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1 Dpto. Lenguajes y Sistemas de Informóticos, IDEA Research Group, Universidad
de Sevilla, Seville, Spain

{ajvarela,maytegomez,gasca}@us.es
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Abstract. The proliferation of Cyber-Physical Systems (CPSs) is rais-
ing serious security challenges. These are complex systems, integrating
physical elements into automated networked systems, often containing a
variety of devices, such as sensors and actuators, and requiring complex
management and data storage. This makes the construction of secure
CPSs a challenge, requiring not only an adequate specification of secu-
rity requirements and needs related to the business domain but also
an adaptation and concretion of these requirements to define a security
configuration of the CPS where all its components are related. Derived
from the complexity of the CPS, their configurations can be incorrect
according to the requirements, and must be verified. In this paper, we
propose a grammar for specifying business domain security requirements
based on the CPS components. This will allow the definition of security
requirements that, through a defined security feature model, will result
in a configuration of services and security properties of the CPS, whose
correctness can be verified. For this last stage, we have created a cata-
logue of feature models supported by a tool that allows the automatic
verification of security configurations. To illustrate the results, the pro-
posal has been applied to automated verification of requirements in a
hydroponic system scenario.
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1 Introduction

Cyber-physical systems (CPS) can be defined as systems that collect information
from the physical environment via sensors and communication channels, analyse 
it via controllers and affect the physical environment and relevant processes
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via actuators to achieve a specific goal during operation [20]. The use of CPSs
facilitates the interaction between the cyberworld and the physical world, but
it increases the complexity of the systems derived from the heterogeneity of the
CPS components, such as sensors, actuators, embedded systems, controllers, etc.

The correlation between physical and cyber systems brings out new difficul-
ties, that have introduced significant challenges related to security and privacy
protection of CPS [15]. In particular, with the complex cyber-physical inter-
actions, threats and vulnerabilities become difficult to assess, and new security
issues arise [21], where numerous security threats appear in addition to the tradi-
tional cyberattacks [16]. This is the reason why the analysis of the cybersecurity
is a key feature in the CPS architecture, to ensure that CPS capabilities are
not compromised by malicious agents. Moreover, it is relevant to analyse that
the information used (i.e., processed, stored or transferred) has its integrity pre-
served and the confidentiality is kept where needed [19].

An important lesson should be learned from the way information systems had
been engineered in the past is that security often came as an afterthought [13].
If security is not taken into account very early in the development lifecycle, it is
nearly impossible to engineer security requirements properly into any complex
system. One of the main reasons is that security requirements are often scattered
and tangled throughout system functional requirements. Therefore, the security
of CPSs should be engineered “by design” early in the development of the CPSs
[28,32]. Different studies show that cyber threats have increased in the CPS
environment, and there is a need to research how the security requirements can
be systematically handled [24,38,42].
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Fig. 1. Overview of the proposal.

The security requirements must include the correct configurations for the
CPSs. However, the different types of components, both software and hardware,



involve a high number of possible features that can participate in a CPS. Fea-
tures about devices, users, platforms, and so on, can provoke a huge number of
configurations, both incorrect or correct. Thereby, the description of the security
requirements must restrict the incorrect configurations of the features. It implies
the analysis of a very high number of possible configurations of the features, to
validate if a specific CPS satisfies the defined requirements. Feature models are
a well-known technique, belonged to Software Product Lines (SPLs) [8], that
provide a mechanism to model and study the satisfiability of the requirements
represented by a set of characteristics that can take a set of values restricted by
a set of constraints. Derived from the high configurability, and that the features
can be shared for various CPSs, we propose the creation of a catalogue of feature
models to facilitate the automatic analysis of the security requirements in the
context of CPSs. As shown in Fig. 1, the combination of these three elements
(cf., Catalogue of Feature Models, Security Requirements and CPSs) will provide
a mechanism for reasoning about: the validation of the requirements according
to the possible configurations; the diagnosis of misconfigurations, how to ascer-
tain the non-satisfied configurations; the creation of configurations according to
the requirements and the feature models, and; other operations such as, in the
case of incorrect configurations, the misconfiguration diagnosis by identifying
the configuration faults.

