
Proceedings of the 5" IEEE
International Symposium on Assembly and Task Planning
Besanpon, France July 10-1 1,2003

A Scheduling Approach to Assembly Sequence Planning

Carmelo Del Valle' Miguel Toro'

' Universidad d e Sevilla
Dept. Lenguajes y Sistemas Informiticas

Avda. Reina Mercedes s/n
41012 Sevilla, Spain

{carmelo,mtoro,gasca}@lsi.us.es

Abstract

This paper presents a model for the selection of
opfimal assembly sequences f o r a producf in multi-
robot sysfems. The objecfive of fhe plan is the
minimizafion of the fotal assembly time (makespan). To
meef this objective, fhe model takes into account the
assembly times and resources for each task, fhe limes
needed to change fools in the robots, and the delays
due fo fhe fransporfafion of intermediate subassemblies
behveen dflerenf workstations. The model can be used
in different stages of fhe process planning. The paper
includes MO algorifhmic approaches for solving fhe
scheduling problem: a genefic algorifhm infended for
the earlier stages, and an A* algorifhm for the final
ones.

1 Introduction

Assembly planning is a very important problem in the
manufacturing of products. It involves the identification,
selection and sequencing of assembly operations, stated as
their effects on the pam. The identification of assembly
operations is done through the analysis of the product
structure, using interactive planners [l] [2], or
automatically from a geometric and relational model of
the assembly [3] and from a CAD model and other non-
geometric information [4] [5]. The identification of
assembly operations usually leads to the set of all feasible
assembly plans. The number of them grows exponentially
with the number of parts, and depends on other factors,
such as how the single parts are interconnected in the
whole assembly, represented in the graph of connections.
In fact, this problem bas been proved to be NP-complete
I61.

The representation of assembly plans is an important
is-sue within this scope. The use of And/or graphs for
this purpose [7] has became one of the most standard
ways of representing all possible assembly plans. The
result is a representation which is adequate for a goal-
directed approach. Moreover, this structure is more
efficient in most cases than other enumerative ones [7]
PI.

Eduardo F. Camacho' Rafael M. Gasca'

* Universidad de Sevilla
Dept. Ingenieria de Sistemas y Automitica

Camino de 10s Descubrimientos s/n
41092 Sa i l l a , Spain

eduardo@cartuja.us.es

Two kinds of appmachcs have been used for searching
the optimal assembly plan. One, the more qualitativ% uses
tules in order to eliminate assembly plans that include
difficult tasks or awkward intermediate subassemblies. A
more quantitative approach uses an evaluation function that
computes the merit of assembly plans. Several of these
proposals can be found in [9] and [IO].

The criterion followed in this work is the minimization of
the total assembly time (makespan) of the plan executed in a
multi-robot syxtem. To meet this objective, we preseut a
scheduling-based model which takes into account all
factors having an effect on the makespan: an estimation of
the duration of tasks; the resources used for them (robots
and tools); the times needed for changing tools in the
robots; and the delays due to the transportation of
intermediate subassemblies between different workstations.

This model completes the one presented in [I I], and it
can be used in different stages of the process planning: in
the first stages, for the design of the assembly and
manufacturing system, evaluating the times and costs of
different alternatives, and in the final steps of the
planning, for determining the adequate assembly
sequences. In the first case, the space of solutions is
prohibitive for complete and deterministic algorithms.
Instead, a genetic algorithm (GA) approach can be used
for obtaining good solutions, which can help in the
selection of the configuration of the assembly system.
Moreover, the solutions obtained by the genetic algorithm
can be used for discarding some of the alternative
assembly operations, so that we would obtain a reduced
set of feasible assembly plans, more suitable for an A*
algorithm [12] to obtain an optimal solution, as the one
presented in this paper.

The rest of the paper is organized as follows: section 2
describes the assembly sequence planning problem, and
section 3 the model proposed. The GA and A' algorithm
approaches are presented in section 4 and 5 respectively.
Some final remarks are made in the concluding section.

2 Assembly Sequence Planning

The process of joining paris together to form a unit is
known as assembly. An assembly plan is a set of
assembly tasks with ordering amongst its elements. Each

I03 0-7803-7770-2/03/$17.00 02003 E E E

task consists ofjoining a set of sub-assemblies to give rise
to an ever larger sub-assembly. A sub-assembly is a group
of parts that can be assembled independently of other
parts of the product. An assembly sequence is an ordered
sequence of the assembly tasks satisfying all the ordering
constraints. Each assembly plan corresponds to one or
more assembly sequences.

