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Abstract. Business Process compliance is an important issue in control-
flow and data-flow perspectives. Control-flow correctness can be analysed
at design time, whereas data-flow accuracy should be verified at run-
time, since data is accessed and modified during execution. Compliance
validation should consider the conformance of data to business rules.
Business compliance rules are policies or statements that govern corpo-
rate behaviour. Since business compliance rules and data change during
process execution, faults can appear due to the erroneous inclusion of
rules and/or data in the process. A hybrid diagnosis therefore needs to
be performed regarding the likelihood of faults in data vs. business rules.
In order to achieve the correct diagnosis, it is fundamental to attain the
best assumption concerning the degree of likelihood. In this paper, we
present an automatic process to diagnose possible faults that simulta-
neously combines business rules and data of multiple process instances.
This process is based on Constraint Programming paradigm to efficiently
ascertain a minimal diagnosis. Furthermore, a methodology for calcula-
tion of the most appropriate degree of likelihood of faults in data vs.
business rules is proposed.
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1 Introduction

Business processes (BPs) permit the description of the activities necessary to 
achieve an objective in a company. This description includes, among other things: 
a workflow model, a set of business rules or policies, and the data interchanged 
during the execution. The correctness of an execution implies the correctness 
of these three aspects. Frequently, BPs are supported by Process Aware Infor-
mation Systems (PAISs) [23]. A PAIS is a software system that manages and 
executes operational processes involving people, applications, and/or informa-
tion sources on the basis of process models. This type of system provides a way 
to manage data stored in a repository layer that is read and written by a BP. 
The diagnosis of the workflow tends to be performed at design time to prevent 
errors after process deployment. However, the updating of business rules, such as



compliance rules, and the management of data at runtime is common practice.
Since data and compliance rules may be modified at runtime, their diagnosis
cannot be included in only the design phase.

The development an efficient diagnosis of possible faults is essential, since
these faults appear at runtime and a great quantity of data and business com-
pliance rules are probably involved. The special problem faced in BP diagnosis
is that the data is not involved in only one instance, and it is not isolated from
other instances executed in the past or in the future. The data written or read
in an instance can be shared with other instances, or even with another process,
such as when the data involved is stored in a repository, typically in a rela-
tional database. These relations must be used in the diagnosis process, since the
isolation of a fault that explains a failure of an instance cannot contradict the
diagnoses found for other instances.

In previous work [8], the importance of data correctness in BPs is studied,
including relational databases as the main source of data. This previous work,
however, only includes the possibility of faults in data, but fails to consider
defects in business compliance rules. Derived from the modification of business
compliance rules and data, certain faults can be produced due to the erroneous
inclusion of the rules and/or data in the process. The importance of verifying
the correctness of data in PAISs is known [12], although how to combine faults
in business compliance rules and data at the same time remains a challenge.
In this paper, we propose an automatic model-based diagnosis methodology
to verify the compliance to the business rules by data in multiple instances,
and to isolate the origin of the faults. Since data is more numerous and even
more frequently updated, it is more likely a fault appearing due to incorrect
data than due to an erroneous business compliance rule. In order to obtain the
best assumption about this degree of likelihood, we propose a methodology for
calculating the most appropriate degree of likelihood of faults between data vs.
business compliance rules.

The paper is organised as follows. Section 2 presents a motivating example
to illustrate the concepts. Section 3 introduces the adaptation of model-based
diagnosis methodology. Section 4 presents the Constraints Programming para-
digm used to perform the diagnosis. In Sect. 5, the diagnosis of the motivating
example is performed. Section 6 presents an overview of related work found in
the literature. And finally, conclusions are drawn and future work is proposed.

2 Using Business Data Constraints.
A Motivating Example

In this paper, a real example of a financial economic application is used to illus-
trate the hybrid diagnosis. The activities of the company are oriented towards
negotiating collaborative projects developed over a number of years. The process
consists of the management of costs of projects, during their execution, as
detailed in [8], and is represented in Fig. 1. All these tasks are carried out
by a total of 25 employees, who modify the stored information for more than



Fig. 1. Business Process example

300 projects. Each employee is responsible for certain activities of the process.
The persistence layer that supports this business process is formed of a database
with 86 tables. Each employee can introduce an average of 200 items of data per
project, during the 4 years that a project can last.

