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ABSTRACT
Goodness-of-fit tests for the innovation distribution in GARCH models
based on measuring deviations between the empirical characteristic func-
tion of the residuals and the characteristic function under the null hypo-
thesis have been proposed in the literature. The asymptotic distributions
of these test statistics depend on unknown quantities, so their null distri-
butions are usually estimated through parametric bootstrap (PB). Although
easy to implement, the PB can become very computationally expensive
for large sample sizes, which is typically the case in applications of these
models. This work proposes to approximate the null distribution through
a weighted bootstrap. The procedure is studied both theoretically and
numerically. Its asymptotic properties are similar to those of the PB, but,
from a computational point of view, it is more efficient.
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1. Introduction

The class of generalized autoregressive conditional heteroscedastic (GARCH) models, introduced by
Bollerslev [1], has been proved to be particularly valuable in modelling financial data. To estimate the
parameters in aGARCHmodel, it is usually assumed that the errors or innovations have a normal dis-
tribution. Under certain not very restrictive conditions, the resultant estimator is strongly consistent
and asymptotically normal, even if the errors are not normally distributed (see [2–5] ). Nevertheless,
for certain purposes, as observed in Klar et al. [6], Bai and Chen [7], Berkes and Horváth [8] and
Koul and Ling [9], among many others, the knowledge of the true distribution of the innovations is
quite convenient for several purposes (e.g. to evaluate the value at risk). Therefore, an important step
in the analysis of GARCH models is to check if the data support the distributional hypothesis made
on the innovations. Because of this reason, several goodness-of-fit (GOF) tests have been proposed
for the innovation distribution.

The papers by Klar et al. [6] and Ghoudi and Rémillard [10] contain an extensive review of such
tests aswell as somenumerical comparisons between them for the special case of testing for normality.
In particular, Klar et al. [6] have numerically studied a test based on the empirical characteristic func-
tion (ECF) of the residuals and have compared it with other existing tests for the problem of checking
normality. From the obtained numerical results, they conclude that the test based on the ECF is among
of the most powerful ones. Some theoretical properties of that test have been studied in Jiménez-
Gamero [11]. To approximate the null distribution of the test statistic, Klar et al. [6] have proposed
to employ a PB. Although easy to implement, the PB can become very computationally expensive for
large sample sizes, which is usually the case in financial data. This problem is not specific to the ECF
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test in Klar et al. [6]. The same issue arises when one instead considers tests based on the empiri-
cal cumulative distribution function (ECDF). To overcome this difficulty for GOF tests based on the
ECDF, Rémillard [12] has proposed to approximate the null distribution of the test statistics by a
computationally more efficient estimator obtained by using a weighted bootstrap (WB), in the sense
of Burke [13]. Ghoudi and Rémillard [10] have numerically compared the WB and the PB approxi-
mations for tests based on the ECDF for the problem of testing normality. They conclude that the
tests based on the PB are, in general, more powerful. Nevertheless, the powers of the tests based on
the PB and on the WB become quite similar for large sample sizes, but in this case the PB becomes
extremely slow. Their findings coincide with those of Kojadinovic and Yan [14] and Jiménez-Gamero
and Kim [15], who carried out a similar study for independent, identically distributed (IID) data for
GOF tests based on the ECDF and the ECF, respectively.

In view of the good properties of the WB for ECDF-based tests for the innovations distribution
in GARCH models and also for ECF-based tests for IID data, it is also expected to work well for
approximating the null distribution of test statistics based on the ECF for the innovation distribu-
tion in GARCHmodels. Therefore, the purpose of this paper is to investigate, both theoretically and
empirically, the use of a WB for approximating the null distribution of tests based on the ECF.

With this aim, the paper is organized as follows. Section 2 establishes the notation. Section 3
describes the model and the test. Section 4 is devoted to theoretically show the consistency of the
WB approximation to the null distribution of the test statistic. Section 5 studies a test based on apply-
ing the integral transformation to the residuals. The approximations in the above sections are valid for
a simple null hypothesis. Section 6 investigates the consistency of the WB null distribution estimator
for testing a composite null hypothesis. Section 7 deals with some practical considerations such as
the estimation of certain quantities required for the application of theWB approximation in practice.
Section 8 displays the results of simulation experiments conducted to numerically compare the finite
sample performance of the PB and the WB approximations as well as a real data application. Finally,
Section 9 concludes and outlines possible extensions. Some technical results as well as the proofs are
deferred to the appendices.

2. Notation

The notation employed in this paper is as follows: all vectors are column vectors; for any vector
v, vk denotes its kth coordinate and v′ its transpose; if A = (ajk) is a matrix, then |A| = ∑

j,k |ajk|;
for any complex number x = a + ib, x̄ = a − ib and |x| = √

a2 + b2 = √
xx̄; for any complex func-

tion f (x), Re f (t) and Imf (t) denote the real and the imaginary parts of f, respectively, that is to say,
f (x) = Ref (t) + i Imf (x); P0, E0 and Cov0 denote probability, expectation and covariance, respec-
tively, by assuming that the null hypothesis is true; P∗, E∗ andCov∗ denote the conditional probability
law, expectation and covariance, givenX1, . . . ,Xn, respectively; all limits in this paper are taken when

n → ∞; L→ denotes convergence in distribution; P→ denotes convergence in probability; a.s.→ denotes
the almost sure convergence; an unspecified integral denotes integration over the whole real line
R; L2(w) = {f : R → C : ‖f ‖2w = ∫ |f (t)|2w(t) dt < ∞}, for some nonnegative functionw satisfying
0 <

∫
w(t) dt < ∞; without loss of generality it will be assumed along the paper that

∫
w(t) dt = 1;

〈·, ·〉 denotes the scalar product in the Hilbert space L2(w); for any compact interval S ⊂ R, C(S)
denotes the Banach space of continuous complex-valued functions on S with the usual sup-norm.

3. Themodel and the test statistic

Let p, q ∈ N ∪ {0}. A stochastic process {Xj, −∞ < j < ∞} is said to follow a GARCH(p, q) model
if it satisfies the equations

Xj = σjεj, (1)
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with

σ 2
j = σ 2

j (θ) = c +
p∑

k=1

akX2
j−k +

q∑
l=1

blσ 2
j−l, (2)

for −∞ < j < ∞, where θ = (c, a1, . . . , ap, b1, . . . , bq)′, with c> 0, ak ≥ 0 and bl ≥ 0. If q = 0 then
we get an autoregressive conditional heteroscedastic model, introduced by Engle [16]. Bougerol and
Picard [17,18] have given necessary and sufficient conditions for the existence of a unique strictly
stationary ergodic solution of Equations (1) and (2). Throughout this paper it will be assumed that
{Xj, −∞ < j < ∞} satisfies Equations (1) and (2), that it is stationary, that {εj, −∞ < j < ∞} are
IID from a non-degenerate random variable ε, with E(ε) = 0 and E(ε2) = 1, and that εj is indepen-
dent of {Xj−k, k ≥ 1}. We will also assume along the paper that the representation in Equation (2)
is unique, which is ensured by assuming that the polynomials A(z) = ∑p

k=1 akz
k and B(z) = 1 −∑q

l=1 blz
l (withA(z) = 0 if p = 0 and B(z) = 0 if q = 0) have no common roots (see [3]).

Let r = 1+p+q denote the dimension of θ . θ is assumed to be fixed but unknown. It
is also assumed that θ ∈ �0 = �(ρ0, ρ1, ρ2) = {u = (γ ,α1, . . . ,αp,β1, . . . ,βq) : β1 + · · · + βq ≤
ρ0, ρ1 ≤ min{γ ,α1, . . . ,αp,β1, . . . ,βq} ≤ max{γ ,α1, . . . ,αp,β1, . . . ,βq} ≤ ρ2}, for some constants
ρ0, ρ1, ρ2 satisfying 0 < ρ0 < 1, 0 < ρ1 < ρ2, qρ1 ≤ ρ0. Note that this assumption requires p and q
to be known and rules out zero coefficients in θ . This is required for the asymptotic normality of the
estimator of θ discussed below.

Let X1, . . . ,Xn be a realization of length n of a GARCH(p,q) model. A commonly used estimator
of θ is the Gaussian maximum likelihood estimator (GMLE), θ̂G. If

E(ε4) < ∞, (3)

then
√
n(θ̂G − θ) is asymptotically normally distributed, even if the errors are not normally dis-

tributed, see [2,4]. Moreover, even if (3) does not hold then, under certain conditions, nκ(θ̂G − θ)

is bounded in probability, for some κ > 0, see [2]. Although the GMLE has become the most
popular estimator, other estimators have been proposed. Examples are the estimators in Peng and
Yao [19], which are asymptotically normally distributed without requiring (3), and those in Berkes
and Horváth [8], where a class of estimators including the GMLE is studied. From now on, we will
denote by θ̂ any estimator of θ . It will be assumed that θ̂ satisfies the following:

(A.1) θ̂ can be expressed as

θ̂ = θ + n−1
n∑
j=1

Lj(θ) + oP(n−1/2),

where Lj(θ) = (g1(εj)l1(εj−1, εj−2, . . .), . . . , gr(εj)lr(εj−1, εj−2, . . .))′, 1 ≤ j ≤ n,

E{gu(ε0)} = 0, E{gu(ε0)2} < ∞, E{lu(ε−1, ε−2, . . .)2} < ∞, 1 ≤ u ≤ r.

The GMLE as well as other often used estimators of θ satisfy (A.1) (see Section 3 of [8]).

If θ̂ satisfies (A.1) then, by the martingale central limit theorem,
√
n(θ̂ − θ)

L−→ Nr(0,�θ), an
r-variate zero-mean normal law with variance-covariance matrix �θ = var{L0(θ)} = (ςuv), with
ςuv = E{gu(ε0)gv(ε0)}E{lu(ε−1, ε−2, . . .)lv(ε−1, ε−2, . . .)}, 1 ≤ u, v ≤ r.

