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ABSTRACT

The proper configuration of systems has become a fundamental 
factor to avoid cybersecurity risks. Thereby, the analysis of cyber-
security vulnerabilities is a mandatory task, but the number of vul-
nerabilities and system configurations that can be threatened is ex-
tremely high. In this paper, we propose a method that uses software 
product line techniques to analyse the vulnerable configuration of 
the systems. We propose a solution, entitled AMADEUS, to enable 
and support the automatic analysis and testing of cybersecurity 
vulnerabilities of configuration systems based on feature models. 
AMADEUS is a holistic solution that is able to automate the analy-
sis of the specific infrastructures in the organisations, the existing 
vulnerabilities, and the possible configurations extracted from the 
vulnerability repositories. By using this information, AMADEUS 
generates automatically the feature models, that are used for rea-
soning capabilities to extract knowledge, such as to determine 
attack vectors with certain features. AMADEUS has been validated 
by demonstrating the capacities of feature models to support the 
threat scenario, in which a wide variety of vulnerabilities extracted 
from a real repository are involved. Furthermore, we open the door 
to new applications where software product line engineering and 
cybersecurity can be empowered.

CCS CONCEPTS

• Software and its engineering → Software product lines.␣
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1 INTRODUCTION
The analysis of cybersecurity vulnerabilities is a crucial task to
reduce the exposition of end-users and organisations to risks, for
instance, Broken Authentication, Code Injection, Insecure Refer-
ences, etc. Nowadays, some of the most important vulnerabilities
are the misconfiguration or improper security configuration of sys-
tems [35]. Attack vectors are defined as the set of means that enable
attackers to exploit system vulnerabilities. In general, the use of
default or vulnerable configurations (i.e., misconfiguration) of sys-
tems is the first attack vectors used for attackers [28]. To reinforce
this, OWASP project [8] establishes the “Security Misconfiguration”
and “Using Components with Known Vulnerabilities”, as two of
the top-10 vulnerabilities for Web systems.

The lack of vulnerability detection in configuration systems
before they are exploited might increase the weaknesses of the
organisations. To reduce the risks, the cybersecurity community is
making an important effort to catalogue vulnerabilities on open-
access databases, such as the National Vulnerability Database (NVD)
[6] by the National Institute of Standards and Technology (NIST).
These databases provide information about the attack vectors to be
used for each vulnerability. However, massive are the possible vul-
nerabilities and configurations that systems might be affected. This
variability depends on the wide range of the target systems, such as
databases, Web systems, Web repositories, devices, networks, etc.

Although there exist vulnerability analysis tools, e.g., OpenVAS,
they focused on finding out vulnerabilities concerning network
assets. An in-depth vulnerability analysis of system configurations
required to be performed in a manual way based on expert knowl-
edge and developed less formally. This scenario makes unapproach-
able a systematic analysis of the vulnerabilities of a system, since
thousands of features can be involved, with a huge number of con-
figurations that could or not produce a vulnerable system object of
a later attack. This is where feature models can help to model the
variability of the vulnerable configurations.

Feature Models (FMs), in the context of Software Product Lines
(SPLs), are used to represent and reason about the possible config-
urations of the systems represented in a compact way. Variability
models, such as FMs [21], describe commonalities and variabilities
in SPLs and are used along with all the SPL development processes.

The extremely high possible combinations of the features in-
volved in the configuration and how they could produce a vulner-
ability (i.e., attack vector) bring about the proper context where
FMs and their advantages can be applied. Nevertheless, the problem
is how these FMs could be created, that implies to solve different
challenges as the following: (i) the management of the various set of
sources of vulnerabilities [24]; (ii) the extraction of the high number
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of features involved in vulnerabilities; (iii) inferring the relation be-
tween the features analysing the vulnerabilities; and, (iv) facilitating 
the security testing according to the inferred knowledge.

To facilitate the automatic analysis and testing of cybersecurity 
vulnerabilities, in this paper, we propose AMADEUS, a framework 
to guide the creation and reasoning over the feature models ex-
tracted from the analysis of the organisation infrastructure and 
the vulnerabilities retrieved by the vulnerability repositories. The 
contributions of the proposal are focused on: (1) definition and 
implementation of the necessary phases to manage the vulnerable 
configurations with FMs; (2) integration with the existing analy-
sis tools for the extraction of the relevant information from the 
systems; (3) integration with external vulnerability repositories, 
catalogues, and databases; (4) scrapping the external repositories 
to obtain the affected vulnerabilities of the analysed systems, and 
extract the information related to the vulnerable configurations;
(5) inferring FMs automatically according to the identified vulnera-
bilities and vulnerable configurations; (6) reasoning over the FMs 
to facilitate the generation of attack vectors for security testing; 
and, (7) evaluating AMADEUS in a scenario where services and 
applications of a real system with at least 20 vulnerabilities and 
thousands of vulnerable configurations are analysed.

The remainder of this paper is organised as follows: Section 2 
introduces the needed concepts about vulnerabilities in cybersecu-
rity to understand the proposal; Section 3 describes the proposal, 
detailing the integrated modules necessary to achieve the objec-
tives and the steps of the methodology; Section 4 details how to 
formalise FMs from extracted information; Section 5 studies how 
the created FM can be used for reasoning. Section 6 evaluates the 
proposal with a real repository; Section 7 analyses the previous 
related work; and, finally, the paper is concluded, opening some 
evolution of the proposal for future work.

2 FOUNDATIONS
In order to understand the proposal, it is necessary to introduce 
some terms related to the vulnerabilities in cybersecurity, i.e., the 
existing repositories, the structure of the known vulnerabilities, 
and the scenarios where they might occur.

2.1 Repositories of Vulnerabilities
Derived from the high number of vulnerabilities that can affect a 
system, there exist catalogues, repositories, and databases. Some 
examples are the NVD [6], the US-CERT Vulnerability Notes Data-
base [10], the IBM’s XFORCE [4], and the VulDB [9]. In general, 
these databases provide information about the attack vectors to be 
used in each vulnerability. In this paper, we focused on NVD which 
contains information related to vulnerabilities and cybersecurity-
related issues, it is widely used and contains a trusted source of 
information since it is maintained up to date. Moreover, it provides 
a web tool that allows to search vulnerabilities.

Due to the wide range of the target systems (e.g., databases, Web 
systems, Web repositories, devices, etc.), massive are the possible 
vulnerabilities and configurations that systems might be affected.

Vuln. ID Summary CVSS Severity
CVE-2020-1933 A XSS vulnerability V3.0: 6.1

was found in ... V2.0: 4.3
CVE-2020-1928 An information disclosure V3.0: 5.3

vulnerability was ... V2.0: 5.0

Table 1: NVD results for “Apache NiFi 1.10” query.

2.2 Vulnerabilities
To automate the analysis of vulnerabilities, the cybersecurity com-
munity has made several efforts to make uniform how the vulner-
abilities are represented. Common Vulnerabilities and Exposures
(CVEs) [2] is the de-facto standard used by NVD and other reposi-
tories to represent the vulnerabilities. CVE is a reference method to
publish the known vulnerabilities in a structural way to facilitate
its management and sharing. A CVE is formed of a list of vulnerabil-
ities that includes, among other, the following information: (i) the
CVE ID, the identifier of the vulnerabilities, that is mandatory in-
formation; (ii) the summary to describe the vulnerability textually;
(iii) the impact of the vulnerability, following the standard CVSS
(Common Vulnerability Score System) [3], for assessing the severity
of the vulnerability. CVSS in each of its different versions (until the
current 3.1) proposes a formula that returns a value between 0 and
10, to represent the lowest and highest severity respectively. Table
1 is an example of two CVEs related to Apache NiFi 1.10.

