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Resumen

La monitorización de los recursos hídricos y de su calidad es una actividad que está
cobrando mayor importancia a lo largo de los años. Es necesario desarrollar sistemas

de vigilancia eficientes e inteligentes aprovechando las tecnologías de vanguardia, como
los agentes robóticos. La utilización de vehículos autónomos de superficie equipados
con sensores de calidad del agua es un enfoque prometedor para medir continuamente
los parámetros físico-químicos relacionados con la calidad del agua. Sin embargo, la
mayoría de los trabajos actuales relacionados con este tema no tienen en cuenta la creciente
disponibilidad y asequibilidad de estos sistemas. Por lo tanto, los enfoques actuales no se
generalizan bien para tener en cuenta múltiples objetivos y la participación de múltiples
agentes. La presente tesis proporciona un sistema de diseño que considera el uso de varios
vehículos autónomos de superficie equipados con múltiples sensores de calidad del agua,
de manera que se realiza un modelado en tiempo real de las masas de agua. Además,
las mediciones se realizan considerando un sistema de partición de regiones Voronoi
utilizando un marco de optimización bayesiana subyacente con múltiples objetivos. Los
resultados muestran que el sistema puede obtener de forma robusta modelos muy precisos
a pesar de la limitada información disponible y la restricción de autonomía energética de
los vehículos. También se ha realizado una comparación con los enfoques basados en la
cobertura y el patrullaje, y el sistema propuesto supera a estos enfoques fuera de línea en
una media de 8,2% y 14,4%, en lo que respecta al error de modelado. El rendimiento de
este enfoque también se ve reforzado por su robustez y escalabilidad en comparación con
las misiones de monitorización fuera de línea.
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Abstract

Monitoring water resources and their quality is an activity that is gaining more im-
portance over the years. Efficient and intelligent monitoring systems must be

developed taking advantage of cutting-edge technologies like robotic agents. The utiliza-
tion of autonomous surface vehicles equipped with water quality sensors is a promising
approach to continuously measure physico-chemical parameters related to water quality.
However, most of the current related works do not acknowledge the increasing availability
and affordability of these systems. Therefore, current approaches do not generalize well
to account for multiple objectives and the involvement of multiple agents. The present
work provides a bottom-up-designed system that considers the usage of multiple agents
equipped with multiple water quality sensors so that online modeling of water bodies is
done. Furthermore, the measurements are done considering a Voronoi Region Partitioning
system using an underlying Bayesian optimization framework with multiple objectives.
The results show that the system can robustly obtain very accurate models despite the
limited available information and the constraint on vehicle energy autonomy. Comparisons
with coverage and patrolling-based offline approaches have also been made and the pro-
posed system outperforms these approaches on average by 8,2% and 14,4% with respect to
the modeling error. The performance of this approach is also enhanced by its robustness
and scalability compared to offline monitoring missions.

IX





Short Contents

Resumen VII
Abstract IX
Short Contents XI
Acronyms XVII
Notation XIX

1 Introduction 1
1.1 Background and Motivation 1
1.2 Scope 6
1.3 Objectives 6
1.4 Thesis Contributions 7
1.5 Document Organization 8

2 Literature Review 9
2.1 Autonomous Vehicles 9
2.2 Global Path Planning 14
2.3 Modeling and monitoring applications 15

3 Methodology 21
3.1 Preliminaries 22

3.2 Bayesian Optimization Framework for Monitoring 29
3.3 Gaussian Processes as Surrogate Models 30

3.4 Acquisition Functions 37
3.5 Multi-Water Quality Parameter Estimation 42
3.6 Multiple Autonomous Surface Vehicles 45
3.7 Proposed Multi-ASV Multi WQP monitoring system 47

4 Implementation 51

XI



XII Short Contents

4.1 Map Model 52
4.2 Water Quality Parameter Model Maps 52
4.3 Autonomous Surface Vehicles 54
4.4 Implementation using Python 57

5 Results 59
5.1 Simulation Setup 59
5.2 Kernel Selection 60
5.3 Acquisition Function Selection 63
5.4 Multi-ASV 69
5.5 Multi WQP monitoring using Multi-ASVs 69
5.6 Comparison with other methods 74
5.7 Summary of the Results 78

6 Conclusion and Future Work 81
6.1 Conclusion 81
6.2 Future Work 83
6.3 Publication List 84

Bibliography 85



Contents

Resumen VII
Abstract IX
Short Contents XI
Acronyms XVII
Notation XIX

1 Introduction 1
1.1 Background and Motivation 1
1.2 Scope 6
1.3 Objectives 6
1.4 Thesis Contributions 7
1.5 Document Organization 8

2 Literature Review 9
2.1 Autonomous Vehicles 9

2.1.1 Autonomous Systems 10
2.1.2 Autonomy 12

2.2 Global Path Planning 14
2.3 Modeling and monitoring applications 15

3 Methodology 21
3.1 Preliminaries 22

3.1.1 Map model and measurement locations. 22
3.1.2 Water Quality Parameter Model Maps. Measurement values 24
3.1.3 Autonomous Surface Vehicles: Agents and coordination 25

Guidance, Navigation & Control (GNC) 25
ASV constraints 25
Centralized Coordination 26
Water Quality Parameter Sensor System 26

XIII



XIV Contents

3.1.4 Objective Functions 27
Performance Metrics 28
Multi Objective Optimization 29

3.2 Bayesian Optimization Framework for Monitoring 29
3.2.1 Surrogate Model 30
3.2.2 Utility Function 30

3.3 Gaussian Processes as Surrogate Models 30
3.3.1 Covariance Functions 31

Example of covariance functions 32
Operations Between Kernels 34

3.3.2 Solution of a Gaussian Process 35
3.3.3 Models and Hyperparameters Selection 36

3.4 Acquisition Functions 37
3.4.1 Proposed Acquisition Functions 40

Adaptation functions 40
Definition of maximum distance for adapted measuring 41

3.5 Multi-Water Quality Parameter Estimation 42
3.5.1 Multi-objective problem 43
3.5.2 Multi-function adaptation 45

3.6 Multiple Autonomous Surface Vehicles 45
3.6.1 Initial Vehicle Positioning 46
3.6.2 Region Partitioning using Voronoi Diagrams 46

3.7 Proposed Multi-ASV Multi WQP monitoring system 47

4 Implementation 51
4.1 Map Model 52
4.2 Water Quality Parameter Model Maps 52

4.2.1 Benchmark Functions 53
4.3 Autonomous Surface Vehicles 54

4.3.1 Guidance, Navigation & Control (GNC) 54
4.3.2 ASV Constraints 56
4.3.3 Water Quality Paremeters Sensor System 56
4.3.4 Centralized Coordinator Server 57

4.4 Implementation using Python 57

5 Results 59
5.1 Simulation Setup 59

Simulated Water Quality Model using Benchmark Functions 59
Theoretical maximum energy available 59

5.2 Kernel Selection 60
5.3 Acquisition Function Selection 63
5.4 Multi-ASV 69
5.5 Multi WQP monitoring using Multi-ASVs 69



Contents XV

5.6 Comparison with other methods 74
5.7 Summary of the Results 78

6 Conclusion and Future Work 81
6.1 Conclusion 81
6.2 Future Work 83
6.3 Publication List 84

Bibliography 85





Notation

Acronyms

AAV Autonomous Aerial Vehicle
AF Acquisition Function
AGV Autonomous Ground Vehicle
ASV Autonomous Surface Vehicle
AUV Autonomous Underwater Vehicle
AV Autonomous Vehicle
BO Bayesian optimization
CC Centralized Coordinator
DRL Deep Reinforcement Learning
EI Expected Improvement
GA Genetic Algorithm
GNC Guidance, Navigation & Control
GP Gaussian Process
GPP Global Path Planning
GQI Good Quality Indicator
IPP Informative Path Planning
LPP Local Path Planning
MFE Multi-Function Estimation
MiP Mission Planning
MOO Multi-Objective Optimization
MRS Multi-Robot System
NSGA-II Non-dominated Sorting Genetic Algorithm II
PESMOC Predictive Entropy Search for Multi-Objective BO with Con-

straints
PI Probability of Improvement
POMDP Partially Observable Markov Decision Process
PP Path Planning

XVII



XVIII Chapter 0. Notation

PSD Positive Semidefinite
PSO Particle Swarm Optimization
RBF Radial Basis Function
RQ Rational Quadratic
RRT* Rapidly-Exploring Random Tree star
SE Squared Exponential
SEI Scaled Expected Improvement
SF Shekel function
TG Trajectory Generation
TSP Traveling Salesman Problem
WQP Water Quality Parameter



XIX

Notation

Rn Real Number Hyper-space
M Matrix Model Map
σ(x) Standard Deviation value of a GP Regression
p(y|x) probability of y given x
α(·) Acquisition Function
` Length-scale hyperaparameter for SE, RQ andMatérn Kernels
ε Unknown noise value
exp · Exponential function
Γ(ν) Gamma Function
λ Proportion of length-scale value
log Logarithmic function
E Expected value
V[x] Normalizing function for SEI AF
µS/cm microSiemens per centimeter
µ(x) Mean value of a GP Regression
Mi, j Element of the map model
N (·,·) Normal distribution function
X Feasible Search Space
φ(x) Probabilistic Density Function
Φ(Z) Cumulative Distribution Function
σ

2
n Expected measurement noise variance

~v Velocity of an ASV
ξ Exploration bias hyperparameter
posterior subscript for posterior component of a GP
prior , p subscript for prior component of a GP
|| · || Norm function
L Likelihood of a distribution
A Location of peaks in a SF
c Inverse powers of a peak in a SF
d side length ofMi, j
D Distance traveled by an ASV
d(·) Euclidean distance between different x
e Average current draw for ASV movement
f (x) Unknown target Function
F(x) Objective Function
f̂ (x) Approximation of target function
f̄s(x) Mean value of the real data
xB Optimized (Maximum/Minimum) measurement location
g1(x) Feasibility check constraint function
I Identity Matrix
K Kernel Matrix
k(x,x′) kernel evaluation



XX Chapter 0. Notation

Kν Modified Bessel Function for value ν

L Lower Cholesky Decomposition
σ0 Linear Kernel expression
α Scale-mixture hyperaparameter for RQ Kernel
ν Smoothing factor hyperaparameter for Matérn Kernel
γ Scale factor hyperaparameter for the linear Kernel
P Order hyperaparameter for Lineal Kernel
p Periodicity hyperaparameter for Sine Squared Kernel
l Limited maximum distance to next measurement location
M Number of measurement locations
m Measurement ID
pm location of mth measurement
pv Current location of vth ASV
R2 Coefficient of Determination
Rv Monitoring Region of vth ASV
S Number of available sensors
s Sensor ID
Tenergy Total available energy
v Vehicle ID
V Number of Vehicles
x , x∗ Location within the feasible space
x∗ , pm+1 Next measurement location
Z Normalized optimum response
arg max Argument that maximizes a function
arg min Argument that minimizes a function
H+ potential of Hydrogen
mg/L miligrams per Liter
MSE Mean Square Error
mV miliVolts
NTU Nephelometric Turbidity Unit
ºC Celsius



1 Introduction

When you explain a ‘Why?’ you have to be in some framework
that you allow something to be true.

Richard Feynman, 1983

1.1 Background and Motivation

Water is a vital component of life as we know it. Every living being on Earth depends
on it. The biological functions of water include supporting the cellular structure

(life), and its chemical composition allows it to react easily with other molecules, generally
creating more stable structures [1]. Water can be found almost everywhere on the surface
of the Earth, and humans have been using it for personal consumption, as well as to create
things and improve our quality of life. Water bodies are volumes of water that can be
found on the surface of the Earth; this includes and is not limited to lakes, lagoons, salt
lagoons, oceans, seas, rivers, basins, streams, and pools. A water body can also be used
as a water reservoir, tourist site, fishing site, or even a wildlife bed, among other uses, so
its health is of the highest importance. Limnology is a science study of aquatic systems
that was born to fulfill the task of knowing the behavior of such water bodies and is based
on observing and determining the chemical, physical, and biological characteristics of
a water environment or ecosystem. The levels of hydrogen (pH), turbidity, oxygen, and
temperature are chemical, physical, and biological variables that are generally the most
common “Water Quality Parameters” (WQPs) that quantitatively express how healthy
and fresh water bodies are. Collecting useful and standardized information about these
variables helps improve decision making regarding the maintenance and cleaning of water
bodies. Data gathering or collection is a related field of study that plans and organizes
the acquisition and storage of information. In the case of water quality, it is generally
necessary to continuously obtain new data due to the dynamics of water bodies and the

1



2 Chapter 1. Introduction

continuous changes that they undergo. This is called monitoring, which describes a series
of recurring tasks performed with the goal of obtaining and updating data and information.
Of course, maintaining the health and freshness of the waters must be a desirable

practice. However, water does not always maintain an adequate level of health, which
can be the product of contamination, misuse, or other bad practices. Therefore, water
resources cannot provide the healthy and fresh state desired. The most common example
found in nature is known as eutrophication, which is the fast unbalanced enrichment of
nutrients, especially nitrogen and phosphorus, which causes alterations in water, its quality,
and produces uncontrolled algae growth [2]. This algae is not a plant, but a type of toxic
bacteria of the phylum of cyanobacteria. Cyanobacteria are toxic not only for humans but
also for animals and plants as well, and they thrive in eutrophicated waters killing plants
and animals as they can massively reproduce and overpopulate wet ecosystems.

Located between the cities of Ypacari, Aregua, and San Bernardino, the Ypacarai Lake
(Paraguay) is a lake that can be used as an example (Figure 1.1). Officially, since 2013,
its waters has blooms of cyanobacteria caused by eutrophication [3], especially during
the hot months of summer. Alarms have since been raised and humans were no longer
allowed to use the lake as a tourist spot due to the rising leves of cyanobacteria [4]. This
issue has also occurred in other locations around the world, such as Lake Titicaca (Perú),
the Mississippi-Atchafalaya River system (USA-Mexico) [2] and Mar Menor (Spain) [5].

Figure 1.1 Blue-green algae proliferation in the Ypacarai Lake as pictured by a local news
media [4].

It is crucial to eradicate algae blooms and restore and maintain the freshness and quality
of their waters [6]. Eradicating this toxic algae in large-scale water body scenarios such
as Ypacarai Lake (60 km2) is not an easy task, but an obvious first step toward this is
to monitor the state of WQPs. The use of sensors and water sampling can track and
provide spatial distribution maps of WQPs. The resulting modeling helps and enables
the development of efficient strategies to maintain WQPs in an adequate state, because
water quality models will help locate contamination spots, as well as unnatural behaviors
of the water, as water quality levels can be determined by considering the mentioned
characteristics through chemical and physical indicators or parameters, monitoring the
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water quality of a particular water body is a systematic, useful, efficient, and standardized
mission that is a field of study of particular interest.

Classical approaches formonitoringwater quality consist mainly ofmanualmeasurement
campaigns and measuring at fixed stations. These missions were designed as such due to
the limited availability of technology during the early developing stages of monitoring,
when WQPs were described, their levels were established, and, through mostly mechanical
or manual processes, samples of water determined the WQP of a complete water body.
Evidently, manual sampling requires humans to perform the sampling, which includes
traveling to certain locations and back, and also to measure the WQP values. Monitoring
stations, on the other hand, can automatically obtain the measures but are not designed
to measure in generic locations mainly for maintenance and transport reasons. In some
scenarios, such as monitoring the WQP of Ypacarai Lake, the missions mentioned expose
the human operator to the dangers of toxic waters and unhealthy environments while
obtaining samples, etc. They also do not provide a reliable global state of the measured
WQP, an issue that is accentuated when applied to large-scale water resources, leading
to wrong global estimates and affecting the desired outcome of decisions and strategies.
Thus, these applied missions can present several disadvantages that can be addressed with
the usage of Autonomous Surface Vehicles (ASVs).

Generally speaking, autonomous vehicles can be described as mobile robots (land, sea,
and air) that deliberate the desired movement based solely on their sensors and guidance
systems (i.e., they do not require any sort of driver or teleoperation control). Autonomous
Aerial Vehicles (AAVs) are being used more and more because drones are economically
affordable, easy to produce, transport, and deploy, and more importantly because drones
serve as an abstract multidisciplinary research line, but nowadays flying AAVs need
specific permissions that are not always easily available for research and development.
Water-traveling AVs are also being developed, but they do not share all the same properties
as AAVs, not even in between them, since there are several considerations that a vehicle
must accomplish in order to travel in open-sea, lakes, through rivers (Autonomous Surface
Vehicles) or underwater (Autonomous Underwater Vehicles, AUVs). However different
AVs may seem, they all have one characteristic in common: autonomy.

Autonomy is defined as a way to describe systems that are: capable of operating in the
real-world environment without any form of external control for extended periods of time.
Therefore, AVs use their systems to properly obtain a desired result from a pre-defined
mission, this mission can vary from transportation to monitoring services, and the AVs are,
in no doubt, restricted by the vehicle’s state. Some authors decide to trust the mission not
to one, but to a group of vehicles [7, 8], conferring a higher level of security to the team,
this decision affects the economic costs of the project but can greatly improve the expected
output. Others decide to use only one vehicle but with more complex math models [9, 10],
procedures and algorithms, which improve the output but heavily depend on the vehicle’s
capabilities of processing external (and internal) information. A more elaborate proposal
includes both of these aims, taking advantage of the best of each method: the distributed
information gathering and processing that uses complex mathematics [11]. This thesis
uses ASVs as executors of complex algorithms aiming at a fully-autonomous monitoring
of water quality parameters.
It has been observed that ASVs can significantly reduce recurrent mission costs if
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designed for automated WQP measurement [9]. In the current literature, a large number of
environmental monitoring systems can be found that have ASVs as central executors, based
on intelligent patrolling [10] to information path planning approaches [12]. ASVs, when
used for monitoring, have significant advantages compared to manual or fixed monitoring
systems. Compared to stations, ASVs have the advantage of being autonomously able to
move to any location within an enclosed water body, while fixed stations can only measure
in one place. Compared to manual sampling campaigns, if the environment is hazardous,
that is, has high levels of toxicity, an ASV has no problem being in direct contact with the
water, while human operators must be extra careful. Additionally, not every location can
be reached with manned boats and ships, while ASVs can be designed with dimensions
that can easily move on the surface of any water body.

ASVs have on-board systems that are responsible for their efficacy. Among these systems,
there exists a system that can be thought of as the one that gives a major constraint, the
energy system, which provides the energy autonomy to the vehicle [13]. This system
controls and limits the amount of work that the ASV can do before stopping and is a major
performance factor [7, 8]. There exist two practical ways to overcome this issue, one is
to monitor the waters using a multi-robot system, i.e., two or more ASVs in charge of
obtaining water quality measurements of the mentioned lake, and the second is to include a
form of limitation of movement during the mission for each ASV The latter strategy needs
to be included within the monitoring decision-making, i.e., the ASV needs to consider its
energy in order to decide a measurement location that does not harm the efficiency of the
system. This thesis develops a system that includes this constraint in terms of traveling
distance limitation for each of the ASVs.

Regarding the usage of multiple ASVs, the improvement is given as long as two aspects
are addressed: i) an intelligent system needs to distribute the work among the available
ASVs and ii) for data gathering efficiency, redundancy must be avoided. Each ASV needs
to explore the environment considering its current state, the state of other agents, and the
state of the environment itself. Contrary to the latter statement, most proposed systems
focus on naive or pure exploration of water bodies [14]. Only a few of them manage to
intelligently monitor an aquatic environment [15, 16]. Furthermore, considering these
few works, only a small quantity of them consider the measures and the resulting maps to
decide on measurement locations [17, 18]. The vast majority of these systems only take
into account a single parameter; for example, only one of the many WQ parameters is used
for decision making, despite the fact that the system is usually prepared for performing
measures of different parameters at the same time. In this thesis, the system considers
multiple WQPs, as well as the current state of other intervening ASVs, to decide on
measurement locations.

The consideration of multiple WQPs enhances monitoring because it has been observed
that aimlessly patrolling or covering water environments needs and excessive, usually
non-viable, amount of working time to achieve results. This is because many works that
use ASVs focus on monitoring small scenarios and performing many WQP measurements
on every zone of the water body. Of course, the larger the scale environment, the higher the
cost, and the application of these techniques does not provide reliable water quality models
that can be updated or used for future purposes. The cost of performing measurements
is related to the costs of reaching the location. Consequently, most of the constraints are
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related to energy consumption and reaching locations.
The objective of monitoring is to obtain useful information about the state of the envi-

ronment. Therefore, performing an offline monitoring mission, i.e., measuring locations
without the aim of obtaining approximate models, is not a plausible mission for large-scale
scenarios. In fact, many of the WQP monitoring systems do not account for measurement
values to perform intelligent monitoring, i.e., data are not used in the process of deter-
mining next sampling locations. Thus, they are only stored for post-analysis, effectively
performing inefficient monitoring. Using the obtained data can affect positively, because
online monitoring is not only more efficient, but also possible using current technologies.
The objective of this thesis is to design a system that can monitor(measure) multiple WQPs
producing reliable WQP (surrogate) models. While offline methods are easy to implement
and execute, the usage of one or multiple is not fully optimized. Therefore, this thesis
focuses on a sequential decision-making strategy for monitoring.
This thesis bases its framework on Bayesian optimization (BO), which is a sequential

decision-making strategy based on surrogate models and acquisition functions [19]. In
the classical BO approach, Gaussian Processes (GPs) are used to approximate models of
unknown black-box functions due to their suitable behavior using limited amount of data
input [20]. The proposed approach in this thesis takes advantage of the fact that current
WQ measuring systems are capable of quickly performing measurements of multiple
WQPs at the same time. Consequently, the problem generalizes well to a multi-objective
optimization setting, where the optimal modeling of multiple WPQs is the mission to be
accomplished.