In a GARCH model, the errors are not observable. Thus, to make inferences on the errors, we
must approximate them by means of the residuals. With this aim, first we have to estimate σ 2

j (θ).
Note that σ 2

j (θ) depends on {Xk, −∞ < k ≤ j − 1}, whereas we only observe X1, . . . ,Xn. So, in
order to calculate the residuals, instead of σ 2

j (θ̂ ), 1 ≤ j ≤ n, we consider σ̃ 2
j (θ̂ ), 1 ≤ j ≤ n, recur-

sively defined as in Equation (2) for arbitrary values X0,X−1, . . . ,X1−p, σ̃ 2
0 , σ̃

2
−1, . . . , σ̃

2
1−q such as
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X2
0 = · · · = X2

1−p = σ̃ 2
0 = · · · = σ̃ 2

1−q = ĉ or X2
0 = · · · = X2

1−p = σ̃ 2
0 = · · · = σ̃ 2

1−q = X2
1 ; another

common choice is σ̃1 = · · · = σ̃m = ς , for some ς > 0, m = max{p, q}, and σ̃j following the recur-
sion in Equation (2) for j>m. Let {ε̃j = Xj/σ̃j(θ̂), 1 ≤ j ≤ n} be the residuals and let ϕn,ν(t) denote
the ECF of the residuals ε̃ν+1, . . . , ε̃n

ϕn,ν(t) = 1
n − ν

n∑
j=ν+1

exp{itε̃j},

for some integer ν ≥ 1. The reason for only considering the residuals ε̃ν+1, . . . , ε̃n, instead of all of
them, ε̃1, . . . , ε̃n, is that for small j, σ̃ 2

j (θ) is not a good approximation to σ 2
j (θ), and thus early terms

in the series should be avoided for inferential purposes.
Let us consider the problem of testing for the null hypothesis

H0 : the CDF of ε is F0,

where F0 is a completely specified CDF, or equivalently

H0 : the CF of ε0 is ϕ0,

where ϕ0 is the CF associated to F0, ϕ0(t) = ∫
exp(itu) dF0(u). For this problem, Jiménez-Gamero

[11] has shown that the test

� = �(X1, . . . ,Xn) =
{
1, if Rn,ν ≥ rα ,
0, otherwise,

based on the test statistic

Rn,ν = ‖Wn,ν‖2w,
where rα is the 1 − α percentile of the null distribution of Rn,ν , or a consistent approximation to it, is
consistent against all fixed alternatives, whenever w(t) > 0, ∀t ∈ R.

Observe that we can assume that theweight functionw involved in the definition of the test statistic
Rn,ν satisfies

w(t) = w(−t), ∀t ∈ R. (4)

Otherwise, by defining w1(t) = 0.5{w(t) + w(−t)}, which satisfies Equation (4), we have that
‖Wn,ν‖w = ‖Wn,ν‖w1 . Therefore, from now on we will assume that Equation (4) holds. In such a
case, we can write

‖Wn,ν‖2w = ‖ReWn,ν + ImWn,ν‖2w.
The exact null distribution of Rn,ν cannot be calculated. Moreover, its asymptotic null distribution

cannot be used as an approximation because it depends on unknowns (see Remark 1 in [11]). To
estimate the null distribution of Rn,ν , [6] have proposed considering a PB algorithm. The consistency
of this approximation has been derived in [11]. Nevertheless, from a computational point of view, it
is rather inefficient, as it is very time consuming.

Since

Rn,ν = 1
n − ν

n∑
j, k=ν+1

h(ε̃j, ε̃k), h(x, y) =
∫

q(x, t)q(y, t)w(t) dt (5)

with

q(x, t) = cos(tx) − Reϕ0(t) + sin(tx) − Imϕ0(t), (6)

the test statistic (1/(n − ν))Rn,ν is a degree-2 V-statistic evaluated on the residuals. In the statistical
literature there are several papers dealing with the consistency of the WB distribution estimator of
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U-statistics and V-statistics evaluated on IID data. Let Z1, . . . ,Zn be IID and let

Vn(h) = 1
n2

n∑
j, k=1

h(Zj,Zk)

be a degree-2V-statistic. Assume that it is degenerate, that is, that E{h(Z1, x)} − E{h(Z1,Z2)} = 0.
Delhing andMikosch [20] (see also Hušková and Janssen [21]) showed that if ξ1, . . . , ξn are IID from
ξ with E(ξ) = 0 and var(ξ) = 1, independent of Z1, . . . ,Zn, then the conditional distribution, given
Z1, . . . ,Zn, of

1
n

n∑
j, k=1

h(Zj,Zk)ξjξk

consistently estimates that of nVn(h). In the light of this result, since the residuals are an approxima-
tion for the innovations, which are IID variables, one may try to estimate the null distribution of Rn,ν
by means of the conditional distribution, given X1, . . . ,Xn, of

R∗
0,n,ν = 1

n − ν

n∑
j, k=ν+1

h(ε̃j, ε̃k)ξjξk. (7)

The next result gives the conditional asymptotic distribution, given X1, . . . ,Xn, of R∗
0,n,ν . Unfortu-

nately, this distribution does not approximate the null distribution of the test statistic Rn,ν properly,
as discussed below.

Theorem 3.1: Suppose that θ ∈ �0, θ̂ satisfies (A.1), w is a non-negative function satisfying∫
t2w(t) dt < ∞ and ν = ν(n) is an integer satisfying,

ν/n → 0. (8)

Then,

sup
x

|P∗(R∗
0,n,ν ≤ x) − P(‖W‖2w ≤ x)| P−→ 0,

where {W(t), t ∈ R} is a zero-mean Gaussian process on L2(w) having covariance kernel KW(s, t) =
E{q(ε, t)q(ε, s)}, ∀t, s ∈ R, and q is as defined in Equation (6).

Theorem 2 in [11] shows that ifH0 is true, ν satisfies Equation (8) andw is a non-negative function
satisfying ∫

t4w(t) dt < ∞, (9)

then Rn,ν
L−→ ‖W0‖2w, where W0(t) is a zero-mean Gaussian process on L2(w) having covariance

kernel KW0(s, t) = E0[{C(t) + S(t)}{C(s) + S(s)}], ∀t, s ∈ R, with

C(t) = cos(tε) − Reϕ0(t) − 0.5tμc(t)μ0A(θ)}′L1(θ),

S(t) = sin(tε) − Imϕ0(t) − 0.5tμs(t)μ0A(θ)}′L1(θ),

μc(t) = (∂/∂t)Reϕ0(t) = E0{−ε sin(tε)}, μs(t) = (∂/∂t) Imϕ0(t) = E0{ε cos(tε)} and μ0A(θ) =
E0{A1(θ)} = · · · = E0{An(θ)}, where σ 2

j (θ)Aj(θ) is the r-vector of derivatives of σ 2
j (θ) with respect

to θ , that is,Aj(θ) = (1/σ 2
j (θ))(∂/∂θ)σ 2

j (θ), for any j. Therefore, fromTheorem 3.1, it clearly follows
that the conditional distribution, givenX1, . . . ,Xn, ofR∗

0,n,ν does not provide a consistent estimator of
the null distribution of Rn,ν , because replacing θ by θ̂ has an effect on its asymptotic null distribution
that it is not captured by the conditional distribution of R∗

0,n,ν . As a consequence, the statistic to be
bootstrapped should take into account such an effect. This is investigated in the next section.
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4. TheWB approximation

From the proof of Theorem 2 in [11], it follows that

Rn,ν = R1,n,ν + oP(1),

where

R1,n,ν = ‖W1,n,ν‖2w,

W1,n,ν = 1√
n − ν

n∑
j=ν+1

{Cj(t) + Sj(t)},

Cj(t) = cos(tεj) − Reϕ0(t) − 0.5tμc(t)μA(θ)′Lj(θ),

Sj(t) = sin(tεj) − Imϕ0(t) − 0.5tμs(t)μA(θ)′Lj(θ), ν + 1 ≤ j ≤ n,

μA(θ) = E{A1(θ)} = · · · = E{An(θ)}.

Let us consider the following WB version of R1,n,ν ,

R∗
2,n,ν = ‖W∗

2,n,ν‖2w,

W∗
2,n,ν = 1√

n − ν

n∑
j=ν+1

{Ĉj(t) + Ŝj(t)}ξj,

Ĉj(t) = cos(tε̃j) − Reϕ0(t) − 0.5tμc(t)μ̂A(θ)
′
L̂j(θ),

Ŝj(t) = sin(tε̃j) − Imϕ0(t) − 0.5tμs(t)μ̂A(θ)
′
L̂j(θ), ν + 1 ≤ j ≤ n,

ξν+1, . . . , ξn are IID from ξ with E(ξ) = 0 and var(ξ) = 1, independent of X1, . . . ,Xn,

μ̂A(θ) = 1
n

n∑
j=1

Ãj(θ̂), Ãj(θ) = 1
σ̃ 2
j (θ)

∂

∂θ
σ̃ 2
j (θ),

and L̂1(θ), . . . , L̂n(θ) satisfy

1
n

n∑
j=1

|Lj(θ) − L̂j(θ)|2 P−→ 0. (10)

A candidate for L̂j(θ) when θ is estimated by the GMLE will be discussed later in Section 7. The
following result gives the conditional asymptotic distribution, given X1, . . . ,Xn, of R∗

2,n,ν .

Theorem 4.1: Suppose that θ ∈ �0, θ̂ satisfies (A.1),w satisfies Equation (9) and Equation (10) holds.
Then

sup
x

|P∗(R∗
2,n,ν ≤ x) − P(‖W1‖2w ≤ x)| P−→ 0,

where {W1(t), t ∈ R} is a zero-mean Gaussian process on L2(w) having covariance kernel KW1(s, t) =
E[{C1(t) + S1(t)}{C1(s) + S1(s)}], ∀t, s ∈ R.

The result in Theorem 4.1 is valid whether or not the null hypothesis is true. Two immediate
consequences follow.
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Corollary 4.2: If H0 is true and the assumptions in Theorem 4.1 hold then

sup
x

|P∗{R∗
2,n,ν ≤ x} − P0{Rn,ν ≤ x}| P−→ 0.