2.3 Vulnerable Configurations
The CVE vulnerabilities are formed of a set of CPEs (Common
Platform Enumeration), {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, · · · , 𝑐𝑝𝑒𝑛}, that describe the
products and scenarios in which a vulnerability might occur, repre-
sented through a set of Known Affected Software Configurations
(hereinafterConfigurations). The CPE standard [1] byMITRE is used
to formalise these possible configurations. CPE defines a standard-
ised approach for the identification of the features of the contexts
where the vulnerabilities might be exploited. They provide key
information in the definition, enforcement and verification of IT
policies, such as vulnerability or configurations.

CPEs are represented by using a modular naming specification
known as Well-Formed Name (WFN), introduced in the CPE 2.3
version [1]. WFN permits to represent abstract logical conceptual
expressions, that unambiguously specify desired implementations
and behaviours.WFN follows the structure of a list of pairs: attribute
(𝑎) and value (𝑣).

Definition 2.1. Let ⟨𝑎, 𝑣⟩ be a pair of an attribute 𝑎, with a value
𝑣 , where WFNs can be expressed as an unordered set of 𝑛 valid
pairs, that describe the characteristics of a 𝑐𝑝𝑒 .

A 𝑐𝑝𝑒 is valid when each attribute (𝑎𝑖 ) appears only once, and
belongs to the following list:
• part describes the scope of applicability: hardware (h), soft-
ware (a), or operating system (o).
• vendor describes the organisation that distributes the prod-
uct, e.g., apache.
• product identifies the product affected, e.g., nifi.
• version is a vendor-specific alphanumeric string that charac-
terises the release version of the product, e.g., 1.0.1.
• update is a specific alphanumeric string that characterises
the update version of the product affected, e.g., update 256.



• edition captures edition-related terms applied by the vendor
to the product.
• language defines the language supported by the product, e.g.,
ES.
• sw_edition describes how the product is tailored to a particu-
lar market.
• target_sw defines the software environment within the prod-
uct operates, e.g., windows.
• target_hw characterises the architecture, e.g., x86.
• other describes any other information.

Regarding to their values (𝑣𝑖 ), they are commonly UTF-8 strings,
but they can also be assigned two logical values: ANY, there is no
restrictions applicable for the attribute; and, NA (Not Applicable),
there is no valid value for the attribute. Thereby, a CPE which
follows WFN can be represented as follows:

𝑐𝑝𝑒𝑥 = { ⟨𝑝𝑎𝑟𝑡, 𝑣1 ⟩, ⟨𝑣𝑒𝑛𝑑𝑜𝑟, 𝑣2 ⟩, ⟨𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑣3 ⟩ . . . , ⟨𝑜𝑡ℎ𝑒𝑟, 𝑣𝑛 ⟩ } (1)

The reference 𝑐𝑝𝑒𝑥 is used just as a manner to easily identify and
differentiate the CPEs between them. WFNs are not intended to
be a data format, encoding, or any other kind of machine-readable
representation. To deterministically transform a logical construct
into a machine-readable representation, there exist the so-called
bindings. The one this article uses receives the name of Format-
ted String Binding (FSB), and consists of a colon-delimited list of
attributes1 as follows:

𝑐𝑝𝑒 : 2.3 : 𝑝𝑎𝑟𝑡 : 𝑣𝑒𝑛𝑑𝑜𝑟 : 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 : 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 : 𝑢𝑝𝑑𝑎𝑡𝑒 : 𝑒𝑑𝑖𝑡𝑖𝑜𝑛 :
𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 : 𝑠𝑤_𝑒𝑑𝑖𝑡𝑖𝑜𝑛 : 𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑤 : 𝑡𝑎𝑟𝑔𝑒𝑡_ℎ𝑤 : 𝑜𝑡ℎ𝑒𝑟 (2)

FSB adds prefixes and binds the attributes in a WFN in a fixed
order and separated by the colon character. Note that all eleven
attribute values must appear in the FSB, such as:

𝑐𝑝𝑒 : 2.3 : 𝑜 : 𝑙𝑖𝑛𝑢𝑥 : 𝑙𝑖𝑛𝑢𝑥_𝑘𝑒𝑟𝑛𝑒𝑙 : 2.6.0 : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ (3)

The previous example in WFN format, for the CPE 2.3 version,
can be represent as following:

{⟨𝑝𝑎𝑟𝑡, 𝑜⟩, ⟨𝑣𝑒𝑛𝑑𝑜𝑟, 𝑙𝑖𝑛𝑢𝑥⟩, ⟨𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑙𝑖𝑛𝑢𝑥_𝑘𝑒𝑟𝑛𝑒𝑙⟩,
⟨𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 2.6.0⟩, ⟨𝑢𝑝𝑑𝑎𝑡𝑒, 𝐴𝑁𝑌 ⟩, ⟨𝑒𝑑𝑖𝑡𝑖𝑜𝑛,𝐴𝑁𝑌 ⟩, ⟨𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒,𝐴𝑁𝑌 ⟩,
⟨𝑠𝑤_𝑒𝑑𝑖𝑡𝑖𝑜𝑛,𝐴𝑁𝑌 ⟩, ⟨𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑤,𝐴𝑁𝑌 ⟩, ⟨𝑡𝑎𝑟𝑔𝑒𝑡_ℎ𝑤,𝐴𝑁𝑌 ⟩,

⟨𝑜𝑡ℎ𝑒𝑟, 𝐴𝑁𝑌 ⟩} (4)

Analysing each attribute, the list describes a vulnerable configu-
ration in an Operating System (part=o), released by Linux (vendor),
named Linux Kernel (product) and at version 2.6.0 (version). The
rest of the attributes take the wildcard value (∗) in FSB, which is
how the logical value ANY in WFN. Remark, we ignored the first
pair (cpe:2.3) since it only describes the CPE format used.

Regarding NVD, the CVEs that represent vulnerabilities are
formed of a set of vulnerable contexts, so-called Configurations.
A Configuration is composed, in turn, of a list of vulnerable CPEs,
{𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒𝑛 }, and optionally, a set of Running Configu-
rations (RC) can be included as a set of CPEs {𝑐𝑝𝑒𝑛+1, 𝑐𝑝𝑒𝑛+2, 𝑐𝑝𝑒𝑛+3,
. . . , 𝑐𝑝𝑒𝑛+𝑚 } specifying the concrete executions environments in
which the vulnerability may be reproduced. In presence of RCs, we
have to take into account the combinations of the CPEs regarding
each RC separately. Table 2 is an example of configurations for the

1The first pair indicates the standard of CPE version used.

Configuration 1
List of CPEs
𝑐𝑝𝑒1 : cpe:2.3:a:apache:nifi:1.0.0:beta-rc1:*:*:*:*:*:*
𝑐𝑝𝑒2 : cpe:2.3:a:apache:nifi:1.0.0:rc1:*:*:*:*:*:*
𝑐𝑝𝑒3 : cpe:2.3:a:apache:nifi:1.0.0:-:*:*:*:*:*:*
... (+54 results)
Running Configurations
𝑐𝑝𝑒58 : cpe:2.3:a:mozilla:firefox:-:*:*:*:*:*:*:*

Table 2: List of CPEs for the vulnerability CVE-2020-1933
from NVD.

‘CVE-2020-1933’ vulnerability associated to the Cross-Site Scripting
in the Apache NiFi for versions 1.0.0 to 1.10.0. In this example, there
is only one RC, thereby, 𝑐𝑝𝑒1 can occur with 𝑐𝑝𝑒58; 𝑐𝑝𝑒2 can occur
with 𝑐𝑝𝑒58; so until cover all the combinations.

