to confirm this result, we have further analyze the influence of vacancies and Na⁺ on the luminescence efficiency of the samples using quantum yield (QY) measurements (**Table 5 and Figure 10**), which certainly inform on phosphors efficiency. QY values wer obtained for both the AMo and NaMo series under excitation at the wavelength corresponding to the charge transfer band (295 nm). The QY values obtained for AMo-10 and NaMo-10 (both containing approximately the same experimental mol% Eu³⁺) were very similar to one another (58% and 57%, respectively). This result, together with the structural study reported in this paper indicates that the luminescence efficiency does not increase with the presence of Na⁺ in the crystalline structure, contrary to previous observations, which do not present QY values.^{5,17} This result is further supported by the fact that the evolution of the QY values *versus* Eu content (Figure 10) fits to a unique linear behavior for samples in both AMo and NaMo series, indicating that the luminescence behavior of both series is similar. We want to note that the decrease in the

QY values can be explained on the basis of the well-known concentration quenching effect, already inferred from the lifetime values. This is, to the best of our knowledge, the first report on QY values in Eu:CaMoO₄ and Eu,Na:CaMoO₄ phosphors.

4. CONCLUSIONS

The substitution mechanism in Eu³⁺:CaMoO₄ and Eu³⁺,Na⁺:CaMoO₄ phosphors is different, with Ca site vacancies forming in the former, thus leading to Ca_{1-3x}Eu_{2x□x}MoO₄ compositions, while the latter formed Ca_{1-2x}Eu_xNa_xMoO₄ compositions to reach charge balance. The cell volume increase observed in the NaMo samples with increasing Eu³⁺ content, can be partially explained by the bigger Na⁺ ionic radius (1.18 Å) which compensates and slightly exceeds the expected volume decrease produced by the substitution of Ca²⁺ (1.12 Å) by Eu³⁺ (1.066 Å). However, the increase in the AO₈ polyhedra volume caused by this size difference is not sufficient as to explain the observed cell volume increase in this system. We propose that the key factor explaining the unit cell volume increase with increasing Eu content in both systems is the higher electronegativity of Eu³⁺ vs. Ca²⁺. Eu³⁺ attracts oxygen ions apart from Mo⁶⁺ leading to an increase of the Mo-O distance, which increases the MoO4 tetrahedron volume and consequently the unit cell volume. Finally, it was shown that the luminescence properties, i.e. lifetime values and quantum yields, do not depend on the presence of monovalent ions in the crystal structure, but, exclusively, on the Eu^{3+} content of the phosphors, independently on whether they belong to the AMo or to the NaMo series.

SUPPLEMENTARY INFORMATION

Synchrotron powder diffraction patterns (experimental, fitted and difference curves) of AMo and NaMo samples with different Eu³⁺ contents are given in Figures S1 to S3.

ELECTRONIC SUPPLEMENTARY INFORMATION

Crystallographic information files. Further details of the crystal structure investigation(s) may be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen (Germany), on quoting the depository numbers CSD 1866205 (AMo30), CSD 1866206 (NaMo10), CSD 1866207 (NaMo30), CSD 1866208 (NaMo0), CSD 1866209 (AMo0), CSD 1866210 (AMo10), CSD 1866211 (NaMo50), CSD 1866212 (AMo50).

CONFLICTS OF INTEREST

There are no conflicts of interest to declare.

ACKOWLEDGEMENTS

This work was supported by CSIC projects (PIC2016FR1 and PIE201460E005) and the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (NANOPHOM, grant agreement n° 715832).