Let α ∈ (0, 1) and

�∗ = �∗(X1, . . . ,Xn) =
{
1, if Rn,ν ≥ r∗α ,
0, otherwise,

where r∗α is the 1 − α percentile of the conditional distribution of R∗
2,n,ν , given X1, . . . ,Xn, or equi-

valently, �∗ = 1 if p∗ ≤ α, where p∗ = P∗{R∗
2,n,ν ≥ Rn,ν,obs}, Rn,ν,obs being the observed value of the

test statistic Rn,ν . The result in Corollary 4.2 states that the test �∗ is asymptotically correct, in the
sense that its type I error is asymptotically equal to the nominal level α.

Corollary 4.3: If H0 is not true, the assumptions in Theorem 4.1 hold and w is such that∫
|ϕ(t) − ϕ0(t)|2w(t) dt > 0, (11)

where ϕ denotes the CF of the innovations, then P(�∗ = 1) → 1.

Since two distinct characteristic functions can be equal in a finite interval [22, p.479], a general
way to ensure (11) whenever ϕ �= ϕ0 is to take w positive for almost all (with respect to the Lebesgue
measure) points inR. Thus, ifw(t) > 0, ∀t ∈ R, then Corollary 4.3 states that the test�∗ is consistent
in the sense of being able to asymptotically detect any alternative.

Remark 4.4: The PB null distribution estimator of Rn,ν satisfies a result similar to that stated in
Theorem 4.1 for the WB estimator, but the Gaussian process in the limit has covariance kernel
KW0(s, t) (see Theorem 5 in [11]). If H0 is true then KW0(s, t) = KW1(s, t), ∀s, t, but in general
KW0(s, t) andKW1(s, t)may not coincide. Thus, although the test�∗ and the one obtained by approxi-
mating rα by its PB estimator are both consistent against all fixed alternatives, their powers could differ
for finite sample sizes.

Remark 4.5: It is also worth observing that the assumptions in [11] for the PB to work, in the sense
of providing a consistent approximation of the null distribution, are stronger than those assumed in
Theorem 4.1 for the validity of the WB.

Remark 4.6: A problem with the PB is that when â1 + · · · + âp + b̂1 + · · · + b̂q is close to 1, then
for a high percentage of bootstrap samples it will happen that â∗

1 + · · · + â∗
p + b̂∗

1 + · · · + b̂∗
q > 1

thus leading to a non-stationary behaviour. This problem is avoided by using the WB, since this
mechanism does not require to estimate the GARCH parameters from the resamples.

Remark 4.7: The results stated so far keep on being true if the raw multipliers, ξν+1, . . . , ξn,
are replaced by the centred multipliers, ξν+1 − ξ̄ , . . . , ξn − ξ̄ , as suggested in [13,14], where ξ̄ =
(1/(n − ν))

∑n
j=ν+1 ξj.

5. A test based on transformation

Another problem related to the test � is the calculation of the test statistic Rn,ν . From expression (5)
it follows that closed–form expressions for Rn,ν would be possible only for certain distributions and
certain choices of w. For example, if the distribution in H0 is the standard normal and w is taken
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as the probability density function (PDF) of a normal law, then the kernel h in Equation (5) has a
closed expression, and thus Rn,ν can be easily calculated, see [6]. An example of interest in finance is
testing if the innovations have a tg-distribution, for some fixed g (see, e.g. [7]), but, unfortunately,
it is rather difficult to find a weight function w so that the kernel h has a closed expression. In order
to alleviate this problem, Meintanis et al. [23] have proposed to transform the original data in such a
way that the transformed data follow a distribution for which the kernel h may be easily calculated.
Specifically, assuming that the data are continuous and univariate, they propose to apply the integral
transformation: if the random variable ε has a continuous CDF F, then U = F(ε) has a uniform
distribution on the interval (0, 1). In our setting, the innovations are not observable, and thus we
must transform the residuals. Let

Uj = F0(ε̃j),

1 ≤ j ≤ n, and consider the test statistic

Tn,ν = ‖Zn,ν‖2w,

where Zn,ν(t) = √
n − ν{φn−ν(t) − φ0(t)}, φn−ν(t) = (1/(n − ν))

∑n
j=ν+1 exp{itUj} and φ0(t) is

theCF of a uniformdistribution on (0, 1). Some properties of the ECFof the transformeddataφn−ν(t)
are studied in Appendix A.1.

The expression of the test statistic Tn,ν can be easily calculated for several weight functions.
Although the null distribution of Tn,ν could be approximated by means of a PB, because of the
same reasons argued for Rn,ν , we next investigate a WB approximation. A similar reasoning to that
employed in Section 4 leads us to define

T∗
2,n,ν = ‖Z∗

2,n,ν‖2w,

Z∗
2,n,ν(t) = 1√

n − ν

n∑
j=ν+1

{Ĉj(t) + Ŝj(t)}ξj,

Ĉj(t) = cos{tF0(ε̃j)} − Reφ0(t) − 0.5tμR(t)μ̂A(θ)
′
L̂j(θ),

Ŝj(t) = sin{tF0(ε̃j)} − Imφ0(t) − 0.5tμI(t)μ̂A(θ)
′
L̂j(θ), ν + 1 ≤ j ≤ n,

where μR(t) = −E[εf0(ε) sin{tF0(ε)}], μI(t) = E[εf0(ε) cos{tF0(ε)}], f0 is the PDF associated to F0
and ξν+1, . . . , ξn are as before. The next result gives the conditional asymptotic distribution of T∗

2,n,ν ,
given X1, . . . ,Xn.

Theorem 5.1: Suppose that θ ∈ �0, θ̂ satisfies (A.1), ν satisfies Equation (8), F0 is a continuous CDF
with bounded PDF f0, f0 has a bounded derivative, w satisfies Equation (9) and Equation (10) holds.
Then

sup
x

|P∗(T∗
2,n,ν ≤ x) − P(‖Z1‖2w ≤ x)| P−→ 0,

where {Z1(t), t ∈ R} is a zero-mean Gaussian process on L2(w) having covariance kernel KZ1(s, t) =
E[{C1(t) + S1(t)} {C1(s) + S1(s)}], ∀t, s ∈ R, with

C1(t) = cos{tF0(ε1)} − Reφ0(t) − 0.5tμR(t)μA(θ)′L1(θ),

S1(t) = sin{tF0(ε1)} − Imφ0(t) − 0.5tμI(t)μA(θ)′L1(θ).
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As a consequence of Theorem5.1, similar corollaries and remarks to those stated after Theorem4.1
can be given now. To save space we omit them and only underline that the test

ϒ∗ = ϒ∗(X1, . . . ,Xn) =
{
1, if Tn,ν ≥ t∗α ,
0, otherwise,

is asymptotically correct and consistent against all fixed alternatives, whenever w(t) > 0, ∀t ∈ R,
where t∗α is the 1 − α percentile of the conditional distribution of T∗

2,n,ν , given X1, . . . ,Xn, or
equivalently, ϒ∗ = 1 if p∗ ≤ α, where p∗ = P∗{T∗

2,n,ν ≥ Tn,ν,obs}, Tn,ν,obs being the observed value
of the test statistic Tn,ν .

6. Composite null hypothesis

So farwe have studied the case of a simple null hypothesis. This section shows how the obtained results
can be extended for testing GOF to a composite null hypothesis. Let F = {F(·; γ ), γ ∈ � ⊆ Rm} be
a parametric family of CDFs. Let ϕ(·; γ ) denote the CF associated with the CDF F(·; γ ). By analogy
with the case of a simple null hypothesis, to test for

H0 : F ∈ F ,

we could consider the test statistic Rn,ν(γ̂ ) = ‖Wn,ν(·; γ̂ )‖2w, with Wn,ν(t; γ ) = √
n − ν{ϕn,ν(t) −

ϕ(t; γ )} and γ̂ = γ̂ (ε̃ν+1, . . . , ε̃n) consistently estimates γ . Because of the reasons explained in
Section 5, we instead consider Tn,ν(γ̂ ) defined as Tn,ν(γ̂ ) = ‖Zn,ν(·; γ̂ )‖2w, with Zn,ν(t; γ ) =√
n − ν{φn,ν(t; γ ) − φ0(t)}, φn,ν(t; γ ) = 1

n−ν

∑n
j=ν+1 exp{itUj(γ )} and Uj(γ ) = F(ε̃j; γ ), ν + 1 ≤

j ≤ n.
To study the behaviour of Tn,ν(γ̂ ), some assumptions will be required on γ̂ and on the CDFs in

the family F , which are listed below.

(A.2) γ̂
P−→ γ0, for some γ0 ∈ int�.

(A.3) (∂/∂x)F(x; γ ) = f (x; γ ) and (∂/∂γ )F(x; γ ) = D1F(x; γ ) exist and are bounded ∀x, ∀γ ∈
�0 ⊂ �, where �0 is an open neighbourhood of γ0.

(A.4) The second-order derivatives of F(x; γ ) with respect to x and γ exist and are bounded ∀x,
∀γ ∈ �0 ⊂ �, where �0 is an open neighbourhood of γ0.

(A.5) When H0 is true, γ̂ = γ0 + n−1 ∑n
j=1 l(εj; γ0) + M(θ , γ0)(θ̂ − θ) + oP(n−1/2), with

E0{l(εj; γ0)} = 0, E0{‖l(εj; γ0)‖2} < ∞ andM(θ , γ0) is am × p-matrix of constants that may
depend on θ and γ0.

Since the innovations are not observable, it seems reasonable to treat the residuals as if they were
the true errors and then apply somemethod designed for IID data to estimate γ . In Section 7 it will be
seen that if the consideredmethod ismaximum likelihood, then the resulting estimator satisfies (A.5).