To detail the proposal, the paper is organised as follows: Sect. 2 presents an
overview of the related work. Section 3 includes a case study of CPS to intro-
duce our proposal. Section 4 tackles the introduction of the main elements of the
security requirements for a CPS, using the case study to exemplify the security
requirements. Section 5 presents the second part of our proposal, where feature
models are introduced as a mechanism to describe the possible correct configu-
rations, that can be stored in a catalogue of Feature Models, and validated auto-
matically concerning the security requirements. Finally, conclusions are drawn
and future work is proposed.

2 Related Work

Currently, there is little research associated with software product lines, and
security requirements, oriented to cyber-physical systems. Therefore, in this
section, some of the main related researches are analyzed.

Related works have been divided into the two areas of research addressed
in the article: how feature model analysis have been used in the security and
software product lines fields, and; how security requirements and ontologies can
be used for the modelling of risk scenarios.

2.1 Cybersecurity and Feature Model Analysis

Feature-Oriented Domain Analysis (FODA) have become mature fields in the
Software Product Line (SPL) arena in the last decades [8]. Several are the sce-
narios where SPLs based on feature model analysis have been applied [18,40],



and different researchers highlight the advantages of these systems since the use
of Model-Driven Engineering (MDE) methodology and the Software Product
Line (SPL) paradigm is becoming increasingly important [22]. The complexity
and the high variability of a CPS, and how SPL can help were analysed in [4,7],
detecting the points of variability using feature model analysis. The analysis of
the variability of CPS can also support the testing [5].

Security is an understudied field in SPL area. Different approaches have been
presented to manage the variability and specify security requirements from the
early stages of the product line development [25–27]. Similarly, other approaches
addressed the idea of including the security variability into an SPL [36]. In [17],
the authors established a software architecture as a reference to develop SPL,
dealing with information security aspects. SPLs are currently being targeted for
application in CPS, as for some researchers, no standard provides a structured co-
engineering process to facilitate the communication between safety and security
engineers [11]. For other researches, the information security must be a top
priority when engineering C-CPSs as the engineering artefacts represent assets
of high value, and the research is focused on the generation of new security
requirements stemming from risks introduced by CPSs [10].

On the other hand, there are approaches focused on the security as a use case,
such as in [3] and the methodology SecPL [29], where is highlighted the impor-
tance of specifying the security requirements and product-line variability. These
are annotated in the design model of any system. Other researches developed
a security requirements engineering framework for CPSs, that is an extension
of SREP [31]. The capacity to support the high variability in the security con-
text though Feature Models appeared in previous papers [23], where the authors
study the possible vulnerabilities to create attack scenarios, but not it does not
apply to a complex scenario as the CPSs need.

2.2 Ontologies and Security Requirements for Cybersecurity

As seen in the introduction, today’s cyber-physical systems require an adequate
security configuration. Therefore, some researchers are focusing their research
on the development of ontologies and security requirements. Some researchers
have developed security tools based on ontologies capable of being integrated
with the initial stages of the development process of critical systems, detecting
threats and applying the appropriate security requirements to deal with these
threats [35]. For other researchers, the use of tools is not enough, since, in this
type of system, requirements analysis must consider the details not only of the
software but also of the hardware perspective, including sensors and network
security. Therefore they propose the development of a security requirements
framework for CPSs, analysing the existing ones, and concluding that currently
there is no suitable requirement framework for this type of systems. There-
fore, they focus on proposing a security requirements engineering framework for
CPSs that overcomes the problem of obtaining security requirements for het-
erogeneous CPS components [33,34]. Other researchers consider that CPSs have
unique characteristics that limit the applicability and suitability of traditional



cyber-security techniques and strategies, and therefore propose the development
of a methodology of cyber-security requirements oriented to weapons systems
[12]. This methodology allows us to discover solutions that improve dimensions
(such as security, efficiency, safety, performance, reliability, fault tolerance and
extensibility), being possible to use automated coding tools [43]. Additionally, it
is also possible to take a more effective approach to understand early the security
requirements, during the development of such systems, by using the STPA-Sec
[37].

Therefore, we can conclude that at present different researchers have found
the need to develop requirement grammars to control the security risks associated
with CPSs. Moreover, derived from the complexity of the CPSs, Feature Models
have been previously used in the context of the cyber-security.

3 Case Study of a Cyber-Physical System

The case study presented here, which can be seen in Fig. 2, is a CPS system
for hydroponic farming, in which different components are involved, both hard-
ware (sensors and actuators) and software (system for storage, monitoring and
decision making with Big Data technology).
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Fig. 2. CPS schema for a hydroponic farming.