3 AMADEUS
The deep analysis of the possible security vulnerabilities based on
the configuration of the systems can facilitate the detection of pos-
sible attack vectors [34, 41]. AMADEUS aims to get attack vectors
automatically as the baseline for conducting a complete and congru-
ent security test for a specific environment. Therefore, AMADEUS
is conceived as a framework to discover and analyse vulnerable
configurations within IT-resources of an ecosystem, based on the
process shown in Figure 1. AMADEUS can be positioned in the
reconnaissance phase and the enumeration in an ethical hacking
process [20]. Thus, the framework collects information relative to
the known vulnerabilities stored in public vulnerability databases,
to create automatically the attack vectors derived from these vulner-
abilities to detect scenarios where the vulnerabilities might occur. In
the AMADEUS process the activities have been marked as manual
by a hand symbol, as automatic by an engine symbol, and semi-
automatic by an engine-hand symbol. The manual activities and
semi-automatic require certain human intervention. Each step is
described in the following subsections.

3.1 Analysis of Infrastructure
To extract the vulnerabilities of a system, it is necessary to analyse
the features that are configured on it. This is why AMADEUS
starts analysing a group of systems and/or devices (cf., Analyse
Infrastructure or Provide Terms) that pinpoints some of their key
characteristics.

The identification of the particular attack vectors or the def-
inition of pentesting techniques to be applied [14, 38] depends
on the configuration of the systems (e.g., software, hardware, net-
work, and people). To gather and recovery the configuration used
in organisations, different solutions exists, both active and passive
analysis tools. One of them is the Configuration Management Data-
base (CMDB) [31, 40, 48], an IT infrastructure database that stores
the configurations of their assets, so-called configuration items.
Concerning cybersecurity, CMDBs are frequently used to perform
impact analysis and the seek of the root cause under a failure. On
the other hand, active tools, such as Lynis [5] and Nmap (Network
Mapper) [7], let to audit systems to detect vulnerabilities, executing
penetration testing, of performing system hardening. Nmap is a
very well-known tool widely used for auditing the security of fire-
walls, networks, measuring the traffic of a network or the detection
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Figure 1: AMADEUS Framework overview.
Service Version
Mozilla, Firefox -
OpenSSH 7.7
Apache HTTP Server, OpenSSL -
Adobe Flash 32.0.0.238
OpenVPN 2.3.17

Table 3: Example of extracted terms.

of vulnerabilities. Due to the popularity in the security commu-
nity, Nmap is the solution integrated into the implementation of
AMADEUS, albeit others could be adapted as well.

AMADEUS2 has been developed with two operation modes:
custom and automatic. In the custom mode, AMADEUS allows
users to provide a list of terms and keywords for a set of target
systems. In the automatic mode, AMADEUS invokes an analysis
tool (Nmap in our case) with a set of target systems. The information
retrieved from this tool is tackled by AMADEUS as a list of terms
and keywords, where tuples as ⟨𝑠𝑒𝑟𝑣𝑖𝑐𝑒, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛⟩ are returned, as
shown in Table 3.

3.2 Scrapping Vulnerabilities
The terms related to the running services, versions, active ports,
etc. found in the reports obtained from the Analyse infrastructure
task or provided by the users, are essential in the search of related
vulnerabilities. This quest can be then performed against a vulner-
ability database, where a scrapper (cf., Scrapping Vulnerabilities)
can be used to extract the vulnerabilities.

AMADEUS integrates the NVD [6] solution. Due to the intrinsic
web nature of NVD repository, the best approach to automatise
the search and extraction of such information are employing a
scrapper, reason why AMADEUS integrates a web scraper module.
This scrapper analyses the HTML structure similar to the shown
in Table 1, and replicates the results by retaining only specific and
relevant information, such as the CVE ID.

3.3 Extraction of the Vulnerable
Configurations

Afterwards, each of the extracted vulnerabilities might be used for
ascertaining the vulnerable configurations (cf., Extract vulnerable
configs.)

2https://github.com/IDEA-Research-Group/AMADEUS

Once the vulnerabilities represented by the CVEs are gathered,
the possible features of the scenarios where these vulnerabilities
can be exploited are analysed. To do that, it is necessary to ascertain
how these scenarios are described. For example, the vulnerability
‘CVE-2020-1933’ describes that malicious scripts can be injected
in Apache NiFi 1.10. However, several questions arise, such as: in
which specific software configuration is this vulnerability applicable;
whether it might be related to software, hardware, application or for
an Operating System, and; whether this vulnerability might exist for
every version or release.

In this stage, AMADEUS, by using the same scrapper, extracts
the different sets of vulnerable configurations (represented by CPEs)
for every vulnerability (represented by CVEs) that were discovered
in the previous step.

3.4 Generation of Feature Models and
Reasoning

With these items as a basis, AMADEUS attempts to infer/build
some valid feature models (cf., Generate FMs) of the possible con-
figurations that may lead to an attack, generating a feature model
catalogue of vulnerabilities [44]. In this paper, we propose an algo-
rithm to create feature models adapted to the vulnerability context.
These feature models can be used to create a catalogue of scenar-
ios where attacks can occurs for the known vulnerabilities. This
catalogue can be used in an immense variety of test generation
scenarios reasoning about them (cf., Reasoning on FMs). Figure 1
shows some of the utilities that can be applied over these aggre-
gation of models, ranging from the generation of attack vectors to
the detection of vulnerable components amongst others.

The details about how the feature models are created and the
possible reasoning are found in Sections 4 and 5.

4 GENERATION OF FEATURE MODELS OF
VULNERABILITIES

As commented, the high variability defined by the number of pos-
sible vulnerabilities and the vulnerable configurations makes it
extremely complex to manage the potential threats. The creation
of FMs that covers this vulnerability information could facilitate
the vulnerability analysis.

A FM combines a set of relevant features and their dependen-
cies. There exist various notations to design FMs [15], although the
most widely used is that proposed by Czarnecki [16], that describes
the set of features and the constraints (relations) between them.

https://github.com/IDEA-Research-Group/AMADEUS
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Figure 2: Example of FM for the CVE-2020-1933.
Bringing FMs to the problem of vulnerability analysis at hand, we
would need to represent every vulnerability (CVE) and its vulner-
able configurations (CPEs) in a FM. To do that, it is necessary to
determine the features and the relations among them. Following
with the example of Table 2, a quick first approximation might be
to use the attributes of the CPEs as the features with a mandatory
relation with their values, as shown in Figure 2. This is a simplified
FM since it only includes three of the 58 CPEs for this vulnerability.
The problem arises when several and different vendors, products,
versions, etc; with different values are involved in the same vulnera-
bility. How to generalise the creation of FMs to enable an automatic
and uniform construction is one of the purposes of AMADEUS.

AMADEUS creates a FM for each CVE (vulnerability), including
every CPE of their configurations. Therefore, every configuration
produced by the FM is a vulnerable configuration according to the
NVD vulnerabilities.

Definition 4.1. Let CPEs be a list of vulnerable configurations and
running configuration environments {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒𝑛 }, a
FM is equivalent to a list of CPEs, iff the set of products of FM is
equal to the CPEs described in each vulnerability.
𝐹𝑀 ≡ 𝐶𝑃𝐸𝑠 ⇐⇒ 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐹𝑀) = {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒𝑛 } (5)

In our approach, the construction of the so-mentioned FM is
divided into two main stages: (1) Retrieve an unrestricted FM that
contains only information regarding every ⟨𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 𝑣𝑎𝑙𝑢𝑒⟩ pair
within the set of CPEs; and, (2) include restrictions into the form of
cross-tree relations to the previous FM to make it equivalent to the
CPEs, avoiding possible configurations that could be produced by
the unrestricted FM.