An And/or graph is a representation of the set of all
assembly plans for a product. The Or nodes correspond to
sub-assemblies, the top node corresponds to the whole
assembly, and the leaf nodes correspond to the individual
parts. Each And node corresponds to the assembly task
joining the subassemblies of its two final nodes producing
the sub-assembly of its initial node. In the And/or graph
representation of assembly plans, an And/or path whose
top node is the And/or graph top node and whose leaf
nodes are the And/or graph leaf nodes is associated to an
assembly plan, and is referred to as an assembly tree. An
important advantage of this representation, used in this
work, is that the And/or graph shows bow different
assembly tasks can be executed in parallel. Figure 1 shows
an example of this representation. And nodes arc
represented as hyperarcs.

Figure 1 : Andor graph of product ABCDE

task, and the help of a computer-aided system is
necessary. The nodes corresponding to tasks which are
not realizable as the adequate tools are not available are
eliminated from the And/or graph.

Another factor taken into account is the time necessary
for changing the tools in the robots, which is of the same
order as the execution time of the assembly tasks and
therefore cannot be disregarded as in Parts manufacturing.
A<,, (R , T , y) denotes the time needed for installing the
tool T in the robot R if the tool T was previously
installed. Notice that any change of configuration in the
robots can be modeled in this way.

Another question is the transportation of parts and
subassemblies, that could affect the total assembly time.
The proposed model supposes a well-dimensioned
system, with a perfect planning when executing the
assembly plan, so that, when a part would be required in a
mbot for executing an assembly operation, it will be
present there. The same cannot be guaranteed for an
intermediate subassembly, because it could be built in a
robot and required immediately in another one to form
another subassembly. A- (SA,R,R') denotes the time
needed for transporting the subassembly SA fmm robot R
to robot R'.

The model considers only one combination
duration-robot-tool for an assembly task. However, it can
be extended easily when there are various ways for
assembling a subassembly from the same components. It
is enough to suppose that they corresponds to different
assembly tasks, that is, we would add some altemative
And nodes into the Andor graph for the product.

In order to an easier reasoning, we will suppose that
the precedence constraints are in the opposite direction, so
that we will refer to a task preceding another one if the
first one appears higher in the And/or graph. This is as if
we think about the opposite problem, that of the
disassembly. To get the c o d solution of the problem,
we must only reverse the sequence given by the
algorithms.

With this model, the choice is not limited to the
assembly plan, but also it can he specify when each task is

This work is about the selection of the best assembly
plan, that is, one ofthe ~ ~ d / & treeS ofthe graph.
Most of approaches used up to now make this selection in
a planning phase in which neither the assembly system,
nor how the assembly tasks within it will be materialized,
is taken into account.

to be caked out in order to minimize the makespan (some
tasks which could Potentially be caked Out in Parallel
have to be

The results derived from this model can be used in
different Stages Of the whole planning process, from the
design of the product and of the manufacturing system, to
the final execution of the assembly plan.

because need K " I O n

3 The Scheduling-Based Model
4 The GA Approach _ _

This work takes into account the physical realization of
the assembly. It is assumed that the assembly tasks Genetic Algorithms (GAS) have been used to solve a
corresponding to the And/or graph have been evaluated large variety of combinatorial optimization problems with
separately, in the sense of estimating the resources some success [I31 [141. The nature of the Assembly
necessary for their realization (robots, tools, fixtur a...) as Sequence Planning problem entails a great difficulty in
well as their approximate duration times. For an And/or applying GAS a sequence of tasks forms a correct solution
graph with a large number of nodes this is not an easy if all of them belong to an assembly plan, i.e. an assembly

104

tree of the And/or graph, and they are ordered according to
the precedence constraints imposed by the plan. An
assembly task is defined by the subassemblies used to form
a greater subassembly, and by the resulting assembly.
Thus, the presence of a task in a solution is strongly
conditioned by the presence of tasks related to these
subassemblies.

