
AUTOMATIC ASSEMBLY TASK ASSIGNMENT FOR A

MULTIROBOT ENVIRONMENT

C. Del Valle* and E.F. Camacho**

*Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, 41012 Sevilla, Spain

(eduardo@etsii.us.es)

**Departamento de Ingeniería de Sistemas y Automática, Universidad de Sevilla, 4/012 Sevilla, Spain

Abstract: This paper presents an algorithm A• for obtaining the "best" assembly plan for
a product in a multirobot system. Toe algorithm takes into account, in addition to the
assembly times, the times needed to change tools in the robots. Toe objective of the plan
is the minimization of the makespan. To meet this objective, the algorithm starts from the
And/Or graph (compressed representation of all feasible assembly plans) and the
information on each assembly task (robot and tool needed, and assembly time).

Keywords: Flexible manufacturing systems; assembly robots; industrial robots; artificial
intelligence; optimization problems; scheduling algorithms

1. INTRODUCTION

Automatic assembly is one of the areas of manufac­
turing that has not been fully developed in industry.
This is mainly because robot control and off-line
programming have not evolved as expected
(Martensson, 1990), as result of the fact that the
assembly process is much more complex than
processes in other robotic applications and parts
manufacturing. Therefore, until recently, industrial
robots were used primarily in simple assembly
applications. This situation is changing, however, and
Flexible Assembly Systems have become a very
important issue because of the need to produce small
lots of products, but the degree of flexibility is still
low (Boneschanscher, 1993).

There are different stages in the whole process of
assembly, such as design of products and parts,
design of fixtures, grasp selection, path planning,
fine-motion planning, sensor integration, etc. One of
the most important issues in the whole process is
planning assembly tasks, whose optimality will have
a significant effect on the final cost of the assembled

product (Kusiak, 1990). Toe assembly planning
problem involves the identification, selection and
sequencing of assembly operations, stated as their
effects on the parts. Toe identification of assembly
operations usually leads to the set of all feasible
assembly plans. The number of them grows expo­
nentially with the number of parts, and depends on
other factors, such as how the single parts are inter­
connected in the whole assembly, i.e. the structure of
the graph of connections. In fact, this problem has
been proved to be NP-complete in both the two­
dimensional (Kavraki and Kolountzakis, 1995) añ.d
three-dimensional (Kavraki, et al., 1995; Wilson, et

al., 1995) cases.

Two different approaches have been used in obtaining
assembly plans. At first, interactive planners queried
the user for geometric-reasoning information (Bour­
jault, 1984; De Fazio and Whitney, 1987). More
recently, planners work automatically from a geomet­
ric and relational model of the assembly (Homero de
Mello and Sanderson, 1991 b) and from a CAD model
and other non-geometric information (Ames, et al.,

1995; Romney, et al. , 1995).

Within this scope, the representation of assembly
plans is an important issue. Toe use of And/Or
graphs for this purpose (Homero de Mello and
Sanderson, 1990, 1991a, b) is becoming one of the
most standard ways of representing all possible
assembly plans. It can be obtained by studying the
opposite problem, that of disassembly, but main­
taining the constraints of assembly. Most automat­
ic planners work with this strategy. The result is a
representation which is adequate for a goal-directed
approach. Moreover, Homero de Mello and
Sanderson (1990) and Wolter (1992) showed that this
structure is more efficient in most cases than other
enumerative ones.

An optimum assembly plan is now sought, selected
from the set of all feasible assembly plans. A variety
of criteria has been used for choosing an optima! one.
For example, Wolter (1988) combines the ratings
related to manipulability of subassemblies, fixture
complexity, and the number of different . directions
from which operations are performed, to complete a
plan. Criteria including the minimization of reorienta­
tion and fixture requirements were introduced by De
Fazio et al. (1990). Henrioud (1989) proposed the
aid of an expert about the operational and logistic
complexity, and strategic advantages to select the best
assembly tree (plan). Homem de Mello and
Sanderson (1990) proposed assigning to the hyperarcs
of the And/Or graph weights that depend on the
complexity of the assembly tasks and on the stability
of the intermediate sub-assemblies, and using generic
search algorithms such as the AO* to obtain the best
plan. Their proposal (1991c) of sorne optimization
criteria based on maximizing the number of different
assembly sequences encompassed by the assembly
plan, and on maximizing the amount of parallelism
(simultaneity) possible in the execution of the assem­
bly tasks, is used in a heuristic search algorithm. In
another way, an algorithm is proposed in (Holland,
et al., 1992) for a specific assembly cell, and for
batches of products.