REFERENCES

- 1 V. B. Mikhailik, H. Kraus, J. Appl. Phys., 2005, 97, 083523.
- 2 S. S. Hosseinpour-Mashkani, S. S. Hosseinpour-Mashkani, A. Sobhani-Nasab., J. Mater. Sci. Mater. Electron, 2016, 27, 4351.
- 3 G. S. R. Raju, E. Pavitra, Y. H. Ko, J. S. Yu., J. Mater. Chem., 2012, 22, 15562.
- 4 G. Wandahl, A. N. Christensen, Acta Chem. Scand., Ser. A, 1987, 41, 358.
- 5 J. Liu, H. Lian, C. Shi, Opt. Mater., 2007, 29, 1591.
- 6 H. Wu, Y. Hu, W. Zhang, F. Kang, N. Li, G. Ju, J. Sol-Gel Sci. Technol., 2012, 62, 227.
- 7 A. Khanna, P. S. Dutta, J. Solid State Chem., 2013, 198, 93.
- 8 S. K. Gupta, M. Sahu, P. S. Ghosh, D. Tyagi, M. K. Saxena, R. M. Kadam, *Dalton Trans.*, 2015, **44**, 18957.
- 9 R. Saraf, C. Shivakumara, N. Dhananjaya, S. Behera, H. Nagabhushana, *J. Mater. Sci.*, 2015, **50**, 287.
- 10 X. Liu, L. Li, H. M. Noh, J. H. Jeong, K. Jang, D. S. Shin, RSC Adv., 2015, 5, 9441.
- 11 M. Laguna, N. O. Nuñez, A. I. Becerro, M. Ocaña, CrystEngComm, 2017, 19, 1590.
- 12 S. Yu, Z. Lin, L. Zhang, G. Wang, Cryst. Growth Des., 2007, 7, 2397.
- 13 A. K. Parchur, R. S. Ningthoujam, *Dalton Trans.*, 2011, 40, 7590.
- 14 Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, J. Lin, *Langmuir*, 2009, **25**, 12340.
- 15 C. Hazra, T. Samanta, A. V. Asaithambi, V. Mahalingam, *Dalton Trans.*, 2014, 43, 6623.
- 16 C. Zhao, Q.Y. Meng, W.J. Sun, Acta Phys. Sin., 2015, 64, 107803.
- 17 Z. H. Zhang, Q. Huang, X. Zhao, Z. L. Huang, *Phys. Status Solidi A*, 2009, **206**, 2839. 18 Y. Su, L. Li, G. Li, *Chem. Mater.*, 2008, **20**, 6060.
- 19 S. P. Culver, F. A. Rabuffetti, S. Zhou, M. Mecklenburg, Y. Song, B. C. Melot, R. L. Brutchey, *Chem. Mater.*, 2013, **25**, 4129.
- 20 P. Godlewska, E. Tomaszewicz, L. Macalik, J. Hanuza, M. Ptak, P. E. Tomaszewski, M. Maczka, P. Ropuszynska-Robak, *Mater. Chem. Phys.*, 2013, **139**, 890.
- 21 K. G. Sharma, T. P. Singh, N. R. Singh, J. Alloys Compd., 2014, 602, 275.
- 22 L. Lv, J. Wang, W. Wang, L. Han, J. Alloys Compd., 2015, 635, 25.
- 23 C. K. Jørgensen, Electron Transfer Spectra; John Wiley & Sons, Inc.: New York, 1970; pp 101-158
- 24 G. S. Ofelt, J. Chem. Phys., 1962, 37, 511.
- 25 Y. Hua, W. Zhuang, H. Ye, D. Wang, S. Zhang, X. Huang, J. Alloys Compd., 2005, 390, 226.

Table 1: EDX elemental analyses of the undoped and Eu-doped CaMoO₄ samples in the AMo and NaMo systems. The values have been normalized to Molybdenum molar content. Formula units derived from the elemental analyses as well as from Rietveld analyses of the synchrotron powder diffraction data are given in the last two columns. \Box represents cationic vacancies.

