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Abstract: This paper presents an algorithm A• for obtaining the "best" assembly plan for 
a product in a multirobot system. Toe algorithm takes into account, in addition to the 
assembly times, the times needed to change tools in the robots. Toe objective of the plan 
is the minimization of the makespan. To meet this objective, the algorithm starts from the 
And/Or graph (compressed representation of all feasible assembly plans) and the 
information on each assembly task (robot and tool needed, and assembly time). 
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1. INTRODUCTION

Automatic assembly is one of the areas of manufac­
turing that has not been fully developed in industry. 
This is mainly because robot control and off-line 
programming have not evolved as expected 
(Martensson, 1990), as result of the fact that the 
assembly process is much more complex than 
processes in other robotic applications and parts 
manufacturing. Therefore, until recently, industrial 
robots were used primarily in simple assembly 
applications. This situation is changing, however, and 
Flexible Assembly Systems have become a very 
important issue because of the need to produce small 
lots of products, but the degree of flexibility is still 
low (Boneschanscher, 1993). 

There are different stages in the whole process of 
assembly, such as design of products and parts, 
design of fixtures, grasp selection, path planning, 
fine-motion planning, sensor integration, etc. One of 
the most important issues in the whole process is 
planning assembly tasks, whose optimality will have 
a significant effect on the final cost of the assembled 

product (Kusiak, 1990). Toe assembly planning 
problem involves the identification, selection and 
sequencing of assembly operations, stated as their 
effects on the parts. Toe identification of assembly 
operations usually leads to the set of all feasible 
assembly plans. The number of them grows expo­
nentially with the number of parts, and depends on 
other factors, such as how the single parts are inter­
connected in the whole assembly, i.e. the structure of 
the graph of connections. In fact, this problem has 
been proved to be NP-complete in both the two­
dimensional (Kavraki and Kolountzakis, 1995) añ.d 
three-dimensional (Kavraki, et al., 1995; Wilson, et 

al., 1995) cases. 

Two different approaches have been used in obtaining 
assembly plans. At first, interactive planners queried 
the user for geometric-reasoning information (Bour­
jault, 1984; De Fazio and Whitney, 1987). More 
recently, planners work automatically from a geomet­
ric and relational model of the assembly (Homero de 
Mello and Sanderson, 1991 b) and from a CAD model 
and other non-geometric information (Ames, et al., 

1995; Romney, et al. , 1995). 



Within this scope, the representation of assembly 
plans is an important issue. Toe use of And/Or 
graphs for this purpose (Homero de Mello and 
Sanderson, 1990, 1991a, b) is becoming one of the 
most standard ways of representing all possible 
assembly plans. It can be obtained by studying the 
opposite problem, that of disassembly, but main­
taining the constraints of assembly. Most automat­
ic planners work with this strategy. The result is a 
representation which is adequate for a goal-directed 
approach. Moreover, Homero de Mello and 
Sanderson (1990) and Wolter (1992) showed that this 
structure is more efficient in most cases than other 
enumerative ones. 

An optimum assembly plan is now sought, selected 
from the set of all feasible assembly plans. A variety 
of criteria has been used for choosing an optima! one. 
For example, Wolter (1988) combines the ratings 
related to manipulability of subassemblies, fixture 
complexity, and the number of different . directions 
from which operations are performed, to complete a 
plan. Criteria including the minimization of reorienta­
tion and fixture requirements were introduced by De 
Fazio et al. (1990). Henrioud (1989) proposed the 
aid of an expert about the operational and logistic 
complexity, and strategic advantages to select the best 
assembly tree (plan). Homem de Mello and 
Sanderson ( 1990) proposed assigning to the hyperarcs 
of the And/Or graph weights that depend on the 
complexity of the assembly tasks and on the stability 
of the intermediate sub-assemblies, and using generic 
search algorithms such as the AO* to obtain the best 
plan. Their proposal (1991c) of sorne optimization 
criteria based on maximizing the number of different 
assembly sequences encompassed by the assembly 
plan, and on maximizing the amount of parallelism 
(simultaneity) possible in the execution of the assem­
bly tasks, is used in a heuristic search algorithm. In 
another way, an algorithm is proposed in (Holland, 
et al., 1992) for a specific assembly cell, and for 
batches of products. 

This paper presents an algorithm A* (Nilsson, 1980; 
Pearl, 1984) for obtaining the "best" assembly plan 
for a product in a multirobot system. The approach 
used here is that of Homero de Mello and Sanderson 
(1990; 1991c), but more detailed information for the 
assembly tasks is considered. The algorithm takes 
into account, in addition to the assembly times, the 
times needed to change tools in the robots. Toe ob­
jective of the plan is the minimization of the total 
assembly time (makespan). To meet this objective, 
the algorithm starts from the And/Or graph (com­
pressed representation of all feasible assembly plans) 
and the information about each assembly task (robot 
and tool needed and assembly time). 