This paper presents an algorithm A* (Nilsson, 1980;
Pearl, 1984) for obtaining the "best" assembly plan
for a product in a multirobot system. The approach
used here is that of Homero de Mello and Sanderson
(1990; 1991c), but more detailed information for the
assembly tasks is considered. The algorithm takes
into account, in addition to the assembly times, the
times needed to change tools in the robots. Toe ob­
jective of the plan is the minimization of the total
assembly time (makespan). To meet this objective,
the algorithm starts from the And/Or graph (com­
pressed representation of all feasible assembly plans)
and the information about each assembly task (robot
and tool needed and assembly time).

The paper is organized as follows: Section 2 de-

scribes the problem of assembly-task assignment. Toe
proposed algorithm is described in Section 3, and
sorne of the results obtained are presented in Section
4. Sorne final remarks are made in the concluding
section.

2. PROBLEM STATEMENT

Toe process of joining parts together to form a unit
is known as assembly. The joining process results in
the connection of one part with parts already assem­
bled. A sub-assembly is a group of parts having the
property of being able to be assembled independently
of other parts of the product. An assembly plan is a
set of assembly tasks with ordering amongst its ele­
ments. Each task consists of joining a set of sub­
assemblies to give rise to an ever larger sub-assem­
bly. An assembly sequence is an ordered sequence of
the assembly tasks satisfying all the ordering con­
straints. Each assembly plan corresponds to one or
more assembly sequences.

An And/Or graph is a representation of the set of all
assembly plans possible for a product. Toe Or nades
correspond to sub-assemblies, the top node corre­
sponds to the whole assembly, and the leaf nodes
correspond to the individual parts. Each And nade
corresponds to the assembly task joining the sub­
assemblies of its two final nodes producing the sub­
assembly of its initial node. In the And/Or graph
representation of assembly plans, an And/Or path
whose top node is the And/Or graph top node and
whose leaf nades are the And/Or graph leaf nodes is
associated to an assembly plan, and is referred to as
an assembly tree. An important advantage of this
representation, used in this work, is that the And/Or
graph shows the independence of assembly tasks that
can be executed in parallel. Figure 1 shows an exam­
ple of this representation. And nades are omitted.

This work is centered on the problem of choosing the
best assembly plan, that is one of the And/Or trees of
the And/Or graph. The majority of approaches used

Fig. l. The And/Or graph for the product ABCDE.

up to now make this selection in a planning phase in
which neither the assembly system, nor how the
assembly tasks within it will be materialized, is taken
into account.

This work takes into account the physical realization
of the assembly. It is assumed that the assembly tasks
correspondíng to the And/Or graph have been evalu­
ated separately, in the sense of estimating the re­
sources necessary for their realization (robots, tools,
fixtures ...) as well as their approximate duration
times. These times should include an estimation for
the times needed for other operations, such as trans­
portation of parts and subassemblies. Por an And/Or
graph with a large number of nodes this is not an
easy task, and the help of a computer-aided system
is necessary. Toe nodes corresponding to tasks which
are not realizable as the adequate tools are not avail­
able are eliminated from the And/Or graph.

Another fact taken into account here, is the time
necessary for changing the tools in the robots, which
is of the same order as the execution time of the
assembly tasks and therefore cannot be disregarded as
in Parts manufacturing. Furthermore, the choice is
not limíted to the assembly plan, but also specifies
when each task is to be carried out in order to míni­
mize the makespan (sorne tasks which could poten­
tially be carried out in parallel have to be delayed
because they need common resources).