BO was chosen due to its model-based design, as it is useful to infer models of the WQ
parameters of water bodies during the monitoring procedure. Additionally, BO provides
an intelligent way of obtaining measurement locations if the Acquisition Function (AF),
or function that evaluates the utility of measuring on a certain location, is appropriately
selected towards reducing model uncertainty. In that sense, it is necessary to appropriately
select the components. The surrogate model should be optimized to work for WQPs,
while the acquisition function should be biased towards exploration to achieve monitoring.
Moreover, the acquisition function should be adapted to account for the specific constraint
of this problem, which limits the total travel distance of each ASV.

BO is a sequential procedure that starts with a prior surrogate model, and given a set of
observations, a posterior model can be obtained through marginalization and conditioning.
In this thesis, the surrogate models predict the behaviors of real water resource parameters
using GPs, which are normally employed as surrogate models since they can determine
stochastic behaviors producing stochastic responses. In the BO framework, the surrogate
model supersedes a real behavior. Therefore, it is necessary that the surrogate model
behaves in a similar way that of the real function to be modeled. In that sense, a natural way
of designing appropriate surrogate models corresponds to designing covariation functions
for the inputs, so that a relationship between inputs can be described. In this thesis, we
describe a study on covariance functions and their usage for WQPmodeling. Regarding the
acquisition or utility functions, it is used to calculate a maximum over the current model
so as to achieve maximum information benefit in the next sample. In the task at hand, this
maximum value is used to determine the next water quality measurements performed by
the ASV. Notice that the acquisition function is very important in the proposed monitoring
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work because it defines the movements of the ASV. Thus, classical acquisition functions
used in BO cannot be directly applied to the monitoring problem due to the mobility
restrictions of an ASV. In this work, we proposed several adaptations of the classical
acquisition functions that are more suitable for monitoring tasks.

To undergo the process of eutrophication, water bodies must suffer from several atypical
changes. These values can be obtained beforehand (or during eutrophication) in order
to prevent (or recover from) water pollution and prevent algae blooms. In this sense,
multiple WQP values need to be obtained from the current state of water bodies. Therefore,
an important factor is the simultaneous measurement of several WQPs, so an efficient
multi-function estimation system is proposed, as well as a Multi-Objective Optimization
(MOO) strategy solved with GA. It is used to combine different utility functions because
it is an optimal decision-making strategy whenever there are several objectives, as in this
case study. Furthermore, in this work, we make use of different tools and techniques to
make monitoring with an ASV possible, such as constraint handling and adaptations of
AFs.

Note that data acquisition should be cooperative, i.e., several ASVs are available and need
to jointly obtain measurements. Therefore, an intelligent multi-ASV system is proposed,
where the ASVs are in charge of efficiently performing measurements using a Voronoi
Partition system to effectively create online coverage regions. The Voronoi Partition or
Voronoi Diagram (VD) is a mathematical expression that defines regions according to a
set of generators [21]. If the positions of the ASVs serve as generators, each region has
an ASV assigned to it, and the BO technique can be utilized seamlessly for each ASV to
choose new measurement locations within each of the defined regions.

1.2 Scope

Monitoring WQPs can be interpreted as a recurrent task aimed at obtaining useful infor-
mation about the target environment. In this thesis, a single mission is presented, as it
will produce the current state of various WQPs of a water body using several ASVs for
performing measurements. All ASVs are supposedly equipped with the same systems,
which implies that these agents are homogeneous and will present the same behavior and
constraints. For the selection of the different components, several experiments will be
performed so that the system proposed in this thesis and its results are replicable and
applicable to any water body.

1.3 Objectives

The previous sections served to summarize the background, general task, vehicle usage,
and scope of this thesis. The General and Specific Objectives of this thesis are described
below, with keywords highlighted in bold. The General Objective is as follows.

Design and implementation of amulti-autonomous surface vehiclemonitoring system
aimed at obtaining models of multiple-water quality parameters using a Bayesian
optimization framework with a Voronoi partitioning system.
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The specific objectives are designed to separate the general objective into specific
components that the system needs to ensure efficacy, efficiency, and robustness. They are
are described as follows.

• Propose a Bayesian optimization-based Monitoring Mission for a multi-vehicle
system in unknown aquatic environments.

• Perform intelligent autonomous surface vehicle deployments in order to obtain a set
of real or simulated approximated water quality parameter maps of a water body
using Gaussian Processes as Surrogate Models, using a fleet of surface vehicles.

• Evaluate and compare the proposed method with common exploration/monitoring
methods.

1.4 Thesis Contributions

The main contributions of this thesis can be summarized as follows.

• Application of Bayesian optimization for sequential decision making in a Water
Quality Monitoring scenario, where the general BO equation is used to obtain
measurement locations that will be useful for generating WQP models according to
Gaussian Process stochastic models based on kernels or covariance functions.

• Hyperparameterization and comparison of classical kernel functions as main com-
ponents of stochastic surrogate models for water quality distribution maps, validated
through the usage of expected WQP behaviors in simulations using benchmark
functions.

• Proposition of three adaptations of acquisition functions based on classical tech-
niques for monitoring missions using an ASV with energy constraints, so that data
can be acquired taking into account the limitations of mobility of the ASVs in charge
of monitoring.

• A centralized Voronoi-based coordination system for multiple ASVs based on
active region partitioning and data sharing, to create robust operations, seamless
cooperation, and achieve better results in less time.

• A generalized multi-parameter measuring system for environmental monitoring
based on Bayesian optimization with fusions of functions, considering centralized
communication of the different ASVs, asynchronously.

• A multi-model acquisition system through multiple ASVs for online environmental
monitoring. The system considers not only the existence of muti-WQPs but also
multi-ASVs.

• Performance evaluation of the system considering the coefficient of determination
of the obtained models with benchmark functions. Comparison of the proposed
system with related monitoring works.
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1.5 Document Organization

The rest of this book is organized according to a series of chapters that contain the following
topics: Chapter 2 presents the related work and starts by defining the basic concepts of real
components of the system according to the current state of the art, including the definitions
of autonomous surface vehicles. This chapter describes the usage of other mathematical
components of the system, such as Bayesian optimization and multi-objective optimization.
Finally, current efforts for Monitoring Applications are also described in the chapter,
addressing not only general water quality monitoring, but also monitoring research and
implementation for highly eutrophized water like Ypacarai Lake.
Next, Chapter 3 describes the main architecture and each part and component of the

system. This includes considerations, assumptions, and constraints according to the
scope defined previously. Bayesian optimization is properly described, as well as its
main components: Gaussian Processes and Acquisition Functions, their mathematical
definitions, limitations, and solving methods/strategies. It includes examples of covariance
functions used in the work. Voronoi regions are described in this chapter, as well as Multi-
Function Estimation and Multi-Objective Optimization strategies. These components
are fully described in this chapter, but their implementation is described in Chapter 4,
where the usage of numerous pre-built systems is explained. The embbeded systems that
implement the system are also described in this chapter.

The results are shown in Chapter 5. It includes complete results in detail by component,
as well as summarized results. Several tables can be found that show the numerical
performance values obtained, as well as a discussion of the results section. Comparison
with other methods has also been done, the implementation and results are also found
in this chapter, accompanied by a discussion of the obtained results. Finally, Chapter 6
concludes the work showing the learned insights, the overall results of the system, and
future work.
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Galaxies make stars, stars make worlds.

Neil deGrasse Tyson, 2020

2.1 Autonomous Vehicles

Every year, more robots perform their tasks and objectives with fewer margins of error;
this is the result of countless research and advances in each of the components that

generate what is known as an autonomous system. These components can be grouped
into three main systems according to Liu et al. [22]: Navigation, Guidance and Control
systems, known as GNC systems. These components answer some critical questions
[23]: “Where am I?”, “Where do I want to go and how?”, and “What can I do to
get there?”. Robots that can answer these questions can act on their own in order to
accomplish their goals, and therefore be perceived to have a higher level of autonomy.
Strategically, AVs research can be done aiming to answer these questions and develop
systems that provide a solution to theses problems, specifically the ones that involve
navigation, guidance and control. Searching for a solution to the latter issue, Control
Systems have been in development since much before the birth of robotics, these control
systems are used to determine appropriate control forces to be generated by the actuators,
according to Liu et al. [22], and are already very well designed because of its necessity
as a way to control any machine, including autonomous ones. Control Systems are in
charge of the movement, which is a fairly well studied subject. A common situation is
that these machines are in the need of constantly identifying their states and the states
of their surroundings, this identification is accomplished by a Navigation System, which
uses sensors and mathematical models to perform an observation of the situation and/or
calculate the position of itself in respect of the environment (e.g. answers the question
"Where am I?".) Research on movement and observation has been extensively developed
in this field, but planning is a relatively new area and is the missing piece in the Autonomy

9
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puzzle [22]. Planning is what Guidance Systems are responsible for, and even though in
the past, the useful signals produced by Navigation Systems and the ones that Control
Systems receive did not have a computer as an intermediary, nowadays these systems work
and cooperate seamlessly due to the implementation and use of Autonomous Systems,
which are processing and producing the necessary signals. Clearly, current research on
AVs is mainly focused on developing optimal deployment, intelligent motion, or smart
guidance system, these terms correspond to planning [24, 25, 16].

2.1.1 Autonomous Systems

The deployment of vehicles are always mission-dependent; that is, when the deployment
performance is defined, it always refers to the level of compliance of the mission with
respect to the actual movements of the vehicles. This premise limits the vision of the
average researcher to the development of Path Planning (PP) subsystems (or components).
On the other hand, most of high performance Autonomous Systems also manage to include
an appropriate Mission Planning (MiP) component that modifies the way of searching next
goals or locations. Another way to improve the global effectiveness of the autonomous
system is to focus on Trajectory Generation (TG) after the PP procedure. TG ensures that
the control system positions the AV in known locations. Based on the work by Liu et al.
[22], Autonomous Systems can be defined with a set of the 3 components introduced in
this paragraph (Figure 2.1.) It is also worth noting that the system has an input signal “AV
and Environment Information” and an output signal “Desired Velocity”, both of which
were previously noted as output and input from the other systems that comprise a GNC or
Autonomous System.

When it comes to the problem of developing GNC systems, one of the first decisions
involves choosing the right method to solve global optimization problems. Once the
domain of the environment is defined, the system must find the global minimum of a
function f (x), which can be a defined function or a function not analytically representable.
In either way, a solution must be found and there are two general types of approaches:
stochastic and deterministic [20]. Whenever research papers present a new way of solving
a particular problem or a review of methods and techniques found in the state of the art, it
is usual for the algorithms to be compared with algorithms of the same type (stochastic
or deterministic), and this can be considered a good practice because it is assumed that
the other approach may underperform with respect to the objective of the research. It
is known that stochastic methods will identify the global minimum of a function in an
infinite time with probability of one, and that deterministic methods ensure that with exact
computations and arbitrary long times, an approximation of the global minimum will be
found after a finite time.

All in all, Guidance Systems are designed and implemented, with a focus on the mission
of the project under development. It is necessary to define and exemplify the components
of the GSs in order to deeply comprehend the Guidance System design paradigm and,
therefore, propose and produce better guidance systems.

• Mission Planning (MiP): referring to global high-level decisions that need to bemade,
Liu et al. [22] define that a MiP component should obtain all possible data (tasks,
environment, operators, etc.) and define missions accordingly. These missions can
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Figure 2.1 Autonomous System components: Mission Planning, Path Planning and Tra-
jectory Generation.

be to obtain a target point or proceed to perform a task. Zhen et al. [26] describe MiP
as a Waypoint (or target) Generation module for a multi-UAV system, Sampedro et
al. [27] differ in these definitions, defining a Global Mission Planner (which acts
like a normal MiP by providing waypoints) and an Agent Mission Planner that is in
charge of executing the tasks made by the previous planner. In the survey by Mac
et al. [28], mission planning can arguably be defined as the “cognition” step in the
autonomous process they define.

MiP component is among the more abstract components of AVs not only because
they need to provide context to the lower levels of Autonomous Systems but also
they need to transform the abstract ideas of Mission and Vision Statements into
feasible actions.

• Path Planning: The process of obtaining a valid route between two points is called
Path Planning and is the crucial component of the GS due to the fact that to safely
guide one vehicle to a point, a routemust be planned. Zhou et al. [23] define this stage
as the route planning procedure and also as a macro-modality constraint problem,
and the vehicle is treated as a particle in the environment. Path Planning takes in all
the data from NS and the MiP component, and obtains a series of waypoints to visit
in order to reach to a desired location. Shin and Chae [29] elaborate a performance
review of some of the best known path planning algorithms, such as A* or GA, using
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a small grid-based experimental configuration and a simulated discrete particle as
vehicle. Other works elaborate similar performance reviews but take into account
models of the vehicle dynamics to test the algorithms, for example, Chaari et al.
[30] using a simulated Autonomous Ground Vehicle (AGV) while Zammit and
Van Kampen [31] used a simulated AAV as vehicle for comparison. These works
define various types of path planning methods, they can be Global Path Planning
(GPP) or Local Path Planning (LPP), the first approach takes into account only
information found in the past (be it from the environment, or even from the vehicle
itself), it can be considered as a first step towards a high-performance planning or a
previous step for LPP, which is the approach that considers continuously updated
information and obtains routes that can change through time if required. Though
Path Planning is sufficient to produce valid routes for vehicles, in some occasions
additional computation is needed in order to provide safe routes.

• Trajectory Generation: Whenever a more complex scenario is presented, this com-
ponent is necessary to ensure that the vehicle follows the planned or projected path.
More complex scenario means more complex dynamics and/or more rules to be
followed to reach a destination. Panden et al. [32] denote that the TG component is
suitable whenever the environment or constraints are dynamic, this is true in most
real-life scenarios since environment hazards such as winds, waves, etc. are present.

In spite of the vast amount of definition for these systems, all researchers in this field
define these systems in the same way as stated in this thesis, differing only in word selection.
For the sake of clarity, in this thesis, the terms from different works will be adapted to the
previous definition whenever necessary.

2.1.2 Autonomy

Figure 2.2 is designed around the definition of autonomy, taking into account the compo-
nents of the Guidance Systems. The less the AV decides its actions, the lower the autonomy
level, therefore, the less it comprises all possible components of the Guidance Systems.
However, the process shown in Figure 2.1 can be misleading because it shows that each
component depends on previous ones, and while this is true, if a work attempts to work on
more general components, it is assumed that more specific components are also developed,
but this is not true. Some authors focus their work on a specific component like Path
Planning and not Trajectory Generation, while others develop more components to ensure
a higher level of autonomy. To emphasize the definition of autonomy, it is necessary to
differentiate this term from automation, the first refers to the capacity to deliberate a course
of action by itself, while the latter most often implies the process of performing physical
or logical actions without any help.

Zhou et al. [23] proposed eight levels of automation, in which each designed Guidance
System can be assigned to each of the levels. However, it must be noted that these levels
include cooperation between vehicles (i.e.: sharing information, etc.) from level 6+ and it
is safe to say that a vehicle can be fully autonomous while not being able to cooperate with
others. Abraham et al. [33] define seven levels of automation for AVs and the levels differ
in definition but correlate in the desired output with the previous cited work. Wickens [34]
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Figure 2.2 Automation capabilities.

made a third automation definition that is based on stages rather than levels and defines
4 global situations: Attention filtering, Diagnosis, Action Choice, and Action Execution.
These definitions were consolidated in Table 2.1 to have the least possible number of levels
of Guidance Systems but sufficient to differentiate the perceived quality of automation.

Table 2.1 Automation Level.

Automation General Level (Zhou Level (Abraham Stage
Level Definition et al. [23]) et al. [33]) (Wickens [34])

1 Human Guidance 1-2 1 1
2 LPP 3 2-4 2
3 GPP & LPP 4-5 5 -
4 PP & TG 6-7 6 3
5 MiP, PP & TG 8 7 4

Guidance Systems design must exploit the vehicle’s capabilities, properties and appli-
cations, i.e.: for maritime rescues purposes, the vehicle must prioritize time and power
management, for unknown terrain mapping, the vehicle must cover the entire environment
in detail, and for precision agriculture, the vehicle must carefully select the paths to drive.
In Table 2.2, several examples of work in this field are shown. The approach that relates
to this thesis is the work of Morere et al. [19], where an AAV deliberates the next goal
position according to the level of uncertainty of the environment and aims to decrease the
uncertainty in high-gradient zones.
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Table 2.2 Automation level of some vehicles.

Guidance Sys-
tem

Perceived
Automation
Level

Main Focus Vehicle Type

Morere et al.
[19]

4 MiP, PP, TG AAV

Tokekar et al.
[35]

4 GPP, LPP AGV & AAV

Liu et al. [36] 3 LPP ASV

2.2 Global Path Planning

Some applications require redundancy, dangerous activities, coverage, and emergence.
These are defined as applications that can be achieved by aMulti-Robot System (MRS),
which is more robust, flexible, and scalable than a single robot system (isolated vehicles)
according to Bayindir [37]. MRS have a special place in the field of mobile robotics because
they deal with the organization of many, organization that should be comprehensible from
a general point of view. The last statement by no means implies a general supervisor or
coordinator, MRS can be centralized or decentralized [37]. They are capable of providing
a solution whether a central unit is providing the tasks or not.
Many models of social robots and AVs are based on natural behaviors or the human

interpretations of them, these models are focused on defining rules and instructions for a
single vehicle, they can intentionally cooperate or compete in a social environment but
in the first approach of development, then on a second stage of development, the rules
are expanded and include interactions between vehicles in order to achieve the social
requirements that are in the scope of the research. Addressing, for example, the coverage
problem, it is common to have a vehicle that is capable to cover a pre-defined area and
later develop the communication and cooperation system in order to divide the areas to
cover when a MRS is present. Table 2.3 shows a number of examples of MRS, grouped
by application. A coverage application aims to monitor a geographical area, swarming is
the action of collaborating between simple robots to accomplish a goal, transport robots
are vehicles that coherently act and communicate to move one large object.

From the examples shown in Table 2.3, the only application that cannot be accomplished
by a single vehicle is swarming, there are numerous works that aim to patrol, transport or
even cover an area, but for evident reasons, they take more time and more prone to fail
the task at hand. In any case, it is important to consider the research that fits the scope
of this thesis, which includes all coverage application researches and works. The thesis
by Kapoutsis [38] provides a multi-ASV approach to cover an unknown environment.
It focuses on dividing the environment using a cyclic algorithm taking into account the
starting position of the vehicles.
While enclosed environments can be optimally covered in a finite time, open environ-

ments are difficult to cover because in some of the worst-case scenarios the supposed
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Table 2.3 Examples of coverage applications.

Application Vehicle Type Main Alg. References
Coverage

AGV Flocking [25]
ASV DARP [38]

Swarming
AAV Forward,

Coherence,
Avoidance

[39]

Transport
AGV Formation,

Local and
Global PP

[40]

previous information can lead to dead-ends or local minimum. This problem can be avoided
using the Kapoutsis method proposed [38] or by continually updating the information
about the environment, more specifically, updating the posterior model of the environment
with the prior model and a new evidence taken from the environment. Although this
method can be more computationally intense than the first one, it provides better coverage
whenever the information of the environment is more important than the coverage of the
environment itself.
This thesis describes a method that aims to obtain approximate models of unknown

environments in a shorter total time than current methods, admitting uncertainty. This will
be accomplished by a group of Autonomous Surface Vehicles that distributively work to
obtain information about the environment and mathematical models that take into account
uncertainty and probability. The automation level will reach a level of 5 (Table 2.1),
considering that this thesis addressed the Mission Planning component, and uses multiple
systems to perform Path Planning and Trajectory Generation. This is one of the main
contributions of this thesis, as initially described in the previous chapter.

2.3 Modeling and monitoring applications

Regarding GPP for monitoring, there exist conventional monitoring methods that have
been implemented due to their simplicity, like the lawnmower method. It consists of
sweeping the space using a predefined distance between measurement locations (in the
case of discrete measuring) and a preestablished route morphology. In general, using these
techniques yield a slow but detailed monitoring. Therefore, these are the preferred methods
when there are neither time-related restrictions nor expensive exploration costs. L-Cover,
T-Cover, and Z-cover [16] are some commonmethods that fall into the lawnmower category.
These methods are extremely useful in situations where the work or search space is very
narrow, such as with rivers and streams; however, they have less impact observational wise
as the water body widens due to energy availability concerns. In addition, these methods
are not designed to do online learning or monitoring. Various coverage, patrolling, and
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monitoring works can be found that use unmanned vehicles to accomplish the task of
offline monitoring. Some of them [41, 42] develop control systems for ASVs and are tested
in real life scenarios.
Monitoring applications with the usage of autonomous vehicles is an active research

field [43] [44]. Both aerial and aquatic vehicles (surface and underwater) equipped with
environment sensors have been proposed to measure parameters. This is the case of the
work in [45] that proposes a Q-learning fuzzy logic for flying ad-hoc networks of aerial
vehicles. Fuzzy logic is a type of algorithm that accounts for unknown behaviors and
results for actions with probabilistic overlapping outputs. Another work [46] develops
path planning strategies for aerial vehicles for autonomous search and target location in a
risky environment, while optimizing both search and survival through the selection of a
balanced Pareto-point front and using customized reward functions. A recent study [47]
designs a Multi-Objective Optimization for Drone Delivery that manages to minimize
delivery cost using the ε-constraint method and the percentage of unsuccessful delivered
packages while maximizing on-time delivery reward. The multi-objective strategy is also
proposed in [48], where a coverage problem is addressed using multiple aerial vehicles for
efficient communication networks. In relation to monitoring, in [49], the authors describe
a path generation algorithm that minimizes the time of rescue action using a Genetic
Algorithm (GA) technique. The work considers several dynamic and time constraints
in order to provide efficient routes for reaching a target destination. One approach [50]
considers multiple aerial vehicles for agricultural monitoring using a distributed swarm
control technique. Definitely, multi-objective problems as well as multi-agent systems
have been proposed for accomplishing monitoring missions with autonomous vehicles.