4.1 Retrieving Unrestricted Feature Model
from CPEs

The well-known as reverse engineering in SPLs [29, 30, 39] provides
mechanisms to generate FMs according to a set of configurations.
In the context of cybersecurity and vulnerable configurations, the
reverse engineering applied is relatively bounded, since only 12
attributes may occur, and some of them cannot take every con-
figuration of values. This is the case of the attribute product, that
determines the vendor and the part. It means that the same product
cannot belong to two different vendors or two different parts. More-
over, these three attributes must be mandatorily fulfilled, being
impossible an ‘ANY’ label value associated with them. This is the
main motivation to propose a specific algorithm to incorporate
these restrictions in the generation of the FM. To exemplify each
part of the algorithm, the running example of Table 4 is used. The

Configuration 1
List of CPEs
𝑐𝑝𝑒1 : cpe:2.3:a:olearni:civet:1.0.0:*:*:fr:*:*:*
𝑐𝑝𝑒2 : cpe:2.3:a:olearni:civet:1.0.1:*:*:*:*:*:*:*
𝑐𝑝𝑒3 : cpe:2.3:a:olearni:civet:1.0.2:*:*:*:*:*:*:*
Running Configurations
-
Configuration 2
List of CPEs
𝑐𝑝𝑒4 : cpe:2.3:a:oteachy:lynx:*:*:*:es:*:*:*:*
𝑐𝑝𝑒5 : cpe:2.3:a:oteachy:ocelot:*:*:*:*:*:*:*:*
Running Configurations
𝑐𝑝𝑒6 : cpe:2.3:a:origin:iberian:-:*:*:*:*:*:*:*

Table 4: Running example of CPEs for a vulnerability.

example represents a vulnerability encompassed of two configura-
tions (cf., Configuration 1 and 2), each with a list of CPEs and a list
of running configuration, empty for the Configuration 1.

The idea of the algorithm to create the FM (cf., Algorithm 1) is
based on three parts: (1) the creation of a sub-FM for each vendor; (2)
the creation of sub-FM for the running configurations; and, (3) the
integration of these sub-FMs in a single FM tree. Figure 3 represents
the different steps for the running example of Table 4, but for a
better understanding of each part of the algorithm, some concepts
must be introduced.

Let 𝐿 be the list of 𝑛 configurations (CPEs), of a given CVE. 𝐿
could be regarded as a composition of two smaller lists, 𝐿𝑉𝑈𝐿 , {𝑐𝑝𝑒1,
𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒 𝑗 }; and, 𝐿𝑅𝐶 , {𝑐𝑝𝑒 𝑗+1, 𝑐𝑝𝑒 𝑗2, . . . , 𝑐𝑝𝑒𝑛 }, containing
vulnerable configurations and execution environments, respectively.
Regarding the running example in Table 4, 𝐿𝑉𝑈𝐿 = {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3,
𝑐𝑝𝑒4, 𝑐𝑝𝑒5} and 𝐿𝑅𝐶= {𝑐𝑝𝑒6}.

Derived from the mentioned special characteristics of the CPE
attributes: product, vendor, and part, some functions are described
as following:

• 𝑔𝑒𝑡𝑉𝑒𝑛𝑑𝑜𝑟𝑠 (𝐿) returns the vendors associated to the list 𝐿
of CPEs. For the example, getVendors(L) = {‘oteachy’, ‘olearni’,
‘origin’}.
• 𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐿, 𝑣𝑖 ) returns a list of the products for a vendor
𝑣𝑖 for a given list 𝐿 of CPEs. For the example, getProducts(L,
‘oteachy’) = {‘lynx’, ‘ocelot’}.
• 𝑔𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝐿, 𝑝𝑖 ) returns a list of attributes that are rele-
vant for the product 𝑝𝑖 because of they do not have ‘*’ in ev-
ery CPE of𝐿. For the example, getAttributes(L, ‘civet’)={‘version’,
‘language’}.
• 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠 (𝐿, 𝑝𝑖 , 𝑎 𝑗 ) returns a list of values for the attribute
𝑎𝑖 for a product 𝑝 𝑗 in a list 𝐿 of CPEs. For the example,
getValues(L, ‘civet’, ‘version’)={‘1.0.0’, ‘1.0.1’, ‘1.0.2’}.

Other operators have been defined for developing the algorithms.
The operators are grouped into two categories:

(1) Operators to get information from 𝐿:
• 𝑣𝑢𝑙 (𝑙) takes a list of CPEs (𝑙) as input and returns the
list of vulnerable configurations, 𝐿𝑉𝑈𝐿 . For the example,
vul(L)={𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, 𝑐𝑝𝑒4, 𝑐𝑝𝑒5}.
• 𝑟𝑐 (𝑙) takes a list of CPEs (𝑙 ) as input and returns the map
(list of pairs key→value) of the running environment con-
figurations, 𝐿𝑅𝐶 . For the example, rc(L)=[‘𝑟𝑐1’→ {𝑐𝑝𝑒6}].
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Figure 3: Process of construction of the FM for the running example.

• 𝑔𝑒𝑡𝑅𝐶 (𝐿, 𝑟𝑐𝑖 ) returns a list of CPEs associated to the 𝑟𝑐𝑖 in
the running configurations𝐿. For the example, getValues(𝐿𝑅𝐶 ,
‘𝑟𝑐1’)={cpe6}.

(2) Operators to build 𝐹𝑀 structures:
• 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑜𝑡𝐹 (𝐹𝑀,𝑛) creates a new feature in the 𝐹𝑀 named
𝑛 and establishes it as root.
• 𝑚𝑎𝑛(𝐹𝑀, 𝑓1, 𝑓2) creates two new features, if they do not
exist, and a mandatory relation between them.
• 𝑜𝑝𝑡 (𝐹𝑀, 𝑓1, 𝑓2) creates two new features, if they do not
exist, and an optional relation between them.
• 𝑥𝑜𝑟 (𝐹𝑀, 𝑓 , 𝐴) creates a new feature 𝑓 in 𝐹𝑀 , if it does not
exist, and an XOR-Alternative relation between it and the
set of alternative features 𝐴 ⊂ 𝐹𝑀 .
• 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝐹𝑀, 𝑓 ,𝐶)creates a new feature 𝑓 in 𝐹𝑀 , if it does
not exist, and a relation with a set of children features
𝐶 ⊂ 𝐹𝑀 :
– If |𝐶 | = 1, a new mandatory relation is added between

𝑓 and 𝑐 ∈ 𝐶; i.e.,𝑚𝑎𝑛(𝐹𝑀, 𝑓 , 𝑐).
– If |𝐶 | > 1, a new XOR-Alternative relation is added
between 𝑟 and ∀𝑐 ∈ 𝐶; i.e., 𝑥𝑜𝑟 (𝐹𝑀, 𝑓 ,𝐶).

• 𝑚𝑒𝑟𝑔𝑒 (𝐹𝑀, 𝑓 , 𝑆) creates a new feature 𝑓 in 𝐹𝑀 , if it does
not exist, and a relationwith set 𝑆 of FMs. Let𝑅 be the set of
roots ∀𝐹𝑀𝑖 ∈ 𝑆 , the operator𝑚𝑒𝑟𝑔𝑒 creates a new relation
between 𝑓 and every 𝑟𝑜𝑜𝑡 𝑗 ∈ 𝑅; i.e., 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝐹𝑀, 𝑓 , 𝑅).