Toe algorithm can be used in an off-line manner for
obtaining an optimum initial solution for the assembly
process. However, due on one hand to the flexibility
for modifying the convergence criteria of the algo­
rithm towards a not strictly optimum solution, and on
the other to the fact that as the assembly process
advances the resulting problem becomes smaller, the
algorithm could be applicable on-line to modify either
the plan or the initial sequence, in order to correct
the variations with respect to the initial solution.

3. ALGORITHM DESCRIPTION

As has been stated previously, the algorithm is cen­
tered on the choice of an assembly plan for a com­
plete product in a multiple-robot system, whe::e the
resources necessary for carrying out each task repre­
sented in the And/Or graph (robots, tools ...) appear
as data, as well as the times necessary for their exe­
cution. As well as the choice of assembly plan, the
execution orders for the tasks in each robot are speci­
fied by an analysis of their execution in parallel in
the assembly system given.

Because of the set-up of the And/Or graph, the as­
sembly problem can be studied, starting from the
final situation and going towards the initial one.

Toe algorithm has two well-differentiated parts: one
of them studies the sequential execution of assembly
tasks, and the other solves the parallel execution of
assembly tasks (the representation through the
And/Or graph allows a natural study of this stage).
This is actually the most complex section, because
the execution of tasks on one side of the global as­
sembly is not independent of the rest, and can influ­
ence the execution of tasks in the other part of the
assembly.

Heuristic functions based on the execution of tasks
taken only from the part of the tree below the node,
and the time remaining for the use of tools and robots
(supposing the mínimum number of tool changes, in
order to maintain the algorithm as A*) have been used
in order to expand the mínimum number of nodes
and avoid redundant nodes.

Because there is un upper limít to the makespan, the
parallel algorithm does not need to finish when the
best expected cost is higher than that limit.

Toe algorithm is used off-line to obtain an optimum
first assembly plan. However, as the assembly pro­
cess evolves, it can be used on-line to correct the
changes which could have occurred during the assem­
bly process, by pruning the And/Or graph of the
subassemblies already performed. Toe optimízation
criteria can easily be changed, according to the par­
ticular needs of the application.

3 .1. Sequential Execution of Tasks

An algorithm A· to search for the global assembly
plan can be implemented in the following way. Be­
ginning with an initial node whose state represents
the complete assembly realization, and therefore
corresponds to the root node of the And/Or graph
(complete assembly), all its possible successors are
generated, whose states will represent the execution
at the end of the assembly process of the tasks corre­
sponding to the And nodes coming from the root
node of the And/Or graph.

Two types of nodes may be generated, depending on
the destination Or nodes of each chosen And node. If
at least one of these Or nodes corresponds to an
individual part, the assembly process will continue to
be sequential, and the node resulting from the expan­
sion may be treated as the initial node, where the
node corresponding to the non-trivial sub-assembly
will take the place of the root node.

If, on the other hand, the application of the task
starts from two sub-assemblies, each with various
parts, in the resulting plan (or plans in general) the
task arrangement is not totally specified (various

possible sequences exist for each assembly plan}, or
tasks may be carried out in parallel. There is also an
interdependence amongst the sub-assemblies, because
they potentially use the same set of resources. Toe
treatment of this type of node has therefore to be
undertaken in a different way from those correspond­
ing to sequential task execution, and this will connect
with the second part of this algorithm.

Toe evaluation function used for the nodes generated
in this part is

f(n) = g(n) + h(n), (1)

g(n) being the time accumulated in the execution of
tasks corresponding to the state of node n, including
the delays in the necessary tool changes, and h(n)
being an optimistic estimation of the remaining time
in which to complete the global process. (h(n) should
be a lower bound of the remaining time for the algo­
rithm to be A·.) Due to the fact that various different
plans (and therefore different task sets which would
complete the assembly process) may be reached from
node n, a detailed study would be computationally
costly, and therefore

h(n) = a(n) · min(pJ (2)

has been chosen, a(n) being the number of tasks
necessary to complete the assembly plan, and p¡ the
processing time of task i. As can be seen, it is also
impossible to determine the minimum number of tool
changes without a detailed study, and therefore when
estimating h(n) it is assumed to be zero.

All the assembly trees (task precedence trees) are
obtained for the "parallel" nodes, and are studied
separately. Toe function h (n) corresponding to each
tree is defined in the following subsection.