The hydroponic farming is controlled by the following physical elements:

– Temperature and humidity sensors. They measure the existing temper-
ature and humidity in the environment.

– Heater and Cooler actuators. The heater emits heat to increase the ambi-
ent temperature and the cooler moves the air to cool the environment. Both
actuators are activated or deactivated from the controller.



– Controller. It is an Arduino device that receives the data from all the sensors
and sends it (via wireless connections) from a web system to the Big Data
system.

In addition to the physical part, the controller is connected to a visualisation
and control system with Big Data technologies where we have deployed the
following components:

– Dashboard. It allows the user to control the hydroponic farming in real-time
and to consult statistics, as well as to interact (by switching actuators on or
off) with the farming, through HTTP requests to the controller.

– Data handler. It is responsible for processing the sensor data, received from
the controller, and storing it in the database.

– Datastore. It contains a Hadoop file system (HDFS) and an HBASE
database where all the values coming from the sensors are saved.

4 Security Requirements for Cyber-Physical Systems

CPSs have physical, control and communication requirements, in addition to
software security requirements, which make the task of identifying security
requirements and translating them into the configuration of our CPS even more
complicated. The security requirements represent security features of all types
of assets in the system.

Definition 1. Security Requirement. Let SR be a security requirement
which consists of a tuple 〈AT, SR〉, where AT is a set of n assets types
{at1, at2, · · · , atn}, and SF is a set of security features {sf1, sf2, · · · , sfm}.

The set of assets types (AT) is based on the security recommendations for
IoT in the context of critical infrastructures formulated by the ENISA agency
[1]. Many of possible security features (SF) for CPS are obtained from OWASP
[2] to extract the most important concepts (keys, encryption, protocol, network,
AES, SSL, Bluetooth, range, lifetime, etc.). For instance, we can define as a
security requirement that the Bluetooth communication between a sensor and a
controller is encrypted using the HTTPS protocol, with AES128 encryption and
a high confidentiality level. This requirement will generate certain security con-
figurations that must be implemented in the system to ensure compliance with
the requirement. This configuration will be verified as valid if the communica-
tion, protocol, encryption and confidentiality level defined in the requirement
are compatible and correct.

Thereby, the elements that have been considered to define a security require-
ment (SR) for CPSs are mainly two, “AssetType” (AT) and “SecurityFeature”
(SF). The possible values that both AT and SF can take are schematised in
Fig. 3, and which are described below:

– AssetType: We have classified the types of assets into: “Device”, “User”,
“Platform”, “Infrastructure”, “Applications and Services”, and “Information
and Data”. Some are divided into other assets as can be seen in Fig. 3.
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Fig. 3. Elements of a Security Requirement for CPS.

– SecurityFeature: This element defines the security features and needs for
a security requirement, such as the associated property, the security level, or
the conditions and constraints to be taken into account in a CPS.

• securityProperty defines the relationship between a requirement and
the security property according to the purpose and context of the require-
ment. For example, the protection of transmitted information is associ-
ated with the property of “Confidentiality” and “Integrity”.

• securityLevel indicates the level of security of the requirement and serve
to prioritise the requirements during the development, which can range
from a high to a low value.

• securityConstraint indicates all possible security-related constraints on
the system, such as the strength of passwords, what type of cryptographic
or secure communication protocol is used, etc.

• securityCondition indicates the limitations of a CPS that can influence
the decision of how to protect the system; for example, if the device has
little memory because it will not be able to support certain cryptographic
algorithms, or its lifetime to properly define a correct availability service,
etc.

4.1 Representation of Security Requirements in JSON

JSON claims to be a useful format for data publication and exchange in many
different fields of application and many different purposes. It can be used to
exchange information between different technologies, which makes it very useful
and attractive to be used to represent the security requirements of a system and
to be understood by any language and technology involved. We have proposed
a JSON schema to represent the security requirements most easily, and that
can be understood by the different applications easily. Part of the syntax of
the proposed JSON schema to represent security requirements can be seen in
Listings 1.1 and 1.2. This schema represents the properties indicated in Fig. 3. In



Listing 1.1 the schema for “AssetType” is shown, which is an object type with
the elements “user”, “platform”, “device”, “infrastructure”, “information” and
“appservice”:

– User describes the possible users of the system, which are “consumer”,
“provider”, “process”, and “third-party”.