Some asymptotic properties of Tn,ν(γ̂ ) are given in Appendix A.2. Next we investigate a WB
approximation to the null distribution of Tn,ν(γ̂ ). A similar reasoning to that employed in Section 4
leads us to define

T∗
2,n,ν(γ ) = ‖Z∗

2,n,ν(·; γ )‖2w,

Z∗
2,n,ν(t; γ ) = 1√

n − ν

n∑
j=ν+1

{Ĉj(t; γ ) + Ŝj(t; γ )}ξj,

Ĉj(t; γ ) = cos{tF(ε̃j; γ )} − Reφ0(t) − 0.5tμ1R(t; γ )μ̂A(θ)
′
L̂j(θ)

+ tμ2R(t; γ )′{l̂(ε̃j; γ ) + M̂(θ , γ )L̂j(θ)},
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Ŝj(t; γ ) = sin{tF(ε̃j; γ )} − Imφ0(t) − 0.5tμ1I(t; γ )μ̂A(θ)
′
L̂j(θ)

+ tμ2I(t; γ )′{l̂(ε̃j; γ ) + M̂(θ , γ )L̂j(θ)}, ν + 1 ≤ j ≤ n,

where ξν+1, . . . , ξn are as before, μ1R(t; γ ) = −E[εf (ε; γ ) sin{tF(ε; γ )}], μ1I(t; γ ) = E[εf (ε; γ )

cos{tF(ε; γ )}], μ2R(t; γ ) = −E[sin{tF(ε; γ )}D1F(ε; γ )], μ2I(t; γ ) = E[cos{tF(ε; γ )}D1F(ε; γ )],
M̂(θ , γ ) satisfies

M̂(θ , γ )
P−→ M(θ , γ0), (12)

and l̂(εj; γ ) is such that

1
n

n∑
j=1

‖l̂(ε̃j; γ̂ ) − l1(εj; γ0)‖2 P−→ 0,

with E{‖l1(ε; γ0)‖2} < ∞ and l1(ε; γ0) = l(ε; γ0) if H0 is true. (13)

The next result gives the conditional asymptotic distribution of T∗
2,n,ν(γ̂ ), given X1, . . . ,Xn.

Theorem 6.1: Suppose that θ ∈ �0, ν satisfies Equation (8), w satisfies Equation (9) and (A.1)–(A.5),
(10), (12) and (13) hold. Then

sup
x

|P∗(T∗
2,n,ν(γ̂ ) ≤ x) − P(‖Z1(·; γ0)‖2w ≤ x)| P−→ 0,

where {Z1(t; γ0), t ∈ R} is a zero-mean Gaussian process on L2(w) having covariance kernel
KZ1(s, t; γ0) = E[{C1(t; γ0) + S1(t; γ0)} {C1(s; γ0) + S1(s; γ0)}], ∀t, s ∈ R, with

C1(t; γ ) = cos{tF(ε1; γ )} − Reφ(t) − 0.5tμ1R(t; γ )μA(θ)′L1(θ)

+ tμ2R(t; γ )′{l1(ε1; γ ) + M(θ , γ )L1(θ)},
S1(t; γ ) = sin{tF(ε1; γ )} − Imφ(t) − 0.5tμ1I(t; γ )μA(θ)′L1(θ)

+ tμ2I(t; γ )′{l1(ε1; γ ) + M(θ , γ )L1(θ)}.

As a consequence of Theorem6.1, similar corollaries and remarks to those stated after Theorem4.1
can be given now. For the sake of brevity, we omit them and only underline that the test

�∗ = �∗(X1, . . . ,Xn) =
{
1, if Tn,ν(γ̂ ) ≥ t∗α ,
0, otherwise,

is asymptotically correct and consistent against all fixed alternatives, whenever w(t) > 0, ∀t ∈ R,
where t∗α is the 1 − α percentile of the conditional distribution of T∗

2,n,ν(γ̂ ), given X1, . . . ,Xn, or
equivalently,�∗ = 1 if p∗ ≤ α, where p∗ = P∗{T∗

2,n,ν(γ̂ ) ≥ Tn,ν,obs},Tn,ν,obs being the observed value
of the test statistic Tn,ν(γ̂ ).

7. Some practical considerations

7.1. On the estimation of Lj(θ)when θ̂ is the GLME

After stating (A.1)wementioned that this assumption is satisfied by theGLMEaswell as other estima-
tors of θ . Since the GLME is calculated by most statistical packages and programming languages, this
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subsection deals with the estimation of Lj(θ) by L̂j(θ) so that Equation (10) holds, for this estimator.
In such a case (see, e.g. [3,4]) the expansion in (A.1) holds with

Lj = Lj(θ) = (ε2j − 1)Aj(θ)J−1, 1 ≤ j ≤ n,

where J = E{(ε21 − 1)2}E{A1(θ)A1(θ)′}. All unknown quantities in the expression of Lj must be
replaced by adequate estimators. Let

L̂j = (ε̃2j − 1)Ãj(θ̂)Ĵ−1, 1 ≤ j ≤ n,

where Ĵ = 1
n

∑n
j=1(ε̃

2
j − 1)2Ãj(θ̂)Ãj(θ̂ )′. The next result shows that L̂j provides a suitable approxima-

tion for Lj, in the sense that Equation (10) holds.

Proposition 7.1: If E(ε4) < ∞ and θ̂ is the GLME, then {L̂j, 1 ≤ j ≤ n} satisfy Equation (10).

7.2. On the calculation of μ̂A(θ) and L̂j

Observe that when θ̂ is the GMLE and {L̂j, 1 ≤ j ≤ n} are as in the previous subsection, the practical
calculation of μ̂A(θ) and {L̂j, 1 ≤ j ≤ n} can be done as follows:

(1) Calculate the GMLE, θ̂ .
(2) Take, for instance, σ̃1 = · · · = σ̃m = ς , for some ς > 0, m = max{p, q}, and σ̃j following the

recursion in Equation (2) for j>m with θ = θ̂ .
(3) Calculate ε̃j = Xj/σ̃j, 1 ≤ j ≤ n.
(4) Recursively calculate

dj =

⎧⎪⎨
⎪⎩

(0, . . . , 0)′ ∈ Rr , for j ≤ m

(1,X2
j−1, . . . ,X

2
1−p, σ̃

2
0 , . . . , σ̃

2
1−q)

′ +
q∑

l=1

β̂ldl−j, for j > m

Ãj(θ̂) = dj/σ̃ 2
j ,

λj = (ε̃2j − 1)Ãj(θ̂ ), 1 ≤ j ≤ n.

(5) Finally, take μ̂A(θ) = (1/n)
∑n

j=1 Ãj(θ̂) and L̂j = λjĴ−1, with Ĵ = (1/n)
∑n

j=1 λjλ
′
j.

7.3. On the estimation of γ

As observed in Section 6, in the case of composite null hypothesis and with the aim of estimating
the unknown parameter γ , it seems reasonable to treat the residuals as if they were the true errors
and then apply somemethod designed for IID data. This subsection deals the case where the method
considered is maximum likelihood, that is, γ is estimated by

γ̂ = argmax
n∑
j=1

�(ε̃j; γ )

with �(x; γ ) = log f (x; γ ). The next result gives conditions for the consistency, that is, for Assumption
(A.2), as well as for an asymptotic expansion which meets Assumption (A.5), implying its asymptotic
normality.
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Theorem 7.2: (a) Suppose that �(x; γ ) is continuous as a function of γ ∈ �, ∀x ∈ R, � is compact,
E{supγ∈� |�(ε; γ )|} < ∞, E{�(ε; γ )} has a unique minimum at γ0 and (∂/∂x)�(x; γ ) is bounded ∀x ∈
R, ∀γ ∈ �. Then γ̂ satisfies Assumption (A.2).

(b) If, in addition, all second-order derivatives of (∂/∂γ )�(x; γ ) exist and are bounded ∀x ∈ R, ∀γ ∈
�0 ⊆ �, where �0 is an open neighbourhood of γ0, C(γ0) = E{(∂2/∂γ ∂γ ′)�(ε; γ0)} exists and is non-
singular and E{ε(∂2/∂x∂γ )�(ε; γ0)} and E{‖(∂/∂γ )�(ε; γ0)‖2} exist, then γ̂ satisfies Assumption (A.5)
with l(ε; γ0) = −C(γ0)

−1(∂/∂γ )�(ε; γ0) and M(θ , γ0) = 0.5C(γ0)
−1E{ε(∂2/∂x∂γ )�(ε; γ0)}μA(θ)′.

Once it has been shown that themaximum likelihood estimator based on the residuals of γ satisfies
the required assumptions, we next must find estimators forM(θ , γ0) and l(ε; γ0) fulfilling Equations
(12) and (13), respectively. The next result deals with this issue.

Proposition 7.3: Suppose that assumptions in Theorem 7.2 (a) hold, E{‖(∂/∂γ )�(ε; γ0)‖2} exist,
(∂2/∂γ ∂γ ′)�(x; γ ), (∂2/∂x∂γ )�(x; γ ) and the derivatives of (∂2/∂γ ∂γ ′)�(x; γ ) exist and are bounded
∀x ∈ R, ∀γ ∈ �0 ⊆ �, where �0 is an open neighbourhood of γ0 and C(γ ) = E{(∂2/∂γ ∂γ ′)�(ε; γ )}
exists and is nonsingular ∀γ ∈ �0. Let

l̂(ε̃j; γ̂ ) = −Ĉ−1 ∂

∂γ
�(ε̃j; γ̂ ), M̂(θ , γ ) = 0.5Ĉ−1 1

n

n∑
j=1

ε̃j
∂2

∂x∂γ
�(ε̃j; γ̂ )μ̂A(θ)

′
,

with

Ĉ = 1
n

n∑
j=1

∂2

∂γ ∂γ ′ �(ε̃j; γ̂ ),

then M̂(θ , γ ) and l̂(ε̃j; γ̂ ) satisfy Equations (12) and (13), respectively.

7.4. On the calculation of theWB approximation

In practice, to calculate the WB approximation to the null distribution of Rn,ν (similarly for Tn,ν or
Tn,ν(γ̂ )) proceed as follows:

(1) Estimate θ through θ̂ .
(2) Compute the observed value of the test statistic, Rn,ν,obs.
(3) Calculate mjk = ∫ {Ĉj(t) + Ŝj(t)}{Ĉk(t) + Ŝk(t)}w(t) dt, ν + 1 ≤ j ≤ k ≤ n. Note that mjk =

mkj.
(4) For some large integer B, repeat the following steps for every b ∈ {1, . . . ,B}: Generate n − ν IID

variables ξν+1, . . . , ξn with mean 0 and variance 1. Calculate R∗b
2,n,ν = (1/(n − ν))

∑
ν+1≤j,k≤n

mjkξjξk or, as noted in Remark 4.7, R∗b
2,n,ν = (1/(n − ν))

∑
ν+1≤j,k≤n mjk(ξj − ξ̄ )(ξk − ξ̄ ).