3.2. Parallel Execution of Tasks

Toe objective of this part of the algorithm is to deter­
mine the total minimum time for the execution of the
precedence trees obtained in the previous section. In
order to do this, an algorithm A* is again used. Toe
nodes of the expansion tree now present partial infor­
mation about the execution of the assembly process.
Concretely, at each expansion step only one assembly
task is introduced, and its processing time will affect
only one of the workstations, the same state being
retained by the other workstations.

Toe state corresponding to one node of the expansion
tree is represented by using the tasks available for
introduction in the state of the next step, termed
"candidates", and their earliest starting times, denot­
ed est(tJ. At the same time, the last tool used is

included for each robot, as well as the final time of
use.

Toe evaluation function for the nodes obtained by this
algorithm is similar to (1), being now

g(n) = the largest of the earliest starting times of
candidates(n) and the final times of the
already finished in n without successors.

h(n) = max(h¡ (n),hi(n)) (3)

h1 (n) = estimation of the time remaining if the inter­
dependencies between different branches in
the tree are not taken into account. It is
looked at only in depth.

hi(n) = estimation of time needed if only the re­
maining usage times of the tools in each
robot are taken into account, further sup­
posing the number of tool changes to be at
a minimum.

Figure 2 shows a task precedence tree, different
expansion nodes and information about their corre­
sponding states. lt is also accompanied by the Gantt
charts.

Toe heuristic function h¡ (n) can be defined as fol­
lows:

h¡ (n) = max (hl(n,JJ - ft(n,JJ)
candidates(n)

where

ft(n,J) = g(n) - est(n,J)

hJ(n,J) = h;'(J) +

max (r(l,R;,last tool(RJ -
robots (est(n,J)-last _time(RJ), O)

h;'(J) = p(J) +
max (h;'(JJ + r(l;,R(J),T(J))).

successors of J

(4)

(5)

(6)

(7)

In the above expressions, n is an expansion node, J

is an assembly task, last _tool(RJ and last _time(RJ are
the last tool used in robot R; and the time of last use
respectively, and (est(n,J)-last _time(RJ) is the exist­
ing time slack. R(J) and T(J) are the robot and tool
necessary for the execution of task J, and p(J) is its
processing time. r(J,R, T) is the added delay, due to
the fact that the tool T is being used by robot R in
task J and successors, because of the necessary tool
changes.

Notice that h¡(J) does not depend on the expansion
nodes, and thus allows one to calculate a lower
bound prior to using the A· algorithm.

.........

R1 T1
p•1

.

p-4

. . . .

R1 T2

............ ' '
. ' '

.... ' . .

:R2T4

:p-2 J2

R1 T1
J5 p-5

. . . .

p-3
J6

J1 • o
J2 • O o
R1 • -·

2 4 8 8 10 TIME

R2- -·
g

. o

J1 J1

J2 • O
J3 • 1
J4 • 1

R1 • T1 • 1 R1 T1 R2. ····-·
R2

g . 1

J4

J2 • 8
J3. 3
J6. 4

R1 • T1 -1
R2·T3-3 R1

g
. R2

J2

J3. 11
J5 • 8
J6 • 4

R1 • T1 -1
R2 • T4 • 8 R1 T1

g
. 11

R2 ... T4 T3

Fig. 2. A task precedence tree, sorne expansion nodes, and their corresponding Gantt charts.

h2 can be defined as follows:

hi(n) = max (h;(n,RJ - ft(n,RJ)
robots

(8)

where

ft(n,RJ = g(n) - last_time(RJ (9)

and hln,RJ is the minimum time of use of robot R;

without considering the task precedence constraints.

First simplification: Each tool is associated with only

one robot. The calculation of hin,R) is equivalent to
the travelling salesman problem, when considering

the tools not yet used and an initial node correspond­

ing to the last-used tool in the robot R.

h;(n,R) = L 1r(J'J + tool-change times (10)
T¡E T(R)

with 1r(J'J the remaining time of usage of tool T.

Second simplification: Tool-changing times do not
depend on the type of tool.

hi(n) could be improved by using the earliest usable

time of R instead of using ft(n,RJ. Notice that tasks

not included in n should be considered in this case.