An in-depth survey focusing on robot path planning [51] classified some of the referred
works and others into strategies and approaches that completed the coverage mission. The
cited applications in the survey range frommapping and surveillance to coastal coverage. It
is important to note that monitoring tasks are not exclusively based on the usage of surface
vehicles, since multiple works use AAVs to perform the same type of mission. In [52], the
authors presented an algorithm that monitors an environment using an energy-constrained
AAV that covers an area together with an AGV. There exists a related work that presents
energy-related constraints.

A specific GPP implementation related to monitoring corresponds to Informative Path
Planning (IPP). IPP are algorithms designed to a path that maximizes obtain the gain
between a starting and a final location [12], and they are very useful when the goals are
already defined. IPP algorithms have been used for surveying underwater algae farms
[12], using Gaussian Processes as surrogate models and information gain-based functions
to select waypoints or locations. Another IPP implementation [53] uses AAVs to map
unknown environments via ray-casting for mazes and building explorations using a Rapidly-
Exploring Random Tree star (RRT*) inspired algorithm. RRT* is a good path planner since
it is a fast a reliable algorithm [54]. Another example that uses ASVs for environmental
monitoring can be found in [24], where orienteering-based approaches are proposed.
Some works have focused on developing monitoring systems for Ypacarai Lake [14].

For example, the International Hydroinformation Center (CIH)[55] of Itaipú focuses on
continuouslymonitoring fixed locations within the Lake as well as its main sources of inflow
and outflow. Furthermore, the Multidisciplinary Technology Research Center provides
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results of sampling measurements carried out in 14 different locations. Considering the
usage of ASVs, in [14], the authors propose algorithms that explore the lake with an ASV
using evolutionary algorithms based on the Traveling Salesman Problem (TSP), which
provides a global path that manages to explore the surface of the Ypacarai Lake. The main
algorithm in the mentioned work evolves the visiting order of 60 waypoints located on
the shore of the lake so that coverage is maximized considering Eulerian Circuits. The
mentioned work was further improved and, compared to Hamiltonian circuits in [15],
the evolutionary-based approach manages to obtain the best visiting order so that the
maximum possible area coverage is performed. Additional improvements were proposed
in [56], where two objectives (Exploration and Exploitation) are accomplished but not
simultaneously. More recently, in [10], a Deep Reinforcement Learning (DRL) approach
was designed so that a single ASV patrolled the lake. Homogeneus and non-homogeneous
patrolling were designed and solved through Deep Learning Techniques in other works
[11]. The authors compared their proposed algorithm with GA techniques in [57]. Another
related work used a Particle Swarm Optimization-based (PSO) algorithm for monitoring
and exploration [58], where multiple vehicles were considered and an optimization is
done through the vehicles. Their next work [59] considers not only the PSO algorithm
but also the results of a Gaussian Process regression to search for peaks and valleys of the
measured WQP. Furthermore, they compared PSO algorithms in their most recent work
[60], which is accompanied by a work in progress in [61], which applies the most recent
variations of PSO to the monitoring problem for peaks (or maximum) optimization. The
only multi-objective related work performed for Yparacai Lake corresponds to [62], where
a set of ASVs are in charge of patrolling the lake considering multiple objective maps.
Regarding BO-based approaches, recent monitoring proposals using AAV include

[19, 63, 64]. In [19], the authors use sequential BO to obtain a height map using an
AAV, where the decision is made using a Partially Observable Markov Decision Process
(POMDP). The results obtained indicate that the Bayesian approach is useful whenever
the number of measurements is limited. In [63], continuous 3D trajectories are generated
to map an area using Gaussian Processes. Similarly, a path planning model is proposed
in [64], where an interactive multiple model algorithm is used to update the belief space.
Large-scale pollution and luminosity monitoring simulations were performed in [65]
using continuous BO approaches, obtaining a significant error reduction compared to other
methods. A Bayesian Exploration-Exploitation approach for online planning was presented
in [66], using a POMDP utility function. A recent work [67] shows the development of save
navigation procedures for mobile robots using BO to predict high movement vibrations in a
defined space. A summary of monitoring approaches can be found in Table 2.4, including
the monitoring algorithm and whether it is online (uses new information to decide on the
next actions of the agents).
Although the mentioned works are promising, the proposed method presents some

important advantages with respect to the application of real monitoring task applications.
The main benefits include: i) obtaining a mathematical surrogate model of several real
water quality parameter models, which can be easily used for future purposes, ii) intelligent
determination of measuring locations using adapted acquisition functions that consider
the mobility restrictions of autonomous vehicles, and iii) an important reduction of the
exploration cost of a water resource, which is crucial for efficient large-scale monitoring.
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Table 2.4 Summary of path planning approaches for monitoring, coverage and autonomous
decisions.

Ref. (Year) Specific Objective Monitoring Algorithm Online

[19] (2017) Height reconstruction BO path planning X�
[16] (2019) Coverage Lawnmower Z-,T- Cover �
[47] (2019) Drone Delivery Multi-Objective O. �
[49] (2020) Rescue action GA for LPP �
[56] (2019) WQP Monitoring TSP-based GA 2x planning X�
[63] (2020) Environment reconstruction GP based path planning X�
[58] (2021) WQP Monitoring PSO monitoring X�
[62] (2022) Water patrolling GA-based MOO X�

To this point, the contributions of this thesis mentioned in the previous chapter are clearer
and are identified as the current gaps in the state-of-the-art that needed to be addressed.
Furthermore, Multi-Objective Optimization systems using fixed sensor stations have

recently been proposed for different environmental missions, such as monitoring ventilation
system [68] or even water quality monitoring [69]. Both mentioned works pursue the
objective of optimal positioning sensors in fixed locations. While the former [68] uses
a GA for obtaining the optimal locations according to several functions, the latter [69]
utilizes Transinformation Entropy, which measures mutual information, to be minimized
by an enhanced GA for Multi-objective Optimization. These methods consider multiple
objectives and solve the problem by taking into account each objective independently. For
coverage problems taking into account multiple vehicles, in [70], the authors propose a
coupled weighted multifunction to decide the positions of UAVs for optimal coverage
deployments. These works are based on the selection of locations on GA.
Multi-Objective Bayesian optimization has been applied to many optimization works

[71, 72] in several research fields. The sequential BO proposed in existing work is useful
and can be adapted to accomplish monitoring tasks. For example, in [71], a Predictive
Entropy Search for Multi-Objective BO with Constraints (PESMOC) is proposed using
a 4-step process. This method takes into account the Pareto-front generated by a set of
predicted mean distributions. The general PES AF is used for each objective function. In
addition, the authors propose both coupled and decoupled methods to fuse the different
AFs. The first fusion technique consists of adding the different AFs in order to obtain a
global AF. However, the second method, which consists of selecting the maximum of the
different AFs, has been proven to generate better results. On the other hand, in [72], the
authors used a two-stage BO for global optimization based on the evaluation of multiple
AFs using the same surrogate model and a selection criterion, obtaining a reward-based AF
selection system. However, in the mentioned work [72], the system is capable of evaluating
the objective function without accounting for the distance between the locations of the
measurements, so that, ultimately, multiple AFs (one for each objective) were used only to
increase the total number of measurements.

In [73], multiple Dubins vehicles (capable of following only soft curved paths, i.e., no
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hard turns or rotations around their axes) were used to perform coverage in a 200 km2 lake.
The vehicles can be heterogeneous as well, implying different physics, dynamics, and
control for each agent. For example, in [74], the authors developed a coordinated system
using an AUV with an ASV to detect pollution in water environments. Another study
[75] proposes a multi-robot path planning algorithm whenever connectivity constraints
are present. The work in [76] shows that AAVs can be used to inspect rice farms using
PSO algorithms. Next, the work in [8] shows a dynamic graph-based formulation for
underwater vehicles so that ocean temperature can be measured with multiple vehicles.
Other underwater vehicles usages include a work for monitoring underwater algae bloom
[21]. Information entropy can also be considered for monitoring, in the case of the work
in [77], an IPP algorithm was developed that considered entropy to accomplish a mission
of plant phenotyping. Table 2.5 shows a brief summary of monitoring approaches that
use multiple vehicles to achieve their objectives.

Table 2.5 Brief summary of monitoring approaches using multiple autonomous vehicles.

Ref. (Year) Specific Objective Monitoring Algorithm Vehicle

[21] Algae Bloom Decentralized adaptive Underwater
(2017) Monitoring informative sampling Vehicle
[8] Ocean temperature Dynamic graph-based Underwater

(2018) environmental routing Vehicle
monitoring

[77] Plant Entropy-based Ground
(2018) phenotyping Informative Path P. Vehicle
[73] Complete coverage Traveling salesman ASV
(2018) of known problem k-TSP

environments -formulation
[75] Exploration under Bipartite Graph Generic
(2019) Connectivity Formulation Robot

Constraints

It is not very common to fin a work that uses multiple agents focusing on multiple
objectives, simultaneously. Moreover, if the objective is for monitoring, the number of
works is more limited. Table 2.6 shows some works that are designed for monitoring that
considers multi-agent systems or multi-objective problems. It can be seen that this is not a
common approach to address both simultaneously, in fact, the last two works mentioned
are works that were developed for the specific problem of Ypacarai Lake water quality
monitoring.
Finally, the proposed method differentiates from the related works as it is the first, to

the best knowledge of the author, that addresses the multi-objective data acquisition for
environmental monitoring using multiple ASVs. The system is capable of minimizing
the uncertainty, which minimizes the surrogate error, of multiple water quality models
simultaneously. Furthermore, we manage to implement Multi Objective Optimization
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Table 2.6 Related monitoring works indicating whether the works consider or not multiple
agents and multiple objectives.

Ref. (Year) Path Planning Approach M-Agent M-Obj.

[73] (2018) Dubins Coverage with Area/Route Clustering X� �
[78] (2018) Human Operated � X�
[75] (2019) Multi-Robot Informative Path Planning X� �
[45] (2020) Q-learning design X� �
[63] (2020) Informative 3D PP for Terrain Mapping � �
[58] (2021) Gaussian Process-based PSO X� X�
[62] (2022) GA-based MOO X� X�

approaches for environmental monitoring, whereas recent algorithms are not tested in this
scenario. Compared to fixed station works, the proposed method can efficiently select
measurement locations when the functions are unknown, whereas fixed monitoring station
methods are based on monitoring environments with a priori information. With respect
to other ASV-based environmental monitoring systems, the proposed system is actively
learning, exploring the environment taking into account multiple information, due to the
fact that it is based on Bayesian optimization for multiple functions. The related works
included in this section provide theoretical bases for the design and implementation of
our proposed method. Although most of the works shown used GP as surrogate models,
none of them implement BO procedures to obtain information. This work also takes into
account energy constraints, so that the performance evaluations can provide insight for
real-life experiments.
Our method also differentiates from the related work, as it relies on the contribution

of several input data, rather than only one objective. Generally, the underlying mission is
only exploration [14, 16]. But this work simultaneously performs both monitoring and
model obtaining. Our method quickly performs active learning, obtaining approximate
models of various WQ parameters simultaneously. In the next chapters, the problem is
stated, and the assumptions and the different components are appropriately defined.
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Work is never over.

Daft Punk, 2001

In order to achieve the desired level of autonomy mentioned, the monitoring system must
decide the location of the measurements according to the data already available. This

process can be done planning one step at a time or multiple steps ahead. Although offline
methods will perform better when the available information meets a certain level of accu-
racy and relevancy, the online method is preferred when the system is first introduced into
a new environment. Moreover, the natural starting point is to opt for an online monitoring
system. In that sense, several key elements of both the system and the environment must
be properly described.
In this setting, the system sequentially chooses new “evaluation points” regarding

the current state of the environment, updates its belief according to newly collected
data, and repeats the process until a certain criterion is met or a constraint is violated.
Figure 3.1 shows a simple flow chart that shows the abstract behavior of the system.
This online approach closely resembles the BO framework, which can also be related
to Active Learning. Referring to the work of Morere et al. [19], Bayesian optimization
is a sequential method that can ensure lowering the uncertainty levels of the measured
or evaluated function. BO considers a surrogate model and a utility function to select
measurement locations in the real world accordingly [79]. This surrogate model can,
of course, be a good or bad approximation, but eventually the evidence will provide a
confidence measure on whether or not the model fits the real environment. Selecting an
appropriate model can be tough and time consuming, but also optimal for applications
where the environment is unknown or only has a limited amount of prior information
available. To organize the acquired data and present the BO framework, some preliminary
definitions are considered.

21
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Figure 3.1 Abstract general flowchart of the steps that needs to be done in the monitoring
mission.

3.1 Preliminaries

The monitoring system designed in this thesis has the objective of efficiently obtaining
water quality models of a given water body. A water body is defined as any significant
accumulation of water on the surface of the Earth and can be a reference to seas, salt
lagoons, freshwater lakes, rivers, or small lagoons. In this context, each of many water
quality parameters is mathematically defined as an unknown black box target function
f (x), where the argument x corresponds to a location in the search space (water body).
Evidently, each target function is unknown to the observer, and additionally, their true
behaviors could never be obtained. Consequently, these functions are replaced by surrogate
models designed to approximate the real behaviors. The values of the target functions are
available to the system, but the system performs noisy reads such that:

f̂ (x) = f (x)+ ε (3.1)

with ε as the noise bounded to the measurement. With that, the expected output of
the system will be based on these noisy measurements rather than on the true values.
Additionally, for computation purposes, the real model will be replaced with a surrogate
model that is set to behave like the real one. A comprehensive definition of the surrogate
model is available in later sections, but, loosely speaking, the surrogate model can be
thought of as a model of f̂ (x) ∀ x ∈ X .

3.1.1 Map model and measurement locations.

X is a subspace of the Rn space. It is expected that x is a geodetic coordinate, that is,
a latitude, longitude, and altitude data, because the agents in charge of performing the
measurements are on the surface of a water body. However, since the agents can only
travel on the surface, the space of actions reduces to Latitude and Longitude. Moreover,
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since the dimensions of Earth will always be much larger than the dimensions of the water
body to be monitored, the space X reduces to a 2D projection of the water body. Then,
the modeled map can be described in more detail, since only the rectangle that encloses
the water body is needed. This rectangle can be thought of as a matrixM, which can be
called a map model. Therefore, the monitoring region is considered as a matrixM with
dimensions of m×n, i.e, a monochrome image with pixel dimensions m×n, i.e., each
pixel corresponds to a square of side d that has a black or white color that represents the
occupancy state of the square. This square represents a compromise solution in which
the environment is sufficiently detailed but large enough to allow large-scale modeling.
Each element of the map modelMi, j has a value defined by an occupancy state (1 if the
element corresponds to a occupied square space d×d in the space, 0 if not).

Figure 3.2 Example of a map model. Originally, the real image is drawn from a Satellite
Resource. Then, it is translated to a binary image according to the navigability
inside a square of a defined side d.

Figure 3.2 shows an example of the map model of a water body used in this work; in the
image, the color white represents obstacles (including prohibited zones, natural obstacles,
land, etc.), while the color black represents a square of free obstacles. Definitely, the
environment studied is discrete due to the usage of the map modelM, so that a vehicle can
only be located in a position related to an element of the map. Finally, the set of navigable
elements is defined as follows.

X ⊆M⊆ R2 (3.2)

A general way to represent the map is to also include every non-navigable location
in the X with the addition of a constraint function that yields the occupancy state. The
constraint function will satisfy the following inequality for all feasible locations: g1(x)≤ 0.
Additionally, any location outside of the map modelM will yield undefined values, i.e.,
the edges of the map model define the boundaries of the region in which an agent can be
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found. However, in what follows, unless defined otherwise, a generic location x ∈ X will
be considered to satisfy the constraint.

An important consideration is that the studied water environments are always non-convex
sets. The convexity of a set can be described by graphical observations. If, in the space of
actions (map model), there exists any pair of feasible locations that cannot be connected
(through a segment line) without selecting unfeasible locations, the set has a non-convex
property. Regarding the fact that any water body will generally have a non-standard shape,
it is better to consider that the water body will always be a non-convex set, including
the example shown in Figure 3.2. Consequently, local path planners are needed in this
scenario to ensure that each available ASV can travel safely from one location to another.

3.1.2 Water Quality Parameter Model Maps. Measurement values

Observing Eq. (3.1), x, as well as f (x), are now mathematically defined, but f (x) and
the measurements f̂ (x) must also be defined in terms of the monitoring application, as
x was in the preceding paragraphs. Environmental water quality is evaluated according
to a set of physicochemical and biological parameters of the water. In the case of water
bodies, the parameters must meet a defined criterion so that they can harbor life and
maintain a balanced healthy ecosystem. These parameters can be divided into three
subclasses, physical, chemical, and biological indicators. Current available water quality
sensors include both physical and chemical sensors, but not biological ones. Therefore,
the available Water Quality Parameters or Indicators relevant to this thesis are included in
Table 3.1. Note that the values for Good Quality Indicators are not defined for drinkable
water but for freshwater [80] capable of sustaining life.

Table 3.1 Water Quality Parameters (ordered by their importance according to [80]) avail-
able for measuring indicating their abbreviation, whether they are a chemical
(C.) or physical (P.) indicator, unit of measurement, typical range, and typical
Good Quality Indicator (GQI) value for freshwaters.

Parameter Abvr. Type Unit Typical Range GQI

Dissolved Oxygen DO C. % 0∼ 100 75−125
Potential of Hydrogen pH C. H+ 0∼ 14 6−8.5

Nitrate NO3 C. mg/L 0 - 15 ≤ 5
Temperature T P. ºC 0∼ 100 —
Turbidity Tu. P. NTU 0∼ 4,000 ≤ 20

Conductivity Cond. P. µS/cm 0∼ 60,000 200−800
Oxidation-Reduction ORP C. mV 0∼ 2,000 300−500

Potential

AWater quality parameter model is defined using the function f (x), a value or evaluation
of the model at the location x is always available for measurement. The model represents
the current behavior of a particular WQP and is considered continuous and multimodal.
These characteristics are the expected characteristics of water quality parameter maps.
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WQPs are not necessarily time-invariant, implying that their stochastic behavior is not
stationary since the environment is continuously changing. In that sense, a study on WQP
modeling must also be done to obtain time frames in which the measurements are valid
and can yield good results.

3.1.3 Autonomous Surface Vehicles: Agents and coordination

The agents in charge of performing the measurements are ASV. The vth ASV, considering
v the id number of an ASV in a fleet of V ASVs, i.e., v = [1,2,3, . . . ,V ], must travel on
the surface of a water body from location to location, loiter around the measurement point,
i.e. stopping and managing to stand still, perform the measurement (and save/send/store),
and obtain the next measurement location according to the system. All these actions must
be performed by their on-board system. Therefore, it is necessary to define the specific
on-board systems of the ASVs.

Guidance, Navigation & Control (GNC)

As discussed in the previous chapters, all ASVs are admittedly capable of traveling through
the surface of any water body and, in this case, can also perform Water Quality measure-
ments. The GNC system on board is capable of determining the location of an ASV can
be determined by assuming a certain error. The Navigation subsystem provides a location
value of the vehicle within the real world; however, since the positioning system is not
perfect, the positioning error leads to guidance inaccuracies. These inaccuracies in the
guidance include considering that an ASV is not at the estimated location. To efficiently
overcome this issue, the map model to be obtained can account for this and define that
the square side length d, previously defined, is greater than the expected error output derr
of the location estimation. Then, the assumption is that the WQPs measured at the real
location x are the same for all nearby locations that are d units away, in terms of latitude
and/or longitude, including the assigned measurement location x ∈M.

The Guidance subsystem will plan paths according to the current location and the goal
location. Taking into account the previous definition of this subsystem and its components,
in this thesis, each ASV is considered to have a dedicated Local Path Planning component,
which uses an already defined goal to obtain a collision-free path that can effectively and
efficiently move the ASV from one location to another. If there are no obstacles in the
segment, a direct route is planned; otherwise, the guidance system plans a path using
RRT*, as it can provide quick and good routes. The control subsystem is the last subsystem
of the GNC, and it actively modifies the motor and other actuators states to reach the
desired locations. However, since the navigation subsystem has an error, the goal location
may be different from the final location reached. This error also accounts for water and air
currents, stopping mechanisms, etc. Consequently, the Mission Planning and Global Path
planning components are the only non-essential components that are left to be defined,
but will be in the next chapter.