Sample	Мо	Ca	Eu	Na	Formula unit	Formula unit
name	IVIO	Ca	Ľu	Ina	deduced from EDS	deduced from Rietveld*
AMo-0	1.00	1.01	0.0	0.00	Ca1.01MoO4	CaMoO ₄
AMo-10	1.00	0.90	0.09	0.00	$Ca_{0.90}Eu_{0.09}\square_{0.01}MoO_4$	$Ca_{0.84}Eu_{0.11}\square_{0.05}MoO_4$
AMo-30	1.00	0.65	0.24	0.00	$Ca_{0.65}Eu_{0.24}\square_{0.11}MoO_4$	$Ca_{0.58}Eu_{0.28}\square_{0.14}MoO_4$
AMo-50	1.00	0.44	0.36	0.00	$Ca_{0.44}Eu_{0.36}\square_{0.20}MoO_4$	$Ca_{0.40}Eu_{0.40}\square_{0.20}MoO_4$
NaMo-0	1.00	1.04	0.0	0.01	Ca1.04Na0.01MoO4	CaMoO ₄
NaMo-10	1.00	0.87	0.10	0.08	Ca0.87Eu0.10Na0.08MoO4	$Ca_{0.80}Eu_{0.10}Na_{0.10}MoO_{4}\\$
NaMo-30	1.00	0.60	0.18	0.21	Ca0.60Eu0.18Na0.21MoO4	Ca0.56Eu0.22Na0.22MoO4
NaMo-50	1.00	0.38	0.29	0.29	Ca0.38Eu0.29Na0.29MoO4	Ca0.35Eu0.33Na0.33MoO4

*During Rietveld refinement, the Mo site was considered as fully occupied by Mo (the content was first refined to check that it was almost 1). Then compositional constraints were used: $Ca+Eu + \Box = 1$. Eu=2 x \Box . For NaMo samples, we used Ca+Eu+Na=1 and Eu=Na (and still Mo=1). Mo was fixed to 1.

Sample name	Mo-O (Å)	C.N.	D-W (A ² x10 ⁻³)	$\Delta E_0 (eV)$
AMo-0	1.78	4.0	0.82	2.76
AMo-30	1.78	4.0	1.46	3.05
AMo-50	1.78	4.0	1.51	2.94
NaMo-0	1.78	3.9	0.57	2.65
NaMo-30	1.78	3.9	1.02	2.77
NaMo-50	1.78	3.5	1.03	3.37

Table 2a: Structural parameters for Mo obtained by fitting analysis of the EXAFS

 spectra

C.N.: Coordination number; D-W.: Debye-Waller factor

Estimated errors: Interatomic Distance, $\leq \pm 0.02$ Å; C.N. $\leq \pm 10\%$.

Sample name	Eu-O (Å)	C.N.	D-W (A^2x10^{-3})	$\Delta E_0 (eV)$
AMo-30	2.41	7.3	4.43	4.11
AMo-50	2.40	7.8	7.06	3.56
NaMo-30	2.41	8.3	5.95	3.81
NaMo-50	2.40	7.5	5.21	3.81
Eu_2O_3	2.33	6.0	8.00	4.40

Table 2b: Structural parameters for Eu obtained by fitting analysis of the EXAFS

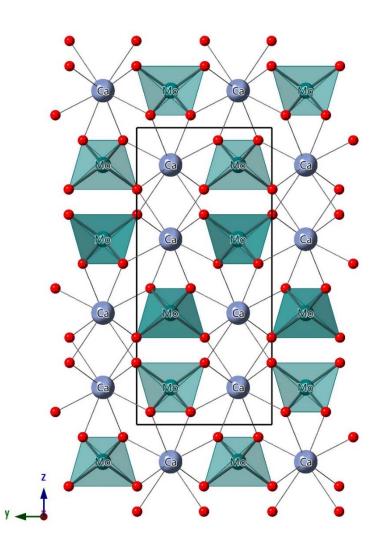
 spectra

C.N.: Coordination number; D-W.: Debye-Waller factor

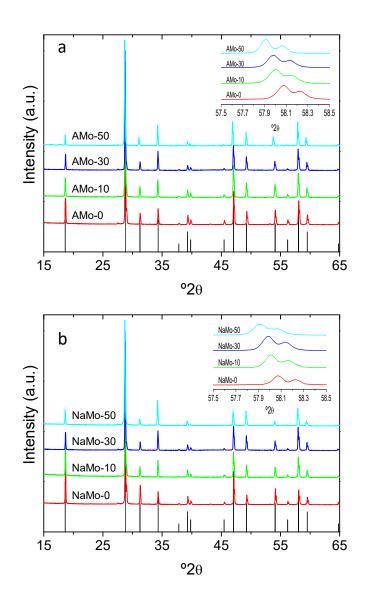
Estimated errors: Interatomic Distance, $< \pm 0.02$ Å; C.N. $< \pm 10\%$.