Definition: A task t; is compatible with [including]

task t
j

if, on including this task at the following leve!,

the start of t; and that of its successors in the task
precedence tree are not delayed.

This definition allows the number of expanded nodes

to be minimized. The candidates tasks compatible
with another task included in the next leve! will be

included in successive levels.

The expansion of a node is carried out by the algo­

rithm shown in Fig. 3.

Notice that the algorithm can be extended to the case
where there is more than one candidate tool for

each assembly task. A list of candidate tools has to

Procedure Expand(n)
Let J = {11, . . . ,JJ be the s t of candidates(n) and

EST = {est,, ... ,estJ its earliest starting times.

est_min = min(estJ
lf there is just one task l¡ with est¡ = est _min

lnclude in open a nade whose state is that of n plus J,
/f there are tasks not compatible with l¡

Expand(n), restrided to l'= {Jm, with lm

not compatible with JJ
endif

else
Let NTI, be the number of tasks not compatible with J,,

and Nl1_min = min(Nl7¡), for est¡= est_min
lnclude in open a nade whose state is that of n plus J,,

with J, such that Nl1=Nl1_min
/fNI1_min�O

Expand(n), restricted to l'= {Jm, with Jm

not compatible with J J
endif

endif

Fig. 3. Algorithm for the expansion of nodes.

be considered when expanding the nodes. A very
simple heuristic function consisting of only consider­
ing the assembly times of the remaining tasks could
be used. A more informed heuristic function would
require a more complex algorithm.

4. RESULTS

Toe algorithm has been tested in a variety of situa­
tions, considering different product structures (num­
ber of parts, number of connections between parts),
different types of And/Or graphs (number of sub­
assemblies, number of assembly tasks for each sub­
assembly), and different assembly resources (number
of robots, number of tools).

Toe solution obtained for the assembly task assign­
ment of the flashlight shown in Fig. 4 (Homem de
Mello and Sanderson, 1990c) is shown in Fig. 5. Toe
assembly environment was composed of two robots
and two assembly tools per robot. Toe original com­
plete And/Or graph contains 35 And nodes, 24 Or
nodes and 37 possible assembly plans, and is not
shown for the lack of space. Toe Gantt charts corre­
sponding to the solution are shown in Fig. 6.

5. CONCLUSIONS

An A· algorithm for obtaining the optimum assembly
plan for a multirobot environment has been present­
ed. The algorithm minimizes the makespan of the
assembly.

To apply the algorithm, possible assembly tasks
should be specified by an And/Or graph. Toe algo­
rithm needs the definition of the necessary tools and
an estimation of the time required for each assembly
operation.

The algorithm has been tested with problems of
di verse complexity.

6. ACKNOWLEDGMENT

The authors would like to acknowledge CICYT for
funding the work. Toe authors would also like to
extend their thanks to the anonymous referees for
their helpful suggestions.

7. REFERENCES

Ames, A.L., T.L. Calton, R.E. Jones, S.G.
Kaufman, C.A. Laguna and R.H. Wilson
(1995). Lessons Learned from a Second Gener­
ation Assembly Planning System. Proc. 1995

IIINQ U!NS IUIJI IIEA.SCTOR BATTBIY END

Fig. 4. Product example: a flashlight.

111

IIM.

ao

L E

Fig. 5. Tree solution for the product example ob­
tained from the And/Or graph.

TASK CHANGE TASK TASK TASI<

R1
31 TOOL 11 4

TASI< CIWIQE

�
R2

30 TOOL

TIME

Fig. 6. Gantt charts for the tree solution in a two­
robot environment.

IEEE Intl. Symp. on Assembly and Task Plan­
ning, pp. 41-47.

Boneschanscher, N. (1993). Plan Generation for
Flexible Assembly Systems. PhD thesis Delft
University of Technology, Delft, Toe Nether­
lands.

Bourjault, A. (1984). Contribution a une Approche
Méthodologique de l'Assemblage Automatisé:
Elaboration Automatique des Séquences
Opératoires. These d'état, Université de
Franche-Comté, Besaneon, France.