The concrete specification of the solution is given in Algorithm
1. The algorithm is derived into three parts: (1) initialisation of
the lists (lines 1-2), to prepare the needed structures to create the
list of sub-FMs of the vulnerable configuration according to the
vendors (𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑉𝑈𝐿) and running configurations (𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑅𝐶 )
according to 𝐿𝑅𝐶 ; (2) creation of the sub-FMs for each vendor
and their integration in a single FM (lines 4-10), where the
root is ‘CVE-ID’ and the branches are the sub-FMs obtained from
createSubFMs, detailed in Algorithm 2; and, (3) creation of a FM of
the running configuration (lines 11-22), with a root ‘rc’ as an
optional relation with the whole FM (since running configuration
can or cannot appear).

In the right part of Figure 3, we can see how the three sub-FMs,
of the left part, are combined to create the complete FM for the
example.

Algorithm 1: Build unrestricted FM from a CVE.
Input :CVE-ID, 𝐿 : {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒𝑛 }
Result: fm: Feature Model

1 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑉𝑈𝐿 ← {}; 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑅𝐶 ← {}; 𝑓𝑚 ← {};
2 𝐿𝑉𝑈𝐿 = 𝑣𝑢𝑙 (𝐿) ; 𝐿𝑅𝐶 = 𝑟𝑐 (𝐿) ;
3 /* Create the root of FM */
4 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑜𝑡𝐹 (𝑓𝑚, CVE-ID);
5 /* Create FMs for the list of CPEs */
6 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑉𝑈𝐿 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑏𝐹𝑀𝑠 (𝐿𝑉𝑈𝐿) ;
7 /* Create a FM for each Vendor */
8 for 𝑓𝑚𝑣𝑢𝑙𝑖 ∈ 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑉𝑈𝐿 do
9 𝑚𝑒𝑟𝑔𝑒 (𝑓𝑚, CVE-ID, 𝑓𝑚𝑣𝑢𝑙𝑖 ) ;

10 end
11 if |𝐿𝑅𝐶 | > 0 then
12 /* Create a node that will contain all RCs */
13 𝑜𝑝𝑡 (𝑓𝑚, CVE-ID, “𝑟𝑐”) ;
14 /* Create a FM for each RC */
15 for 𝑟𝑐𝑖 ∈ 𝐿𝑅𝐶 do
16 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑉𝑈𝐿 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑆𝑢𝑏𝐹𝑀𝑠 (𝑔𝑒𝑡𝑅𝐶 (𝐿𝑅𝐶 , 𝑟𝑐𝑖 )) ;
17 /* Merge FMs together */
18 for 𝑓𝑚𝑟𝑐𝑖 ∈ 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀𝑅𝐶 do
19 𝑚𝑒𝑟𝑔𝑒 (𝑓𝑚, 𝑟𝑐𝑖 , 𝑓𝑚𝑟𝑐𝑖 ) ;
20 end
21 end
22 end

Algorithm 2 is responsible of creating a list of FMs (create-
SubFMs), one for each vendor (line 3) with the vendor as root
(line 6). Iteratively, the products of each vendor (line 7), and the
attributes of each product (line 8). The possible attribute values
are also included and related in the model (lines 9-10). Finally, the
relations between features of products and attributes (line 12),
and products and vendors (line 14) are included.

4.2 Include cross-tree constraints to the FM
Up to this point, the FM obtained encapsulates every attribute and
values for the CPEs of a CVE. As aforementioned, the set of CPEs
does not usually include such high variability, and the existence of
certain of its components is intrinsically related to the appearance



Algorithm 2: Create sub-FMs.
Input :𝐿 : {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒𝑛 }
Result: 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀 : List of FMs

1 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀 ← {};
2 /* Create new FM representing each vendor */
3 for 𝑣𝑖 ∈ 𝑔𝑒𝑡𝑉𝑒𝑛𝑑𝑜𝑟𝑠 (𝐿) do
4 𝑓𝑚 ← {};
5 /* Include all vendors as root feature */
6 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑜𝑜𝑡𝐹 (𝑓𝑚, 𝑣𝑖 );
7 for 𝑝 𝑗 ∈ 𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐿, 𝑣𝑖 ) do
8 for 𝑎𝑘 ∈ 𝑔𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝐿, 𝑝 𝑗 ) do
9 /* Create the features and the relation between them,

representing the values 𝑎𝑘 that the attributes may
take */

10 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑓𝑚, 𝑎𝑘 , 𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒𝑠 (𝐿, 𝑎𝑘 , 𝑝 𝑗 )) ;
11 end
12 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑓𝑚, 𝑝 𝑗 , 𝑔𝑒𝑡𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 (𝐿, 𝑝 𝑗 )) ;
13 end
14 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑓𝑚, 𝑣𝑖 , 𝑔𝑒𝑡𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝐿, 𝑣𝑖 )) ;
15 𝑙𝑖𝑠𝑡𝑂 𝑓 𝐹𝑀 ← 𝑓𝑚;
16 end

of others. That is the reason why the inference of a set of constraints
over the FM is necessary, to overcome this situation and restrict
the number of feasible combinations, adjusting it. In this stage,
AMADEUS derives a set of constraints using Algorithm 3 to adjust
the variability of the FM according to the restriction of the CPEs
attributes and the running configurations.

The cross-tree constraints are derived from an analysis per-
formed over the original list of CPEs, which is a clear descriptor
of the possible valid configurations. Any other combinations will
generate a configuration that is not included in the list, hence
considered as spurious. We may recall that the whole aim of this
algorithm is to build a FM that can produce the same set of items
contained in the original list of CPEs. Therefore, we only use two
types of cross-tree constraints (i.e., the Require and the XOR-require
[26, 37]) modelled by means of a single operator (cf., explained bel-
low const(FM,f,C)). The Require constraint is used when the feature
requires the existence of other features with non-direct family rela-
tion (e.g., 𝑓 1→ 𝑓 2). On the other hand, the XOR-require constraint
(⊕) involves a list with a minimum of three features. XOR-require
constraint establishes a required relation between one feature and
the set of other features, permitting that only one appears at the
same time. A constraint 𝑓 1 ⊕ {𝑓 2, 𝑓 3} is equivalent to:

( (𝑓 1→ 𝑓 2) ∧ ¬(𝑓 1→ 𝑓 3)) ∨ (¬(𝑓 1→ 𝑓 2) ∧ (𝑓 1→ 𝑓 3)) (6)

A set of operators are introduced to facilitate the understanding
of Algorithm 3:
• 𝑔𝑒𝑡𝐿𝑒𝑎𝑣𝑒𝑠 (𝐹𝑀) takes a featuremodel 𝐹𝑀 , and returns the set
of leaves of the model 𝐹𝑀 , that are the values of the relevant
attributes. For the example, 𝑔𝑒𝑡𝐿𝑒𝑎𝑣𝑒𝑠 (𝐹𝑀) = {‘1.0.0’, ‘1.0.1’,
‘1.0.2’, ‘fr’, ‘ANY’, ‘es’, ‘NA’}.
• 𝑖𝑠𝑅𝐶 (𝐿, 𝑓 ) takes a list of CPEs 𝐿, and a value 𝑓 which repre-
sents a feature, that returns a true value if 𝑓 belongs to any
running configuration of 𝐿, false otherwise. For the example,
𝑖𝑠𝑅𝐶 (𝐿, ‘𝑓 𝑟 ’) = 𝑓 𝑎𝑙𝑠𝑒 or 𝑖𝑠𝑅𝐶 (𝐿, ‘𝑁𝐴′) = 𝑡𝑟𝑢𝑒 .