BPs with a high level of human interaction demand a more frequent data
validation and diagnosis, since humans are more likely to introduce intermittent
faults. The intermittence of faults complicates the detection and diagnosis of
model violations, since an inconsistency detected during the execution of an
activity does not necessarily imply a failure in the activity, neither does it imply
that this fault may appear again in the future. Our paper focuses on the concept
of Business Data Constraints (BDCs), which was introduced in [8].

Definition 1. Business Data Constraints are a subset of business compliance
rules that represent the compliance relation between the values of data during a
business process instance.

In this paper, we assume that the BDCs specification can be incorrect, and
therefore inconsistent with the introduced data, where the data is correct. The
use of BDCs hugely facilitates the data consistency analysis, and the diagnosis
of the origin of an inconsistency. The diagnosis methodology must consider the
following characteristics:

– Data involved in the diagnosis is not strictly flowing through the process, some
of them may also be stored in databases. This implies that the quantity of data
involved in the diagnosis of each instance can be very large.

– The data managed in an instance is not independent from the data of other
instances, since data can be shared between instances.



Fig. 2. Subset of relational model of the example

Fig. 3. Subset of tables of the example

– The BDCs tend to be updated in order to represent new conditions. Therefore,
it is necessary to include these modified rules as possible faults.

The activities of a BP can modify certain data from a relational database,
thereby making it necessary to evaluate certain BDCs. For the example, the
BDCs must be satisfied with the various values of the project data. In order
to express the BDCs, we use the grammar proposed in [8], which is based on
numerical constraints over natural, integer, and float variables. A subset of BDCs
for the activities is presented below:

1. Execute final application:
(a) humanCost + subsidisedCost = totalCost (BDC1)
(b) 3 · humanCost ≤ totalCost (BDC6)

2. Accept contract:
(a) subsidisedCost ≥ 2 · subsidisedPerYear (BDC2)
(b) humanCost ≥ 4 · humanCostPerYear (BDC3)

3. Recovery and payment:
(a) subsidisedPerYear ≤ maximumSubsidised (BDC4)
(b) humanCostPerYear ≤ maximumHuman (BDC5)

The variables in the previous BDCs are stored in a database whose relational
model is shown in Fig. 2. The three tables represent the information about the
project (Project), the details for each project in each year ProjectPerYear, and
the maximum spending limit allowed in each year and for each cost item (Max-
imumCostPerYear). Examples of the stored data are shown in Fig. 3.

In order to show our diagnosis methodology, in this example, we introduce 3
defects: 2 erroneous items of data, and 1 incorrect BDC. The following section
shows how to adapt model-based diagnosis to the hybrid problem.



3 Applying Model-Based Diagnosis to Business Processes

3.1 Fundamentals of Model-Based Diagnosis

Model-based diagnosis enables the identification of the parts that fail in a sys-
tem. It is performed by comparing the expected behaviour of the system with
real behaviour. The expected behaviour is modelled using the knowledge of the
system to diagnose, whereas real behaviour is known by analysing the events pro-
duced. This implies that model-based diagnosis is considered by the pair {SD,
OM}, where SD is the System Description and OM is the Observational Model.
The SD is a set of constraints, and the OM is a set of values of the observable
data. A fault is visible when a discrepancy between the expected behaviour (SD)
and the observed behaviour (OM) is found.

Model-based diagnosis is based on the parsimony principle [17], in order
to attain a minimal diagnosis that explains the conflicts in an efficient way.
This principle states that among competing hypotheses, the one with the fewest
assumptions should be selected. For example, a conflict is detected in the follo-
wing SD and OM : {a + b = c, a + 2·b = d}, {a = 7, b = 5, c = 9, d = 14}. If
the assumption {a = 7} is false (i.e. it is modified, a = 4), then the remaining
assumptions are satisfied between them. Model-based diagnosis identifies the
smallest assumption that causes conflicts. In this example, there are other possi-
ble hypotheses, but these imply the modification of more than one assumption.

The following subsections analyse: (1) how to design the model to be diag-
nosed (SD); and (2) how to obtain the observational model (OM).

3.2 System Description: Relational Database Model and Business
Data Constraints

Since the stored data participates in the BDCs, it is necessary to include the
BDCs and the relational database scheme into the model to be diagnosed. Busi-
ness Data Constraints describe the semantic relation between the data values
that are introduced, read and modified during the BP instances. It should be
borne in mind that the variables participating in the constraints can come from
the database or from the data-flow.