ASV constraints

Regarding energy and autonomy, considering that the WQP sensor system is powered by its
own battery and that the onboard electronics consume relatively very little power, battery
usage, and time consumption are considered constraints, defining the maximum distance
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that each ASV can travel. The battery of the WQP sensor system can run for long sessions,
noticeably longer than the expected mission time, while the onboard electronics draw
current from the main battery, but at a significantly lower rate than the motors. Moreover,
the mission planning and global path planning components do not run on each ASV, as
they run on a server-side system.
The usage of batteries per unit of movement cannot be exacted, but an approximation

can be made considering the movement factors, the available battery, the motors utilized,
their acceleration capabilities, and the desired velocity of the ASV. Considering that on
average an ASV draws e current per unit of distance driven, the average velocity of the
ASV is ||~v||, and the total distance driven is D, the energy used is:

Tenergy =
e
||~v||
×D (3.3)

Finally, with a defined maximum energy use Tenergymax
, usually in terms of Amperes

hours [Ah], the maximum distance Dmax can be obtained using the latter equation. This
value could be used to express when the mission has ended. Normally, this maximum
energy usage will be less than the energy available to ensure that an ASV can return to the
shore of the water body after it ends its mission.
Centralized Coordination
The centralized coordinator (CC) is responsible for running the system. It stores the
data obtained by each vehicle in a database and is responsible for providing an optimal
measurement location for each vehicle. It is centralized because it serves as a global
decision-making component and coordinates the movement of multiple available ASVs.
The paradigm is centralized coordination and decentralized execution, which yields ef-
fective coordinate solutions (surrogate models that include information obtained by all
vehicles) and efficient asynchronous measurement of water quality parameters through
multiple vehicles.
Water Quality Parameter Sensor System
Each ASV has a system dedicated to measuring multiple water quality parameters (pH,
DO, Tu., etc.). When an ASV reaches a desired measurement location, it stops and
takes measurements of all available WQPs. There are S different sensors, each one is
accessed through its id number s, considering s = [1,2,3, . . . ,S]. To take measurements,
each ASV must stop and instruct to perform a still measurement, preventing the so-
called continuous monitoring, i.e., the vehicle cannot constantly obtain new information.
Consequently, measurements are performed sequentially and, at the end of the mission, a
discrete number M of measurements that have been performed is available. In that sense,
pm, with m = [1,2,3, . . . ,M], is a location x, where a measurement has been performed.
Since multiple WQPs are measured simultaneously, it is necessary to describe multiple

target functions fs(x), and, consequently, multiple measurements f̂s(pm) at location pm.
For simplicity, each measured WQP is referred to as fs(x) instead of their real name,
e.g., the DO (Table 3.1) function for a water body is f1(x), etc. Then, the mission of
the proposed system pivots to selecting measurement locations pm so that each surrogate
model f̂s(pm) is as accurate as possible to the real behavior, which in turn can be described
in terms of a Multi-Objective Optimization.
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The specific required on-board system is described in Figure 3.3. It comprehends the 4
systems discussed in this section. The input values are directed to specific subsystems so
that autonomy can be efficiently achieved. The output values are directed towards changing
the location of the ASV or to inform the coordinator about measurements performed. In
Figure 3.4, an overview of the behavior of the system can be observed. It is a simplified
version that shows only what matters to the mission and objective of this thesis. In this
thesis, the insights, detailed behaviors, and components of each member of the diagram
will be thoroughly described.

ASVv

Guidance

Navigation Control

Water Quality Sensors

Raw
positions, 

etc

Instructions 
from 

Coordinator

Motor
Velocities

WQP
Measurement
Information 

Movement

Feedback from
Real World

Figure 3.3 Simplified on-board systems of each ASV. In this thesis, these systems are
considered to be available and fully functional.

3.1.4 Objective Functions

Multiple WQPs must be obtained simultaneously, and this mission can be seen as a
Multi-Objective Optimization equation, which typically has the form of:

optimize {
s=S

∑
s=1
Fs(x)}

s.t. x ∈ X
(3.4)

where Fs(x) is one of the S functions to be optimized (these functions are not the unknown
functions fs(x)), i.e., F1(x),F2(x), . . . ,FS(x). Generally, there is no solution that simulta-
neously optimizes all functions, since the objectives are counterbalanced, that is, the value
that optimizes Fs(x) is not equal to the value for optimizing any other function Fs(x).
Each function Fs(x), rather than each WQP function, corresponds to a summarized

error value of the surrogate model obtained of a real WQP s in a particular water body.
This thesis considers each functionFs(x) as a function that evaluates the average difference
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Figure 3.4 System Overview comprehending a Centralized Coordinator, ASVs, which
in turn has GNC and WQP Sensor systems, and the expected output (reliable
surrogate WQP Models).

between a real or objective function fs(x) and the surrogate or approximate regression
f̂s(x), and this value is considered a performance metric.

Performance Metrics

To estimate the model error, the mean squared error (MSE) is usually taken as the loss
function. MSE measures the quality of a surrogate model w.r.t. the real model in terms of
squared differences between them. MSE yields an absolute error value, which cannot be
used directly to evaluate multiple MSEs simultaneously because, as shown in Table 3.1,
the real values are not normalized and therefore an average value is not directly available.
Consequently, another metric will be used to account for this normalization.

The Coefficient of Determination is a regression analysis estimator that evaluates how
well independent variables can explain the dependent variable. Moreover, this measure,
often named R2 or R-squared, also depends on the square difference, as does MSE, and
additionally depends on the variance of the data, which acts as a normalization factor.
Then, a single average of R2 values can be obtained for multiple different WQP models.
R2 has the form of:

R2
s ( fs(x), f̂s(x)) = 1− ∑( fs(xi)− f̂s(xi))

2

∑( fs(xi)− f̄s(x))2 (3.5)

In this equation, f̄s(x) corresponds to the mean value of the real data. Since the equation
evaluates the proportion between the sum of squared errors (i.e., the residual sum of
squares) and the total sum of squares, the value can vary between (−∞,1.0], because
the proportion, which acts as a variation of the MSE (which improves towards zero),
is subtracted from the value of one. The system will be useful when the average R2 of
multiple surrogate models is closer to one.
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Multi Objective Optimization

Since R2 is the selected performance metric, a maximization is obtained for multiple target
functions, which implies that the optimization procedure (Eq. (3.4)) is to obtain the highest
values for each R2. Furthermore, the maximization of each Fs(x) = R2

s ( fs(x), f̂s(x)) is not
done directly, but by fitting the surrogate models according to the measurements that were
recently evaluated. In that sense and with regard to multi-objective optimization, after
fitting the surrogate models, a linear scalarizing a priori method is applied, with equal
weights, so that the solution corresponds to an average of the R2 values. Definitely, the
optimization procedure, obtaining better surrogate models, is done indirectly (through
the proposed monitoring system), whereas the performance evaluation is done using the
obtained surrogate models and a comparison of them with the real models.

3.2 Bayesian Optimization Framework for Monitoring

With the environment appropriately defined both mathematically and according to the
water monitoring application, the next step is to formally define the system, which applies
the Bayesian framework to obtain measurement locations. For simplicity and without loss
of generality, the present and future sections will consider only one WQP and one ASV,
such that a bottom-up architecture can be appropriately defined afterward.

Originally, the idea of BO focuses on optimizing (finding maximum/minimum values) an
unknown function, which is not only costly to evaluate, but its first and second derivatives
are also unknown to the decision maker and the system [79, 65]. This optimization is done
sequentially, through the usage of utility functions based not on the real unknown function
but on a surrogate model that yields an approximate function, so that in real terms the
optimization is done to the surrogate model instead of the real one, while the surrogate
model is sequentially expected to resemble the real model. Hance, BO has the general
form of:

x∗ = arg min
x∈X

f (x) (3.6)

which implies that the optimization goal is to find the minimum location for the black-box
function, i.e., x∗ is the measurement location that optimizes the WQP function f (x).

Considering a proposed measurement location x∗ and the fact that f (x) is unknown, the
real function is replaced by the regression produced by the surrogate model f̂ (x). Then, to
update the belief, the function is evaluated (WQP is measured) at this location x∗. Now, the
system can incorporate the newly obtained information, update the surrogate model, and,
accordingly, propose a new location for measurement x∗. This is why BO is a sequential
method and, since it depends on surrogate models, it also uses utility functions that may
depend on stochasticity. The right-hand side of Eq. (3.6) can be replaced with these
components, considering that the utility function α(·) depends directly on the surrogate
model.
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3.2.1 Surrogate Model

The BO paradigm is to define a location that optimizes an unknown function under a lack
of information or uncertain beliefs. For that matter, surrogate models are used to infer
the behaviors of the true black-box functions. These models can be both deterministic
and stochastic. The latter is the most widely adopted because uncertainties can be used
efficiently to balance exploration/exploitation through specific utility functions. Stochastic
models yield not only the predicted mean value but also the related uncertainty. In the
literature, f̂ (x) corresponds to the mean value of the stochastic model but is more frequently
referred to as µ(x), while uncertainty is referred to as σ(x). Gaussian Processes are often
used as probabilistic surrogate models, since they include prior beliefs (such as expected
behavior and covariance) and fit the regression through posterior updates (using evidence).
Moreover, GPs are relatively easy to understand because of their derivation from normal
distributions. GPs are formally described in the next section (Section 3.3).

3.2.2 Utility Function

Utility functions often use the GP regression to define optimal evaluation locations. Gener-
ally, these functions consider both the mean and the uncertainty to acquire a new location
to measure. It is evident that this proposed location is x∗, and that the complete implemen-
tation of the BO procedure is redefined from Eq. (3.6) as follows.

x∗ = arg max
x∈X

α(µ(x),σ(x)) (3.7)

considering that the mean and uncertainty are obtained using a fitted GP. Moreover, the
procedure is now to maximize the function, mainly because, generally speaking, these
functions are designed that way. Note that if we consider a weighting factor for both
arguments of the function α(·), the acquired measured location x∗ can be based exclusively
on the mean or uncertainty. When considering only the uncertainty, the procedure is
often named Active Learning, in which the idea is to measure the most unknown location
to learn the model as accurately as possible [81]. In movement-free environments, this
procedure would be preferred, since the mission is to obtain fair approximations of the
unknown environment. However, since vehicles must travel from location to location, the
system can also make efficient use of the mean value to obtain the measurement locations.
Generally, the specific function is named Acquisition Function. An extensive study on
Acquisition Functions can be found in Section 3.4.

3.3 Gaussian Processes as Surrogate Models

Gaussian Processes are a generalization of theGaussian probability distribution [20]. Based
on multivariate Gaussian distributions, GPs can fit data with ease (some examples include
[19, 67, 12]) through the definition of its 2 main components: the mean function µ(x) and
the covariance function k(x,x′), both of which are expectations of values according to a
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function, more formally:

µ(x) = E[ f (x)]
k(x,x′) = E[( f (x)−µ(x))( f (x′)−µ(x′))]

(3.8)

Note that these functions are defined according to the real process f (x), but since the
process is unknown and its evaluations can be noisy, it is safe (and almost necessary) to
define the target function also as stochastic, with this an approximation of f (x) can be
obtained with the defined mean and covariance functions, according to [20]:

f (x) ∼ GP(µ(x),k(x,x′)) (3.9)

The equation above implies that f̂ (x) = GP(µ(x),k(x,x′)), so the regression of the
surrogate model in this definition yields a stochastic-dependent variable. In conclusion,
GPs can be described as a way to obtain a Gaussian distribution for each input variable. In
the case of this thesis, this means that a GP can obtain the expected value of a WQP (and
its standard deviation) for each location inside the water body.
One of the main advantages of GPs is that they support the fit of the model through

modifications (marginalization and conditioning) of their parameters that will maintain
their closed behavior, i.e., the result of applying these particular modifications yields
another GP [82]. Since the confidence interval encloses a volume, the 2D GP regression is
often represented by two 2D heat maps showing the mean and standard deviation functions
of the model. The dependence between the input locations is modeled by the covariance
function, which will be defined in the next subsection. Subsequently, the process of
obtaining a regression is described in a suitable way.

3.3.1 Covariance Functions

Covariance functions, or kernels, are the functions typically used for pattern analysis that
are designed to provide a measure of similarity between two random input variables. The
relationships values can be grouped into three different ones, but but since the desired GP
regression should be able to describe a 2-D map of a supposedly continuous spread of a
water quality measure, the studied kernels should be as smooth as possible and present
positively correlated values for similar inputs, i.e., close-by locations present similar values
of WQPs.

Kernels describe every possible covariance between the inputs, and, usually, to ensure
handling, this description is modeled as a matrix K, whose elements Ki, j = k(xi,x j), this
matrix is called a Covariance, Gram or Kernel Matrix. For GP kernels, this matrix is
always positive semidefinite, which implies a closed behavior, always forming a square
matrix. Therefore, to obtain an inferred distribution, the kernel matrix can be augmented to
include covariance values between the test locations x∗with themselves and the covariances
of them with the known data input x using:

K =

[
K K∗

KT
∗ K∗∗

]
=

[
k(x,x) k(x,x∗)
k(x∗,x) k(x∗,x∗)

]
(3.10)
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where x∗, should not be confused with the next measurement location x∗. Observing 3.10,
it is evident that the augmented matrix K is symmetric considering that a kernel function
will always be defined as symmetric k(x,x′) = k(x′,x); this property will be useful to
obtain the inverse later. Any covariance function that is symmetric can be an appropriate
kernel function for a GP if they create a Positive Semidefinite (PSD) matrix. It is important
to define that train inputs corresponds to the locations in which a measurement has been
performed, i.e., there are train target values, while test inputs correspond to locations in
which we would like to infer a test target or value. Next, some of the most well-known
kernels are described in the following paragraphs.
Another property of most kernels corresponds to stationarity; a kernel is said to be

stationary when it is a function of x− x′. Thus, any translation changes in the input space
do not affect the kernel output. Furthermore, if the kernel is a function only of ||x− x′||, it
is also isotropic (invariant to all rigid motions) [20]. Most of the kernels are isotropic, but
they need to be selected according to the expected behavior of the black-box function.

Example of covariance functions

• Constant kernel: A standard covariance function denoted byσ0
2, which determines

the average distance of a target value from the mean of the function. Usually σ
2
0

appears in every kernel, but some authors prefer to treat them as different kernels,
implying that operations between kernels are possible.

• Squared Exponential (SE): The kernel most widely used in this field, also known
as RBF (Radial Basis Function). It is a function that captures covariance within
the range of [0, 1]. This kernel has a hyperparameter ` that corresponds to a length
scale that describes the smoothness of the function. Provides a measure of how
far apart two different inputs can be to affect or influence each other. The higher
the value of `, the slower the rate of change. Moreover, larger values provide more
extrapolation limits. It has the form of

kSE(x,x
′) = exp

(
− ||x− x′||2

2`2

)
(3.11)

The SE kernel is very useful for synthetic data and not very noisy real behaviors,
since the smoothness provided by the SE can fit virtually any curve/function. It has
proven to be very useful for first approach modeling in many scenarios [19, 65, 67].

• Rational Quadratic (RQ): A kernel that represents an infinite sum of RBFs with
different characteristic length scales. As the infinite sum can be correlated to a scale
mixture, the RQ kernel expects the objective function to behave smoothly across
many length scales.

kRQ(x,x
′) =

(
1+
||x− x′||2

2α`2

)−α

(3.12)

The hyperparameters are `, which behaves exactly like SE, and α , which corresponds
to the scale mixture parameter. As α tends to ∞, RQ is approximately equal to SE.
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• Matérn: Contrary to the kernels mentioned above, the Matérn kernel is capable of
fitting less homogeneous data. It has two positive hyperparameters: ν and `, and it
has the form of

kMatern(x,x
′) =

(
2ν−1

Γ(ν)

)−1( ||x− x′||2
√

2ν

`

)ν

Kν

(
||x− x′||2

√
2ν

`

)
(3.13)

The first hyperparameter defines the smoothness of the function (i.e., the greater
the value, the smoother, up to ν → ∞ where the Matérn function becomes the SE),
while the latter defines the length scale of the kernel. This covariance function also
incorporates two functions Γ(v) and Kν that correspond to the Gamma Function and
Modified Bessel Function of second order, respectively. In several works [20, 79],
` is usually defined as an integer, and ν as a half-integer: `+ 1/2. Despite the
complexity of the expression, the Matérn kernel is also a stationary kernel valid for
GPs. The Matérn kernel was designed to overcome the smoothness issues provided
by other kernels, such as RQ or SE. The “aggresive” smoothness of RQ or SE
prevents a good fit of real behaviors, since it is more common to find particularly
noisy behaviors in nature; in that sense Matérn is generally preferred when the target
function is known to be very noisy.

• Linear: is used whenever the target function changes at a constant rate, according
to the input. Evidently, it differs from previous kernels since it is not stationary. It
depends on a scale factor γ , an order P, and the dot product between inputs:

k(x,x′) =
(x · x′)P

γ2 (3.14)

Dot product kernels are invariant to rotations about the origin but not to translations.
These kernels are PSD according to [20] and are valid for GPs. It is used mainly for
temporal series.

• Exponential Sine Squared: is a covariance function that is very useful when the
target function is known to be periodic. In this implementation, a squared sine
function is used, where the argument includes the hyperparameter p, which defines
the periodicity of the kernel. The length scale ` hyperparameter is also used to
provide smoothness to the function.

k(x,x′) = exp
(
−2sin2(π||x− x′||/p)

`2

)
(3.15)

This kernel is very similar to the SE, but the sine function makes it a periodic
non-stationary kernel. This particular kernel is useful for seasonal analysis.

A summary of the most widely used covariance functions is presented in Table 3.2,
showing their respective hyperparameters defined in previous paragraphs and whether they
are stationary.
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Table 3.2 Examples of widely-used Kernels in Gaussian Processes.

Kernel function Hyperparameters Stationary

Constant σ0 �
Squared Exponential ` X�
Rational Quadratic `, α X�

Matérn `, ν X�
Linear P, γ �

Exp-Sine-Squared `, p �

Operations Between Kernels

When the relationships between features (input variables) are grouped in a Gram Matrix,
it is easy to perform operations between two different matrices, for example, a sum of two
different independent matrices gives a newmatrix and the expected properties stay the same;
these properties also stay the same whenever two matrices are multiplied. Definitively,
sum and product between kernels are possible. In particular, the constant kernel is always
found to be part of any kernel by multiplication, so that the real function varies not only
according to the input covariance but also according to the sample variance output. For
example, most authors write the SE kernel as σ

2
0 · exp

(
−||x− x′||2/2`2).

Any type of operation that produces another PSD matrix can be considered a valid
kernel. It can be very useful to combine different kernels by adding. For example, when the
expected function is known to vary daily, but the data is also smoothly varying according
to the temporal input, a simple sum between an SE and an Exp-Sine-Squared kernel can
be used. In this case, the periodicity is clearly defined according to the time from day to
day and the length scale can be described according to the short-term expected variance.
Another example is a special kernel that sums the selected with a kernel that accounts for
noise known as White Kernel, where if a kernel matrix K is added by a Whiter Kernel
matrix (a diagonal matrix with value σ

2
n ), the kernel can be described as

k(x,x′)+σ
2
n if x = x′

k(x,x′) otherwise
(3.16)

which, if represented as a matrix K, is exactly K+σ
2
n I, with I as the identity matrix, which

still is a PSD matrix. The White kernel is used to represent the expected noise input level.
Noise ε for each measurement performed is not known, but it is safe to assume that it
is independent and identically distributed (i.i.d) with variance σ

2
n . This special kernel

should only be added to the kernel when computing with real data gathered ( f̂ (x)) and not
to describe expected output values ( f (x∗)). In that sense, during the evaluation of a GP
solution, the White kernel can be mathematically applied during the fitting and not while
inferring the data. The next subsection explains the solution of a GP.
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3.3.2 Solution of a Gaussian Process

Having the kernel exhaustively defined, obtaining inferred output data for some input is
the remainder of the assignment in this section and the ultimate goal of a GP. Taking into
account a set of inputs x with unknown output, a distribution prior can be elaborated with
the information at hand: an expected zero-mean output with a known kernel. However, the
result will be a zero-mean output with a variance of σ

2
o everywhere. Then, if there is any

evidence, the GP can be updated so that the regression is conditioned to predict results
related to the collected data. A likelihood made from previous evidence can fit the input
data into a model known as posterior, which can predict the output values f (x∗).

[
y

f (x∗)

]
=N

(
0,
[

K +σ
2
n I K∗

KT
∗ K∗∗

])
(3.17)

for simplicity, f̂ (x) has been renamed to y, usually named y-values. To obtain an inference
w.r.t. the obtained data and the covariance function, i.e., to obtain the regression for a GP,
the above equation must be solved for the mean µ(x∗) and the standard deviation σ(x∗)
of the test points where we would like to obtain an approximation. The solution is then
described as a two-function tuple according to [20], as follows:

µ(x∗) = µprior(x∗)+KT
∗ (K +σ

2
n I)−1(y−µprior(x)) (3.18)

σ
2(x∗) = K∗∗−KT

∗ (K +σ
2
n I)−1K∗ (3.19)

This is known as the posterior model. Notice that in these equations, the prior mean
is a non-zero value µprior(·) that is typically set directly as the mean of the train targets,
so that if the prior mean is zero, Eq. (3.17) is equivalent to this formulation. Since the
operations are just a subtraction on the train targets followed by an addition on the test
targets, for simplification, Eq. (3.18) can be replaced with

µ(x∗) = KT
∗ (K +σ

2
n I)−1(y) (3.20)

with a hidden preprocessing operation consisting of subtracting the mean of y from y, and
a postprocessing operation consisting of adding the mentioned mean to the test targets.
On the other hand, note that Eq. (3.19) does not depend on the target y-values, which is
another good property of GPs.