The paper is organized as follows: Section 2 de-

scribes the problem of assembly-task assignment. Toe 
proposed algorithm is described in Section 3, and 
sorne of the results obtained are presented in Section 
4. Sorne final remarks are made in the concluding
section.

2. PROBLEM STATEMENT

Toe process of joining parts together to form a unit 
is known as assembly. The joining process results in 
the connection of one part with parts already assem­
bled. A sub-assembly is a group of parts having the 
property of being able to be assembled independently 
of other parts of the product. An assembly plan is a 
set of assembly tasks with ordering amongst its ele­
ments. Each task consists of joining a set of sub­
assemblies to give rise to an ever larger sub-assem­
bly. An assembly sequence is an ordered sequence of 
the assembly tasks satisfying all the ordering con­
straints. Each assembly plan corresponds to one or 
more assembly sequences. 

An And/Or graph is a representation of the set of all 
assembly plans possible for a product. Toe Or nades 
correspond to sub-assemblies, the top node corre­
sponds to the whole assembly, and the leaf nodes 
correspond to the individual parts. Each And nade 
corresponds to the assembly task joining the sub­
assemblies of its two final nodes producing the sub­
assembly of its initial node. In the And/Or graph 
representation of assembly plans, an And/Or path 
whose top node is the And/Or graph top node and 
whose leaf nades are the And/Or graph leaf nodes is 
associated to an assembly plan, and is referred to as 
an assembly tree. An important advantage of this 
representation, used in this work, is that the And/Or 
graph shows the independence of assembly tasks that 
can be executed in parallel. Figure 1 shows an exam­
ple of this representation. And nades are omitted. 

This work is centered on the problem of choosing the 
best assembly plan, that is one of the And/Or trees of 
the And/Or graph. The majority of approaches used 

Fig. l. The And/Or graph for the product ABCDE.



up to now make this selection in a planning phase in 
which neither the assembly system, nor how the 
assembly tasks within it will be materialized, is taken 
into account. 

This work takes into account the physical realization 
of the assembly. It is assumed that the assembly tasks 
correspondíng to the And/Or graph have been evalu­
ated separately, in the sense of estimating the re­
sources necessary for their realization (robots, tools, 
fixtures ... ) as well as their approximate duration 
times. These times should include an estimation for 
the times needed for other operations, such as trans­
portation of parts and subassemblies. Por an And/Or 
graph with a large number of nodes this is not an 
easy task, and the help of a computer-aided system 
is necessary. Toe nodes corresponding to tasks which 
are not realizable as the adequate tools are not avail­
able are eliminated from the And/Or graph. 

Another fact taken into account here, is the time 
necessary for changing the tools in the robots, which 
is of the same order as the execution time of the 
assembly tasks and therefore cannot be disregarded as 
in Parts manufacturing. Furthermore, the choice is 
not limíted to the assembly plan, but also specifies 
when each task is to be carried out in order to míni­
mize the makespan (sorne tasks which could poten­
tially be carried out in parallel have to be delayed 
because they need common resources). 

Toe algorithm can be used in an off-line manner for 
obtaining an optimum initial solution for the assembly 
process. However, due on one hand to the flexibility 
for modifying the convergence criteria of the algo­
rithm towards a not strictly optimum solution, and on 
the other to the fact that as the assembly process 
advances the resulting problem becomes smaller, the 
algorithm could be applicable on-line to modify either 
the plan or the initial sequence, in order to correct 
the variations with respect to the initial solution. 

3. ALGORITHM DESCRIPTION

As has been stated previously, the algorithm is cen­
tered on the choice of an assembly plan for a com­
plete product in a multiple-robot system, whe::e the 
resources necessary for carrying out each task repre­
sented in the And/Or graph (robots, tools ... ) appear 
as data, as well as the times necessary for their exe­
cution. As well as the choice of assembly plan, the 
execution orders for the tasks in each robot are speci­
fied by an analysis of their execution in parallel in 
the assembly system given. 

Because of the set-up of the And/Or graph, the as­
sembly problem can be studied, starting from the 
final situation and going towards the initial one. 

Toe algorithm has two well-differentiated parts: one 
of them studies the sequential execution of assembly 
tasks, and the other solves the parallel execution of 
assembly tasks (the representation through the 
And/Or graph allows a natural study of this stage). 
This is actually the most complex section, because 
the execution of tasks on one side of the global as­
sembly is not independent of the rest, and can influ­
ence the execution of tasks in the other part of the 
assembly. 