Table 3: Unit cell parameters, unit cell volume and interatomic distances determined for undoped and Eu-doped CaMoO₄ samples, in the AMo and NaMo systems, from Rietveld refinement of the Synchrotron Powder Diffraction patterns.

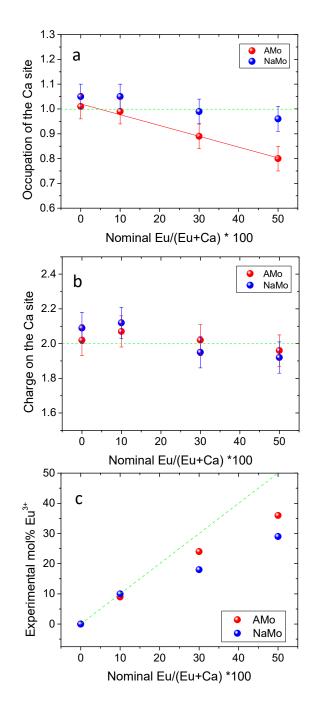
Sample name	a cell (Å)	c cell (Å)	Volume (Å ³)	(A-O)1 distance (Å)	(A-O)2 distance (Å)	Mo-O distance (Å)	MoO ₄ volume (Å ³)
AMo							
0	5.22662(1)	11.4339(1)	312.345(1)	2.461(1)	2.440(1)	1.789(1)	2.922
10	5.23178(1)	11.4365(1)	313.032(1)	2.465(1)	2.441(1)	1.789(1)	2.924
30	5.23772(1)	11.4567(1)	314.299(1)	2.459(2)	2.446(2)	1.797(2)	2.956
50	5.23794(1)	11.5184(1)	316.018(1)	2.449(2)	2.442(2)	1.808(2)	2.996
NaMo							
0	5.22616(1)	11.4366(1)	312.346(1)	2.462(1)	2.440(1)	1.788(1)	2.916
10	5.23194(1)	11.4366(1)	313.059(1)	2.467(1)	2.443(1)	1.787(1)	2.911
30	5.23692(1)	11.4426(1)	313.817(1)	2.465(1)	2.444(1)	1.791(1)	2.929
50	5.24149(1)	11.4482(1)	314.518(1)	2.471(1)	2.438(1)	1.798(2)	2.967

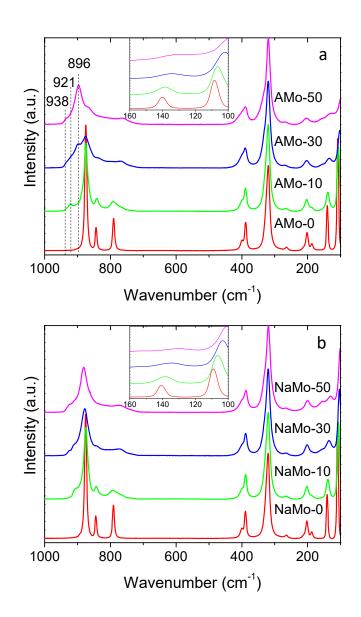

Table 4: Lifetime values (τ_1 , τ_2), corresponding weighting factor (I₀₁, I₀₂) and average decay time ($\langle \tau \rangle$) for the Eu-doped CaMoO₄ samples (AMo and NaMo systems) obtained for the ⁵D₀-⁷F₂ transition of Eu³⁺ (614 nm) after pulsed excitation with λ_{exc} 275 nm.