• 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, 𝑓 ) takes a list of CPEs 𝐿, a value 𝑓 which rep-
resents a feature, and returns a list of values that are sibling
of it and belongs to the same product in 𝐿. For the exam-
ple, 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, ‘1.0.0’) = ‘𝑓 𝑟 ’ or 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, ‘1.0.1’) =
‘𝐴𝑁𝑌 ’ or 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, ‘𝑒𝑠’) = {}.
• 𝑔𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝐶 (𝐿, 𝑓 ) takes a list of CPEs 𝐿, a value 𝑓 which
represents a feature, and returns a list of values that repre-
sent the related running configurations in 𝐿. For the exam-
ple, 𝑔𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝐶 (𝐿, ‘1.0.0’) = {} or 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, ‘𝑜𝑐𝑒𝑙𝑜𝑡 ’)
= ‘𝑟𝑐1’ or 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, ‘𝑒𝑠’) = {‘𝑟𝑐1’}.
• 𝑐𝑜𝑛𝑠𝑡 (𝐹𝑀, 𝑓 ,𝐶) takes a source feature 𝑓 ∈ 𝐹𝑀 and a set of
target features 𝐶 ⊂ 𝐹𝑀 :
– If |𝐶 | = 1, a new Require constraint relation is added be-
tween 𝑓 and 𝑐 ∈ 𝐶 .

– If |𝐶 | > 1, a new XOR-require constraint is added between
𝑓 and ∀𝑐 ∈ 𝐶 .

Algorithm 3 is encompassed of the two following parts: (1) Cre-
ation of cross-tree constraints between feature leaves of the same
product (between values of the relevant attributes of the same sub-
-FM) (lines 6-11); and, (2) Creation of cross-tree constraints between
feature leaves of products and running configurations (between
values of the relevant attributes and a root of sub-FM of a running
configuration) (lines 12-17).

Considering again the list of CPEs for the running example in
Table 4 and the generated FM of Figure 3, it is possible to find out
several required cross-tree constraints. The cases are: (1) between
the attributes of the 𝑐𝑖𝑣𝑒𝑡 product, the required between ‘1.0.0’ and
‘𝑓 𝑟 ’ features to enforce the achievement of the 𝑐𝑝𝑒1; (2) the two
required between ‘1.0.1’ and ‘1.0.2’, and ‘𝐴𝑁𝑌 ’ features to enforce
the 𝑐𝑝𝑒2 and 𝑐𝑝𝑒3; (3) the required relation between ‘𝑜𝑐𝑒𝑙𝑜𝑡 ’ and
‘𝑟𝑐1’ features to enforce the occurring of the running configuration
features for the 𝑐𝑝𝑒4; and, (4) the required relation between ‘𝑒𝑠’
feature and the ‘𝑟𝑐1’, to enforce 𝑐𝑝𝑒5. These five constraints are
included to complete the FM.

5 REASONING ON THE FEATURE MODELS
The use of FM provides a way to represent the vulnerabilities struc-
turally, dispelling the generic and meaningless structures of con-
ventional representations, such as lists or tables. An additional
advantage derived from the use of FM, is the storage of the vul-
nerabilities as a catalogue. AMADEUS is empowered thanks to
the definition of a catalogue of FMs that could, in some manner,
be regarded as an interactive entity that supports a wide range of
queries and reasoning. The catalogue stores the same information
as the databases of vulnerabilities, as NVD, but additionally, it un-
leashes a range of valuable utilisation of features for the analysis
of vulnerabilities, that are:
1. Generate attack vectors: Every FM holds information about
vulnerable configurations, by obtaining the set of all products of the
model, we are able to generate the attack vectors. For instance, for
the running example the products are: Product 1: {CVE-ID-1, olearni,
civet, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑖𝑣𝑒𝑡 , 1.0.0, 𝑙𝑎𝑛𝑔𝑐𝑖𝑣𝑒𝑡 , fr}; Product 2: {CVE-ID-1, olearni,
civet, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑖𝑣𝑒𝑡 , 1.0.1, 𝑙𝑎𝑛𝑔𝑐𝑖𝑣𝑒𝑡 , ANY}; Product 3: {CVE-ID-1,
olearni, civet, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑖𝑣𝑒𝑡 , 1.0.2, 𝑙𝑎𝑛𝑔𝑐𝑖𝑣𝑒𝑡 , ANY}; Product 4: {CVE-
ID-1, otecachy, ocelot, rc, rc1, origin, iberian, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑏𝑒𝑟𝑖𝑎𝑛 , NA};



Algorithm 3: Create Cross-tree Constraints for FM.
Input :𝐿 : {𝑐𝑝𝑒1, 𝑐𝑝𝑒2, 𝑐𝑝𝑒3, . . . , 𝑐𝑝𝑒𝑛 }, 𝐹𝑀 : Feature Model
Result: 𝐹𝑀 : Feature Model with Constraints

1 /* Obtain the leaves of the FM */
2 𝑙𝑒𝑎𝑣𝑒𝑠 ← 𝑔𝑒𝑡𝐿𝑒𝑎𝑣𝑒𝑠 (𝐹𝑀) ;
3 /* For each leaf */
4 for 𝑙𝑒𝑎𝑓 ∈ 𝑙𝑒𝑎𝑣𝑒𝑠 do
5 if ¬𝑖𝑠𝑅𝐶 (𝐿, 𝑙𝑒𝑎𝑓 ) then
6 /* Get other leaves related to the same CPE */
7 𝑙𝑖𝑠𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 ← 𝑔𝑒𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝐿, 𝑙𝑒𝑎𝑓 ) ;
8 /* Include a new cross-tree for each relative leaf */
9 for 𝑠𝑖 ∈ 𝑙𝑖𝑠𝑡𝑆𝑖𝑏𝑙𝑖𝑛𝑔𝑠𝐴𝑡𝑡𝑟 do
10 𝑐𝑜𝑛𝑠𝑡 (𝐹𝑀, 𝑙𝑒𝑎𝑓 , 𝑠𝑖 ) ;
11 end
12 /* Get RC related to the leaf */
13 𝑙𝑖𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝐶 ← 𝑔𝑒𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝐶 (𝐿, 𝑙𝑒𝑎𝑓 ) ;
14 /* Include a new cross-tree for each relative RC */
15 for 𝑟𝑐𝑖 ∈ 𝑙𝑖𝑠𝑡𝑅𝑒𝑙𝑎𝑡𝑒𝑑𝑅𝐶 do
16 𝑐𝑜𝑛𝑠𝑡 (𝐹𝑀, 𝑙𝑒𝑎𝑓 , 𝑟𝑐𝑖 ) ;
17 end
18 end
19 end

Product 5: {CVE-ID-1, oteachy, lynx, 𝑙𝑎𝑛𝑔𝑙𝑦𝑛𝑥 , es, rc, rc1, origin,
iberian, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑏𝑒𝑟𝑖𝑎𝑛 , NA}.
2. Obtain/Check a specific configuration: Given details about a
specific configuration, AMADEUS is able to determine whether it is
vulnerable or not, by diagnosing the configuration concerning the
FMs. Furthermore, it can pinpoint which products would make a
valid vulnerable configuration. For instance, we would like to diag-
nose the configuration: {𝑜𝑙𝑒𝑎𝑟𝑛𝑖 ,𝑙𝑦𝑛𝑥 ,𝑒𝑠} for the running example.
The diagnosis of this configuration can return that to deselect the
feature 𝑜𝑙𝑒𝑎𝑟𝑛𝑖 , and to select features {CVE-ID-1, 𝑜𝑡𝑒𝑎𝑐ℎ𝑦, 𝑙𝑎𝑛𝑔𝑙𝑦𝑛𝑥 }.
3. Obtain a prioritised set of attack vectors: A reordering/ pri-
oritisation using a specific criteria [45] could be applied to the gen-
erated attack vectors. For instance, we would like to prioritise the
attack vectors with Spanish language (es): 1) Product 1: {CVE-ID-1,
oteachy, lynx, 𝑙𝑎𝑛𝑔𝑙𝑦𝑛𝑥 , es, rc, rc1, origin, iberian, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑏𝑒𝑟𝑖𝑎𝑛 ,
NA}; 2) Product 2: {CVE-ID-1, olearni, civet, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑖𝑣𝑒𝑡 , 1.0.1,
𝑙𝑎𝑛𝑔𝑐𝑖𝑣𝑒𝑡 , ANY}; 3) Product 3: {CVE-ID-1, olearni, civet, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑖𝑣𝑒𝑡 ,
1.0.2, 𝑙𝑎𝑛𝑔𝑐𝑖𝑣𝑒𝑡 , ANY}; 4) Product 4: {CVE-ID-1, olearni, civet, 𝑙𝑎𝑛𝑔𝑐𝑖𝑣𝑒𝑡 ,
fr, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑐𝑖𝑣𝑒𝑡 , 1.0.0, }; 5) Product 5: {CVE-ID-1, otecachy, ocelot, rc,
rc1, origin, iberian, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑖𝑏𝑒𝑟𝑖𝑎𝑛 , NA}.