A Relational Database is a collection of predicates over a finite set of variables
described by means of a set of relations. A relation R is a data structure which
consists of a heading and an unordered set of tuples which share the same type,
where A1, A2, . . ., An are attributes of the domains D1, D2, . . ., Dn. A number
of the attributes of a relation can be described as Primary Key Attributes. The
relation between two tables is described by a referential integrity. Two tables
can be related by means of their Primary and Foreign Key Attributes, described
in the literature as the relational model.

3.3 Observational Model: Tuples of the Database

In a PAIS, the information is typically stored in a relational database, and there-
fore the tuples of the tables compose the OM. Since the variables involved in



Fig. 4. Denormalized tuples

a BDC have different origins, it is possible that attributes from various tables
are related in a single BDC. The location of the data in various tables is due
to the necessity to follow the Normal Forms defined in relational database the-
ory. The normalization rules are designed to prevent update anomalies and data
inconsistencies. Since data is stored in various tables, to ascertain the full tuple
of values for an OM, a denormalization process needs to be carried out. This
denormalization process is only used for the purpose of diagnosing; the rela-
tional database undergoes no changes at all, only a new join relation is obtained
with all related attributes together used for the diagnosis in a temporal way.
Although normalization methods are applied at schema level, it is possible to
apply the opposite methods to ascertain the denormalized relations between the
data. The related attributes are those that appear in the same BDC together
with the primary-foreign key attributes necessary to join the related attributes
that belong to various tables. For the example in Fig. 2, the obtained join-table
is shown in Fig. 4. In the figure, the related BDCs are shown at the top of each
column. Although the details of how the join-table is created are described in
[8], the general idea can be understood by analysing the relational model in
Fig. 2, and by observing the specific values for the example introduced in Fig. 3.
Since the attribute idProject of the table ProjectPerYear is a foreign key of table
Project, then each tuple of ProjectPerYear is related to the tuple of Project whose
foreign and primary keys are equal. In a similar way, these are relation between
the variables MaximumPerYear and ProjectPerYear.

In the denormalization process, a column is included for each attribute to
distinguish between the provenance of the values. Distinction is made due to
the fact that it is necessary to know whether two values correspond to the same
attribute after the denormalization, since two equal values in a column do not
imply they represent the same variable. In the denormalization process, the same
value can appear in various tuples, derived from the 1..n relation between the
tables, such as the value associated to the human cost of project 223 (Variable
humanCost1) that appears in the two first tuples of Fig. 4, since this project was
developed over two years.



4 Constraint Programming for Hybrid Business Process
Diagnosis Models

4.1 Fundamentals of Constraint Programming

In order to find the minimal incorrect part of the SD and OM in an automatic
and efficient way, we propose using Constraint Programming, since the definition
of BDCs is very close to the definition of the logic and arithmetic constraint
modelled in a Constraint Satisfaction Problem (CSP). A CSP [18] represents a
reasoning framework consisting of variables, domains and constraints 〈V,D,C〉,
where V is a set of n variables v1, v2, ..., vn whose values are taken from finite
domains Dv1,Dv2, ...,Dvn respectively, and C is a set of constraints on their
values. The constraint ck (xk1, . . . , xkn) is a predicate that is defined on the
Cartesian product Dk1× . . .×Dkj . This predicate is true iff the value assignment
of these variables satisfies the constraint ck.

If the model represented by {SD, OM} is satisfiable, then the OM conforms
to the BDCs that describe the SD. However, if no solution is found, the minimal
non-conformance parts of the model should be determined. In order to ascertain
the minimal explanation regarding faults, it is necessary to find a minimal subset
ss ⊂ {OM ∪ BDCs} that satisfies {SD ∪ OM} − ss. Since BDCs are applied by
various tuples with different values, all instances of BDCi must be included in
the search. This search is performed using a Constraint Optimization Problem
(COP), which is solved as a Min-CSP. A Min-CSP is a COP, where the goal is to
minimize an optimization function. The application of a Min-COP to a model-
based diagnosis problem implies defining an optimization function in order to
minimize the subset ss.