Heuristic functions based on the execution of tasks 
taken only from the part of the tree below the node, 
and the time remaining for the use of tools and robots 
(supposing the mínimum number of tool changes, in 
order to maintain the algorithm as A*) have been used 
in order to expand the mínimum number of nodes 
and avoid redundant nodes. 

Because there is un upper limít to the makespan, the 
parallel algorithm does not need to finish when the 
best expected cost is higher than that limit. 

Toe algorithm is used off-line to obtain an optimum 
first assembly plan. However, as the assembly pro­
cess evolves, it can be used on-line to correct the 
changes which could have occurred during the assem­
bly process, by pruning the And/Or graph of the 
subassemblies already performed. Toe optimízation 
criteria can easily be changed, according to the par­
ticular needs of the application. 

3 .1. Sequential Execution of Tasks 

An algorithm A· to search for the global assembly 
plan can be implemented in the following way. Be­
ginning with an initial node whose state represents 
the complete assembly realization, and therefore 
corresponds to the root node of the And/Or graph 
(complete assembly), all its possible successors are 
generated, whose states will represent the execution 
at the end of the assembly process of the tasks corre­
sponding to the And nodes coming from the root 
node of the And/Or graph. 

Two types of nodes may be generated, depending on 
the destination Or nodes of each chosen And node. If 
at least one of these Or nodes corresponds to an 
individual part, the assembly process will continue to 
be sequential, and the node resulting from the expan­
sion may be treated as the initial node, where the 
node corresponding to the non-trivial sub-assembly 
will take the place of the root node. 

If, on the other hand, the application of the task 
starts from two sub-assemblies, each with various 
parts, in the resulting plan (or plans in general) the 
task arrangement is not totally specified (various 



possible sequences exist for each assembly plan}, or 
tasks may be carried out in parallel. There is also an 
interdependence amongst the sub-assemblies, because 
they potentially use the same set of resources. Toe 
treatment of this type of node has therefore to be 
undertaken in a different way from those correspond­
ing to sequential task execution, and this will connect 
with the second part of this algorithm. 

Toe evaluation function used for the nodes generated 
in this part is 

f(n) = g(n) + h(n), (1) 

g(n) being the time accumulated in the execution of 
tasks corresponding to the state of node n, including 
the delays in the necessary tool changes, and h(n) 
being an optimistic estimation of the remaining time 
in which to complete the global process. (h(n) should 
be a lower bound of the remaining time for the algo­
rithm to be A·.) Due to the fact that various different 
plans (and therefore different task sets which would 
complete the assembly process) may be reached from 
node n, a detailed study would be computationally 
costly, and therefore 

h(n) = a(n) · min(pJ (2) 

has been chosen, a(n) being the number of tasks 
necessary to complete the assembly plan, and p¡ the 
processing time of task i. As can be seen, it is also 
impossible to determine the minimum number of tool 
changes without a detailed study, and therefore when 
estimating h(n) it is assumed to be zero. 

All the assembly trees (task precedence trees) are 
obtained for the "parallel" nodes, and are studied 
separately. Toe function h (n) corresponding to each 
tree is defined in the following subsection. 

3.2. Parallel Execution of Tasks 

Toe objective of this part of the algorithm is to deter­
mine the total minimum time for the execution of the 
precedence trees obtained in the previous section. In 
order to do this, an algorithm A* is again used. Toe 
nodes of the expansion tree now present partial infor­
mation about the execution of the assembly process. 
Concretely, at each expansion step only one assembly 
task is introduced, and its processing time will affect 
only one of the workstations, the same state being 
retained by the other workstations. 

Toe state corresponding to one node of the expansion 
tree is represented by using the tasks available for 
introduction in the state of the next step, termed 
"candidates", and their earliest starting times, denot­
ed est(tJ. At the same time, the last tool used is 

included for each robot, as well as the final time of 
use. 

Toe evaluation function for the nodes obtained by this 
algorithm is similar to (1), being now 

g(n) = the largest of the earliest starting times of 
candidates(n) and the final times of the 
already finished in n without successors. 

h(n) = max(h¡ (n),hi(n)) (3) 

h1 (n) = estimation of the time remaining if the inter­
dependencies between different branches in 
the tree are not taken into account. It is 
looked at only in depth. 

hi(n) = estimation of time needed if only the re­
maining usage times of the tools in each 
robot are taken into account, further sup­
posing the number of tool changes to be at 
a minimum. 

Figure 2 shows a task precedence tree, different 
expansion nodes and information about their corre­
sponding states. lt is also accompanied by the Gantt 
charts. 