(5) Approximate the p-value by p̂ = (1/B)
∑B

b=1 I{R∗b
2,n,ν > Rn,ν,obs}.

One major advantage of the WB over the PB is that the former does not re-estimate the GARCH
parameters and the residuals at each iteration. For the WB approximation, most of the work is done
before starting simulations, at steps (1)–(3). Once the set {mjk, ν + 1 ≤ j ≤ k ≤ n} is computed, the
WB replicates R∗1

2,n,ν , . . . ,R
∗B
2,n,ν are calculated very fast.

8. Numerical results

In order to study the finite sample performance of the proposed procedure and to compare it with
the PB, we carry out three numerical experiments with simulated data. The first experiment deals
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with testing for a standard normal distribution for the innovations. In the second experiment, the
null hypothesis states a t5 distribution for the innovations and the test is based on the integral trans-
formation. Finally, in the third experiment, the problem of testing a composite null hypothesis with
the skew-normal distribution is considered. An application to a real data set is also provided. Explicit
formulas for the test statistics andmjk are given in Appendix A.3.

8.1. Simulation Experiment 1

As in [6,10], in this experiment we consider the problem of testing normality for the innovation
distribution. Specifically, we consider the following GARCH(1,1) model

Xj = σjεj, σ 2
j = 0.1 + 0.3X2

j−1 + 0.3σ 2
j−1.

We generate a sample of size n = 400. The parameter θ = (c, a1, b1) is estimated by the GMLE by
using the function garch of the R package tseries. Then we calculate the residuals and the test
statistic Rn,ν with weight function w the PDF of a standard normal law. The p-value of the observed
value of the test statistic is estimated: (a) by means of the PB, following Algorithm 6 in [11] and
considering B = 200 bootstrap samples, as in [6,10] (denoted in the tables as PB); (b) by means of
theWBwith ξ1, . . . , ξn IID standard normal variables and B = 1000, as in [10] (denoted in the tables
asWB); (c) bymeans of theWB as in (b), but with centred multipliers ξ1 − ξ̄ , . . . , ξn − ξ̄ (denoted in
the tables as WBC). This experiment is repeated 2,500 times for several innovation distributions, as
indicated in Table 1. Table 2 summarizes the obtained results for ν = 10. As for the level, all methods
give satisfactory results; as for the power, in the tried cases we observe that PB is a bit less powerful
than WB, which is a little bit less powerful than WBC.

Table 3 compares PB and WB in terms of the required CPU time. This table shows the CPU
consumed in seconds to get one p-value for the testing problem studied in this experiment for
n = 400(200)1000. The figures in the table clearly show the computational efficiency of the WB in
comparison to the PB. The difference when using rawmultipliers and centred multipliers for theWB
is negligible.

Table 1. Innovation distributions considered in Experiment 1.

H0 εj ∼ N(0, 1),
H1 εj = uj/

√
6/4, uj ∼ t6,

H2 εj = uj/
√
2, uj ∼Laplace,

H3 εj ∼ N(0, 1), j ≤ n/2, εj = uj/
√
2, uj ∼Laplace, j > n/2,

H4 εj ∼ N(0, 1), j ≤ n/2, εj = uj/
√
7/5, uj ∼ t7, j > n/2,

H5 εj = {�−1(u1/2j ) − 1
π

}/√π/(π − 1), uj ∼ U(0, 1),� CDF of a N(0, 1).

Table 2. Empirical percentages of rejection, α denotes the nominal level.

H0 H1 H2

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

PB 1.36 4.56 9.24 16.68 42.96 61.68 76.76 93.80 97.04
WB 1.04 4.32 9.04 21.12 49.76 65.68 93.04 99.20 99.88
WBC 1.12 4.52 9.24 21.68 50.24 65.84 93.20 99.20 99.88

H3 H4 H5

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

PB 10.64 35.36 55.12 1.96 8.64 16.20 94.28 98.52 98.96
WB 14.48 41.12 59.28 1.92 9.48 17.80 99.60 99.92 99.96
WBC 14.80 41.16 59.60 2.24 9.84 18.12 99.64 99.92 99.96
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Table 3. CPU time consumed for the calculation of one p-value (in seconds).

PB PB WB WBC

B 200 1000 1000 1000

n = 400 10.28 49.52 1.81 1.97
n = 600 20.64 96.33 3.85 3.89
n = 800 34.33 160.82 6.87 6.75
n = 1000 50.28 240.96 10.75 10.52

8.2. Simulation Experiment 2

As recognized in [7], one of the most frequently used distributions when modelling conditional
volatility for financial variables as in GARCH is the tg-distribution. The degrees of freedom are taken
g = 5 because this value is considered to be appropriate for financial data and is widely used in empi-
rical analysis. Motivated by this fact, in our second experiment we consider the problem of testing
H0 : εj ∼ t5. As argued in Section 5, for testingH0 it is convenient to use the test statisticTn,ν based on
the transformed residuals. So we repeat the experiment in Section 8.1 but using Tn,ν instead of Rn,ν .
As asserted in Section 5, there are several weight functions providing easily computable expressions
for Tn,ν . In our experiment we consider the following ones: the PDF of standard normal distribution
and

w(t) = 1
π

1 − cos(t)
t2

, (14)

which is the choice for w recommended in Epps and Pulley [24] (see also Section 4 in [25]). Table 4
displays the distributions for the innovations considered in this second experiment. Tables 5 and 6
show a summary of the results obtained for both weight functions and ν = 10. Looking at these tables
we can see that the levels are quite close to the nominal values in all cases; as for the power, it is clear
that the second weight function gives better results. For this weight function, the PB gives a little bit

Table 4. Innovation distributions considered in Experiment 2.

H0 εj = uj/
√
5/3, uj ∼ t5,

H1 εj ∼ N(0, 1),
H2 εj = uj/

√
2, uj ∼Laplace,

H3 εj = {�−1(u1/2j ) − 1
π

}/√π/(π − 1), uj ∼ U(0, 1),� CDF of a N(0, 1),
H4 εj ∼ SN(0, 1, 0.7)a,
H5 εj ∼ SN(0, 1, 0.8)b.
a The skew-normal distribution with mean 0, variance 1 and skewness γ1 = 0.7.
bSimilar with γ1 = 0.8.

Table 5. Empirical percentages of rejection, α denotes the nominal level.

H0 H1 H2

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

PB 1.08 5.52 10.20 1.84 7.08 14.52 1.08 5.12 10.24
WB 1.04 4.84 9.08 1.16 4.64 11.32 1.36 5.76 10.76
WBC 1.04 4.88 9.24 1.16 4.72 11.52 1.32 5.52 10.56

H3 H4 H5

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

PB 99.84 99.96 100.00 24.00 43.44 55.80 32.68 53.88 65.60
WB 99.64 99.96 100.00 17.88 38.84 51.96 25.96 48.72 61.12
WBC 99.64 99.96 99.96 18.48 39.28 52.04 26.84 48.96 61.08

Note: The weight function is the PDF of a standard normal.
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Table 6. Empirical percentages of rejection, α denotes the nominal level.

H0 H1 H2

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

PB 1.28 4.52 9.68 5.16 32.76 57.96 1.84 10.48 22.60
WB 1.20 5.56 10.24 4.48 28.28 56.12 3.76 15.64 28.28
WBC 1.20 5.52 10.40 4.52 29.08 56.52 3.88 16.04 28.60

H3 H4 H5

α 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

PB 99.96 100.00 100.00 47.12 82.60 93.40 60.40 91.00 97.60
WB 99.96 100.00 100.00 53.24 84.00 93.72 70.24 93.24 97.68
WBC 99.98 100.00 100.00 54.16 84.24 93.76 70.36 93.40 97.76

Note: The weight function is as defined in Equation (14).

better results than WB and WBC when the innovations are Gaussian, for the rest of the cases the
opposite is observed.

8.3. Simulation Experiment 3

In our third simulation experiment we consider the problem of testing for a composite null hypo-
thesis. Specifically, we considered the problem of testing GOF for a skew-normal distribution (see
Azzalini [26]),

H0 : εj ∼ SN(0, 1, γ1), for some γ1 ∈ [−0.9953, 0.9953],

parametrized with the centred parameters, that is, with mean 0, variance 1 and skewness γ1, where
γ1 = E[{X − E(X)}3]/var(X)3/2 (see Azzalini and Capitanio [27], for the definition and relationships
between the centred and direct parametrizations). This is an interesting hypothesis since the skew-
normal family has the appealing property of strictly including the normal law, as well as a wide variety
of skewed densities. This capability to accommodate asymmetry is useful for modelling financial data
since asymmetry is one of the stylized features of this sort of data (see Rydberg [28]).

We repeated the experiment in the previous section but, taking into account that the test with
normal weight is less powerful than the one with the weight defined in Equation (14), we only con-
sidered the latter. The parameter was estimated by its maximum likelihood estimator. M(θ , γ ) and
l(·; γ ) were estimated by using the estimators in Proposition 7.3.

In this experiment we considered two instances of H0: γ1 = 0.70 (the corresponding direct para-
meters are location = −1.18, scale = 1.54 and shape = 3.23) and γ1 = 0.85 (the corresponding
direct parameters are location = −1.25, scale = 1.61 and shape = 4.98). Table 7 shows the inno-
vation distributions considered in this third experiment. As in the previous experiments, the sample
size is n = 400. Nevertheless, since the results for the WB are a bit oversized for γ1 = 0.85, we also
perform the experiment with n = 700. Table 8 displays the obtained results for significance level
α = 0.05. Looking at the results for H0 we see that, although for n = 400 the empirical levels are

Table 7. Innovation distributions considered in
Experiment 3.