4.2 Compliance Verification by Means of the Observational Model

In order to verify the compliance of the BDCs, we have applied the obtained
tuples to instantiate the BDCs. For the tuples shown in Fig. 4, the BDCs of the
example have been instantiated, and the results are shown in Table 1. Analysing
each BDC according to the tuples:

Table 1. Results of the compliance verification of the BDCs

BDC Tuple

1 2 3 4 5

1 BDC1
1 ✓ BDC2

1 ✗

2 BDC1
2 ✓ BDC2

2 ✓ BDC3
2 ✓ BDC4

2 ✓ BDC5
2 ✓

3 BDC1
3 ✗ BDC2

3 ✗ BDC3
3 ✗ BDC4

3 ✓ BDC5
3 ✗

4 BDC1
4 ✓ BDC2

4 ✗ BDC3
4 ✓ BDC4

4 ✗ BDC5
4 ✓

5 BDC1
5 ✓ BDC2

5 ✓ BDC3
5 ✓ BDC4

5 ✓ BDC5
5 ✓

6 BDC1
6 ✓ BDC2

6 ✓



– BDC1: two different instances of this BDC can be obtained (BDC1
1 and BDC2

1)
for the five tuples ({1, 2, 3} and {4, 5}). BDC1

1 is satisfiable (tuples 1, 2
and 3), but BDC2

1 is non-compliant (tuples 4 and 5). An error in one single
input: humanCost2, subsidisedCost2 or totalCost2, can explain this abnormal
behaviour. It is less likely that there is a fault in a BDC (usually written by
a business expert), than in an input (usually typed in by an user).

– BDC2, BDC5 and BDC6 are consistent for all tuples.
– BDC3: Only BDC4

3 is satisfiable. There are several explanations for this behav-
iour: (a) related to the data values, and (b) related to the BDC. An error
committed on writing BDC3 could provide a single explanation. As mentioned
earlier, it is less likely that a BDC is erroneous than data. The question is,
in what percentage should this likelihood be described? The analysis of this
percentage of likelihood is part of our methodology and is detailed in the
following subsection.

– BDC4: BDC2
4 and BDC4

4 are not satisfied. The failure can be explained with
a single variable,{maximumSubsidised2}, whose value is 10000 and is shared
by these two instances.

Although the possible diagnosis has been explained separately for each BDCi,
it is necessary to ascertain the minimal diagnosis that explains all discrepancies
for the whole problem. Our methodology is able to obtain the minimal diagnosis
that explains all this non-compliant behaviour.

Fig. 5. Min-CSP example



4.3 Min-CSP Applied to Model-Based Diagnosis

The execution of the diagnosis entails the translation of the problem into a CSP,
including BDCs and tuples for each execution instance. Figure 5 shows the Min-
CSP created to diagnose the example. Below, the modelling of the parts of the
CSP are detailed (variables, domains, constraints and objective function).

In order to declare the Variables of the problem, a new variable is added
to the Min-CSP for each variable obtained in BDCi

j as explained in Subsect. 3.3
following the syntax: type var1k,...,varmk .

Furthermore, in order to provide the Min-CSP with the ability to distinguish
between different sources of faults (i.e. data and/or BDCs), we use reified cons-
traints. A reified constraint relies on a variable that denotes its truth value. It is
therefore necessary to add new variables to the CSP, whose domain is reduced
to values 0 (false value) and 1 (true value). These variables are associated to
each BDCi, BDCj

i (Constraints to represent the instantiation of BDCs)
and assignments of value to an input (Constraints to represent the instan-
tiation of Variables), in order to denote whether they are satisfiable. Both
rBDCi and rBDCj

i are included to differentiate the BDC from its application for
each tuple. The proposed syntax is:

//Reified variables to ascertain the satisfiability of the BDCs

integer[0,1] rVar1k,...,rVarmk
integer[0,1] rBDCi, rBDC1

i ,...,rBDCn
i

//Constraints to represent the reified variables assignment

rVarjk = ¬(varjk = valuejk)

//Constraints to represent the reified BDCs

rBDC1
i = ¬(BusinessRulei instantiated by tuple 1)

...

rBDCn
i = ¬(BusinessRulei instantiated by tuple n)

The reified variables are equalized to the negated constraints since the objec-
tive function is to minimize the number of elements with abnormal behaviour
(non-compliant). In order to ascertain when a defect in a BDC is less likely than
in data errors, the following constraint is added for each BDC:

rBDCi = rBDC1
i + ... + rBDCn

i =
∑n

j rBDCj
i ≥ minLiki

These constraints incorporate the likelihood concept into the CSP, by using
the parameter minLiki.