– Platform includes values of “web-based services” and “Cloud infrastructure
and services”.

– Device contains all the devices of a CPS that are “sensor”, “actuator” and
“controller”.

– Infrastructure defines the assets such as “ecosystem”, “hardware”, “security
device” and “communication”.

– Information determines whether the information is stored in a datastore
and/or a database, in transit or in use.

– AppService defines all assets related to “analytics and visualization”,
“device and network management” and “device usage”.

Listing 1.1: JSON Schema proposed. Tag: assetType

"AssetType": {"type":"object", "properties": {
"user": {"type":"string",

"enum": ["consumer","provider","process","third-party"]},
"platform": {"type":"string",

"enum": ["web-basedService", "CloudInfrastructure"]},
"device": {"type":"object","minProperties":1, "maxProperties":3, "properties": {

"sensor": {"type":"string", "enum": ["humidity","temperature", "accoustic",
"presure","motion", "chemical","luminosity","flowmeter"]},

"actuator": {"type":"string", "enum":["hydraulic","mechanical", "electric",
"pneumatic","magnetic","thermal","TCP/SCP"]},

"controller":{"type":"string","enum":["microController","microProcessor","FPGA"]}},
"infrastructure": {"type": "object", "properties": {

"ecosystem":{"type":"string","enum":["interface","deviceManage","embeddedSystems"]},
"hardware": {"type": "string", "enum": ["router", "gateway", "powerSupply"] },
"securityDevice": {"type": "object", "properties": {

"service": {"type": "string",
"enum": ["CloudAuthentication", "AuthenticationSystem","IDS/IPS"]},

"firewall": {"type": "string", "enum": ["software", "hardware"]},
"communication": {"type": "object", "properties": {

"protocol": {"type": "string", "enum": ["BLE","RFID","Wifi","ZigBee","ZWave",
"CoAPP","MQTT","LoRaWAN"]},

"network": {"type": "string", "enum": ["PAN","WPAN","WAN","VPN","LAN","WLAN"]}},
"information": {"type": "object", "properties": {

"datastore": {"type": "string", "enum": ["NFS","GPFS","HDFS"]},
"database": {"type": "string", "enum": ["SQL","NoSQL","GraphDB"]} },

"appService": {"type": "string", "enum": ["data analytics and visualization",
"device and network management", "device usage"]} },

In adittion to “AssetType” tag, in Listing 1.2 we can see the “SecurityFea-
ture” tag with the elements ’“securityProperty”, ’“securityLevel”, “securityCon-
straint” and ’“securityCondition”:



Listing 1.2: JSON Schema proposed. Tag: securityFeature

"SecurityFeature": {"type": "object", "properties": {
"securityProperty": {"type": "array", "items": [{"type": "string", "enum":

["Identification","Authentication", "Authorization","Confidentiality","Integrity",
"Non-repudiation","Availability","Privacy","Trust","Audit","Detection"] }],
"additionalItems": true },

"securityLevel": {"type": "string",
"enum": ["Very High","High", "Medium","Low","Very Low"] },

"securityConstraint": {"type": "object", "properties": {
"password": {"type": "string", "enum": ["strong", "weak", "multi-factor"]},
"cipher": {"type": "string", "enum": ["AES128GCM","Camelia","ChaCha20"]},
"channels": {"type": "string", "enum": ["SSL/TLS", "HTTPS", "Tunneling"]},
"signature": {"type": "string", "enum": ["SRP","PSK"]},
"certificate": {"type":"string","enum":["x509","openPGP","openSSL","SAML"]}}},

"SecurityCondition": {"type": "object", "properties": {
"powerComputational": {"type": "string", "enum": ["low","medium","high"]},
"memoryBandwidth": {"type": "string", "enum": ["low","medium","high"]},
"range": {"type": "string", "enum": ["low","medium","high"]},
"time": {"type": "string", "enum": ["low","medium","high"]},
"energy": {"type": "string", "enum": ["low","medium","high"]},
"other": {"type": "string"}}

}}}}
"required": ["assetType","securityFeature"]

– securityProperty includes the values: “AccessControl”, “Audit”, “Authen-
tication”, “Authorization”, “Availability”, “Confidentiality”, “Detection”,
“Identification”, “Integrity”, “Non-repudiation”, “Privacy” and “Trust”.