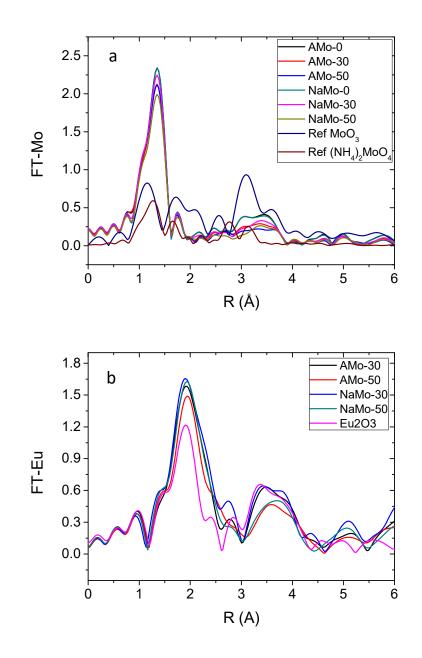
Sample name	τ ₁ (μs)	Io1 (%)	$\tau_2 (\mu s)$	Io2 (%)	<\arr > (\mu s)
AMo-10	495	96	1219	4	558
AMo-30	433	92	733	8	473
AMo-50	368	77	239	23	347
NaMo-10	495	98	1397	2	532
NaMo-30	448	95	766	5	472
NaMo-50	386	74	515	26	427

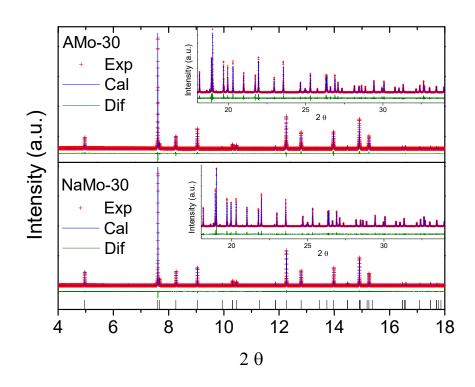

 Table 5: Quantum yield values of the samples in the AMo and NaMo series.

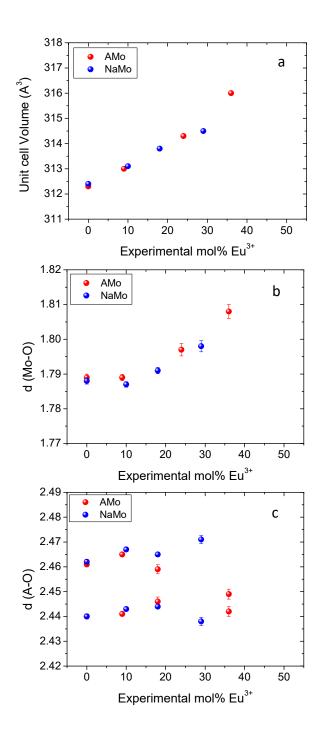
Nominal	AMo	NaMo
mol %Eu ³⁺		
10	58 %	57 %
30	40 %	53 %
50	20 %	36 %

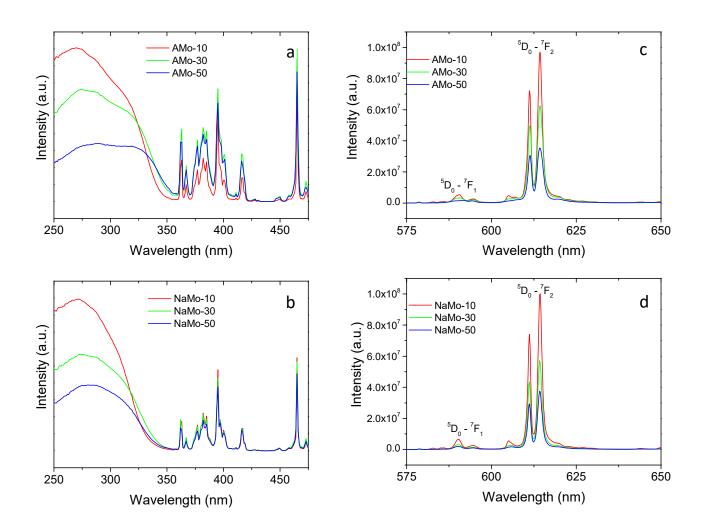

Figure 1


Figure 1: Schematic plot for the CaMoO₄ scheelite structure showing MoO₄ tetrahedra sharing all corners with Ca in eight-fold coordination. Red spheres denote oxygen.