In each second hand of Eqs. (3.19), (3.20), there exists a term that includes computing
the inverse of a matrix. For computational time improvement and numerical stability, this
inverse is obtained by using a Cholesky decomposition procedure. Suppose that

(K +σ
2
n I) ·L = y = f (x)+ ε (3.21)
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Taking into account the first equality and that the prior mean can be taken as zero, it
can be shown that the likelihood L is equal to

L = L\ (LT \ y) (3.22)

where L corresponds to the lower Cholesky decomposition of the Kernel Matrix, which
can be found because the Kernel Matrix K (or K +σ

2
n I for noisy observations) is positive

semidefinite, then there exists a triangular matrix L where K = L×LT [20]. This matrix L
is used as the correlation between a kernel input and the train targets and, of course, does
not depend on the test inputs and targets. Finally, whenever a new set of test inputs x∗ is
presented, a set of output means µ(x∗) = KT

∗ ·L can be inferred, having or computing the
correlation matrix K∗.

Regarding posterior covariance, there are two efficient ways to solve Eq.(3.19) [20]. In
this thesis, the efficient algorithmic approach is used, since L\LT\ was also computed
before. Therefore, this expression replaces (K +σ

2
n I) so it is solved according to the

following equation.

σ
2(x∗) = K∗∗−KT

∗ (L\ (LT \K∗)) (3.23)

where the first term corresponds to the prior covariance and the second is a positive term
that represents the information obtained from the train inputs.

Another useful information that can be obtained from the train input/target is themarginal
likelihood, which will be useful for updating hyperparameters. It is the probability of the
data given the model. More importantly, the logarithmic marginal likelihood is obtained,
which is obtained by using the integration of Gaussians according to [20], and is as follows.

log p(y|x) =−1
2

yT (K)−1y− 1
2

log |K|− M
2

log2π (3.24)

Of course, under noisy measurements K can be replaced with K+σ
2
n I. Recall that M is

the number of measurements performed, i.e., the length of the vector y. In this equation,
the determinant of K must also be obtained and, again, PSD matrices offer a simple way
to compute the determinant using the Cholesky decomposition [20].

1
2

log |K|=
M

∑
m=1

logLmm (3.25)

The logarithmic marginal likelihood value is easily obtainable using the previous equa-
tions and can be used to adjust hyperparameters to ensure data fitting and to evaluate the
behavior of the model given the data.

3.3.3 Models and Hyperparameters Selection

Rasmussen and Williams [20] defined a series of steps to select an appropriate model
according to specifications; these steps help to define hyperparameter values such as length
scales, periodicities, etc. In this thesis, the general guideline is followed according to the
book of the mentioned authors.
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When using GPs, model selection boils down to selecting (or designing) favorable
kernel functions, and this is, of course, problem-specific. In that sense, model selection is
open ended, but should at least consider some metadata that corresponds to the inferred
environment. In this thesis, we select some of the kernels described in the preceding
section and obtain their performance metric. The selected kernels are tested according to
the expected behavior of the water quality parameters using synthetic or simulated data.
The complete procedure for selecting a model will be defined in the next chapter.

Due to the dependence on hyperparameters, GPs also need them to be selected so that
fitting of the model given the data is also possible and, more importantly, efficient. Using
the definition of marginal likelihood, the general procedure is to compute the probability
of the model given the data, estimate the generalization error, and finally bound this error.
Note that in Eq. (3.24), three distinctive terms rise; the first describes how the data fit
to the kernel because of its dependence on the y values, the second directly penalizes
the complexity of the kernel, regarding the current measurements performed, and the
third is a normalization factor that depends only on the number of measurements made.
The algebraic summation of these terms gives a logarithmic value that describes the
likelihood of the model given the data. This value can be thought of as the negative
complexity of the model, since a larger value will describe a simpler model or a model that
is easier to understand. Recognizing that GPs are always dealing with stochastic behaviors,
the preference will always be to have simpler models. This is to apply the principle of
parsimony (Occam’s razor) [83]. This, evidently, yields models that are less certain of the
behavior in a local scenario but more aware of the behavior on a broader scale. That is
why many authors apply the maximization of log marginal likelihood to select the best
hyperparameters. And this is another optimization procedure that needs to be done. In this
case, since the logarithmic marginal likelihood is deterministic, optimization algorithms of
almost any kind can be utilized. Generally, the limited-memory BFGS with box constraints
(l-BFGS-B) [84] is selected because it is a fast and efficient algorithm that has been used
for parameter optimization in many scenarios. However, the main drawback of trying to
optimize hyperparameters using this paradigm is that, with few data, the GP model can
be too simple and prevent the algorithm from converging to good hyperparameter values.
Additionally, the l-BFGS-B algorithm can easily be trapped in local minima. To resolve
this issue, multiple initial points may be considered in an effort to explore the objective
landscape more broadly.

3.4 Acquisition Functions

GPs can be good surrogate models, but they depend on the measurements performed. Of
course, with a large number of measurements, a good model will have a low error metric,
but in many applications, including water quality monitoring, the smaller the number of
measurements, the better. To achieve this, the selection of points or places to measure
should be based on answering the question “What point could lead me to have a more
confident model of the environment?” Of course, Active Learning will yield the best
results in a movement-unrestricted scenario. However, in the case of this thesis, other
acquisition functions can also be useful, since the selection of new measurement locations
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will be based not only on the GP but also on the current state of the ASV.
Acquisition functions are used to determine the projected utility of measuring a specific

point within the search space. Usually in BO, an agent seeks to explore during the beginning
of the mission and exploit the maximum/minimum values towards the end. There are
several widely used acquisition functions, each balances exploration/exploitation according
to the design of the function. This means that the balance of exploration/exploitation is done
automatically with the usage of the functions. However, most acquisition functions include
an explicit exploration/exploitation parameter ξ , which manually weights the parameter,
which in our case should always favor clearance of uncertainty over optimization. All
selected acquisition functions will undergo test scenarios and the one that selects the best
measurement locations on average will be selected to be part of the final system. Before
defining some acquisition functions, it is better to define the normalized optimum response
of the surrogate model, which is named Z. According to [79], with the current minimum
(best) value measured f (xB), Z has the form of

Z =

{
f (xB)−µ(x)−ξ

σ(x) if σ(x)> 0

0 otherwise
(3.26)

which implies that Z will have higher (positive) values for high negative mean values
or high covariance values. Having Z defined, some of the most well-known acquisition
functions in a BO setting are described below.

• Probability of Improvement (PI): It computes the probability of obtaining a value
that is better than the current best minimum value. It is based on the Cumulative
Distribution Function (CDF) Φ(Z) of the normalized surrogate model Z. The
probability of improvement of a location can be obtained simply using the following.

PI(x) = Φ(Z) (3.27)

Since Z is large for an optimum minimum point, it is expected that PI will always
prefer to exploit the black-box function once the system evaluates it near a local/-
global optimal region, because the CDF is proportional to Z. This statement is true
for several reasons, in the context of this thesis, including having a limited bounded
box region, expecting a normal distribution that will limit the value of µ(x) that
we can evaluate, and the fact that WQPs are expected to have simple, continuous,
smooth behaviors, despite being multimodal. In that sense, PI is usually better for
unimodal behaviors (or for very few optimum locations).

• Expected Improvement (EI): It improves the PI function using predictive uncer-
tainty to prevent exploitation bias that occurs when only the probability of improve-
ment is considered. Therefore, EI uses not only the CDF but also the Probabilistic
Density Function (PDF). EI returns a measure of optimization beliefs based on the
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current CDF Φ(x) and PDF φ(x) of the standard normal Z.

EI(x) =


0 if σ(x) = 0
( f (xB)−µ(x)−ξ )Φ(Z)
+φ(Z)σ(x) else

(3.28)

The exploration/exploitation balance is implicitly found in this AF. The predictive
mean (found in the first term of 3.28) manages the exploitation weights, while the
predictive uncertainty σ(x) provides more exploration weight as it increases.

• Scaled Expected Improvement (SEI): It is an extension of the EI method proposed
in [85]. In this function, the EI(x) is scaled to favor the selection of points where
the improvement has a small variance, but the predicted value is expected to be high.
The scaling factor V[x] is calculated as

V[x]2 = k(x,x)[(Z2 +1)Φ(Z)+Zφ(Z)]−EI(x)2 (3.29)

The SEI is expressed as

SEI(x) =
EI(x)
V[x]

(3.30)

Active learning should also be introduced in this subsection since it is a straightforward
and simpler approach to obtain unknown models based on exploration. But it will be seen
in the next sections and chapters that it is not guaranteed to provide the best results in a
constrained movement scenario like monitoring through ASVs. Active Learning considers
Eq. (3.7) weighting a complete bias towards the uncertainty of the model, such that the
next optimal location corresponds to the location in which the uncertainty is the maximum,
or, more formally:

x∗ = arg max
x∈X

σ(x) (3.31)

which can be considered as one of the possible AF to be used by the system. Note that the
usage of this Acquisition Function (AF), as well as any other, will be selected according to
the constraints of the ASVs, which will be discussed in later sections.

Now, with all the AFs presented, it is important to state that the general idea is to select
one of the functions according to their expected utility; i.e., exploration-based functions
should be used when the uncertainty of the GP needs to be minimized, while exploitation
parameters/functions should be favored whenever a certain value of the function is being
searched. These AFs provide useful results in BO when used to optimize costly functions.
However, they present some limitations related to their application to the monitoring task
of an ASV. Therefore, additional work is required to adapt them so that BO can be applied
in large-scale water environmental monitoring tasks.

The process of obtaining a new measurement position in this thesis differs from common
approaches, since the assumptions of the search space are also different. Water bodies are
generally non-convex sets, and the definition of the space is also limited to where the water
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or the terrain is present. This constraint leads to the recognition that the monitoring space
is not continuous on the shores of the lake as water quality information cannot be obtained
in the terrain. With these assumptions, commonly-used fast optimizers like the l-BFGS or
the Newton-Conjugate Gradient cannot be used, as they only behave correctly whenever
the search space is continuous. l-BFGS-B works great for general BO approaches; however,
in the general scenario, a box constraint is present and every point inside of the boundary
is available for evaluation. This, of course, is not the case in this thesis, so other methods
must be addressed to obtain the best possible next measurement location.

3.4.1 Proposed Acquisition Functions

To overcome the limitations of classical AF for the monitoring task of an ASV, new
adaptations are proposed to include mechanisms that encourage the selection of points
that are close to the current position of each vehicle. Three different adaptations have
been designed and tested; each focuses on achieving optimal measurement locations near
the current position of the ASV. The main idea is to take advantage of the long distances
traveled from one measurement location to another. Consider the following figures as
shown in Figure 3.5 in which there exists a previous measurement already done at locations
marked as yellow triangles, the last location that coincides with the current location of the
vehicle marked as a red triangle and the measurement locations marked as blue crosses
according to one of the Adapted Acquisition Functions that are described as follows.

Adaptation functions

• Split Path: During long distances, the ASV can take several samples before updating
the surrogate model. This method calculates the new target location according to
the classical AFs and the current ASV position. Then, a number of measurements
is taken within the segment from the vehicle’s position and the target point. These
locations are equally distanced between each of them by a constant l, which defines
the average distance that the ASV should travel to perform a new measurement and
is different from the hyperparameter length scale `. Figure 3.5a shows the waypoints
defined by using AF with the split path adaptation. The vehicle should visit all goals
and perform measurements on each point, but will only fit the surrogate model and
calculate the next optimal location whenever measurements on all points defined by
this method have been performed. The real distance traveled between the waypoints
will generally be equal to l, except on the last path or whenever the straight line
between locations crosses obstacles.

• Truncated Path: In this method, the direct path to the next target location according
to the AF is “truncated” after a distance l. The idea is to take into account the
mobility restrictions of ASV, so it should not travel long distances before updating
the surrogate model. Notice that the next optimal measurement location is the same
as the first in the split-path method, since it is defined by the above-mentioned AF.
In fact, Figure 3.5b shows a measurement location that is the same as the first in the
previous subfigure. However, in this adaptation the distance traveled by the ASV is
truncated (hence the name), reaching a suboptimal location. Whenever the ASV
reaches the computed location and updates the data, a new goal location is obtained.
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This new location is generally not the same as the second measurement location
using the split-path adaptation due to the new information provided.

• Masked Path: This method weights nearby locations using a simple gradient
according to (3.32), where x corresponds to the locations on the search space and pv
the position of the ASV. This process is carried out by multiplying the mask by the
result of the classical AF, as shown in (3.32). This method allows for exploiting the
current position of the ASV in order to obtain more information with less movement.

M = exp
−(||x− pv||)

l
(3.32)

Due to the exponent, the rapid decay that this mask applies will give greater values
to locations that are closer to the current location of the vehicle. Figure 3.5c shows
the mask that is applied to the AF, and the resulting AF is shown in Figure 3.5d.

A summary of the proposed adaptations is included in Table 3.3, showing that they
depend only on a tunable hyperparameter l. It is important to note that each has a distinctive
characteristic with respect to updating the surrogate model. The split path-adaptation
will perform at least one or more measurements before fitting the Gaussian model. The
two others will strictly fit the model after each measurement. The truncated-adaptation
provides the information to the ASV in its path to the maximum, so it can quickly update
the model. Finally, masked-adaptation favors the maximum of nearby locations.

Table 3.3 Summary of properties of the proposed adaptations..

Adaptation Distance between new Measurements done
data locations and ASV before GP Fitting

Split path l,2l, . . . ,nl, ||pv, pm|| n+1
Truncated l 1
Masked undetermined 1

Definition of maximum distance for adapted measuring

In this thesis, it is preferable that the length of the new segment l is dynamic and related to
the length scale ` of the fitted (posterior) GP (l ∝ `). This rationale is based on the premise
that the length-scale ` defines the maximum distance between the inputs (x ∈ X ) that
allows these inputs to influence each other. Therefore, there exists a dependence between
the optimal distance between measurement locations and the underlying objective function,
i.e., large distances may fail to model the objective function, while very short distances
can provide redundant information. Hence, since the length-scale is the only parameter
that is updated taking into account the real evaluations to fit the model, an optimal distance
between measurement locations can be obtained using the length-scale.

The use of length scales to limit the distance traveled is suitable and interesting because,
for example, in the SE kernel, ` captures information about the spatial frequency response.
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(a) (b)

(c) (d)

Figure 3.5 Subfigures (a), (b) and (d) correspond to examples of different results using
the 3 different adaptations proposed in this thesis for the same initial condi-
tions. Sufigure (c) is the mask applied in the masked adaptation. The images
corresponds to a work previously made by the author.

To prevent loss of information, the parameter λ is set to further limit the traveling distance.
Finally, the value of l is always given by the following equation.

l = λ × ` (3.33)

3.5 Multi-Water Quality Parameter Estimation

At this point, a single vehicle could efficiently obtain a WQP map model just by using an
appropriate kernel, and a good acquisition function that is adapted to the needs, but since
there exist multiple WQPs, the next step consists of selecting a measurement location
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according to multiple objectives, i.e., solving aMultiple-Objective Problem. The objectives
are defined following the aforementioned BO approach.

3.5.1 Multi-objective problem

Multi-Water Quality Parameter Estimation is done by slightly modifying Eq. (3.6), and
consequently Eq. (3.7), to account for multiple fs(x). Evidently, this implies that there
could be different GP kernels that would fit the different WQPs since their behaviors
are not necessarily the same and do not have the same scale factor. Furthermore, the
acquisition functions could not necessarily be the same, implying different αs(·) functions,
considering the different WQPs. Nonetheless, since only one ASV is available (in this
section of the chapter), only one measurement location should be selected considering
this MOO setting. Regarding the adaptation, is is not considered as an objective, but as a
posterior modification of the selected measurement location, therefore it is not included
and the acquisition functions are the classical without modifications. The generalization
approach consists of determining an appropriate location x∗ so that a set of surrogate
models can be efficiently approximated simultaneously.
Next, two ways for solving the multi-objective problem are presented. On the one

hand, Multi-Function Estimation (MFE), which linearly combines every AF. On the other
hand, the second method finds solutions according to a Pareto-based Multi-Objective
Optimization approach.

1. Multi-Function Estimation (MFE):
For simplicity, the MFE AF can be defined as a composite of different AFs, or
a general AF that takes into account the different functions, such as the work in
[71]. The proposed approach consists of composing different AFs through a fusion
procedure. Based on [71], two different AF Fusions are defined, i) the decoupled
and ii) the coupled methods. The only requirement for these methods is that the
acquisition functions are normalized, which is normal if the functions utilize the
normalized optimum response (Z).

a) Decoupled Evaluation: It is designed to optimize one single WQP map model
at a time, so that different objectives are optimized in different steps. The
expression responds to select the next measurement location x∗ as the argument
of the maximum of the different AFs (eq. 3.34). For example, if all AFs weight
the different locations of the set X according to the uncertainties σs(x) of the
different models, the measurement location will correspond to the position
where one of the AFs has the highest uncertainty value. The decoupled method
expression is shown below:

x∗ = argmaxx{αs(x)} , s = [1, 2, . . . , S] (3.34)

b) Coupled Evaluation: It is a fusion that acknowledges the importance values of all
AFs. Therefore, AFs contribute equally to a general AF. It consists of adding all
the AFs. Thus, the next measurement location x∗ is calculated as the argument
of the maximum of the sum of the AFs, as shown in eq. (3.35). This location x∗
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will be selected as the location where the different AFs will have their values
maximized as a combined set.

x∗ = argmaxx{
S

∑
s=1

αs(x)} (3.35)

2. Multi-Objective Optimization (MOO):
The AFs can also be considered objectives under a MOO framework. Therefore, the
optimality of a solution is based on the Pareto dominance over the objective space.
A solution, which in our case is a candidate measurement location, is said to be a
non-dominated solution when no other solution can maximize one of the objectives
without affecting (degrading) the others. The mentioned solution is called Pareto
efficient, and the set of Pareto points is called Pareto (efficient) Set. Therefore, the pro-
posal is to use a Pareto-based approach to obtain solutions (measurement locations)
that balance the multiple objective functions (acquisition functions) simultaneously.
A Pareto set is obtained using the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [86] as provided by the pymoo python package [87]. Being a Genetic
Algorithm (GA), this method requires the usual GA definitions: individual, popula-
tion size, number of generations, and the genetic operators: crossover, mutation, and
selection functions.

• Individual representation: Consists of a single 2D point, which indicates the
location of a measurement location.

• Fitness function: Consists of a vector of AF values at the individual measure-
ment location, such that every value is directly obtained from the selected AF
α(·) considering the different models to be obtained.

• Genetic Operator, Mutation: Polynomial Mutation [87] has been selected
so that individuals mutate locations according to a probability distribution,
effectively generating offspring that explore their surroundings to find local
optimal values.

• Genetic Operator, Crossover: Simulated Binary [87] is selected to exchange
information between individuals. It works in a similar fashion to that of the
Polynomial Mutation operator, creating a crossover that takes into account the
data of two individuals and combines them.

• Genetic Operator, Selection: Because of NSGA2[86], Tournament Selection
[87] has been used due to its simplicity and its usefulness for faster convergence.
This operator selects the best individual out of a group according to the fitness
function. Since the fitness function is multi-objective, the complete process is
based on Pareto efficiency.

The result of this method is a set of optimal (non-dominated) measurement locations.
Finally, since the method provides a set of possible measurement locations, the closest
non-dominated solution to the vehicle is selected as the next optimal measurement
location x∗. This selection is done based on the assumption that measuring on any of
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the Pareto efficient locations will yield the same performance. Therefore, selecting
the closest location is a suitable approach considering that the measurement should
also be energy efficient.

3.5.2 Multi-function adaptation

Whenever a location is selected to be the optimal solution for a future measurement, the
next step is to adapt the location so that it can still account for energy consumption; this is
to apply one of the adaptations found in the previous section. Subsequently, the length l is
changed so that it corresponds to one of the different length scales, more formally:

l = λ ×min{`s} (3.36)

3.6 Multiple Autonomous Surface Vehicles

This thesis proposes a system that monitors multipleWQPs using multiple ASVs. Since the
definition of monitoring multiple WQPs has already been described in previous sections,
the usage of multiple ASVs is left to be defined. The idea is that each ASV cooperates
with the mission according to the collective beliefs and their locations in selecting the
measurement location. Cooperation, on a broader scale, can be divided into two categories:
i) intentional and ii) unintentional cooperation strategies. Each of them presents different
advantages and may be preferable depending on the environment in which the agents
operate.
In an active or intentional cooperation setting, the agents share their current goals and

information, decide on steps such that every other agent will obtain benefits from the
actions and there is a constant interchange of information so that there is a global balance
in energy usage/mission accomplishment. It is generally preferred when agents need to
exchange a lot of data, cannot fully operate without constant communication, and there is
a need for balance in terms of energy usage.
On the other hand, unintentional cooperation describes agents that collectively pursue

a mission with actions that are not deliberately joint or on purpose. In the case scenario
of this thesis, this strategy would force ASVs to work on their own with the objective
of completing the mission without an intended joint effort with other agents. Note that
unintentional is not the same as unintended; the last adjective describes that the cooperation
was not planned, but resulted as an outcome. In this thesis, ASVs are expected to cooperate,
but their actions are not affected or do not consider the actions of other vehicles. The main
advantage of this strategy is that an asynchronous execution can be planned and that it
does not matter whether another vehicle completes its mission or is added to the fleet after
another agent has already defined a measurement location goal.
Despite the chosen cooperation strategy, the plan is to obtain as many WQP measure-

ments as possible using the available ASVs. In this sense, a centralized coordinator is
needed to collect the data gathered by the vehicles. The ASVs will work (move and perform
measurements) independently, they will communicate to the coordinator their locations,
and the values of the WQPs according to their onboard sensors. This implies that the
ASVs would only need to receive mission measurement locations instead of receiving
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all the data from other vehicles, computing a local Gaussian process, applying the BO
equation with an AF, and obtaining a measurement location. In a sense, each ASV is
unaware of the BO process, only performing Path Planning from one location to another,
performing the measurement, and communicating the results afterward.