H0 εj ∼ SN(0, 1, γ1),
H1 εj = (uj − 6)/

√
12, uj ∼ χ2

6 ,
H2 εj = (uj − 3)/

√
6, uj ∼ χ2

3 ,
H3 εj ∼ st(0, 1, 0.7, 5)a,
H4 εj = uj/

√
2, uj ∼ Laplace.

a The skew-t distribution in [29] with mean 0, va-
riance 1, γ1 = 0.7 and 5 degrees of freedom.



2084 M. D. JIMÉNEZ-GAMERO AND J. C. PARDO-FERNÁNDEZ

Table 8. Empirical percentages of rejection for α = 0.05.

H0 with γ1 = 0.7 H0 with γ1 = 0.85 H1

n 400 700 400 700 400 700

PB 5.20 5.36 5.36 5.04 7.80 8.24
WB 5.24 5.40 6.20 5.36 9.96 11.24
WBC 5.48 5.52 6.36 5.48 10.08 11.28

H2 H3 H4

n 400 700 400 700 400 700

PB 38.56 74.19 31.35 64.64 91.00 99.62
WB 55.00 85.18 25.40 51.16 86.60 99.91
WBC 55.64 85.28 25.75 51.64 86.96 99.91

reasonably close to the theoretical values, as the sample size increases the closeness grows. As for the
power, we see that, as in the previous experiment and as observed in Remark 4.4, no test is most
powerful for all alternatives.

8.4. A real data set

As an example, we apply the proposed technique to the time series of log returns of the Spanish stock
market index IBEX35 from January 1997 to December 2003. This index is a market capitalization
weighted index comprising the 35 most liquid Spanish stocks traded in the Madrid Stock Exchange
General Index. The series consists of the daily closing prices of the IBEX35 index from January 1997
toDecember 2003, withn = 1746 observations. Figure 1 displays the time series of log returns. Figure
2 displays the sample autocorrelation function of the log returns (left) and of the squared log returns
(right). This figure shows that there is almost no significant autocorrelation in the log return series
{Xt}, but such an autocorrelation does exist for in the squared series {X2

t }, as it should happen in a
GARCHmodel.

Next we fitted a GARCH(1,1) model to the log returns, obtaining the following estimates: ĉ =
8.078 × 10−6, â1 = 1.104 × 10−1 and b̂1 = 8.666 × 10−1. We first tested for normality of the inno-
vations, H0N : εj ∼ N(0, 1). Proceeding as in Section 8.1 with B = 2000, we got the p-values 0.0600
(centred multiplies) and 0.0595 (rawmultipliers), indicating thatH0N might not be supported by the
data. Since the histogram of the residuals (see Figure 3) reveals that the innovations were generated
by an asymmetric distribution, proceeding as in Section 8.3 with B = 2000, we tested H0SN : εj ∼
SN(0, 1, γ1), for some γ1 ∈ [−0.9953, 0.9953], obtaining the p-values 0.5055 (centred multiplies) and

Figure 1. Time series of log returns of the IBEX35 index from January 1997 to December 2003.
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Figure 2. Sample autocorrelation function of the log returns (left) and of the squared log returns (right).

Figure 3. Histogram of the residuals and PDF of the fitted SN law.

0.5085 (raw multipliers) and thusH0SN cannot be rejected. Figure 3 graphs the histogram of the resi-
duals with the fitted skew-normal PDF superimposed (γ̂1 = 1.733 × 10−1). Looking at this figure we
see that resulting PDF yields a quite reasonable fit.

9. Discussion and further research

In this piece of researchGOF tests based on theCF for the innovations in aGARCHmodel are studied.
Both the simple null hypothesis and the composite null hypothesis are considered. The asymptotic
null distributions cannot be used to find critical values as they depend on unknowns. WB versions
of the test statistics are analysed in detail in order to estimate their null distribution. The numerical
experiments show a correct performance in practice. The main advantage of the WB approximation
over the classical PB is the computational efficiency.

The research in this paper is limited to the univariate linearGARCHmodel. The studiedmethodo-
logy could be extended to testing GOF for the innovation distribution in other univariate GARCH
models, such as log-GARCH models (see, e.g. [30]), or to multivariate GARCH models, such as
CCC-GARCHmodels [31], or to othermultiplicative errormodels, such as autoregressive conditional
duration models (see, e.g. [32]).
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Appendix 1. Further technical and simulation results

A.1 A test based on transformation: technical results
This section studies some properties of the ECF of the transformed data, φn−ν(t). Let φ(t) = E[exp{itF0(ε)}] and let
{Z(t), t ∈ R} be a zero-mean Gaussian process on L2(w) having covariance kernel KZ(s, t) = E[{C(t) + S(t)} {C(s) +
S(s)}], ∀t, s ∈ R, with

C(t) = cos{tF0(ε)} − Reφ(t) − 0.5tμR(t)μA(θ)′L1(θ),

S(t) = sin{tF0(ε)} − Imφ(t) − 0.5tμI(t)μA(θ)′L1(θ).

TheoremA.1: Suppose that θ ∈ �0, θ̂ satisfies (A.1), ν satisfies Equation (8) and F0 is a continuous CDF with bounded
PDF f0. Then,

(a) supt∈S |φn,ν(t) − φ(t)| P−→ 0, for every compact interval S.

(b) ‖φn,ν − φ‖w P−→ 0.
(c) If f0 has a bounded derivative then {Zn,ν(t), t ∈ S} converges weakly on C(S) to {Z(t), t ∈ S}, in every compact

interval S.
(d) If in addition w satisfies Equation (9), we also have that ‖Zn,ν‖2w

L−→ ‖Z‖2w.

A.2 Composite null hypothesis: technical results
This section studies some asymptotic properties of Tn,ν(γ̂ ). Let φ(t; γ ) = E[exp{itF(ε; γ )}] and let {Z(t; γ0); , t ∈ R}
be a zero-mean Gaussian process on L2(w) having covariance kernel KZ(s, t; γ0) = E[{C(t; γ0) + S(t; γ0)} {C(s; γ0) +
S(s; γ0)}], ∀t, s ∈ R, with

C(t; γ0) = cos{tF(ε; γ0)} − Reφ(t) − 0.5tμ1R(t; γ0)μA(θ)′L1(θ)

+ tμ2R(t; γ0)′{l(ε; γ0) + M(θ , γ0)L1(θ)},
S(t; γ0) = sin{tF(ε; γ0)} − Imφ(t) − 0.5tμ1I(t; γ0)μA(θ)′L1(θ)

+ tμ2I(t; γ0)′{l(ε; γ0) + M(θ , γ0)L1(θ)}.

Theorem A.2: Suppose that θ ∈ �0, θ̂ satisfies (A.1), ν satisfies Equation (8), the family F satisfies (A.3) and γ̂ is an
estimator of γ satisfying (A.2). Then,

(a) supt∈S |φn,ν(t; γ̂ ) − φ(t; γ0)| P−→ 0, for every compact interval S.

(b) ‖φn,ν − φ‖w P−→ 0.

If, in addition, (A.4) holds and γ̂ satisfies (A.5), then

(c) {Zn,ν(t; γ̂ ), t ∈ S} converges weakly on C(S) to {Z(t; γ0), t ∈ S}, in every compact interval S.
(d) If w satisfies Equation (9), we also have that ‖Zn,ν(·; γ̂ )‖2w

L−→ ‖Z(·; γ0)‖2w.

A.3 Expressions used in the numerical experiments
For Simulation Experiment 1 the test statistic has the following expression

Rn,ν = 1
n − ν

n∑
j,k=ν+1

exp{−0.5(ε̃j − ε̃k)
2} − √

2
n∑

j=ν+1
exp{−0.25ε̃2j } + n − ν√

3
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and

mjk = exp{−0.5(ε̃j − ε̃k)
2} − 1√

2
exp{−0.25ε̃2j } − 1√

2
exp{−0.25ε̃2k} + 1√

3

− 0.5vj
1

4
√
2
(ε̃2k − 2) exp{−0.25ε̃2k} − 0.5vk

1
4
√
2
(ε̃2j − 2) exp{−0.25ε̃2j }

− 0.5(vj + vk)
1

3
√
3

+ 0.25vjvk
1

3
√
3
,

where vj = μ̂A(θ)
′
L̂j(θ), with L̂j(θ) as in Proposition 7.1, ν + 1 ≤ j, k ≤ n.

For Simulation Experiment 2 the expressions for the test statistic andmjk become

Tn,ν = 1
n − ν

n∑
j,k=ν+1

ϕw{F0(ε̃j) − F0(ε̃k)} − 2
n∑

j=ν+1
I1j + (n − ν)I00

and

mjk = ϕw{F0(ε̃j) − F0(ε̃k)} − I1j − I1k + I00 + 0.25vjvkI01 + 0.5(vj + vk)I02 + 0.5vjI2k + 0.5vkI2j,

respectively, where vj is as before, ϕw(x) = ∫
cos(tx)w(t) dt,

I00 =
∫ 1

−1
ϕw(x){1 − |x|} dx, I01 = −

∫
xyf 20 (x)f 20 (y)ϕ′′

w{F0(x) − F0(y)} dx dy,

I02 =
∫

xf 20 (x)[ϕw{F0(x)} − ϕw{1 − F0(x)}] dx,

I1j =
∫ 1−F0(ε̃j)

−F0(ε̃j)
ϕw(x) dx, I2j =

∫
xf 20 (x)ϕ′

w{F0(ε̃j) − F0(x)} dx,

1 ≤ j ≤ n, with ϕ′
w(x) = (d/dx)ϕw(x), ϕ′′

w(x) = (d2/dx2)ϕw(x).
For Simulation Experiment 3 the expression of the test statistic is the same as that in the Simulation Experiment 2

with f0(x) and F0(x) replaced by f (x; γ̂ ) and F(x; γ̂ ), respectively. The expression ofmjk becomes

mjk = ϕw{F0(ε̃j) − F0(ε̃k)} − I1j − I1k + I00 + 0.5(vj + vk)I02 + 0.5vjI2k + 0.5vkI2j + 2YjI3k + 2YkI3j,

where vj, I1j, I2j, I00 and I02 are as defined above for Simulation Experiment 2 with f0(x) and F0(x) replaced by f (x; γ̂ )

and F(x; γ̂ ), respectively, Yj = l̂(ε̃j; γ̂ ) + M̂(θ , γ )L̂j(θ) and

I3j = −
∫ ∞

ε̃j

f (x; γ̂ )D1F(x; γ̂ ) dx +
∫

f (x; γ̂ )F(x; γ̂ )D1F(x; γ̂ ) dx.