Definition 2. The parameter minLiki is the minimum number of faults (non-
compliant instances of a BDCi) that is set as the threshold to indicate that there
is a defect in a BDCi.

For example, if there are 5 tuples where BDCi is involved, minLik i can take a
value between 1 and 5. If at least the minLik i threshold number of instances are



not satisfiable, then BDCi is considered as a part of the minimal diagnosis. How
the values of each minLik i is determined is detailed in the following subsection.

The Objective function is defined as:

minimize(rVar1k + ... + rVarmk + ... + rBDC1·minLik1 + ... + rBDCq·minLikq)

Each rBDCi has a weighting that is proportional to each parameter minLik i.
This objetive implies finding the minimal hybrid diagnosis.

Finally, it is important to add this constraint for each BDCi:
(rBDC1

i + ... + rBDCn
i = 0) ∨ (rBDC1

i + ... + rBDCn
i ≥ minLiki)

This constraint permits two options: (1)
∑n

j rBDCj
i is equal to 0, and there-

fore the BDCi is correct; or (2)
∑n

j rBDCj
i is equal to or greater than minLiki,

and therefore the BDCi has a defect. Intermediate values between 0 and minLiki

are not allowed, and therefore, if there are inconsistencies in a BDCj
i , it can only

be avoided by relaxing the variables rVarq related to BDCj
i . In other words, the

defects are only in input data and the BDCi is correct.

4.4 Calculation of the MinLik Parameter

The appropriate value of the minLik parameter for each BDCi depends on several
factors. It is necessary to take into account the number of tuples and variables
affected by each BDC, therefore minLik should be calculated at runtime, when
the diagnosis process is performed. The calculations for the example are shown
in Table 2. The meaning of each column is as follows:

Table 2. minLik parameter calculation

BDC nVar nInst %errors nErrors domain media rep? cover reduced minLik

1 3 2 20 % 1.2 ≈ 1 [1] 1 No 2

2 2 5 20 % 2 [1, 2] 2 Yes 2 1 1

3 2 5 20 % 2 [1, 2] 2 Yes 2 1 1

4 2 5 20 % 2 [1, 2] 2 Yes 3 2 2

5 2 5 20 % 2 [1, 2] 2 Yes 3 2 2

6 2 2 20 % 0.8 ≈ 1 [1] 1 No 2

– BDC: number that identifies a BDCi.
– nV ar: number of variables involved in a BDCi.
– nInst: number of instances (BDCi

j) of the BDCi.
– %errors: average percentage of data errors estimated by the expert.
– nErrors: probable number of data errors that can appear in all instances of a

BDCi. This is obtained as the product of: nErrors = nVar · nInst · %errors,
and it is rounded to the nearest integer.



– domain: interval between the minimum and maximum number of instances
that can be influenced by a number of data errors equal to nErrors.

– media: most likely case within the range obtained in the previous domain
column. It is calculated as the weighted average of all possible cases (integers
of the domain column) and probability, rounded to the nearest integer.

– rep?: column set to Yes if there is at least one variable that appears in different
instances of the same BDCi. For example, humanCost2 appears in BDC3

3,
BDC4

3, BDC5
3.

– cover: minimum number of items of erroneous data such that all BDCi
j of

a BDCi are incorrect. This depends on the existence of variables that par-
ticipate in different instances of the same BDCi (previous column rep?). For
example, for BDC3, the minimal number is two: variables humanCost1 and
humanCost2.

– reduced: the diagnosis process tries to explain the anomalous behaviour with
the minimum number of errors, but the variables that are repeated in diffe-
rent instances can explain errors in several instances at the same time. To
counteract this effect, this column is calculated as 1+(media · cover)/nInst,
and is rounded to the nearest integer.

– minLik: calculation performed as the minimum between the values media+1
and reduced.

4.5 Diagnosing the Example

The minimal diagnosis is obtained solving the Min-CSP presented in Fig. 5. The
minimal diagnosis is a set of three elements: maximumSubsidised2, BDC3, and
{humanCost2, subsidisedCost2, or totalCost2}. In order to satisfy all BDCs and
the compliance verification presented in Table 1, three modifications could be
made:

– The input data associated to the maximumSubsidised2 variable must be
changed. This change solves the compliance problems in BDC4.