The unintentional straightforward cooperation strategy is to relegate the decision making
solely to the following: i) the centralized coordinator, ii) the available WQP data at
measurement location generation time, and iii) the current locations of the different ASVs.
On the other hand, intentional cooperation will also consider the current missions of
other ASVs (the location where they are heading) and the data that they would gather.
The unintentional method will definitely work better with fewer agents available that
are capable of joining or leaving the mission at any time, while the intentional method
will work better for missions where there is certainty that the starting ASVs will endure
throughout the whole mission, while the addition of ASVs in the middle of the mission
would be counterproductive in terms of redundancy and energy efficiency.

Another important factor is initialization; normally, ASVs would start from the same
harbor, but this is not necessarily the best approach, since vehicles in the same location
would be too close to each other to provide useful data (redundant measures). A way to
overcome this issue is to efficiently distribute the initial vehicles on the surface of the water
body.

3.6.1 Initial Vehicle Positioning

Amathematical approach to solve this problem is to distribute the vehicles in the perimeter
of a radius circle r centered at the center of the water body, evenly separated angle-wise,
in an attempt to have each vehicle aimed at covering different regions. However, for real
scenarios, it is not desirable that the ASVs start the mission in the center of the water body.
Therefore, the initial positions are relocated to the shore of the water body taking into
account the spacing between vehicles, having all vehicles evenly separated angle-wise but
with different distances with respect to the center of the lake according to the shoreline.

3.6.2 Region Partitioning using Voronoi Diagrams

Having the vehicles at “optimal” initial locations, the next step is to partition the feasible
space according to the number of available ASVs. In this thesis, Voronoi Diagrams (VDs)
can be effectively used to do so and obtain evenly distributed regions. VD is a partition
model of a n-dimensional space into regions of the same dimension according to a distance
rule. In this work, the 2D space of the mapM is divided into v regions, that is, one region
for each of the V vehicles available. Each region has a generator, which corresponds to
the position or location pv of the vth ASV. The VD expression has the form

Rv = {x ∈ R2 | d(x, pv)≤ d(x, pw) ∀ v 6= w} (3.37)

where d(·) is assumed to be the Euclidean distance function. Using VD as a partition
system is efficient and appropriate, but have some drawbacks that need to be addressed.
Two generators cannot be at the same location. This is completely avoided if the initial
locations are not close to each other. The outermost generators always have an infinite
surface area, because the distance to a location x will be smaller than that of any other
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generator. To overcome this problem, it is important to consider only the feasible locations
inM. Finally, these regions are updated as needed, which means that every time an ASV
needs a new measurement location, a new VD is computed, the new VD will also comply
with the former definitions so that it is always valid.

The use of VD not only helps to appropriately and efficiently divide the regions according
to the total number of vehicles available, but also strongly contributes to scalability and
robustness. The periodic recalculation of measurement VD regions for each ASV provides
an easy and reliable mechanism for robustness, because ASVs could be included and
removed from the system at any time. Thus, the location of the measurement will be
adapted to the number of available ASVs.

3.7 Proposed Multi-ASV Multi WQP monitoring system

In this section, the proposed approach is adequately defined. Figure 3.6 shows the proposed
system, where the CC contains a database, as well as three components that work together
to obtain measurement locations. For the definition of the waypoint or measurement
location, the CC system performs three main tasks: i) region generation, ii) surrogate
modeling acquisition, and iii) evaluation of acquisition functions. The first step finds the
measurement region of the vth vehicle to nearby locations, so that a vehicle cannot find
an optimal measurement location outside of its region. This search begins in Step ii),
modeling the WQP maps with surrogate models. These surrogate models need to consider
any previously acquired data (from all ASVs) and the inferred knowledge (prior models)
of the environment, and iii) with the search region defined and the surrogate models fitted,
a new measurement location is obtained according to the acquisition functions that should
consider the constraints of the ASVs.
The three-step process is repeated each time a vehicle needs a measurement location

and does not depend on volatile data; therefore, this process can be accomplished asyn-
chronously among vehicles. It is important to note that this behavior helps to alleviate
the workload of the CC, as it does not need to continuously transfer data to the available
ASVs. In the following subsections, we appropriately define the tasks mentioned.

The general procedure of our centralized monitoring system is shown in Algorithm
1. Whenever an ASV needs a new goal (line 4), a Voronoi region is defined using the
positions of the available ASVs (lines 5-6). Next, with the available data, the surrogate
models are obtained (line 7) and used to find the optimal measurement location within
the Voronoi region of each ASV (line 8). Note that this line is generalized with respect
to the acquisition function, and that where the subscript s appears, it considers all WQP
sensors. It can use MOO using GA or MFE procedures. Recall that parameter l is obtained
using Eq. 3.33. Finally, the CC stores new data Di+1 ← (si+1, pi+1) = (sv, pv) when
received/available and proceeds to fit the models (lines 10-11).
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Figure 3.6 Behavior overview of the proposed system. Each ASV communicates with the
CC to send data about their current locations and measurement values, and to
request new measurement locations.

Algorithm 1: Centralized Coordinator procedure.
1 initialize: D←Database ,M←Map Data;
2 while ASV s_available() do
3 for asv in ASVs do
4 if asv.needs_new_goal() then
5 v← asv.id;
6 Rv← VD(ASV s, asv,M);
7 µs(x),σs(x)← GPs(x);
8 pv← AF(µs(x),σs(x), l,ξ ,Rv);
9 end

10 if asv.performed_new_measurement() then
11 GPs.fit(asv.measurement);
12 end
13 end
14 end
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Finally, each vehicle executes asynchronously Algorithm 2. Whenever a new goal loca-
tion is obtained (line 4), an ASV manages to perform a movement to reach the destination
goal (line 10). When the ASV reaches the optimal position, it performs a measurement
and sends the data to update the general water quality model of the lake (lines 6-8).

Algorithm 2:Mission planning component of the Guidance subsystem of the ASV.
1 initialize: v← asv.id;
2 while asv.is_online() do
3 if asv.has_no_goal() then
4 asv.goal← pv;
5 else
6 if asv.reached_goal() then
7 sv← obtain_new_measurementvalues();
8 asv.measurement← (sv, pv);
9 else
10 asv.per f orm_movement(goal);
11 end
12 end
13 end





4 Implementation

Vitam Impendere Vero.

Juvenal, 100 B.C.

The proposed system is implemented using embedded and computing systems accord-
ing to the overview system presented in Figure 3.6, Section 3.7. The system was

mainly implemented in Python language (3.9.9). The agents correspond to catamaran-like
autonomous vehicles with GNC and WQP sensor systems on board. Their Navigation and
Control system (low level) were executed by an embedded autopilot software/hardware
system, such as Navio21. For experimentation, ASVs are available that have the on-board
system shown in Figure 4.1. The components shown correspond to: (a) Emlid Reach M+
GNSS system [88] for Navigation purposes, (b) a Raspberry Pi 4 [89] using a Navio2 Hat,
both are used for Navigation and Control, (c) a DC regulator for the main system, and (d)
a Nvidia Jetson AGX Xavier computer [90] that implements communications system as
well as the Guidance system.

In what follows, the multiple components described in the previous chapter are imple-
mented in algorithm form. Experiments and selection procedures are also described. The
complete documented implementation is available as open source code on Github2. Due to
the fact that multiple options for the different components were described, it is necessary to
test the mentioned components in simulators, which requires a description and implemen-
tation of the simulator components, including simulating the environment with benchmark
functions and simulating the vehicles in charge of performing the measurements.

1 https:// navio2.emlid.com/
2 https:// github.com/FedePeralta/BO_drones
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(d)

(c)
(a)

(b)

Figure 4.1 ASV on-board system consisting of (a) GNSS for navigation (b) A central com-
puter with an autopilot system (c) DC regulator and (d) main communications
and guidance system.

4.1 Map Model

The proposed system aims to monitor the WQPs of large-scale water bodies. In the case of
this thesis and many other related works [14, 11, 58, 59, 57], the case study of the water
body corresponds to the Ypacarai Lake (San Bernardino, Paraguay), which was previously
discussed. In fact, Figure 3.2 (Subsection 3.1.1) corresponds to the Ypacarai lake, where
the freshwater lake has dimensions of approximately 24 by 5.5 km and a total surface area
of 60 km2 [3].
In the case of Yparacai Lake, the simulation area is modeled asM with dimensions

1000×1500, where each elementMi, j corresponds to a square with side d ∼ 10[m]. As
a result, each ASV agent could be easily located in any x location and because of its size
and maneuverability, it could move to any of its neighboring locations without problems.
Of course, when describing the WQP models in terms of the matrixM, the scales of the
hyperparemeters of the GP are changed to fit the modeled map. This makes it easier to find
parameters, since there are larger differences between neighbor locations, since the GNSS
systems will not discern before in the fourth decimal of latitude and longitude terms.

4.2 Water Quality Parameter Model Maps

Water quality models are often modeled as smooth functions due to fluid dynamics and
wind conditions [3, 2]. For test and validation, two approaches can be used to simulate
WQP model maps: i) using benchmark functions and ii) synthetic data based on true
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measurements. Before these approaches are defined, the time dependence of the WQPs
must be obtained.
Mas et al. [5] described the use of an online tool to obtain WQP map models of Mar

Menor (Spain). In the mentioned work, the authors describe a series of procedures that they
used to create synthetic map data based on 16 to 24 real WQP measurements performed
continuously. The online tool offers sensor data at these locations with a time difference
of ≥ 7 days between measurements and is publicly available. Taking advantage of the
tool, the rate of change of the WQPs can be obtained to describe whether the system
must consider static WQPs during one mission. Taking into account the available WQPs
of the tool and the available WQPs of the sensor system in the ASVs, the temperature
and dissolved oxygen can be obtained directly from the online tool. According to initial
experiments, the available working time of a single ASV does not exceed 2.68 hours, and
with that the supposed change between the initial and final observable WQP maps can be
obtained using a simple interpolation method.
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Figure 4.2 Estimated change of the turbidity WQP in Mar Menor (Spain) after 2.68 hours
using synthetic data provided by [5] between August 20th and 27th of 2021.
Despite the fact the data found in the provided web page varies a lot between
these days, the change is not noticeable after just approximately 3 hours.

Considering Figure 4.2, if the mission is to obtain the current state of WQPs, a simple
GP kernel that does not depend on time or is stationary is the straightforward approach
and will provide a good solution for the time window in which the agents are supposed to
operate. The test scenarios to validate the proposed method can be modeled as synthetic
data. The idea is to create deterministic models that can be used in monitoring missions and
systems. For example, a simple approximation can be performed using a radial function,
as proposed by [5].

4.2.1 Benchmark Functions

WQP model can be modeled using the classical Bohachevsky or Himmelblau functions
as benchmarks. However, their gradients have high values, which are not typical for
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WQPs. Moreover, specifically for WQPs, the benchmark functions should be multimodal,
continuous, multidimensional, and deterministic. Finally, real WQPs are not expected to
behave always like the mentioned benchmarks, and it was more useful to create custom
benchmark “ground truths”. This is because a WQP is expected to have many peak
locations, to be continuous everywhere (except on the shore), to depend on at least two
independent variables (x,y), and to have an underlying ground truth value to which it
could be compared. The Shekel function (SF) is a rather unknown benchmark that can
be adjusted to provide maximum locations and has gentle gradients. Additionally, the SF
can have any number of maximum values, which fairly simplifies the setup procedure to
obtain the ground truth for each simulation run. SF has the form of:

fShekel(x) =
M

∑
i=1

1
ci +∑

N
j=1(x j−ai, j)

N
(4.1)

where ai, j and ci are the elements of two sets of matrices A and c. The matrix A has the
size of M×N, where M is the number of maximum locations, which are N dimensional.
The matrix c is a vector M×1 that defines the inverse importance value of the maximum
locations. The SF provides a parametric function capable of defining multiple optimum
locations in a N-dimensional space.
Different ground-truth maps can be generated using Eq. (4.1), each can represent

different maps of water quality parameters at different times. They can be post-processed
so that they can fit the mapM and µs(x) = 0, σs(x) = 1, making the GP fit easier and faster.
This post-processing corresponds to subtracting the real obtained values with the expected
mean of the measured WQP and dividing by a factor equal to the standard deviation of the
measured WQP, effectively normalizing the map, assuming the Central Limit Theorem.
Examples of the generated ground truths can be seen in Figure 4.3. In either way of
choosing WQP models, the different simulated agents should travel from point to point
until their battery is fully used, and they performed multiple WQP measurements.

4.3 Autonomous Surface Vehicles

Regarding ASVs, the implementation was done so that the use of simulated vehicles and
real vehicles is not affected by the system. In that sense, the same components of high-level
systems have been designed and implemented for both real and simulated ASVs. In what
follows, the descriptions of the components will be detailed for the real ASVs, but they
also work for the simulated ASVs, unless explicitly described, which refers only to one of
them.

4.3.1 Guidance, Navigation & Control (GNC)

The Guidance Component is designed to apply Eq. (3.7), under the assumption that a
single next measurement location pm+1 = x∗ is required for a single vehicle Vv that needs
a target location. Evidently, depending on the number of agents present at that time, the
available locations x varied according to the region obtained for that vehicle in that scenario
Rv (a complete region if only one vehicle is present) and the acquisition function α(·)
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Figure 4.3 Four examples of Shekel functions with random number of maxima points at
random locations scaled to a map model of the Ypacarai Lake.

selected. In the case of simulations, multiple α(·) were tested, so this can vary whether it
considers Expected Improvement, Probability of Improvement, etc. for one, the WQPs
or AF fusion with multifunction estimation or multiobjective optimization for multiple
WQPs.

After a measurement location has been obtained and sent to an ASV, the global and
local path planner components consider the current location and the goal of obtaining an
obstacle-free path; this is done using RRT*. These obstacle-free paths were obtained for
the map modelM instead of the real world map, as they were easier and faster to solve.

During the mission, the navigation system of an ASV provided location data to the CC
as well as other components of the ASV, so efficient paths were obtained and efficient
path following could be executed. As mentioned above, this component was executed by
an embedded autopilot system such as Navio2. This autopilot system also executed the
control system.
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4.3.2 ASV Constraints

Regarding the main ASV constraint, battery consumption, for testing purposes, the maxi-
mum distance was drawn from the theoretical maximum battery available according to the
tests performed in [91] with the average velocity considered in the same work. As a result,
the simulated ASVs obtained the best possible maps. In real experiments, the battery will
be used until a certain threshold level that will automatically return the vehicle to launch,
or RTL as described in the Navio2 autopilot system.

4.3.3 Water Quality Paremeters Sensor System

WQP sensor systems are the main part of the ASVs, so they were always available for
use. If any WQP system of an ASV is supposedly malfunctioning, the ASV will no longer
be considered during the mission, so the ASV can return to the shore, be checked, and
reenter the ASV system. This is possible by using the unintentional cooperation described
in the previous chapter. For real measurements, a certain number of measurements will
be performed at the mentioned location, so that the average values can be obtained. In
that sense, the system available in the ASVs for real experiments corresponds to Libelium
Smart Water [92] (Figure 4.4), which has the same physical and chemical sensors as shown
in Table 3.1. On the other hand, for simulated ASVs, a measurement value was drawn
directly from the simulated map, and a random i.i.d. noise was added to account for noisy
sampling. The CC is an online server that acts as both a decision maker and a visualizer.
All data that arrive from the vehicles were used to produce output, such as surrogate
models, methods for controlling the state and health of the vehicles, etc.

Figure 4.4 Water Quality Parameter Sensor system, Libelium Smart Water, connected to
the ASV. The sensors are connected to the bottom of the embedded system and
communicates to the main on-board system through an USB cable.
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4.3.4 Centralized Coordinator Server

The CC is the only system that worked directly with Bayesian optimization, Gaussian
Process, Acquisition Functions, and Voronoi Diagrams. Real vehicles will receive and
send data via 4G, assuming that the mobile phone signal is available anywhere on the
water body. The data will be sent without processing them, so only a limited amount of
processing is done on the onboard computers to save energy. In that sense, the energy
usage of vehicles was considered to only power the motors to perform movement.

4.4 Implementation using Python

During simulations, the main tool for comparison is the Coefficient of Determination
R2. The idea behind always considering this performance metric is to have a systematic
method for comparing not only the component selection but also to observe and analyze
the joint operation of multiple components such as Multi-Objective Optimization or Multi-
Agent system operation. When a ground truth is available (which only happens during
simulations), R2 could always be obtained. Therefore, this decision is plausible and valid.
Considering the framework of BO already described, the implementation is to simply

code in Python language Eq. (3.7). Then publicly available libraries are used to implement
parts of the system in Python language; in some cases modifications of the original library
were done so that the implemented code could work seamlessly within the system. The
usage of the main libraries involved in the implementation are mentioned next.

• Numpy: https:// numpy.org/ is a mathematical tool used for data handling, all data
are mainly handled by this package. All vectors, positions, and most operations
are done using this package. Some examples include matrix multiplication, battery
usage, and path planning. The libraries described below also use numpy to perform
their operations.

• Scikit-Learning: https:// scikit-learn.org/ stable/ is the Python package that handles
kernels, such as SE, Matern, and others. Additionally, it implements Gaussian
Processes, such as data processing, fitting, and even hyperparameter optimization.
It is very useful for noise-free sequential decision making. However, for noisy
evaluations, the package is not fully implemented. The hyperparameter optimization
in this library implements Eq. (3.24) with the observed data and provides the mean
and uncertainty of the fitted GP using equations. (3.19) and (3.20), using Cholesky
decomposition where possible.

• Scikit-Optimize: The bases of classical acquisition functions are drawn from this
package https:// scikit-optimize.github.io/ stable/ . To enhance response time and
fully utilize the information given by the AFs, all utilized AFs are reimplemented as
new classes with added functionality.

• Pymoo: When multiple acquisition functions are to be computed and solved as
a multi-objective optimization strategy, the library pymoo, https:// pymoo.org/ , is
used. It is a very high-level library that, through a problem definition, could provide
a Pareto-efficient set that is supposed to be part of the Pareto frontier.

https://numpy.org/
https://scikit-learn.org/stable/
https://scikit-optimize.github.io/stable/
https://pymoo.org/
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• Scipy: https:// scipy.org/ is a high-level library for scientific computing. In this
thesis, Voronoi diagrams are obtained directly using this library. However, copies
of the locations of the vehicles are translated and mirrored to obtain a box partition
of the region, since scipy only offers Voronoi computing considering non-restricted
regions.

• Matplotlib: All figures regarding the results in this thesis were generated using this
library https://matplotlib.org/ . It is a simple library for creating visualizations. In
addition, this library is used for visualization of the resulting WQP maps.

Since the objectives of this thesis are very specific, additional code was written for
the adaptation of the acquisition functions and multi-water quality parameter estimation
using coupled and decoupled fusion strategies. Both are available online. These pseudo-
libraries are largely based on the libraries previously mentioned and work, to the best
known knowledge of the author, only with them. In the next chapter, the simulation and
experimental results are shown as a process in which, first, the basic components of the
system were systematically selected according to their performance metric.

https://scipy.org/
https://matplotlib.org/
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Taking action today is worth it.

Kurzgesagt – In a Nutshell, 2022

In this chapter, the results of the proposed method. based on BO for monitoring a
simulated aquatic environment are described. The followed roadmap consisted of

evaluating different components, selecting the best method, and building the system from
the ground up. Comparisons have also been made with related monitoring systems to
show its strengths.

5.1 Simulation Setup

This section defines the procedures and parameters for the evaluation of the proposed
method. The simulations have been conducted in a 6-core 4.6 GHz processor computer with
16GB RAM. In the simulations, to ensure a fair comparison among different components,
the simulations have been performed with the same random seeds.

Simulated Water Quality Model using Benchmark Functions

The WQP maps shown in Figure 4.3 are examples of ground-truths from the test config-
uration. The simulated WQP value of each location is taken from the result of a scaled
standardized shekel function. For the randomization of the shekel function, random values
were defined for the input matrices. More precisely, the number of peaks or maximum
values was defined as a random integer between two and ten, the maximum altitude was
defined to be a real number of minimum values of five to ten, while the locations of the
peaks were distributed uniformly random across the map matrixM.

Theoretical maximum energy available

According to Morel et al. [91] and Eq. (3.3), a maximum travel distance can be obtained
considering the average velocity ||~v||= 1.6[ms ], the maximum theoretical energy delivered
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by the battery and the consumption rate provided by the same work. These values are also
in accordance with the total time that the ASVs are usually available as it was mentioned
in the Chapter 4.2 Implementation. As a side note, since the model map consists of a grid
map with square of side d ≈ 10[m], the maximum distance in pixels is 1500 pxs.

Dmax = Tmaxenergy
||~v||

e
= 20000× 1.6

2.1
≈ 15000[m] (5.1)

5.2 Kernel Selection

The first selection corresponds to the surrogate model. This thesis considers that GPs are
the appropriate model, but has no preference regarding the kernel. For the expected quiet
waters of the Ypacarai lake [3], the prior length scale of the selected kernel should be large
enough to ensure smoothness, but bounded enough to allow the kernel enough freedom to
adapt to varying maximum/minimum data. The covariance functions to be tested depend
all on the hyperparameter `. It was decided that `∼ 10% is the length of the search space.
For other hyperparameters, if any, the most common values [20, 79] are used.
Several simulations have been performed for kernel selection, each test consisting of

uniformly drawn sets of M ∈ [15,25,35,50] valid measurement locations. To account for
noisy evaluations, a small random value is added to each measurement so that the noise
is i.i.d. with ε = 0.01. For each simulation, a kernel is selected and used throughout
the experiment, fitting the data and updating their hyperparameters with the equations
described in Chapter 3. All kernels are summed with a White Kernel with σ

2
o = 0.01 to

account for noise.
The results using the SE, the RQ and the Matérn kernel are found in Table 5.1, Table 5.2

and Table 5.3, respectively. For each map, 10 different simulations have been performed,
and the resulting average R2 is presented. The values found in the last column of each
table correspond to the average R2 of the five maps. The results marked in bold correspond
to the best average value across different kernels.