The mentioned types of analysis are ground-breaking proposals
in the combination of cybersecurity and software product lines.
And they are just a few examples of the potential use of FMs in the
field of cybersecurity, leaving for the further work in the matter
the inclusion of much more functionalities.

6 EVALUATION
To evaluate the feasibility of AMADEUS, we propose the answering
of the following research questions: RQ1. Can we automatically
extract vulnerable configurations from real scenarios? RQ2. Can
we infer automatically FMs in an acceptable time? RQ3. Can we
reason on the FMs extracted to determine, i.e., generating attack
vectors?
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Figure 4: Time consumed in the whole process (Scrapping,
Building FM, and Cross-tree Constrains).

To conduct RQ1, we have used one synthetic threat scenario
which considers a workstation in a corporate network, which in-
cludes the following applications and services: Firefox3 as Internet
browsers; Adobe Flash4 plugins for those browsers; OpenSSH server
to allow external connections;Apache HTTP server with anOpenSSL
as SSL/TLS provider to support secure connections; Nginx as alter-
native of Web server; finally, OpenVPN as client/server enables to
secure external connections.

AMADEUS has automatically determined certain terms after
scanning the workstation with the Nmap tool, see the bold ones
in the column Terms of Table 5. The rest of the terms have been
included manually, i.e., OpenSSL. Furthermore, Table 5 shows the
information retrieved from the NVD by using the terms, the CVE
identification, the number of CPEs, and the Running Configurations
(RC). The CVEs have been automatically extracted by AMADEUS
from the NVD. Although only some CVEs are shown, since the
complete list is formed of thousands of elements, e.g.,Mozilla Firefox
hasmore than 2,000 vulnerabilities (CVEs). Nevertheless, the chosen
CVEs cover 5.000 vulnerable configurations (CPEs) approximately,
giving an idea of the complexity of the scenario to answer RQ1.

For each CVE, AMADEUS automatically infers a FM (RQ2) as
explained in Section 4 by using FaMa [17]. The inferred FMmodels5
for the evaluation and the source code of AMADEUS implementa-
tion are free available6. To analysis the key characteristics of the
FM, we provide information about the number of features, the num-
ber of relations (mandatory, optional, and XOR), and the number
of cross-tree constraints.

To evaluate the performance on inferring the FMs we analyse
each phase presented in Figure 1 (i.e., Scrapping Vulnerabilities,
Extract CPEs and Generate FM). The designed benchmark consists
of the execution of each phase several times and the calculation of
the average time (in seconds) spent on each one. The benchmark
wants to demonstrate (RQ2) that the generation of FMs requires

3Firefox vulnerabilities: https://www.cvedetails.com/product/3264/Mozilla-Firefox.
html?vendor_id=452
4List of Adobe Flash vulnerabilities: https://www.cvedetails.com/product/6761/
Adobe-Flash-Player.html?vendor_id=53
5Due to the limitation of the basic FaMa formalisation to support certain cross-tree
constraints (i.e., XOR cross-relation), we generate the cross-tree constraint apart from
FM file in a generic formulation that can be easily adapted to any formalism.
6https://github.com/IDEA-Research-Group/AMADEUS

https://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
https://www.cvedetails.com/product/3264/Mozilla-Firefox.html?vendor_id=452
https://www.cvedetails.com/product/6761/Adobe-Flash-Player.html?vendor_id=53
https://www.cvedetails.com/product/6761/Adobe-Flash-Player.html?vendor_id=53
https://github.com/IDEA-Research-Group/AMADEUS


Terms CVE Id. #CPEs #RCs #Features #Mandatory #Optional #XOR #Constraints Valid # Attack Vectors

Mozilla, Firefox

CVE-2020-6801 442 0 446 5 0 3 422 ✓ 442
CVE-2020-6800 978 0 849 8 0 6 790 ✓ 978
CVE-2020-6799 581 1 585 9 1 6 552 ✓ 581
CVE-2020-6798 978 0 849 8 0 6 790 ✓ 978

OpenSSH, 7.7 CVE-2019-16905 8 0 11 4 0 2 0 ✓ 8
CVE-2018-15473 259 3 172 29 1 8 108 ✓ 259

Adobe Flash, 32.0.0.238 CVE-2019-8070 157 24 133 15 1 11 90 ✓ 1975
CVE-2019-8069 157 24 133 15 1 11 90 ✓ 1975

Apache HTTP Server,

CVE-2019-0190 21 0 34 10 0 3 9 ✓ 21

OpenSSL

CVE-2014-0160 14 0 17 4 0 2 7 ✓ 14
CVE-2011-1473 86 0 71 4 0 2 57 ✓ 86
CVE-2009-4355 169 0 68 5 0 4 48 ✓ 169
CVE-2009-3555 396 0 406 20 0 9 173 ✓ 396
CVE-2008-1678 3 0 7 3 0 1 0 ✓ 3

OpenVPN, 2.3.17 CVE-2017-7522 102 0 99 4 0 2 63 ✓ 102
CVE-2017-7508 102 0 99 4 0 2 63 ✓ 102

nginx, 1.7
CVE-2019-7401 13 0 17 3 0 1 0 ✓ 13
CVE-2014-3556 19 0 23 3 0 1 0 ✓ 19
CVE-2014-3616 279 0 283 3 0 1 0 ✓ 279

Table 5: Analysis of FMs generated by AMADEUS.

acceptable time (sub-linear time) in the general case. The evaluation
times are shown in Figure 4 and 5. As can be observed in Figure 4, the
consumed time is mostly used for the scrapping, in comparison with
the time to build the FMs (labelled in the figure because sometimes
is very small to be distinguished). It is relevant to bear in mind
that the scrapping is quite affected by the Internet time response
of the NVD repository and the size of the CVE to be extracted.
Focusing on generation FMs, Figure 5 represents the percentage
of consumed time for the creation of the unrestricted FMs and
the creation of the cross-tree constraints, that correspond with
Algorithm 1 and 3 respectively. The results demonstrate that in the
CVEs with more number of features the consumed time for the
cross-time constraints is higher.

To conduct RQ3, the FMs have been analysed in twofold: (1)
validating the model and calculating the number of products (cf.,
# Attack vectors) operation; and, (2) reasoning about the attack
vectors and checking configurations.