– The BDC3 must be changed. This change solves the compliance problems in
BDC3.

– Finally, the input data associated to, humanCost2 or subsidisedCost2 or
totalCost2, must be changed. Only one of three variables. This change solves
the compliance problems in BDC1.

The minimal diagnosis found with our methodology includes the three intro-
duced faults.

5 Evaluation

In order to evaluate our proposal, we have designed a set of tests where the
possible single and double faults in data and BDCs are simulated. With these
tests, we can confirm the validity of our methodology to achieve the minimal



diagnosis for various cases. To cover the most relevant cases, variables and BDCs
of the example have been divided into different sets according to the number of
tuples and BDCs that are affected by each of them. Regarding the 22 variables
in Fig. 4, we have divided them into 7 different sets, where each set is formed
of the variables that appear in the same number of tuples and involved in the
same BDCs. Regarding BDCs, the 6 BDCs of the example are divided into 4
sets according to the number of variables affected by them. In greater detail, the
two sets of variables and BDCs are:

– Set of Variables: {subsidisedCost1, 2, 3, 4, 5, maximumHuman3, maximum-

Subsidised3} are in one tuple and affected by one BDC; {humanPerYear1, 2, 3,
4, 5} are in one tuple and affected by three BDCs; {maximumSubsidised1, 2,
maximumHuman1, 2} are in two tuples and affected by one BDC; {subsidised-

Cost1, totalCost1} in two tuples and affected by two BDCs; {HumanCost1} is
in two tuples and affected by three BDCs; {subsidisedCost2, totalCost2} are in
three tuples and affected by two BDCs; {humanCost2} is in three tuples and
affected by three BDCs.

– Set of BDCs: {BDC6} involves four variables, {BDC1} involves six varia-
bles, {BDC2, BDC3} involve seven variables, {BDC4, BDC5} involve eight
variables.

Figure 6 depicts the execution time (ms) for the proposed hybrid diagnosis.
Each possible fault is simulated for an example of each set of variables and
BDCs, since the study for the elements within the same set is equivalent. In
the figure, different symbols are used to represent the results of the attained
diagnosis: (1) green diamonds, the introduced fault is the minimal and single
fault found with our methodology; (2) blue squares, the introduced fault is one
of the minimal faults found by our methodology; and (3) red triangles, the
introduced fault is not minimal, and hence our approach found another minimal
explanation.

Fig. 6. Execution time of hybrid diagnosis test cases



In these forty-five tests, only in two cases did our approach find another
minimal explanation. In these two cases, the correct diagnosis is not the minimal
diagnosis, but is proposed as the second minimal diagnosis.

6 Related Works

Papers where data is involved in model-based diagnosis in BPs are divided into
two types: model analysis at design time, and analysis of instances at runtime.

Regarding the analysis of the data model at design time, one of the main
focuses is on the detection of possible faults in the data flow, such as missing,
redundant, and conflicting data [21]. This research has been extended to deal
with the analysis of process models that contain both control flow and data flow,
and with artifact-centric orientation instead of activity-centric models [7,10,20].
Although a variety of mechanisms have been developed to prevent errors at the
structural level (deadlocks, livelocks, ...) [22], they also have to comply with
business level rules and policies. In [5,6], the activities are attributed with pre-
conditions and post-conditions that describe the data behaviour to verify the
correctness of the model at design time. Artifact-centric orientation has also
been used to support consistent specifications [26].

Regarding the importance of data for the runtime conformity of BPs, both
stored data and data flow are objects of this study. In relation to the persistence
layer and data-flow, relational databases have been used in BPs, for example
in [2], which presents a solution where data is audited and stored in a rela-
tional database. However, no validation of the semantics is performed for this
persistence layer and the business rules.

The analysis of the correctness of BPs is typically related to the activity exe-
cuted according to the value of a data variable in each case, by verifying whether
the model and the log conform to each other [1]. Although some authors have
noticed that relational databases are the typical repository where the changed
data is stored instead of log events [3], the stored data itself does not repre-
sent the objective of the diagnosis. In [15,16], business constraint monitoring
is presented based on Event Calculus. In [12], the importance of validating the
correctness of data in PAISs is highlighted, although the challenge remains of
how to find a fault in data instead of in a decision related to data. Therefore,
conformance-checking analysis on log events is insufficient [19] to claim correct-
ness in a BP.