Notice that I01 = 0 for the considered weight function.

Appendix 2. Proofs
Before proving the results in the previous sections we state a preliminary lemma. Some of the results in this lemma are
known, but we prefer to include them to facilitate the reading of our proofs. Along this section K and ρ are generic
constants taking many different values K > 0 and 0 < ρ < 1. Let σ 2

j (θ)Bj(θ) be the r × r-matrix of second-order
derivatives of σ 2

j (θ) with respect to θ , that is, Bj(θ) = (1/σ 2
j (θ))(∂2/∂θ∂θ ′)σ 2

j (θ). Let {ε̂j = Xj/σj(θ̂ ), 1 ≤ j ≤ n}
denote the non-truncated version of the residuals.

Lemma A.3: (a) Let k ∈ N. There exists �k ⊆ �0 such that θ ∈ int�k and E{supu1,u2∈�k
(σ 2k

0 (u1)/σ 2k
0 (u2))} < ∞.

(b) E(supu∈�0
|A1(u)|ζ ) < ∞, for any ζ > 0.

(c) E(supu∈�0
|B1(u)|ζ ) < ∞, for any ζ > 0.

(d) supu∈�0
|σ 2

j (u) − σ̃ 2
j (u)| ≤ Kρ j.

(e) supu∈�0
|(∂/∂θ)σ 2

j (u) − (∂/∂θ)σ̃ 2
j (u)| ≤ Kρj.

(f) If θ̂
a.s.(P)−−−−→ θ and f : R → R is such that E{|f (ε)|} < ∞, then

1
n

n∑
j=1

|Aj(θ) − Ãj(θ̂)|kf (εj)
a.s.(P)−−−−→ 0, ∀k ∈ N.
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(g) If θ̂
a.s.(P)−−−−→ θ , then μ̂A(θ)

a.s.(P)−−−−→ μA(θ).

(h) If θ̂
a.s.(P)−−−−→ θ , then

∑
j≥1 |ε̂j − ε̃j|k = O(1) a.s. (in probability), k = 1, 2, and (1/(n − ν))

∑n
j=ν+1 |ε̂j −

εj|
a.s.(P)−−−−→ 0. If

√
n(θ̂ − θ) = OP(1), then (1/

√
n − ν)

∑n
j=ν+1(ε̂j − εj)

2 P−→ 0.

Proof: (a) The proof closely follows the lines of the proof of (4.26) in [4], so we omit it. For (b) and (c), see (4.29) in [4].
For (d), see (4.6) in [4]. For (e), see (4.33) in [4].

(f) We have that

Aj(θ) − Ãj(θ̂) = 1
σ 2
j (θ)

∂

∂θ
σ 2
j (θ) ± 1

σ 2
j (θ̂)

∂

∂θ
σ 2
j (θ̂ ) ± 1

σ̃ 2
j (θ̂)

∂

∂θ
σ 2
j (θ̂ ) − 1

σ̃ 2
j (θ̂)

∂

∂θ
σ̃ 2
j (θ̂). (A1)

From the mean value theorem we get

1
σ 2
j (θ)

∂

∂θ
σ 2
j (θ) − 1

σ 2
j (θ̂ )

∂

∂θ
σ 2
j (θ̂) = {Bj(θ̂j) − Aj(θ̂j)Aj(θ̂j)

′}(θ̂ − θ),

where θ̂j = αjθ + (1 − αj)θ̂ , for some αj ∈ (0, 1). Note that for n large enough, θ̂ ∈ �0 a.s. (in probability). Thus,

1
n

n∑
j=1

∣∣∣∣∣ 1
σ 2
j (θ)

∂

∂θ
σ 2
j (θ) − 1

σ 2
j (θ̂)

∂

∂θ
σ 2
j (θ̂ )

∣∣∣∣∣
k

|f (εj)|

≤ 1
n

n∑
j=1

{
sup
u∈�0

|Bj(u)| + sup
u∈�0

|Aj(u)|2
}k

|f (εj)||θ̂ − θ |k.

From Lemma A.3 (b) and (c), the ergodic theorem and θ̂
a.s.(P)−−−−→ θ , it follows that the right-hand side of the above

expression converges a.s. (in probability) to 0. We also have that

1
n

n∑
j=1

∣∣∣∣∣ 1
σ 2
j (θ̂)

∂

∂θ
σ 2
j (θ̂) − 1

σ̃ 2
j (θ̂)

∂

∂θ
σ 2
j (θ̂)

∣∣∣∣∣
k

|f (εj)|

≤ K
1
n

n∑
j=1

|f (εj)| sup
u∈�0

|Aj(u)|k sup
u∈�0

|σ 2
j (u) − σ̃ 2

j (u)|k ≤ 1
n

n∑
j=1

|f (εj)| sup
u∈�0

|Aj(u)|kρj,

where the last inequality follows from Lemma A.3 (d). Since E{|f (εj)| supu∈�0
|Aj(u)|k} = E{|f (εj)|}E{supu∈�0

|Aj

(u)|k} < ∞, by Lemma 2.2 in [3], the right-hand side of the above expression converges a.s. (in probability) to 0.
Finally,

1
n

n∑
j=1

∣∣∣∣∣ 1
σ̃ 2
j (θ̂)

∂

∂θ
σ 2
j (θ̂) − 1

σ̃ 2
j (θ̂)

∂

∂θ
σ̃ 2
j (θ̂)

∣∣∣∣∣
k

|f (εj)|

≤ K
1
n

n∑
j=1

sup
u∈�0

∣∣∣∣ ∂

∂θ
σ 2
j (u) − ∂

∂θ
σ̃ 2
j (u)

∣∣∣∣
k
|f (εj)| ≤ K

1
n

n∑
j=1

|f (εj)|ρj,

where the last inequality follows from Lemma A.3(e). Thus, by reasoning as before, the right-hand side of the above
expression converges a.s. (in probability) to 0. All above facts imply the result.

(g) From the ergodic theorem,

μA(θ) − 1
n

n∑
j=1

Aj(θ)
a.s.−→ 0. (A2)

The result follows from Equation (A2) and the result in part (f).
(h) We have

ε̂j − ε̃j = Xj

σj(θ̂)σ̃j(θ̂){σj(θ̂) + σ̃j(θ̂)} {σ̃ 2
j (θ̂ ) − σ 2

j (θ̂ )}.
Thus, from the result in part (d),

|ε̂j − ε̃j|k ≤ K|εj|k sup
u1,u2∈�1

σ 2k
j (u1)

σ 2k
j (u2)

ρjk, k = 1, 2,
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a.s. (in probability). Since E{|εj|k supu1,u2∈�1

σ 2k
j (u1)

σ 2k
j (u2)

} < ∞, Lemma 2.2 in [3] implies that
∑

j≥1 |ε̂j − ε̃j|k = O(1) a.s.

(in probability), k = 1,2. We also have that

ε̂j − εj = εj

σj(θ̂ ){σj(θ̂) + σj(θ)} {σ 2
j (θ) − σ 2

j (θ̂)}.

Now, from the mean value theorem,

|ε̂j − εj| ≤ K|εj| sup
u1,u2∈�1

σ 2
j (u1)

σ 2
j (u2)

sup
u∈�0

|Aj(u)||θ̂ − θ |,

a.s. (in probability). Since E{|εj| supu1,u2∈�1
(σ 2

j (u1)/σ 2
j (u2)) supu∈�0

|Aj(u)|} < ∞, the ergodic theorem implies

that (1/(n − ν))
∑n

j=ν+1 |ε̂j − εj|
a.s.(P)−−−−→ 0. If

√
n(θ̂ − θ) = OP(1), then again by the ergodic theorem we get that

(1/
√
n − ν)

∑n
j=ν+1(ε̂j − εj)

2 P−→ 0. �

Proof of Theorem 3.1: We have that R∗
0,n,ν = R∗

1,n,ν + R∗
2,n,ν + 2R∗

3,n,ν , with R∗
1,n,ν = ‖Z∗

1‖2w, R∗
2,n,ν = ‖Z∗

2‖2w, R∗2
3,n,ν ≤

R∗
1,n,νR

∗
2,n,ν , Z

∗
1 (t) = (1/(n − ν))

∑n
j=ν+1 q(εj, t)ξj and

Z∗
2 (t) = 1

n − ν

n∑
j=ν+1

{q(ε̃j, t) − q(εj, t)}ξj.

Let δ > 0, by the Markov inequality and the mean value theorem,

P∗{|Z∗
2 (t)| > δ} ≤ 1

δ2
t2

1
n − ν

n∑
j=ν+1

(ε̃j − εj)
2 = t2oP(1),

where the last equality follows from Lemma A.3(h). ThereforeW∗
2 = oP∗ (1) (in probability). Now, by the conditional

multiplier central limit theorem for IID Euclidean data (see, e.g. Lemma 10.5 in [33]), the finite dimensional distribu-
tions of the process {Z∗

1 (t), t ∈ R}, (Z∗
1 (t1), . . . ,Z

∗
1 (tr))

′, converge to a zero-mean normal lawwith variance-covariance
matrix (KW(tj, tk))1≤j,k≤r (a.s.). Let s, t ∈ R,

E∗{Z∗
1 (t) − Z∗

1 (s)}2 = 1
n − ν

n∑
j=ν+1

{q(εj, t) − q(εj, s)}2

≤ 4|t − s|2 1
n − ν

n∑
j=ν+1

(|εj| + 1)2 ≤ K|t − s|2, a.s.