Table 5.1 R2 values obtained for the Squared Exponential (SE) kernel experiments with a
prior length scale `= 150 with different settings regarding WQP Map model
(10 different simulations per map model) and number of measurements M.

M WQP Map 1 WQP Map 2 WQP Map 3 WQP Map 4 WQP Map 5 Avg.

10 0.7458 0.8383 0.6765 0.7265 0.8189 0.7612
15 0.8927 0.9229 0.8261 0.8906 0.941 0.8947
25 0.9564 0.9652 0.9352 0.959 0.9811 0.9594
35 0.9652 0.9769 0.9671 0.9561 0.9871 0.9705
50 0.983 0.9935 0.9826 0.9881 0.9952 0.9885

Note that the generated WQP maps have different values, have their peaks in different
locations, and are not correlated to each other. Despite this, for each kernel, the R2 score is
similar and has less variance as the number of measurement locations increases. Regarding
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Table 5.2 R2 values obtained for the Rational Quadratic (RQ) kernel experiments with
prior hyperparameters ` = 150 and α = 1.0 with different settings regarding
WQP Map model (10 different simulations per map model) and number of
measurements M.

M WQP Map 1 WQP Map 2 WQP Map 3 WQP Map 4 WQP Map 5 Avg.

10 0.7458 0.8383 0.6765 0.7253 0.8159 0.7604
15 0.8925 0.9225 0.8261 0.891 0.9339 0.8932
25 0.9563 0.9652 0.9352 0.9585 0.9811 0.9592
35 0.9651 0.9769 0.9671 0.9562 0.9871 0.9705
50 0.983 0.9935 0.9826 0.988 0.9952 0.9884

Table 5.3 R2 values obtained for theMatérn kernel experiments with prior hyperparameters
` = 150 and ν = 1.5 with different settings regarding WQP Map model (10
different simulations per map model) and number of measurements M.

M WQP Map 1 WQP Map 2 WQP Map 3 WQP Map 4 WQP Map 5 Avg.

10 0.6936 0.7925 0.5959 0.707 0.7952 0.7168
15 0.8709 0.9066 0.7505 0.8863 0.9065 0.8642
25 0.9447 0.9592 0.8949 0.9509 0.9619 0.9423
35 0.9527 0.9613 0.9451 0.9468 0.9703 0.9552
50 0.9794 0.9882 0.9709 0.9851 0.9895 0.9826

the different hyperparameters, Figure 5.1 shows the evolution of different hyperparameters
for different kernels. Specifically, Figure 5.1a shows the evolution of the length-scale value
` according to the different number of measurements per WQP Map for the SE kernel. Of
course, the length scale value varies according to the map, but it can be seen that the value
tends to be a constant. In the case of the other kernels, the same behavior is observed.
Moreover, hyperparameter α (the scale-mixture), for RQ (Figure 5.1b) kernels, reaches
the maximum allowed values in simulations for some WQP maps, which means it tends to
∞, effectively, transforming the kernels into SE kernels. The application of the parsimony
principle [83] also applies in this case, since a simpler method of modeling should be
preferred.

The summarized results using the different kernels can be found in Table 5.4. The values
in Table 5.4 correspond to the average R2 considering five different WQP maps. The table
shows that, for the Ypacarai Lake, using the SE or RQ kernels provides the best results.
Consequently, either of these kernels should be indifferently selected. But since RQ is
the generalization of SE and the observed hyperparameter value α reached its maximum
possible value, SE is the selected kernel. Moreover, RQ is a more complex expression and
provides approximately the same results. For this reason, SE is the selected kernel for the
proposed BO-based monitoring system, and it will be used as the prior/posterior model
for the next simulations.
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Figure 5.1 Hyperparamter evolution corresponding to (a) Hyperparameter length-scale `
for the SE kernel, and (b) Hyperaparmeter scale-mixture α for the RQ kernel .

Table 5.4 Summarized averageR2 values obtained in the simulations using different kernels
with prior hyperparameters as shown and different settings regarding WQP Map
model (10 different simulations per map) and number of measurements M.

M SE (`p = 150) RQ `p = 150,αp = 1.0) Matérn (`p = 150,νp = 1.5)

10 0.7612 0.7604 0.7168
15 0.8947 0.8932 0.8642
25 0.9594 0.9592 0.9423
35 0.9705 0.9705 0.9552
50 0.9885 0.9884 0.9826
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Figure 5.2 shows an example of the prediction generated using a SE kernel with the
best prior hyperparameters found in Table 5.4. The first subfigure corresponds to the
Ground Truth for that experiment, whereas the second and third subfigures show the
mean and standard deviation, respectively, using the measurement values obtained at
random locations marked with red diamonds. Regardless of the random distribution of
points, the same average result is always obtained using this kernel. This is sensible
because when using SE, as a covariance function, one expects smooth behaviors and gentle
gradients, as opposed to using Matérn, which creates “noisy” covariance between inputs.
The hyperparameter length scale was changed to fit the given measurement locations
on each scenario. It has been observed that there were different values of length scale
when using only 10 locations, but as the number of measurement locations increased, the
variance of the final length scales decreased and in most cases was very different from
the prior length scale. This implies that the GP can effectively condition a WQP that
behaves like the SF. A careful adjustement of the length scale can be done so that the
next experiments start with a better understanding of the underlying black box function,
but since different models will produce different length scale and since the real behaviors
will not necesarrily always be like a SF, the prior length scale is selected as designed first
along with the assumed iid noise. With the kernel appropriately selected, the next step is
to select an acquisition function for the system.
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Figure 5.2 Example of posterior GP regression using the Squared Exponential kernel with
`= 150. In this case, with the selected random 10 measurement locations, the
fitted length scale changed to a value of `= 307.346 using the maximization
of logarithmic likelihood.

5.3 Acquisition Function Selection

In this section, the results are presented to evaluate the different AFs. Since the idea is to
obtain the best-adapted acquisition function for the monitoring mission, a full evaluation
needs to be performed considering only one vehicle. This implies that for each acquisition
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function, not only should an adaptation be selected, but for each one, a proportion of the
current length scale for limiting the distance needs to be carefully selected. In conclusion,
two hyperparameters (ξ , λ ) and an adaptation should be selected for each acquisition
function. Therefore, for testing, an ASV was simulated considering different runs for
different WQP map models.
Recall that after every new measurement is performed in the test scenarios, the total

distances traveled were calculated and stored together with R2 and the number of measure-
ments carried out so far M. For the comparison framework, the R2 and the total distance
traveled (TDT) of multiple simulation runs were stored for each method. Additionally,
from this section on, ASVs start at the shore of the water body, which is sensible, since
surface vehicles almost always start their mission at the shore. The initial vehicle position-
ing is the same method described in Subsection 3.6.1, but only considering one vehicle at
a time.

For the AFs: Probability of Improvement, Expected Improvement, and Scaled Expected
Improvement, the following tables are presented: Table 5.5, Table 5.6, and Table 5.7,
in which the average R2 values can be observed. The results are shown for all different
combinations of ξ and λ , and in each table, the best R2 value is shown in bold. Since a
good R2 value is only required, the selected hyperparameters are the ones that give the
best R2 value, regardless of the number of measurements performed.
Probability of Improvement is the simplest AF tested. Table 5.5 shows the results

according to different settings. Only one average R2 was greater than 0.5, but it does have
a large standard deviation value (0.395), implying that this method does not present a good
average value and also it is not robust against initial locations. PI does present a small
number of average measurements and this is one of the reasons of the average small R2

value. Definitely, it cannot be used for the monitoring system.
According to the simulations, Expected Improvement is the best AF using the BO

framework (See Table 5.6). The results are not only better regarding the objective of the
system (Average R2 value) but also considering the number of measurements performed. It
is remarkable how with only a few more measurements on average, the value of coefficient
of determination (R2) is better on average. Moreover, using the truncated adaptation with
a exploration bias of 2.0 and a limit of half of the current length scale, the R2 value reaches
0.582 with a lesser variance value, only needing to measure on approximately 10 locations
within the whole water body.

The results obtained shown in Table 5.7 correspond to the experiments performed
with the Scaled Expected Improvement as AF, which is a scaled version of the EI that
favors searching for the peaks. It has been observed that the scaling factor reduced the
acquisition function to a point in which the selected measurement location presented
little to no improvement regarding the decrease in uncertainty. Moreover, while using the
masked adaptation, the scaling prevented the system to find new measurement locations
other than the current location after the first 3-4 measurements, effectively not moving the
ASV after some measurements regardless of the initial location.

Taking into account the Active Learning strategy, only different λ values can be tested,
since Eq. 3.31 does not include a parameter ξ . Additionally, masking the results is not
possible when the kernel is a proportion of the AF itself, which happens since both consider
only an exponential value according to the distance and a length that is proportional to



5.3 Acquisition Function Selection 65

Table 5.5 Results for the Probability of Improvement AF.

Adaptation f. ξ λ Avg. R2 Avg. M

Split Path

1.0

0.375 0.433±0.435 16.47±5.449
0.5 0.43±0.438 13.06±4.204
0.75 0.375±0.475 9.64±2.633
1.0 0.393±0.455 8.16±2.176

2.0

0.375 0.469±0.314 17.16±5.499
0.5 0.467±0.319 13.77±4.176
0.75 0.435±0.35 9.86±2.706
1.0 0.43±0.322 8.46±2.17

Truncated

1.0

0.375 0.375±0.532 10.19±5.114
0.5 0.437±0.422 8.66±3.653
0.75 0.4±0.485 7.139±2.518
1.0 0.357±0.446 6.22±1.874

2.0

0.375 0.48±0.431 10.759±5.679
0.5 0.495±0.429 8.909±4.103
0.75 0.508±0.395 7.24±2.653
1.0 0.482±0.323 6.16±1.88

Masked

1.0

0.375 0.41±0.373 6.48±1.947
0.5 0.359±0.453 6.27±1.771
0.75 0.373±0.451 6.0±1.772
1.0 0.322±0.479 5.59±1.477

2.0

0.375 0.408±0.435 5.63±1.507
0.5 0.387±0.452 5.6±1.407
0.75 0.383±0.429 5.42±1.335
1.0 0.391±0.327 5.21±1.344

the hyperparameter. In this sense, Table 5.8 shows all the different available components
tested, which consider both different values λ and two adaptations.

A summary of the best set (ξ , λ and adaptation function) for each Acquisition Function
is found in Table 5.9. It is evident that using EI(x) with ξ = 2.0,λ = 0.5 or max σ(x)
(λ = 0.5) will yield the best results, and the other methods do not perform as well as these
two. When considering the average number ofmeasurements, EI(x) presents the best results,
as it requires a significantly lower number of measurements to provide approximately the
same average R2 score.

In Figure 5.3, the best paths found provided by each of the best acquisition functions are
presented. They start at different locations because what is best for each is not necessarily
the same. In addition, different ground truths were considered to obtain the different results.
However, in terms of Squared Error, a comparison can be made. Both maps are depicted
according to the squared difference between their ground truth and the output mean of the
fitted GP. Figure 5.3a shows that the myopic path found chooses to evaluate points that are
initially approximately in the same direction but change drastically after reaching a certain
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Table 5.6 Results for the Expected Improvement AF.

Adaptation f. ξ λ Avg. R2 Avg. M

Split Path

1.0

0.375 0.423±0.397 16.6±5.265
0.5 0.429±0.376 13.27±4.094
0.75 0.403±0.401 9.69±2.509
1.0 0.417±0.359 8.26±1.968

2.0

0.375 0.481±0.332 17.18±4.952
0.5 0.472±0.35 13.69±3.9
0.75 0.404±0.447 9.88±2.519
1.0 0.413±0.416 8.38±1.933

Truncated

1.0

0.375 0.475±0.39 10.15±5.113
0.5 0.51±0.349 8.88±3.653
0.75 0.439±0.419 7.169±2.417
1.0 0.425±0.397 6.23±1.66

2.0

0.375 0.545±0.396 10.85±5.617
0.5 0.582±0.303 9.561±3.839
0.75 0.486±0.451 7.4±2.565
1.0 0.471±0.401 6.31±1.912

Masked

1.0

0.375 0.395±0.461 6.119±1.74
0.5 0.377±0.417 5.97±1.558
0.75 0.378±0.411 5.59±1.422
1.0 0.321±0.389 5.48±1.292

2.0

0.375 0.484±0.317 5.81±1.501
0.5 0.428±0.417 5.64±1.466
0.75 0.412±0.374 5.34±1.305
1.0 0.353±0.443 5.18±1.268

point. This behavior is possible due to the usage of the truncated adaptation, and the results
show that on average this adaptation works better when using the EI AF. On the other
hand, Figure 5.3b shows that two straight routes managed to obtain a lot of information on
their way. Note that the length between measurements is always the same, and, generally
speaking, it has been observed that the selected final locations are always on the shore of
the water body. A combination of both methods (AFs and adaptation) seems a good way
to obtain the best from both, but for initial assessments, EI with truncated adaptation is
better since it not only finds new measurement locations after each measurement, but also
requires fewer measurements on average to provide the same results. The limitation is
due only to the distance between locations, which is a constraint already discussed. The
final selection of components for a single ASV is shown in Table 5.10. The kernel also
includes the addition of a White Kernel with noise value that needs to be adjusted for
simulations and/or real experiments.

Regarding the different hyperparameters, a higher bias towards exploration is sensible
since the optimality is based on the knowledge of the model. Most of the results found
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Table 5.7 Results for the Scaled Expected Improvement AF.

Adaptation f. ξ λ Avg. R2 Avg. M

Split Path

1.0

0.375 0.46±0.345 17.009±5.232
0.5 0.474±0.34 13.73±3.987
0.75 0.438±0.375 9.89±2.592
1.0 0.426±0.364 8.42±1.955

2.0

0.375 0.504±0.317 17.36±5.235
0.5 0.481±0.371 13.83±4.062
0.75 0.408±0.706 10.01±2.496
1.0 0.412±0.733 8.4±1.985

Truncated

1.0

0.375 0.503±0.455 11.049±5.22
0.5 0.487±0.404 9.309±3.839
0.75 0.514±0.372 7.41±2.478
1.0 0.484±0.318 6.37±1.82

2.0

0.375 0.51±0.418 10.81±5.524
0.5 0.539±0.352 9.499±3.918
0.75 0.519±0.391 7.45±2.535
1.0 0.446±0.718 6.46±1.9

Masked

1.0

0.375 0.168±0.478 3.4±0.49
0.5 0.168±0.478 3.4±0.49
0.75 0.168±0.478 3.4±0.49
1.0 0.168±0.478 3.4±0.49

2.0

0.375 0.167±0.478 3.4±0.49
0.5 0.167±0.478 3.4±0.49
0.75 0.167±0.478 3.4±0.49
1.0 0.167±0.478 3.4±0.49

Table 5.8 Results for the maximum uncertainty (Active Learning) strategy.

Adaptation f. λ Avg. R2 Avg. M

Split Path

0.375 0.567±0.286 21.55±3.354
0.5 0.581±0.274 16.928±2.584
0.75 0.535±0.326 11.67±1.674
1.0 0.568±0.281 9.49±1.345

Truncated

0.375 0.513±0.353 11.899±5.962
0.5 0.529±0.311 9.99±3.931
0.75 0.532±0.356 7.79±2.593
1.0 0.538±0.296 6.55±1.868
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Table 5.9 Summarized results for different AFs according to their best setup. The fourth
column presents the mean and standard deviation of the R2, while the last column
the average number of performed measurements M. Both columns consider the
final distance traveled of 15000[m].

Acq. F. Adaptation f. (ξ ,λ ) Avg. R2 Avg. M

PI(x) truncated 2.0, 0.75 0.508±0.395 7.24±2.653
EI(x) truncated 2.0, 0.5 0.582±0.303 9.561±3.839
SEI(x) truncated 2.0, 0.5 0.539±0.352 9.499±3.918

max σ(x) split path λ=0.5 0.581±0.274 16.928±2.584
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Figure 5.3 Example Squared Errormaps considering the best seed using as utility functions:
(a) EI(x) and (b) maxσ(x).

Table 5.10 Bayesian optimization Framework component for a single ASV.

GP Kernel Prior ` σ
2
n Acq. F. ξ Adapt. f. λ

Squared Exp. + White K. 150 0.01 EI(x) 2.0 truncated 0.5

show better results for the highest ξ value for the different AFs. The high amount of
variance found in the tables shows that it greatly depends on the starting location, but for
real applications, usually there already exist a few measures that will help in selecting the
starting location. Through simulations, empirical foundations of optimal measurement
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performance have been laid out for efficient exploration. It is proposed that exploration
of unknown functions take into account the underlying hyper-parameters of GPs such as
the length-scale. Simulations have shown that, similar to the Nyquist–Shannon sampling
theorem, the distance between measurements locations for surrogate model acquisition
need to be approximately half of a supposed frequency of similarity between different
locations (namely length-scale `).

5.4 Multi-ASV

In this thesis, only one proposition for multi-agent system has been proposed. Unintentional
cooperation has many advantages for the monitoring mission compared to intentional
cooperation. The flexibility of execution that it provides is sufficient to select it as the
proposed method. Therefore, the Voronoi diagram is used to split or create several regions
according to each of the vehicles at the selection time of the measurement location.

Voronoi regions can be described solely by the locations (x,y) of the generators, which
in the case of this thesis are the current locations of the ASV if they are available. However,
since the Voronoi regions need to be limited in surface area, so that each agent aims to cover
a finite area, each region needs to be defined according to their Voronoi vertices, which
are fairly easy to obtain. However, additional calculations are needed to fully define the
Voronoi regions for all generators. Figure 5.4 shows an example Voronoi region generated
considering four different ASVs, using this technique the searching region is limited to
the bounds of the map.

Each time a new measurement location is needed, the VD is first generated according to
the available ASVs and the boundary of the map. Next, the CC only searches for a possible
measurement location within the feasible region and the Voronoi region generated for the
vehicle. Figure 5.5 shows some examples of different Voronoi regions according to 3, 4
and 5 ASVs. It shows the robustness against adding and removing ASVs in the middle
of a mission, because the regions will be updated to include only the available ASVs as
Voronoi generators. It is important to note that if only one vehicle is present in the system,
a box “Voronoi” region will be created, which will create the same working scenario as the
preceding results in this chapter. Moreover, due to the fact that the selected AF is heavily
biased towards explorations, two ASVs will never be in the same location.

5.5 Proposed approach: Multi Water Quality Parameter monitoring
using Multiple Autonomous Surface Vehicles

Continuing with the results, in this section, the results for a multi-water quality parameter
monitoring mission are presented. In these experiments, a simulated ASV proceeds to
measure several WQP simultaneously and lets the CC decide on measurement locations
according to a designed system. Recall that Multi-Function Estimation andMulti-Objective
Optimization were the two approaches proposed in this thesis. The procedure was to test the
methods with their respective components, select the best components for each approach,
and then perform a final comparison against each other. Considering multiple WQPs, the
results should include different simulated WQP models. In that sense, Table 5.11 shows
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Figure 5.4 Example of bounded VD for the Ypacarai Lake considering 4 (blue diamonds)
initial points and their respective mirrored points (red).
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Figure 5.5 Voronoi Partitioning Region in action for (a) 3, (b) 4 and (c) 5 vehicles. Note
the different regions generated automatically updates and distributes regions
according to the number of available ASVs.

the different combinations of WQP simulated models used, i.e., the different sensors that
were used during a mission, where for each simulation model ID, different runs were
made according to different initial locations and number of ASVs. Each Sm corresponds



5.5 Multi WQP monitoring using Multi-ASVs 71

to a different WQP model generated using the shekel function with random peaks and
locations. Note that there exist 4 groups of number of sensors involved, each one containing
4 different combinations of WQP models so that generalization was effectively tested.

Table 5.11 Different groups of sensors involved.

Set Sensors Involved

1 [S0,S1]
2 [S2,S3]
3 [S4,S5]
4 [S6,S7]
5 [S0,S1,S2]
6 [S3,S4,S5]
7 [S6,S7,S8]
8 [S0,S4,S9]
9 [S0,S1,S6,S7]
10 [S2,S3,S4,S5]
11 [S2,S4,S6,S8]
12 [S6,S7,S8,S9]

The number of vehicles available were 2, 3 or 4 that had initial locations on the shore of
the water body and had a full battery level. The CC used MFE (coupled or decoupled)
or MOO (through the Genetic Algorithm) to obtain the best locations for measurements,
which were adapted to limit traveling distance. The results are grouped by these strategies.
For each of the ASVfleets (2, 3 or 4 ASVs), themeanR2 scores for 120 different simulations
using different sets of WQP simulated models are shown in Table 5.12, Table 5.13, for the
coupled and decoupled variations, respectively. Regarding this approach, Multi-Function
Estimation, no additional hyperparameters need to be determined.
Regarding the MOO using GA, several hyperparameters needs to be described. Table

5.14 shows the hyperparameters selected. The code was fully implemented using the
library pymoo [87], and the respective parameters were selected to efficiently explore
the feasible search space. In this implementation, the constraints functions are defined
according to the map model and the Voronoi region for each vehicle.