– securityLevel considers only a range of values, from a very high level of
importance to a very low level of importance.

– securityConstraint: the elements are:
• password can take the values: “strong”, “weak”, or “multi factor”.
• cipher describes the type of encryption algorithm, that can be:

“Camelia”, “AES128GCM” or “ChaCha20”.
• channels restricts the communication channels: “SSL/TLS”, “HTTPS”,

or “Tunneling”.
• signature indicates if the system supports digital signature: “SRP” or

“PSK”.
• certificate indicates the formats for the certificates managed: “x509”,

“openPGP”, “openSSL”, or “SAML”.
– securityCondition: some features for the system, such as powerCompu-

tational, memoryBandwidth, range, time, energy, etc. They can take three
possible values: “low”, “medium” and “high”.

4.2 Security Requirements for the Case Study

Using the notation we have presented in Sect. 4.1, we show below some examples
of security requirements for our case study of the hydroponic farming. To see
their expressive capacity, several requirements are defined at different levels of
abstraction, which will give rise to different security configurations, which will
later be verified with the features model defined in Sect. 5.3.



– High level. The wireless communication between the sensors and/or actua-
tors, of the hydroponic farming, and the Arduino system must be encrypted,
ensuring confidentiality. This requirement is defined in our JSON schema as
is shown in Listing 1.3.

Listing 1.3: High level security requirement in JSON

assetType: {
device: { sensor: "ALL",

actuator: "ALL",
controller: "microController" },

information: {intransit: true}
infrastructure: {communications:{protocol:["BLE","RFID"],network:"WPAN"}} },

securityFeature: {
securityProperty: ["Confidentiality"],
securityLevel: "high",
securityContraint: {channel: "HTTPS" } }

– Medium level. The user who wants to visualise the data of the sensors of
temperature and humidity of the hydroponic farming from any place must
be authorised by the system of authentication. To activate an actuator like
the cooler and/or the heater, the user must authenticate with a 2FA system.
This requirement is defined in our JSON schema as is shown in Listing 1.4.

Listing 1.4: Medium level security requirement in JSON

assetType: {
user: "consumer",
device: { sensor: ["temperature","humidity"],

actuator: "electric",
controller: "microController" },

infrastructure: {
securityDevice: {

service: "AuthenticationSystem" },
communication: { protocol: "Wifi", network: "WAN"} },

appService: "analytics&visualization" },
securityFeature: {

securityProperty: ["Authorization", "Authentication"],
securityLevel: "high",
securityContraint: { password: "multi-factor"},
securityCondition: {other: "access authorised"} }

– Low Level. The short-range sensors of temperature and humidity are con-
nected to an Arduino controller via Bluetooth. The transmitted information
acts under the HTTP client/server protocol but the transmitted informa-
tion must be secured by applying the SSL/TLS cryptographic protocol over
HTTP, ensuring confidentiality. This information is stored encrypted in a local
webserver with HDFS and HBASE, ensuring integrity. This requirement is
defined in our JSON schema as is shown in Listing 1.5.



Listing 1.5: Low level security requirement in JSON

assetType: {
platform: "web-basedService",
device: { sensor: ["temperature","humidity"],

controller: "microController" },
infrastructure: { communication: {

protocol: ["BLE","Wifi"],
network: "WLAN" } },

information: { datastore: "HDFS", database: "NoSQL" } },
securityFeature:

{ securityProperty: "Confidentiality",
securityLevel: "high",
securityContraint: { channels: "HTTPS"}

},
{ securityProperty: "Integrity",

securityLevel: "very high",
securityContraint: { channels: "SSL/TLS", cipher: "AES128GCM"}

}
}

5 Verification of CPS Security Requirements
by Using Feature Models

The high variability of the configurations that can be included in the security
requirements that involve CPSs, can generate a high number of configurations,
whose verification can be very complex. Feature Models (FMs) represent a mech-
anism that facilitates the representation and treatment of the possible configu-
rations. In this section, we describe how FMs can be used for automatic analysis
of the configurations described and how the creation of a catalogue of feature
models can be used for verifying the compliance of the security requirements
described in the previous section.