The valid operation demonstrates that is correct in terms of
obtaining at least one valid product. That is, from the perspective
of security testing the FM will create at least one valid attack vector.
The number of products operation represents the number of valid
attack vectors that can be generated from the FM. The number of
products can be used as validation operation, in this respect, in
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Figure 5: Time consumed in the Building unrestricted FMs
and Adding Cross-tree constraints.

our case, the number of products helps as a correctness metric to
measure precision and recall [29]. Thus, if the number of products
differs from the expected combination of CPEs and RCs, the FM is
not equivalent (cf., Definition 4.1), thereby, invalid. For instance, the
CVE-2020-6801 has 442 CPEs and 0 RCs hence the expected number
of attack vectors is 442 as we can check in Table 5. In the presence
of RCs, we have to bear in mind the number of combinations of the
CPEs regarding each RC separately, such as the case of Adobe Flash.
For instance, for the vulnerability CVE-2019-8070 the number of
attack vectors is 1975, as the result of: 33∗3+55∗4+47∗24+22∗24 =
1975. The first term (33 ∗ 3) means that there are 33 CPEs with
3 possible RCs which implies that we must consider all possible
combinations of CPE and RC.

Regarding the reasoning capabilities, they can be used from two
perspectives: (1) users whowant to analyse andmanage the security
on the system configurations; and, (2) security testers who want to
check and test the security of the systems. As aforementioned, we
could generate a set of attack vectors for the service Apache HTTP
Server with OpenSSL. We can use AMADEUS by introducing the
terms, and the attack vectors can be obtained, for instance, from the
CVE-2019-0190 (cf., Table 5). This CVE enables that remote attack-
ers send a request that would causemod_ssl to enter a loop leading
to a denial of service. We can generate a sample of attack vectors
by filtering some features (e.g., apache_http_server and openssl):
(1) {apache, apache_http_server, version, 2.4.37}; (2) {openssl, openssl,
version, 1.1.1, update, pre7}; (3) {openssl, openssl, version, 1.1.1, up-
date, pre5}; (4) {openssl, openssl, version, 1.1.1b, update, ANY}; and,
(5) {openssl, openssl, version, a.00.09.07l, update, ANY}. This is only
one example of an attack vector, others can be calculated apply-
ing different filters. This example provides valuable information to
security testers about the scenario to be checked and better plan-
ning the pentesting, focusing on the vulnerabilities and specific
configurations.

7 RELATEDWORK
The analysis of vulnerabilities of systems is a well-known problem
to manage the system risks [25, 42]. To reduce risks, the vulnerabili-
ties must be gathered and analysed to ascertain the possible attacks.
About the gathering of vulnerabilities, some approaches to identify
and extract them can be found in the literature. In [36] the authors



provided a tool, IVA, to automate the process of finding possible 
vulnerabilities in software products installed inside an organisation. 
This approach depends on an inventory of assets, but our approach 
is decoupled of the infrastructure since AMADEUS supports analy-
sis tools such as Nmap [7] which enables us to discover assets and 
services automatically without an inventory.

Pseudo-formal structures, such as software requirement speci-
fications written in Structured Object-oriented Formal Language 
(SOFL), have been used to identify vulnerabilities [19]. Other ap-
proaches [46] used Natural Language and Machine Learning (ML) 
techniques to extract useful information from vulnerability databases, 
as NVD [6], that can subsequently be utilised by applications, such 
as vulnerability scanners and security monitoring tools. In [32], a 
framework is presented to detect and extract information about 
vulnerabilities and attacks from Web text.

Once the vulnerabilities are identified, various are the techniques 
to analyse the possible risks [12]. In [32], an ontology of terms is 
created for identifying future vulnerability terms for querying the 
NVD. In [24], ML techniques are used in a cybersecurity knowledge 
base to extract entities and build an ontology to obtain a cyberse-
curity knowledge base. New rules are then deduced by calculating 
formulas and using the path-ranking algorithm. The use of the 
knowledge base implies to maintain this structure up-to-date in 
case of new terminology appears, and not to analyse in deep the 
set of the vulnerabilities of a system, providing less customised 
solutions. However, our approach is focused on the analysis of the 
vulnerabilities of a system according to its components, configura-
tions or the terms introduced by the experts.

The use of FMs is introduced as a means to manage the vari-
ability of vulnerability and configuration of systems in a reasoning 
manner. After a FM is defined, products can be configured, derived 
or validated. In the configuration and derivation process, the users 
select and deselect features using a configurator. FMs have been 
demonstrated very useful in the security field where they are ap-
plied to model the domain of configuration of security systems 
[44] and for the selection of configurations to reduce the secu-
rity risk in the selection of configurations [50]. The idea of using 
FMs to represent the vulnerabilities of systems already existed in 
the literature [27]. The authors analyse the vulnerabilities to cre-
ate synthetic attack scenarios. However, the main methodology 
used to derive these models remains manual. In contrast with this, 
our approach provides a new automatic method able to outper-
form current human-oriented methods. We define a consistent and 
homogeneous structure by using FMs for the representation of 
vulnerable configurations, but AMADEUS also provides a solution 
that includes every phase from the vulnerability extraction to the 
FMs creation and reasoning.

The extraction of the FMs from existing systems is a topic al-
ready tackled in SPL by reverse engineering techniques. The reverse 
engineering techniques are used in many directions but basically 
to determine features, feature constrains, or generating complete 
feature models. An approach [49] is presented to extracting com-
plex feature correlations from existing product configurations using 
association mining techniques. In [33] a reverse engineering tech-
nique is proposed to automatically build up language product lines 
from exiting DSL variants. [13] provides an approach to mine a 
feature model based on the formal analysis of conceptual models

and configurations. SPL-XFactor [43] is an end-to-end search-based
framework for reverse engineering feature models.

Several are the techniques applied to do reverse engineering in
SPL: search-based techniques [29]; using propositional logic [18];
natural language requirements [47]; ad-hoc algorithms [11, 22, 23];
and, configuration scripts [39].

Most of the reverse engineering approaches are focused on the
application of different topics of software engineering, but they are
away from the special characteristics of cybersecurity and vulnera-
bility issues. The reason why the extraction of FMs from vulnera-
bilities has been considered in this paper.

8 CONCLUDING REMARKS & FUTURE
DIRECTIONS

The management and testing of cybersecurity vulnerabilities have
become crucial for organisations to avoid security risks. Vulnera-
bilities databases have emerged as the cornerstone in vulnerability
management and security testing. However, the massive informa-
tion joined with the huge complexity and variability of the system
configuration makes very complex to provide efficient solutions. In
this paper, AMADEUS is presented as a holistic solution to reduce
the gap between security testing and vulnerability management
in the organisations. It is performed by enabling the vulnerability
scanning of the systems and deriving FMs to provide reasoning
capabilities to security testers. FMs models are useful for reason-
ing about attack vectors for the security testers according to the
scenario.

Even though the experiments presented in this paper provide
pieces of evidence for validation, we discuss the different threats to
validity that affect the approach: (1) Internal validity, the analysis
done in the evaluation reveals different properties of the vulner-
abilities and vulnerable configurations, however, there might be
characteristics that are not revealed, e.g., the most prominent vul-
nerable feature. (2) External validity, although the evaluation covers
a large number of vulnerable configurations we cannot generalise
the conclusions about the precision of the FMs because an extended
study is needed to avoid some bias. AMADEUS is useful for different
security stakeholders to reveal reasoning capabilities on vulnera-
bility information that currently are not exploited. (3) Conclusion
validity, anybody can replicate the experiments since we provide a
repository with AMADEUS and the models extracted.

As future work directions, AMADEUS has many potential exten-
sions. AMADEUS can be extended with prioritising techniques for
the generation of attack vectors analysing the FMs and the threat
scenario, and the detection of inconsistencies in the repositories of
vulnerabilities. Implementation can be extended integrating other
analysis tools (e.g., Lynis); the integration of other vulnerability
databases (e.g., US-Cert); and, the integration with security testing
tools (e.g., Wapiti).
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