Table 5.15 shows the results for 120 simulations considering a MOO framework. The
table is distributed in the same way as theMFE variations found above. The main difference
using this strategy is that a population of candidate measurement locations is evolved to
obtain an optimal Pareto efficient set instead of obtaining the location according to an
equally weighted approach (MFE coupled) or to an unilateral weighting approach (MFE
decoupled). Figure 5.6 shows an example of the MOO in action where there exists 4 ASVs
measuring 4 different WQPs simultaneously. In the example, the WQPs correspond to
Figure 4.3 found in Section 4.2.1. All Pareto Efficient points that were obtained are within
the Voronoi region for the green ASV generated with the current locations of the ASVs, not
the last measurement locations. It is remarkable how the proposed approach can efficiently
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Table 5.12 Results for MFE strategy considering coupled method for different number of
ASVs and different number of sensors available.

# ASVs # S Avg. R2 Avg. M

2
2 0.928±0.069 27.498±3.294
3 0.95±0.055 28.673±3.26
4 0.949±0.035 28.645±3.462

3
2 0.974±0.017 38.922±3.546
3 0.981±0.009 40.547±3.59
4 0.979±0.013 41.474±4.78

4
2 0.985±0.01 51.923±3.783
3 0.989±0.011 53.872±3.696
4 0.99±0.006 54.096±4.701

Average 0.969±0.039 40.628±10.948

Table 5.13 Results for MFE strategy considering decoupled method for different number
of ASVs and different number of sensors available.

# ASVs # S Avg. R2 Avg. M

2
2 0.931±0.067 27.623±3.646
3 0.943±0.057 27.999±3.563
4 0.936±0.062 28.174±4.312

3
2 0.975±0.016 38.372±3.089
3 0.983±0.01 42.048±3.263
4 0.979±0.014 41.398±4.774

4
2 0.986±0.008 52.922±3.524
3 0.99±0.008 53.622±4.287
4 0.988±0.009 52.84±5.344

Average 0.968±0.044 40.487±11.078

obtain candidate optimal measurement locations, and how efficient the system is because
is the generated paths are all close to the different initial locations of the ASVs.
It has been observed that evidently, with a larger number of ASVs, a larger number

of measurements will be performed, this will inevitably yield better R2 scores. The
obtained GPs manage to correctly fit the data (4 ASVs almost always obtain R2 = 0.99)
and approximate the real function with ease. Furthermore, the Voronoi Diagram really
enhances robustness and provides scalability. Without the VD, the vehicles will perform
measurements on the same regions, and consequently, provide redundant information.
With the proposed VD system, the fleet cooperates unintentionally while monitoring. Table
5.16 shows the summarized results of the methods. MOO using GA presents the best
result. In this case, it also presents the average greater number of measurements, but it is
not so different from the other methods. MOO seems to be more robust regarding initial
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Table 5.14 Multi Objective Optimization parameter values.

Parameter Value

Optimizer NSGA-II [86]
Individual 2D Gene: (x, y)
Population 50
Generations 150
Selection Binary Tournament

size = 2
Crossover Simulated Binary

η = 15 ; probcx = 0.9
Mutation Polynomial Mutation

η = 20 ; probmut = 0.01

Table 5.15 Results for MOO strategy using GA for different number of ASVs and different
number of sensors available.

# ASVs # S Avg. R2 Avg. M

2
2 0.953±0.027 28.049±2.991
3 0.949±0.049 28.774±2.894
4 0.963±0.027 29.273±3.513

3
2 0.979±0.041 40.045±5.002
3 0.984±0.014 42.747±4.646
4 0.987±0.01 43.122±4.713

4
2 0.99±0.01 53.053±8.996
3 0.989±0.014 52.873±10.924
4 0.987±0.018 51.722±12.033

Average 0.976±0.031 41.073±12.055

conditions, presenting a lower standard deviation value of R2. In that sense, the proposed
method should include the usage of MOO using GA for accomplishing monitoring of
multiple WQPs through multiple ASVs using the Bayesian optimization framework.

Table 5.16 Summary of the results using Multi-Water Quality Parameter strategies.

Strategy Avg. R2 Avg. M

MFE Coupled 0.969±0.039 40.628±10.948
MFE Decoupled 0.968±0.044 40.487±11.078
MOO using GA 0.976±0.031 41.073±12.055
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Figure 5.6 Example of the Multi-ASV Multi-WQP system. A Pareto Efficient set is gen-
erated according to the current values returned by the selected acquisition
function and the constraint function. The next measurement location is selected
to be the closest to the current location of the vehicle and is adapted according
to the adaptation function.

5.6 Comparison with other methods

Before the results were discussed, a comparison with three different environmental moni-
toring approaches was performed. The methods are: the Predictive Entropy Search for
Multi-Objective Bayesian optimization with Constraints (PESMOC) [71], applied to the
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monitoring objective, the TSP-Genetic Algorithm for monitoring [56], and finally a lawn-
mower efficient method for monitoring. The three approaches are modified if possible
to achieve maximum exploration and are tested in the same scenario (including ASVs
constraints) as the proposed method. Evidently, the proposed system (Figure 3.6) is the
same, with the difference in the evaluation component of the acquisition function. The
three methods are defined as follows.

1. PESMOC for Environmental Monitoring:
In this work, we use the method proposed in [71] but with some modifications to
ensure monitoring. It consists of obtaining the difference between the logarithm of
uncertainty of a predictive distribution (PD) σ

PD
i and the average of logarithms of

uncertainties of Conditioned PD σ
CPD
i (conditioned to x|X ∗(m)). X ∗(m) is one of

the m different locations of a supposed Pareto set. For a complete explanation of
PESMOC, see [71]. The PES expression is taken directly from the work, considering
deterministic constraints, and has the form of

α ≈
S

∑
s=1

(
logσ

PD
s (x)− 1

MS

MS

∑
m=1

logσ
CPD
i (x|X ∗(m))

)
(5.2)

This expression can be evaluated with the coupled or decoupled strategy. As shown
in the expression above, the coupled evaluation sums up the differences for each
AF objective αs. The decoupled version considers one difference at a time.The
parameters that suffered changes in order to fit the purpose of exploration are as
follows.

• Pareto setX ∗: Since the objective of this work can be thought of as minimizing
uncertainty, the Pareto set is taken as the positions where the sum of the
predicted standard deviations reaches its maximum values.

• Conditioning p(y|D,x,X ∗): Conditioning is carried out through a cloned GP
model to include a supposed evaluation according to the items of the Pareto
set.

• Monte Carlo Sampling MS: For efficient evaluations, only one point of the
Pareto set is used. Therefore, the number of Monte Carlo samples is reduced
to one. Indeed, this sacrifices accuracy but definitely improves computational
efficiency, which has been observed to be less efficient than our method because
it needs to calculate the GP Regression twice for each water quality parameter
or objective.

Voronoi regions were used to define the constraints, so that each vehicle could only
obtain a PESMOC value within its coverage region. With M = 1, as predicted, and
using the same simulation sensors as in the evaluation of the proposed method with
the best parameter, λ = 0.5 the results are shown in Table 5.17.

2. TSP-based Environmental Monitoring:
In [56], a set of 60 waypoints were defined on the shore of Ypacarai Lake. Subse-
quently, the best TSP solution (waypoint visit order) was found by a GA evolved to
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Table 5.17 Results for PESMOC strategy for different number of ASVs and different
number of sensors available.

# ASVs # S Avg. R2 Avg. M

2
2 0.907±0.056 26.824±4.727
3 0.91±0.057 27.174±4.358
4 0.918±0.066 28.021±4.213

3
2 0.983±0.01 41.82±4.161
3 0.984±0.01 43.02±4.49
4 0.983±0.008 42.721±4.612

4
2 0.995±0.002 54.232±5.024
3 0.995±0.002 54.662±3.851
4 0.995±0.003 55.469±3.168

Average 0.962±0.052 41.269±12.137

optimize the exploration of Ypacarai Lake. This method was discussed in Chapter 2.
Contrary to the continuous measurement approach stated in the aforementioned work
[56], for comparison, the monitoring system is modified so that the vehicle can take
measurements only while the ASV is not moving.
The distance between the measurement locations is the same as that proposed in this
work, which is based on the length scale. Therefore, the ASV travels from point
to point, making measurements every l = λ ×min{`s} meters. Whenever the total
distance traveled reaches 15,000[m], the ASV stops, performs a final measurement,
and the mission ends. To account for multiple vehicles, the available shoreline points
were divided into groups according to the previously obtained visit order. This is the
only difference regarding the usage of multiple ASVs w.r.t. the original proposed
system. The results are shown in Table 5.18.

3. Lawnmower applied for monitoring/exploration:
The classic lawnmower implementation is also a straightforward approach that seems
to be efficient for monitoring, due to its definition. For comparison, the lawnmower
strategy found in [93] was used as part of the acquisition function component,
obtaining straight paths that will intend to cover the water body in this problem.
The generation of paths considers the Voronoi regions created at execution time
and generates waypoint locations that are equally spaced according to the expected
prior length scale of the GP. The classic implementation can only deliver paths that
are left-to-right and bottom-up (or vice versa, for both pairs of directions), so the
vehicles necessarily need to initially be location on the far-most edge of the water
body. The results can then only be obtained for multiple sets of simulations that vary
the WQP maps but not the initial vehicle locations. The results are available in Table
5.19.

None of the comparison methods performed on average better than the proposed method.
In Table 5.20, a summary of the comparison methods can be observed, and none of them
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Table 5.18 Results for TSP-based GA strategy for different number of ASVs and different
number of sensors available.

# ASVs # S Avg. R2 Avg. M

2
2 0.837±0.086 32.522±3.344
3 0.848±0.082 33.574±3.065
4 0.853±0.082 34.722±2.923

3
2 0.891±0.107 50.171±4.017
3 0.902±0.093 51.223±3.636
4 0.903±0.093 51.898±3.491

4
2 0.962±0.019 60.2±0.4
3 0.96±0.023 60.1±0.944
4 0.958±0.022 60.125±0.331

Average 0.902±0.088 48.281±11.39

Table 5.19 Results for Lawnmower strategy for different number of ASVs and different
number of sensors available.

# ASVs # S Avg. R2 Avg. M

2
2 0.946±0.036 28.9±2.447
3 0.957±0.023 29.75±2.808
4 0.953±0.024 30.2±2.421

3
2 0.815±0.109 25.15±3.864
3 0.848±0.089 26.25±3.819
4 0.853±0.088 26.9±2.488

4
2 0.739±0.132 16.75±4.448
3 0.779±0.105 18.25±5.29
4 0.791±0.089 18.5±5.045

Average 0.853±0.115 24.517±6.258

shows better behavior than any of the methods shown in Table 5.16, which contains the
results of the proposed method. Of course, because lawnmower and TSP-based using GA
are offline methods, they cannot obtain similar R2 values. PESMOC, on the other hand,
is an online method that reached a satisfactory average value but is not as good as the
proposed method. Figure 5.7 shows a comparison between the methods with respect to the
distance of travel. To obtain this figure, the mean values of R2 and the standard deviations
were obtained considering the different measurements performed for each method during
each simulation. It can be regarded as the average R2 per distance obtained using the
different methods. It shows that the MOO using the GA method is not only at the end
of the experiments, but is better during the missions because it always presents a better
coefficient of determination. Not that the TSP-based method and the lawmower methods
have different starting values because their initial positions are selected according to the
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generated offline paths rather than random initial locations at the shore of the water body.

Table 5.20 Summary of the comparison method results.

Strategy Avg. R2 Avg. M

PESMOC 0.962±0.052 41.269±12.137
TSP-based GA 0.902±0.088 48.281±11.39
Lawnmower 0.853±0.115 24.517±6.258
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Figure 5.7 Average interpolated R2 value obtained per distance for the proposed approach,
as well as the comparison approaches applied to online monitoring.

5.7 Summary of the Results

After the obtained results were observed, analyzed, and discussed, a complete summary of
them has been done and is as following:

• Gaussian Process can be used as surrogate models, since they can efficiently provide
regressions using a limited amount of data. With our proposal, as well as with the
others, the average coefficient of determination is close to 1, implying that the
selected model is very good when approximating unknown models.

• Voronoi Regions provide a good systematic approach for multiagent cooperation.
This approach only allows for a scalable and robust region partitioning and addi-
tionally, in the case of our approach, it can be updated to consider only available
ASVs, which is very helpful whenever some agents can be added or removed from
the system, in the middle of a mission.

• The Multi-Objective problem is appropriately addressed, and is, to best knowledge
of the author, one of the firsts works to perform intelligent online water quality
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parameter measuring for model obtainment. This work expands the Bayesian op-
timization method to account for multiple objectives (multiple acquisition/utility
functions).

• Efficiency of Multi-Function Estimation: MFE using multiple vehicles is a quick
method for solving multi-objective problems such as this case. Provides the same
level of performance as the MOO approach.

• Efficiency of Multi-Objective Optimization: It is one of the first approaches that
intelligently explore a large-scale environment in the search of data acquisition.
The path, which are generated during the mission, is adapted to any scenario and
considers both: the acquired data and the endurance of the agent. According to
the performed simulations, the MOO approach showed the best results, not only
considering the average final R2S obtained, but also when considering the traveled
distance.

• Comparison with PESMOC: PESMOC is the online method that mos closely re-
sembles the proposed system in this thesis, but the results are not as good. Insights
of the method show that it can be trapped in considering points that are too far away,
failing to obtain the surrounding behavior but only the behavior between a starting
location and the other edges of the map.

• Comparison withGenetic Algorithm TSP-based coverage approach: Focusing on the
fact that for real applications the measurements should be performed in a discrete
manner, the method proposed in this work performs better. As in the LM, this
algorithm presents offline paths, so the same differences in efficiency can also be
concluded.

• Comparison with Lawnmower: Specifically, with this monitoring approach, our
method focuses on efficient data acquisition, rather than global, offline, geometric-
based data acquisition. The LM method does not account for whether the obtained
data fit better or worse to the underlying surrogate model.
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Maybe we’ve spent too long trying to figure this out with theory.

Amelia Brand, Interstellar, 2014

6.1 Conclusion

This thesis proposed one of the first BO methods for environmental informative path
planning of multiple ASV, to the best knowledge of the author, and it aims to

minimize the uncertainties of multiple WQPs. The proposed system includes the usage of
a covariance function for a GP that fits the expected Water Quality Parameter behaviors. In
that sense, multiple kernels were tested and compared through simulations to select the best
one. The simulations were designed so that they resemble real life limitations. Therefore,
an ASV simulator was designed as part of a modular component so that the main system
(centralized coordinator) is unaware of the ASVs that are executing the mission. Among
the different kernels, the SE (summed with a white kernel) fitted the shekel function,
including noisy measurements.

Following the BO framework, several AFs were also considered for their use, but were
modified and adapted to the specific constraints of ASV monitoring. Specifically, three
different adaptations were proposed to deal with the mobility (and energy) restrictions of
ASVs. These adaptations included a hyperparameter that dealt with energy constraints.
Instead of considering that this hyperparameter should be parameter, it was considered a
variable related to the kernel hyperparameter length scale. Among the different proportions
of length scales tested, the best results were generally less than or equal to half of the
fit length scale value, which is consistent with the Nyquist-Shannon sampling theorem,
because it limits the distance between measurement locations or samples in the feasible
space. Evidently, various “ground truths” were used to obtain the best results, and various
initial seeds were also used to ensure the reliability and statistical validity of the system.
Results have shown that, considering one WQP and one ASV, the best method consists

81
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of selecting the Expected Improvement AF highly biased towards exploration, whose
best proposed measurement location was modified according to the truncated adaptation
with half of the length scale as maximum traveling distance. Compared to a simplistic
Active learning approach, the proposed system shows equal values of the coefficient of
determination, but the number of measurement locations is drastically lower, which is a
desirable characteristic.
Today, not only can ASVs be equipped with a multi-WQP sensor system, but multiple

ASVs can also be acquired/developed because of their relative economic factor. This
was not feasible until recently, so related works do not consider this possibility, and
therefore they are not developed to be a Multi-WQP Multi-ASV system. In this thesis,
this assumption was a possibility; hence, the proposed system takes advantage of this and
improves the monitoring system. A multi-function estimation using Bayesian optimization
approach for environmental monitoring with multiple ASVs was presented. First, following
a non-intentional cooperation paradigm, Voronoi regions were defined for each of the
available ASVs. Afterward, considering the region of an ASV, a measurement location was
obtained according to the functions previously mentioned and the fusion of WQP surrogate
functions: Since multiple WQP values are obtained, multiple AFs can also be obtained,
which can be combined so that a new function presents a new best measurement location.
Multi-Objective Optimization can also be used to address the existence of various water
quality parameter models that need to be obtained. A quick and efficient implementation of
NSGA-2 was used to obtain, for an ASV, a Pareto-efficient set of locations that were within
a Voronoi region. Since in this setting, any location is a valid optimal next measurement
location, the closest one to the current position of the ASV was selected, and after adapting
this location, the new adapted optimal measurement location was selected to be the goal
of the ASV, where new measurements were performed.
Furthermore, we compared the proposed monitoring approach with other alternatives

found in the literature, such as the GA-based exploration algorithm and the lawnmower
method. The results obtained demonstrated the validity of the proposed approach, since it
clearly outperforms the other techniques in the simulated scenarios. The proposed method
can also be improved with a multi-agent system composed of several ASVs. Using a
centralized coordination could decrease the total distance traveled by each ASV through
multi-objective optimization. This multi-objective approach has proven to be better than
other methods. The application of this is shown to be an efficient and reliable approach
when the mission is to monitor a large-scale water environment while also measuring its
quality parameters. Since the objectives consist of minimizing the error of these maps, the
comparison was made considering the coefficient of determination, and it was observed
that the system has proven to be efficient, obtaining very good values. In addition, it has
been proven to be robust against redundancy, as search regions are continuously adapting
to the locations of available ASVs. Furthermore, the proposed approach has been shown
to be scalable with the number of vehicles.

Compared to other similar monitoring methods, our proposal not only outperforms the
PESMOC, GA, and LM methods at the end of the mission, but also during the whole
mission. It is also more efficient with respect to measurement performing with coverage
and patrolling approaches that aim to obtain initial assessments of multiple WQPs simul-
taneously for real scenarios. The results show that the monitoring of WPQs should not be
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done offline but by considering the newly collected data to decide on new measurement
locations, regardless of the number of agents involved or the number of measured WQPs.

6.2 Future Work

To ensure that further improvement can be made, the future directions of this work can
include dynamic modeling of WQPs and time-based Bayesian optimization approaches
because recurrent monitoring missions can be performed. Therefore, an efficient system
that can include loss of information regarding the elapsed time can be developed. Dynamic
systems should be robust against sudden changes in WQPs. In that sense, and taking
advantage of the fact that kernels can be designed, a temporal-dependent kernel can be
designed to account for the mentioned dynamism. Kernels are usually stationary, but
considering time as an extra dimension can be effective and maintain the output stationary.

Multi-Output Gaussian Distributions can also be used for WQP monitoring. While in
this work different kernels are used to account for the different WQPs, a Multi-Output
GP can be designed so that not only the system is more robust, but also the GP can have
feedback and find correlations between WPQs. This will help, for example, when some
sensor data is not available or the sensor system could not obtain it, because the output
WQPs will also depend on themselves, or when a full WQP can be obtained using other
methods like temperature from satellite images, etc. In this case, the WQP surrogate
models will have less uncertainty about their values with fewer measurements.

Additional tests can also be performed onASV availability or communication constraints.
ASVs can, indeed, fail in the middle of a mission. Although the system is designed to be
robust regarding this issue, experimental results need to demonstrate the robustness of
the system. Real experiments in large-scale scenarios such as Mar Menor or open seas
can also lead to the decision of using other methods and approaches when the sensors are
too noisy or the waters are in constant movement. An heterogeneous system can also be
designed so that it includes the usage of the information provided by fixed monitoring
stations as well as aerial vehicles for faster monitoring. This heterogeneous approach
can also include different sensors for different ASVs, considering that WQPs should be
somehow correlated and that there exist some sensors that are not yet so economically
viable. This generalizes the problem to a multi-heterogeneous constrained ASV system
for obtaining multiple WQPs.

Finally, a combination of myopic and nonmyopic monitoring missions can be done as
the work in [56] suggests. First, creating an efficient informative path planning between
harbors obtaining a set of future measurement locations (non-myopic approach). These
measurement locations will be ordered and visited accordingly, and the surrogate models
will be updated with any new obtained data. Afterwards, a decision making system will
update the next measurement location (myopic approach) so that the multiple ASVs do
not drive to far away from the initial planned location but to a nearby location that has the
potential to add more information to the system. Indeed, the information entropy will be
very useful in the mentioned scenario and can improve the results.
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6.3 Publication List

This thesis is a work that made possible a sequence of several manuscripts and conference
papers that have been previously published by the author. The complete list is as follows.

• Peralta, F., Arzamendia, M., Gregor, D., Cikel, K., Santacruz, M., Reina, D. G.,
& Toral, S. (2019, November). Development of a simulator for the study of path
planning of an autonomous surface vehicle in lake environments. In 2019 IEEE
CHILEAN Conference on Electrical, Electronics Engineering, Information and
Communication Technologies (CHILECON) (pp. 1-6). IEEE. [94]

• Peralta, F., Arzamendia, M., Gregor, D., Reina, D. G., & Toral, S. (2020). A
comparison of local path planning techniques of autonomous surface vehicles for
monitoring applications: The ypacarai lake case-study. Sensors, 20(5), 1488. [54]

• Samaniego, F. P., Reina, D. G., Toral, S. L., Arzamendia, M., & Gregor, D. O.
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9163-9179.[95]
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104852.[62]
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