De Fazio, T.L., T.E. Abell, G.P. Amblard, O.E.
Whitney (1990). Computer-aided assembly
sequence editing and choice: Editing criteria,
bases, rules, and technique. Proc. IEEE Int.
Conf. Syst. Eng., pp. 416-422.

De Fazio, T.L. and O.E. Whitney (1987). Simplified
Generation of All Mechanical Assembly Se-

quences. IEEE J. Robotics and Automat., Vol.
3, No. 6, pp. 640-658. Also, Corrections, Vol.
4, No. 6, pp. 705-708.

Henrioud, J.M. (1989). Contribution a la
conceptualisation de l'assemblage automatisé:
nouvelle approche en vue de détermination des
processus d'assemblage. These d'état,
Université de Franche-Comté, Besancon,
France.

Holland, W. van, N. Boneschanscher and W.F.
Bronsvoort (1992). Task Assignment in a Flexi­
ble Assembly Cell Using And/Or Graphs. Proc.

23rd /nt. Symp. lnd. Robots. Barcelona, Spain,
October 6-8, pp. 653-658, 642.

Homem de Mello, L.S. and A.C. Sanderson (1990).
And/Or Graph Representation of Assembly
Plans. IEEE Trans. Robotics Automat. Vol. 6,
No. 2, pp. 188-199.

Homem de Mello, L.S. and A.C. Sanderson (1991a).
Representations of Mechanical Assembly Se­
quences. IEEE Trans. Robotics Automat. Vol.
7, No. 2, pp. 211-227.

Homero de Mello, L.S. and A.C. Sanderson (1991b).
A Correct and Complete Algorithm for the
Generation of Mechanical Assembly Sequences.
IEEE Trans. Robotics Automat. Vol. 7, No. 2,
pp. 228-240.

Homero de Mello, L.S. and A.C. Sanderson (1991c).
Two Criteria for the Selection of Assembly
Plans: Maximizing the Flexibility of Sequencing
the Assembly Tasks and Minimizing the Assem­
bly Time Through Parallel Execution of Assem­
bly Tasks. /EEE Trans. Robotics Automat. Vol.

7, No. 5, pp. 626-633.
Kavraki, L., J.C. Latombe and R.H. Wilson (1993).

On the Complexity of Assembly Partitioning.

lnformation Processing Letters. Vol. 48, pp.
229-235.

Kavraky, L. and M. Kolountzakis (1995). Partition­
ing a planar assembly into two connected parts
is NP-complete. lnformationProcessing Letters.
Vol. 55, pp. 156-165.

Kusiak, A. (1990). lntelligent Manufacturing Sys­
tems. Prentice-Hall International Series in Indus­
trial and Systems Engineering.

Martensson, N. (1990). Robot Ability for the 90's.
Proc. 21st lnt. Symp. lnd. Robots. Copenhagen,
Denmark, October 23-25, 1990, pp. 193-198.

Nilsson, N.J. (1980). Principies o/ Artificial lntelli­

gence. Chenanso Forks, NY: Tioga.
Pearl, J. (1984). Heuristics: Intelligent Search Strate­

gies for Computer Problem Solving. Reading,
MA, Addison-Wesley.

Romney, B., C. Godard, M. Goldwasser, G.
Ramkumar (1995). An Efficient System for
Geometric Assembly Sequence Generation and
Evaluation. Proc. 1995 ASME Intemational

Computers in Engineering Conference, pp. 699-
712.

Wilson, R.H., L. Kavraki, T. Lozano-Pérez and J.C.
Latombe (1995). Two-Handed Assembly Se­
quencing. lntemational Joumal o/ Robotic

Research. Vol. 14, pp. 335-350.
Wolter, J. (1988). On the automatic generation o/

plans for mechanical assembly. Ph.D. thesis.
Univ. of Michigan. Department of Computer,
Information and Control Engineering, Septem­
ber 1988.

Wolter, J. (1992). A Combinatorial Analysis of
Enumerative Data Structures for Assembly
Planning. Joumal o/Design and Manufacturing.
Vol. 2, No. 2, June 1992, pp. 93-104.