5.1 Feature Models

As aforementioned, the use of Feature Models is a broad technique for analysing
Feature-Oriented Domain Analysis (FODA) [8] in Software Product Lines
(SPLs). Feature Models (FMs) involve a model that defines the features and
their relationships.

Definition 2 Feature Model. Let FM be a feature model which consists of
a tuple (F,R), where F is a set of n features {f1, f2, · · · , fn}, and R is a set of
relations {r1, r2, · · · , rm}.

There are several notations and formalism to define FMs [6], although the
most widely used is that proposed by Czarnecki [8], illustrated in Fig. 4. In gen-
eral, FM diagrams are composed of six types of relations between a parent feature
and its child features, although there exist extensions that enable attributes and
extra-functionalities for features:



– Mandatory relation when child features are required (cf., Root is mandatory
sub-feature of A, Root ↔ A).

– Optional relation when child features are optional (cf., Root optional sub-
feature of B, Root → B).

– Alternative relation when one of the sub-features must be selected (i.e.,
in general a1, a2, · · · , an alternative sub-feature of b, a1 ∨ a2 ∧ · · · ∧ an ↔∨

i<j(ai ∨ · · · ∨ aj)).
– Or-relation when at least one of the sub-features must be selected (i.e., in gen-

eral a1, a2, · · · , an or sub-feature of b, a1 ∧ a2 ∧ · · · ∧ an ↔ b, in the figure
C ↔ C1 ∧ C2).

– Require relation, when a feature requires the existence of other features with
non-direct family relation (cf., in the figure A1 → B2).

– Exclude relation, when a feature excludes the existence of other features with
non-direct family relation (cf., in the figure ¬(D ∧ E)).

– Attributes associated to features, such as BCost in the example, that is an
Integer attribute attached to feature B.

B1 B4

B2 B3

A B C D E

Root

A1 A2 C1 C2

require
MandatoryOptional Or-alternative Alternative

Cross-Relations Attributes/Extra-func.

exclude

Bcost: [10..100]

Fig. 4. Toy feature model.

The automated analysis of FMs can be achieved by formal methods [8] based
on propositional logic, description logic or constraint programming. Most of the
approaches in the literature make a transformation from the FMs to a formalisa-
tion, for instance, Constraint Satisfaction Problems (CSPs) or Constraint Opti-
misation Problems (COPs) [14]. In this work, the tools used to automated the
analysis are FaMa and CyberSPL [9,39], both based on the Constraint Program-
ming paradigm.

The automated analysis of FMs enable to perform different reasoning oper-
ations on them, for instance, to determine whether the model is valid or not, to
obtain the number of all possible configurations, to obtain all possible configu-
rations, even we can ascertain whether it is correct or not concerning the model
and based on a configuration. Thus, we can verify a configuration according to
the model.



The verification of the security requirement is based on the definition of a
valid configuration [39]. Thus, a configuration, ci, represents an assignment of
features for certain FM . For instance, ci = {Root=true, A= true, A1 = true,
A2 = false, . . . } represents an assignment for the model in Fig. 4, where missed
features are assigned to false value. The configuration can be represented without
the Boolean values but the same semantic, thus, ci = {Root, A, A1, A2, . . . }.

The configurations can be valid (i.e., correct) whether the selection of
assigned features satisfies all the relations, invalid otherwise. We revisited the
definition of valid configuration [39] to adapt it for the context of the verifica-
tion of a security requirement (SR) by considering it as a configuration to be
checked. Thus, the security requirement represents an assignment according to
the features of the model as aforementioned.

Definition 3 Verification of Security Requirements. Let 〈FM,SR〉 be the
tuple that represents the feature model, FM , and the security requirement, SR,
respectively. Let SR be an configuration assignment of n asset type and security
features {f1, f2, · · · , fn} according to FM . Thereby, the SR is verified as valid
when all the within features of the requirement satisfies the relation of FM .

verify(FM,SR) = valid ⇐⇒ {∀ri ∈ FM.R|ri(SR) ≡ true} (1)

For instance, the configuration assignment c = {Root,B} which represent
Root = true and B = true is invalid due to the relations between B and B1
is unsatisfied. This configuration can be seen as a security requirement which
represents asset types and security constraints. In our approach, we will for-
malise a set of FMs that enables the reasoning for the verification of the security
requirements presented in previous sections.