In this paper, we present the necessity to study the correctness of rules and
data themselves, and define data-aware compliance rules (BDCs). Related to
how to model data-aware compliance rules, studies such as [4,11,12,14,24] define
graphical notations to represent the relationship between data and compliance
rules by means of data conditions. In [25], a method for monitoring control-flow
deviations during process execution is proposed. In [13], “semantic constraints”
and the SeaFlows framework for enabling integrated compliance support are
proposed. An approach for semantically annotating activities with preconditions
and effects that may refer to data objects is introduced in [9], and an efficient
algorithm for compliance verification using propagation is also discussed.



Summarizing, to the best of our knowledge, this is the first contribution that
addresses a hybrid approximation, where faults in rules and data are considered
at the same time. Previous studies can be found in the literature about the Pos-
sible Minimal Set of Incorrect Data or Possible Minimal Set of Incorrect BDCs,
but this work is centred on both types of errors at the same time. A preliminary
study [8] diagnoses data stored according to the model, but not combined with
possible faults in business rules.

7 Conclusions and Future Work

A diagnosis methodology that considers both business data constraints and data
(either flowing or stored) as possibly being responsible for incorrect behaviour
is presented. The combination of types of faults (i.e. in BDCs and/or data)
necessitates a hybrid diagnosis, which is performed regarding the likelihood of
faults in data vs. those in BDCs. To this end, Constraint Programming is used by
modelling the problem as a CSP. Moreover, this proposal takes into account that
data may be shared by various instances of the BP, and deals with it accordingly,
for example by diagnosing faults in an instance that were caused by the updating
of data by another running instance.

As future work, we plan to offer an easier and customized way to determine
the likelihood between data and BDC malfunction. In order to improve our
approach, we would like to consider roles or the organization view. Moreover, we
intend to perform the diagnosis even when certain data still remains unknown,
in order to allow the detection of potential errors in advance.

Furthermore, we would like to extend the idea to include those BPs that man-
age aggregate data. Another interesting line would be to manage a log of diag-
noses, whereby the cause of a malfunction is ascertained by analysing previous
diagnoses.
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8. Gómez-López, M.T., Gasca, R.M., Pérez-Álvarez, J.: Compliance validation and
diagnosis of business data constraints in business processes at runtime. Inf. Syst.
48, 26–43 (2015)

9. Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory com-
pliance for business process models through semantic annotations. In: Ardagna,
D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17, pp. 5–17.
Springer, Heidelberg (2009)

10. Hull, R.: Artifact-centric business process models: brief survey of research results
and challenges. In: Tari, Z., Meersman, R. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)
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13. Ly, L.T., Rinderle-Ma, S., Göser, K., Dadam, P.: On enabling integrated process
compliance with semantic constraints in process management systems. Inf. Syst.
Front., 1–25 (2009)

14. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process
compliance using compliance rule graphs. In: Meersman, R., et al. (eds.) OTM
2011, Part I. LNCS, vol. 7044, pp. 82–99. Springer, Heidelberg (2011)

15. Maggi, F.M., Montali, M., van der Aalst, W.M.P.: An operational decision support
framework for monitoring business constraints. In: de Lara, J., Zisman, A. (eds.)
FASE 2012. LNCS, vol. 7212, pp. 146–162. Springer, Heidelberg (2012)

16. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring business constraints with the event calculus. ACM TIST 5(1), 17 (2013)

17. Peng, Y., Reggia, J.: Abductive Inference Models for Diagnostic Problem-Solving.
Symbolic Computation. Springer, New York (1990)

18. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

19. Rozinat, A., van der Aalst, W.: Conformance checking of processes based on mon-
itoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

20. Sidorova, N., Stahl, C., Trcka, N.: Soundness verification for conceptual workflow
nets with data: Early detection of errors with the most precision possible. Inf. Syst.
36(7), 1026–1043 (2011)

21. Sun, S.X., Zhao, J.L., Nunamaker, J.F., Sheng, O.R.L.: Formulating the data-flow
perspective for business process management. Inf. Syst. Res. 17(4), 374–391 (2006)
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