Toe heuristic function h¡ (n) can be defined as fol­
lows: 

h¡ (n) = max ( hl(n,JJ - ft(n,JJ ) 
candidates(n) 

where 

ft(n,J) = g(n) - est(n,J) 

hJ(n,J) = h;'(J) +

max ( r(l,R;,last tool(RJ -
robots (est(n,J)-last _time(RJ), O)

h;'(J) = p(J) +
max ( h;'(JJ + r(l;,R(J),T(J)) ).

successors of J 

(4) 

(5) 

(6) 

(7) 

In the above expressions, n is an expansion node, J

is an assembly task, last _tool(RJ and last _time(RJ are 
the last tool used in robot R; and the time of last use 
respectively, and (est(n,J)-last _time(RJ) is the exist­
ing time slack. R(J) and T(J) are the robot and tool 
necessary for the execution of task J, and p(J) is its 
processing time. r(J,R, T) is the added delay, due to 
the fact that the tool T is being used by robot R in 
task J and successors, because of the necessary tool 
changes. 

Notice that h¡(J) does not depend on the expansion
nodes, and thus allows one to calculate a lower 
bound prior to using the A· algorithm. 
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Fig. 2. A task precedence tree, sorne expansion nodes, and their corresponding Gantt charts. 

h2 can be defined as follows: 

hi(n) = max ( h;(n,RJ - ft(n,RJ ) 
robots 

(8) 

where 

ft(n,RJ = g(n) - last_time(RJ (9) 

and hln,RJ is the minimum time of use of robot R; 

without considering the task precedence constraints. 

First simplification: Each tool is associated with only 

one robot. The calculation of hin,R) is equivalent to 
the travelling salesman problem, when considering 

the tools not yet used and an initial node correspond­

ing to the last-used tool in the robot R.

h;(n,R) = L 1r(J'J + tool-change times (10) 
T¡E T(R) 

with 1r(J'J the remaining time of usage of tool T.

Second simplification: Tool-changing times do not 
depend on the type of tool. 

hi(n) could be improved by using the earliest usable

time of R instead of using ft(n,RJ. Notice that tasks 

not included in n should be considered in this case. 

Definition: A task t; is compatible with [including] 

task t
j 

if, on including this task at the following leve!, 

the start of t; and that of its successors in the task 
precedence tree are not delayed. 

This definition allows the number of expanded nodes 

to be minimized. The candidates tasks compatible 
with another task included in the next leve! will be 

included in successive levels. 

The expansion of a node is carried out by the algo­

rithm shown in Fig. 3. 

Notice that the algorithm can be extended to the case 
where there is more than one candidate tool for 

each assembly task. A list of candidate tools has to 

Procedure Expand(n) 
Let J = {11, . . .  ,JJ be the s t of candidates(n) and 

EST = {est,, ... ,estJ its earliest starting times. 

est_min = min(estJ 
lf there is just one task l¡ with est¡ = est _min 

lnclude in open a nade whose state is that of n plus J, 
/f there are tasks not compatible with l¡ 

Expand(n), restrided to l'= {Jm, with lm 

not compatible with JJ 
endif 

else 
Let NTI, be the number of tasks not compatible with J,, 

and Nl1_min = min(Nl7¡), for est¡= est_min 
lnclude in open a nade whose state is that of n plus J,, 

with J, such that Nl1=Nl1_min 
/fNI1_min�O 

Expand(n), restricted to l'= {Jm, with Jm 

not compatible with J J 
endif 

endif 

Fig. 3. Algorithm for the expansion of nodes. 



be considered when expanding the nodes. A very 
simple heuristic function consisting of only consider­
ing the assembly times of the remaining tasks could 
be used. A more informed heuristic function would 
require a more complex algorithm. 

4. RESULTS

Toe algorithm has been tested in a variety of situa­
tions, considering different product structures (num­
ber of parts, number of connections between parts), 
different types of And/Or graphs (number of sub­
assemblies, number of assembly tasks for each sub­
assembly), and different assembly resources (number 
of robots, number of tools). 

Toe solution obtained for the assembly task assign­
ment of the flashlight shown in Fig. 4 (Homem de 
Mello and Sanderson, 1990c) is shown in Fig. 5. Toe 
assembly environment was composed of two robots 
and two assembly tools per robot. Toe original com­
plete And/Or graph contains 35 And nodes, 24 Or 
nodes and 37 possible assembly plans, and is not 
shown for the lack of space. Toe Gantt charts corre­
sponding to the solution are shown in Fig. 6. 

5. CONCLUSIONS

An A· algorithm for obtaining the optimum assembly 
plan for a multirobot environment has been present­
ed. The algorithm minimizes the makespan of the 
assembly. 

To apply the algorithm, possible assembly tasks 
should be specified by an And/Or graph. Toe algo­
rithm needs the definition of the necessary tools and 
an estimation of the time required for each assembly 
operation. 

The algorithm has been tested with problems of 
di verse complexity. 
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