5.2 Catalogue of Feature Models for CPS

FM as a formalisation for the definition of security patterns has been also used
in [41]. In our approach, FMs are used to formalised the security requirements
specified in Sect. 4. To do that, we have formalised a catalogue of FMs that
align the security requirements with the recommendation of ENISA [1] for the
definition of a security CPS environment. The FMs explained in this section are
accessible through the public catalogue of the tool CyberSPL1.

The FM depicted in Fig. 5 is the result of this synthesis of the ENISA and
our proposal for security requirement definition. To bear born in mind, the FM
is just an overview since several parts have been hidden for clarity as some
require relations and sub-models. As can be seen, the FM is encompassed of
two main parts: (1) the assets (cf., Asset) involved in the security requirement,
and; (2) the security requirement (cf., Security) specification where properties,
conditions, and constraints can be defined.

1 https://estigia.lsi.us.es/cyberspl/featureModels/publicFeatureModels/.

https://estigia.lsi.us.es/cyberspl/featureModels/publicFeatureModels/


Regarding the relations, there is a set of requires relations that have been
included to explain the relation between asset features and the security require-
ment aspects. For instance, the data stored into a database may require integrity,
hence, the integrity property requires the application of a certain security con-
straint related to the encryption, e.g., ciphering.

Regarding sub-models, Fig. 6 represents the Infrastructure sub-model. The
communications at least the specification of used protocols are mandatory but
most of the part are optional such as gateways, routers, firewalls, authentication
systems, etc.
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Fig. 5. Feature model for CPS and security requirements.
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Fig. 6. Sub-model for Infrastructure of CPS.

From the general overview in Fig. 5, we provide different security configura-
tion viewpoints [30] to illustrate some use cases. The first security configuration
viewpoint in Fig. 7 is concerning the data-in-transit and confidentiality property.
On the one hand, the in-transit data requires a type of network and confiden-
tiality. On the other hand, any communication channel requires confidentiality



properties. The confidentiality can be achieved by the enforcement of the com-
munications using a security protocol such as SSL/TLS. However, the SSL/TLS
requires the specification of any cipher methods. To illustrate, we have included
three supported by the TLS 1.3 Camelia, AES128GCM, and ChaCha20; these
have been matched to three security levels Medium, High, and Very High respec-
tively.

The second security configuration viewpoint in Fig. 8 is concerning data
storage and customers. The web-based services can require storage such as
databases and users need to be authenticated and authorised to access the sen-
sor data. Thereby, users need authentication and authorisation properties and
data storage requires data integrity. On the one hand, integrity can be achieved
by the enforcement of cipher methods on the data. These methods Camelia,
AES128GCM, and ChaCha20 have been linked to three security levels Medium,
High, and Very High respectively. On the other hand, the authentication can
require some constraints for the password-based authentication system such as
multi-factor. The multi-factor, the length and constraint policy, and the avoid-
history based password policy are considered as high level, low level, and a
medium level of security respectively.
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Fig. 7. Feature Model for the security configuration viewpoint of Confidentiality and
Data in-transit.
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To illustrate a running example regarding the security requirements, a secu-
rity requirement that specifies data-in-transit without protocol and network
or a bad combination of SSL/TLS version and the cipher methods concerning
the level can provoke an incorrect configuration, therefore, an invalid security
requirement. For instance, the data-in-transit through wifi channels requires to
the medium level of confidentiality using 3DES or RC4. Both methods have been
not considered in our viewpoint because they are deprecated, unrecommended
and incompatible with recent versions of the TLS cipher suites.

5.3 Verification Examples for the Case Study

In this section, we show the results for the verification of the three requirements
presented in Sect. 3. To do that, we define the configurations for each requirement
and subsequently, we verify it against the FMs presented in the previous section.

I. High level Security Requirement

The security requirement establishes that the wireless communication (i.e.,
WPAN) in transit between the actuators (i.e., ALL), Arduino (i.e., micro-
controller), and sensors (i.e., ALL) must be encrypted (i.e., HTTPS), ensuring
confidentiality with a high level of security. Based on this specification, we have
composed the next security configuration to verify the requirement:

confHighLevel = {CPS IoT,Asset,Device, Sensor,Humidity, Temperature,

Controller,microController,Actuator, Electric,Magnetic, Infrastructure,

Communications, Protocol, BLE,RFID,Network,WPAN, Information,

Intransit, Security, Enforce Communications, Property, Confidentiality,

Level,High,Constraint,HTTPS} (2)

The confHighLevel configuration is correctly verified. Thus, it is valid since all the
features chosen are correct and comply with all the relations in the model. Therefore,
we can conclude that High-Level Security Requirement of the case study is correct.