Hence, from Theorem 12.3 in [34], conditional on X1, . . . ,Xn, {Z∗
1 (t), t ∈ S} is tight (a.s.), for any compact interval

S ⊂ R, and therefore, conditional onX1, . . . ,Xn, Z∗
1 (t) converges weakly toW(t) in every compact interval (a.s.). Now,

from the continuous mapping theorem, conditional on X1, . . . ,Xn,∫ R

−R
Z∗
1 (t)

2w(t)dt L−→
∫ R

−R
W(t)2w(t) dt,

for every R> 0 (a.s.). Now, taking into account that

E∗{Z∗
1 (t)

2} = 1
n − ν

n∑
j=ν+1

q(εj, t)2 ≤ 16, E{W(t)2} = KW(t, t) ≤ 16,

proceeding as in the proof of Corollary 3.2 of [35], we get that, conditional on X1, . . . ,Xn,∫
Z∗
1 (t)

2w(t) dt L−→
∫

W(t)2w(t) dt,

(a.s.) and thus the result follows. �

Let R∗
1,n,ν = ‖W∗

1,n,ν‖2w, where

W∗
1,n,ν = 1√

n − ν

n∑
j=ν+1

{Cj(t) + Sj(t)}ξj.

The following result gives the conditional asymptotic distribution, given X1, . . . ,Xn, of R∗
1,n,ν .
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Lemma A.4: Suppose that θ ∈ �0, θ̂ satisfies (A.1), w satisfies Equation (9) and ν satisfies Equation (8). Then,

sup
x

|P∗(R∗
1,n,ν ≤ x) − P(‖W1‖2w ≤ x)| P−→ 0,

where {W1(t), t ∈ R} is as defined in Theorem 4.1.

Proof: From Lemma B.1.1 in [12], the finite dimensional distributions of the process {W∗
1,n(t), t ∈ R},

(W∗
1,n(t1), . . . ,W

∗
1,n(tr))

′, converge to a zero-mean normal law with variance-covariance matrix (KW1 (tj, tk))1≤j,k≤r
(a.s.). Let s, t ∈ R,

E∗{W∗
1,n(t) − W∗

1,n(s)}2 = 1
n − ν

n∑
j=ν+1

{Cj(t) + Sj(t) − Cj(s) − Sj(s)}2.

Taking into account that | cos(tεj) − cos(sεj)| ≤ |εj||t − s|, | sin(tεj) − sin(sεj)| ≤ |εj||t − s|, |Reϕ0(t) − Reϕ0(s)| ≤
K|t − s|, |Imϕ0(t) − Imϕ0(s)| ≤ K|t − s|, and that the continuity of the functions tμc(t), tμs(t) implies that |tμc(t) −
sμc(s)| ≤ K|t − s|, |tμs(t) − sμs(s)| ≤ K|t − s|, it follows that

|Cj(t) + Sj(t) − Cj(s) − Sj(s)| ≤ K|εj||t − s| + K|t − s| + kK|t − s||Lj(θ)|.
Since (1/n)

∑n
j=1 ε2j → 1 (a.s.) and (1/n)

∑n
j=1 |Lj(θ)|2 also have a finite limit (a.s.), we conclude that

E∗{W∗
1,n(t) − W∗

1,n(s)}2 ≤ K|t − s|2 a.s.

Now the proof follows similar steps to those given in the one of Theorem 3.1, so we omit it. �

Proof of Theorem 4.1: We first show that replacing εj by ε̃j in the expression of R∗
1,n has an asymptotically negligi-

ble effect. Let W∗
1,1,n(t) = (1/

√
n)

∑n
j=1{C1j(t) + S1j(t)}ξj with Cj − C1j = cos(tεj) − cos(tε̃j), Sj − S1j = sin(tεj) −

sin(tε̃j), 1 ≤ j ≤ n. Let η > 0. Since

E∗

⎛
⎝

⎡
⎣ 1√

n

n∑
j=1

{cos(tεj) − cos(tε̃j)}ξj
⎤
⎦
2⎞
⎠

= 1
n

n∑
j=1

{cos(tεj) − cos(tε̃j)}2 ≤ t2
1
n

n∑
j=1

(εj − ε̃j)
2 = t2oP(1),

where the last equality comes from Lemma A.3 (h), and similarly

E∗

⎛
⎝

⎡
⎣ 1√

n

n∑
j=1

{
sin(tεj) − sin(tε̃j)

}
ξj

⎤
⎦
2⎞
⎠ = t2oP(1),

we conclude that
P∗(‖W∗

1,n − W∗
1,1,n‖2w > η) → 0, (A3)

in probability. From Equation (A3) and the result in Lemma A.4, it follows that

‖W∗
1,n‖2w = ‖W∗

1,1,n‖2w + oP∗ (1), (A4)

in probability. Now we show that replacing Lj(θ) by L̂j(θ), 1 ≤ j ≤ n, satisfying Equation (10) in the expres-
sion of ‖W∗

1,1,n‖2w asymptotically has no effect. Let W∗
1,2,n(t) = (1/

√
n)

∑n
j=1{C2j(t) + S2j(t)}ξj with C1j − C2j =

0.5tμc(t)E{A0(θ)}′{Lj(θ) − L̂j(θ)}, S1j − S2j = 0.5tμs(t)E{A0(θ)}′{Lj(θ) − L̂j(θ)}, 1 ≤ j ≤ n. Letμ(t) denoteμc(t) or
μs(t). Since

E∗

⎛
⎝

⎡
⎣ 1√

n

n∑
j=1

tμ(t)E{A0(θ)}′{Lj(θ) − L̂j(θ)}ξj
⎤
⎦
2⎞
⎠ ≤ Kt2

1
n

n∑
j=1

|Lj(θ) − L̂j(θ)|2 = t2oP(1),

by reasoning as before we get
‖W∗

1,1,n‖2w = ‖W∗
1,2,n‖2w + oP∗ (1), (A5)

in probability. Analogously, by Lemma A.3(g), we get

‖W∗
1,2,n‖2w = R∗

2,n + oP∗ (1), (A6)

in probability. The result follows from Lemma A.4 and (A4)–(A6). �
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Proof of Corollary 4.3: The result follows from Theorem 4.1 and Theorem 1(b) in [11]. �

Proof of Theorems A.1 and A.2: The proof of parts (a) and (b) closely follows the proof of Theorem 1 in [11]; the proof
of parts (c) and (d) closely follows the proof of Theorem 2 in [11]. �

Proof of Theorems 5.1 and 6.1: The proof closely follows the steps in the ones of Lemma A.4 and Theorem 4.1. �

Proof of Proposition 7.1: We have that

(ε2j − 1)Aj(θ) − (ε̃2j − 1)Ãj(θ̂) = (ε2j − 1){Aj(θ) − Ãj(θ̂)} + (ε2j − ε̃2j )Aj(θ) − (ε2j − ε̃2j ){Aj(θ) − Ãj(θ̂)}.
From Lemma A.3 (f),

1
n

n∑
j=1

(ε2j − 1)|Aj(θ) − Ãj(θ̂)| a.s.−→ 0.

Since under the assumed conditions θ̂
a.s.−→ θ (see [4]) and, following the proof of Lemma A.3(f),

|ε̂2j − ε̃2j | ≤ Kε2j sup
u1,u2∈�2

σ 2
j (u1)

σ 2
j (u2)

ρ j, |ε̂2j − ε2j | ≤ Kε2j sup
u1,u2∈�2

σ 2
j (u1)

σ 2
j (u2)

sup
u∈�0

|Aj(u)||θ̂ − θ |, (A7)

a.s., it follows that

1
n

n∑
j=1

(ε2j − ε̃2j )|Aj(θ)| a.s.−→ 0.

Taking into account (A1) and (A7), similar steps to those given in the proof of Lemma A.3(f) show that

1
n

n∑
j=1

(ε2j − ε̃2j )|Aj(θ) − Ãj(θ̂)| a.s.−→ 0.

Thus, we have shown that ∣∣∣∣∣∣
1
n

n∑
j=1

(ε2j − 1)Aj(θ) − 1
n

n∑
j=1

(ε̃2j − 1)Ãj(θ̂)

∣∣∣∣∣∣
a.s.−→ 0. (A8)

To prove the result we must show that

Ĵ a.s.−→ J. (A9)
With this aim we first observe that, from the ergodic theorem,

J − 1
n

n∑
j=1

(ε2j − 1)2Aj(θ)Aj(θ)′ a.s.−→ 0.

Therefore, to prove Equation (A9) it suffices to see that

1
n

n∑
j=1

(ε2j − 1)2Aj(θ)Aj(θ)′ − 1
n

n∑
j=1

(ε̃2j − 1)2Ãj(θ̂ )Ãj(θ̂ )′ a.s.−→ 0.

The proof of the above convergence follows similar steps to those given to show Equation (A8). �

Proof of Theorem 7.2: (a) From the mean value theorem and the assumptions made, we get

1
n

n∑
j=1

�(ε̃j; γ ) = 1
n

n∑
j=1

�(εj; γ ) + oP(1).

Now the result follows from Lemma 2.4 and Theorem 2.1 in [36].
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(b) The estimator γ̂ satisfies

1√
n

n∑
j=1

∂

∂γ
�(ε̃j; γ̂ ) = 0.

By applying a second-order Taylor expansion to the term on the left-hand side of the above equality and taking into
account the assumptions made, the result in part (a) and Lemma A.3, we get

0 = 1√
n

n∑
j=1

∂

∂γ
�(εj; γ0) + 1√

n

n∑
j=1

∂2

∂x∂γ
�(εj; γ0)(ε̃j − εj)

+ {C(γ0) + oP(1)}
√
n(γ̂ − γ0) + oP(1).

Proceeding as in the proof of Theorem 2 in [11] we get

1√
n

n∑
j=1

∂2

∂x∂γ
�(εj; γ0)(ε̃j − εj) = −0.5E

{
ε

∂2

∂x∂γ
�(ε; γ0)

}
μA(θ)

1√
n

n∑
j=1

Lj(θ) + oP(1)

and the result follows. �

Proof of Proposition 7.3: The result can be proven by Taylor expansion. �
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