Figure 2: Laboratory XRD patterns of the undoped and Eu-doped CaMoO₄ samples synthesized from *a*) ammonium molybdate (AMo series) and *b*) sodium molybdate (NaMo series). The insets are magnifications of the 57.5 - 58.5 °2 Θ region to better observe the reflections shift. Reflections of PDF 00-029-0351, corresponding to CaMoO₄ scheelite structure, are shown at the bottom of each figure.


Figure 3: EDS data of the undoped and Eu-doped CaMoO₄ samples in the AMo and NaMo systems plotted as: *a*) Occupation of the *A* site *versus* nominal Eu³⁺ content. The occupation of the *A* site was calculated as the sum of Ca and Eu contents in AMo and Ca, Eu and Na contents in NaMo. *b*) Charge value on the Ca site *versus* nominal Eu³⁺ content. Charge values were calculated after weighted average of charges in Ca²⁺ and Eu³⁺ in AMo and of Ca²⁺, Eu³⁺ and Na⁺ charge in NaMo. *c*) Experimental mol% of Eu³⁺ *versus* nominal Eu³⁺ content.


Figure 4: Raman spectra of the undoped and Eu-doped CaMoO₄ samples in the AMo (*a*) and NaMo (*b*) series. The insets are magnifications of the 160 -100 cm⁻¹ region for a better observation of bands shift.


Figure 5: Fourier Transforms of Mo (top) and Eu (bottom) EXAFS oscillations of samples in the AMo and NaMo systems.

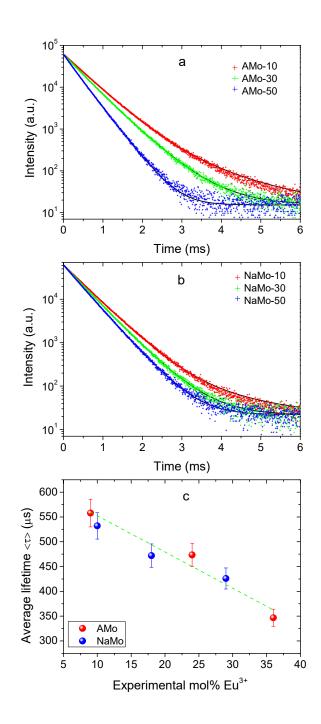

Figure 6: Experimental (crosses), fitted (blue solid line) and difference curve (green solid line) of the SPD diagrams obtained for AMo-30 and NaMo-30 samples.

Figure 7: a) Unit cell volume, b) Mo-O distance and c) Ca-O distance (Ca= Ca, Eu, and Na, the latter only in NaMo samples), obtained from Rietveld refinement of Synchrotron Powder Diffraction data, *versus* the experimental Eu³⁺ content for undoped and Eu-doped CaMoO₄ samples in the AMo and NaMo systems.

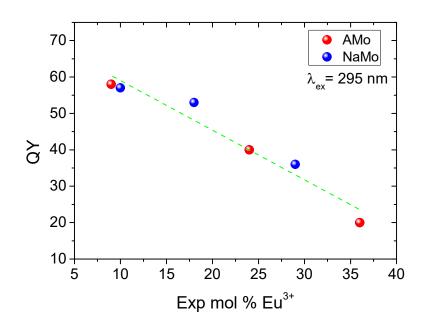


Figure 8: *a* and *b*) Excitation spectra (λ_{em} = 614 nm) recorded on the Eu-doped CaMoO₄ samples in the AMo and NaMo, respectively. *c and d*) Emission spectra (λ_{ex} = 275 nm) recorded on the on the Eu-doped CaMoO₄ samples in the AMo and NaMo, respectively.

Figure 9: *a* and *b*) Temporal evolution of the Eu³⁺ ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (614 nm) photoluminescence for the Eu-doped CaMoO₄ samples in the AMo and NaMo systems, respectively. *c*) Average lifetime calculated from the right hand-side term of Eq. (1), using the corresponding fitting parameters given in Table 4, *versus* the experimental Eu³⁺ content for the AMo and NaMo samples. The dashed line is a guide to the eye.

Figure 10

Figure 10: Quantum yield values of the samples in the AMo and NaMo series, recorded under excitation at 295 nm, versus the experimental mol $\% \text{ Eu}^{3+}$. The dashed line is a guide to the eye.