II. Medium Level Security Requirement
The security requirement establishes that the users (i.e., Customer) who want to visu-
alise the data (i.e., Data Analytic & Visualisation) of sensors and activate the actuators
must be authorised and authenticate (i.e., Authorisation and Authenticate property)
by authentication system (i.e., Authentication System) with a 2FA system (i.e., enforce
Multi-factor Password).

confMediumLevel = {CPS IoT,Asset, User, Customer,Device,

Sensor,Humidity, Temperature,Actuator, Electric,Magnetic, Infrastructure,

SecurityDevice, AuthenticationSystem,Communications, Protocol,Wifi,

Network,WAN,AppServices, AnalyticV isualisation, Security, Property,

Authorisation,Authentication,EnforceAuthentication, , Level,High,

Constraint, Password,Multifactor, Condition}
(3)



The confMedimLevel configuration is verified as invalid. The use of communication
will require enforcement of the communication to comply with confidentiality prop-
erties that are not specified. Therefore, we can conclude that Medium Level Security
Requirement of the case study is incorrect.

III. Low Level Security Requirement
The security requirement establishes that the sensors connected to the Arduino (i.e,
microController) via Bluetooth (i.e., BLE protocol) send information through HTTP
protocol but using an SSL/TLS cryptographic protocol to ensure Confidentiality prop-
erties. The information is located in encrypted HDFS and HBASE systems to ensure
Integrity property. In this case, the requirement specified complementary security prop-
erties with two different levels of security, therefore, we need to verify the two config-
urations one for each security level with the security properties:

confHigh
LowLevel = {CPS IoT,Asset,Device, Sensor,Humidity, Temperature,

Controller,microController, Infrastructure, Communications,

Information, Storage,Datastore,HDFS,Database,NoSQL,Protocol,

BLE,Wifi,Network,WPAN,Security, EnforceCommunications, Property,

Integrity, Confidentiality, Level,High, Constraint, SSLTLS,Cipher,

AES128GCM} (4)

confVeryHigh
LowLevel = {CPS IoT,Asset,Device, Sensor,Humidity, Temperature,

Controller,microController, Infrastructure, Communications,

Information, Storage,Datastore,HDFS,Database,NoSQL,Protocol,

BLE,Wifi,Network,WPAN,Security, EnforceCommunications, Property,

Integrity, Confidentiality, Level, V eryHigh,Constraint, SSLTLS,Cipher,

AES128GCM} (5)

The confHigh
LowLevel configuration is verified as valid but the confV eryHigh

LowLevel configu-
ration is verified as invalid due to the cipher chosen. The AES128GCM cipher method
is unsupported for the very high level of security. Thereby, we can conclude that the
Low Level Security Requirement is incorrect.

Summarising, we demonstrate the reasoning capabilities of the model by verifying
the security requirement in which two of the three, i.e, Medium and Low have been
verified as invalid due to problems in the specification, and just one, i.e, the High level
is verified as valid.

6 Conclusion and Future Work

The high features that can be configurable in a CPS make difficult the evaluation of the
requirements that involve security aspects. To facilitate the validation of the security
requirements for CPSs, we propose the use of Feature Models to support the description
of the possible configuration. To formalise the security requirement description, we have
defined a common grammar to define security requirements for CPSs by using JSON



that gathering the possible involved elements. For an automatic verification of the
requirements, Feature Models are used to validate a configuration according to the
requirements. Moreover, a catalogue of FMs for CPS has been created and stored in a
special repository to be reused for any set of requirement to be validated. The feasibility
of the solution, both the description capacity of the requirements and the catalogue
of configurations in CPS has been evaluated through a case study of a hydroponic
farming CPS. For the future, we plan to extend the types of reasoning that can be
applied over the combination of the feature models and the security requirements for
CPSs, such as the diagnosis of the configurations that do not satisfy the requirement,
or the generation of correct configurations according to a set of requirements specified.

Acknowledgement. This research is partially supported by Ministry of Science and
Technology of Spain with projects ECLIPSE (RTI2018-094283-B-C33), by Junta de
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