The first issue in applying GAS is the chromosomal
encoding. A natural way of representing a solution is
through a sequence of tasks, compatible in order with the
constraints imposed by the And/or graph (ordering and
assembly plans). So, not all the tasks sequences form a
legal solution. Figure 2 shows how a chromosome is
decoded to produce a schedule. A schedule builder
transforms the chromosome into a legal assembly schedule,
taking into account the precedence constraints and the
shared resources to be used (machines and twls). This
translation is made directly because of the simplicity of that
representation. The result could be visualized as a Gantt
chart, and it allows the fitness function (the makespan) to
be calculated. Note that, depending on the assignation of
resources to tasks and their durations, different
chromosomes could be mapped into an only schedule. It
will happen when tasks do not share the same resources
and could be executed in parallel.

MZ

Figure 2: The ScheduleBuilder.

Two families of genetic operators have been defined
for searching the whole solution space. The first includes
operators that search locally for new sequences in a
predetermined assembly plan, that of parent
chromosomes. These operators, referred to below as Re-
Ordering Tasks operators, are similar to those used for
other sequencing problems in the literature [I31 [14], but
obviously result to be insufficient to find the optimum.
The otber family of operators is intended to search for
sequences in other assembly plans, and are referred to as
Re-Planning operators. This is basically made by
introducing a new task in a solution, and substituting
certain tasks for others in order to maintain the soundness
of the chromosomes.

4.1 Reordering Tasks (ROT) Operators

This kind of operator is intended to search for new
sequences in a predetermined assembly plan. Because of
the improbability of two sequences of the same assembly
plan coinciding in a population, they are implemented as
mutation operators. They operate in a chromosome by
selecting a random task in the sequence and attempting to
move it to another random position. Their predecessor or
successor tasks might be also involved in the movement,
so that they may keep in their positions or move with the
selected task. Those possibilities give us four different
genetic operators. The transposition of tasks is performed
so that the resultant individual is legal.

4.2 Re-Planning Tasks (RP) Operators

This kind of operator is intended to search for
sequences in other assembly plans. The resultant
individuals will contain new assembly tasks, coming from
another individual present in the population (crossover
operators) or generated randomly (mutation operators).
Some other new tasks are required in order to complete a
correct chromosome, so that they substitute some others.

The sequences generated by these genetic operators
will maintain the position of tasks they had in the parents,
and the new task will fill the blanks, at some compatible
order with the precedence constraints.

RP Crossover (RPC) operators take two-individuals
(parents) and generate two children, trying to merge genetic
information from the two parents. Because of the nature of
Assembly Planning there will be little chance of conshucting
a new solution from significant parts of any two solutions.
The generation of children is made by selecting one task in
one of the parents, so that their successor tasks in that
parent are also selected. The remaining tasks in the new
individual will be selected from the other parent, whenever
possible, or randomly, in order to complete a legal .. -
chromosome.

RP Mutation (RP-M) takes an individual and modifies
it by changing a random sub-tree of the assembly plan for
another, selected randomly and according to the
constraints imposed by the And/or graph. The positions
ofthe new tasks in the sequence will be the same that held
the substituted tasks.

4.3 Results from the GA

A hypothetical product has been used in order to
evaluate the genetic operators described in the previous
section. That product is formed by 30 parts, and the
number of connections among them is the minimum. The
product includes in its And/or graph various alternative
tasks for each Or node, and contains 396 Or nodes and
764 And nodes. There are about IO2' possible individuals.

The values corresponding to the higher part of figure 3
represent the average of 50 trials. The lower part
represents the best result in all trials. Moreover, all values
represent the average of 10 different distributions of

105

durations and shared resources among the tasks. They
show the best solution found until the number of
evaluations indicated. The graphics include also the value
of the optimum solution (OPT) and the performance of a
random algorithm (RND).

Figure 3 shows the operation of the specific genetic
operators. The high difficulty for merging genetic
information from two any individuals could explain the
relatively poor results obtained by RP-C in comparison
with those expected from typical crossover operators. In
fact, RP-M obtains slightly better results, maybe because
it preserves more genetic information in the individuals.
Moreover, ROT operators improve more quickly at first.
At last, their performance is conditioned by the assembly
plans generated in the initial population. A last cutve is
generated in figure 3. It shows the results obtained by a
GA with all referred operators working together (ALL). A
quite improvement can be observed. This reflects the
combination of the two effects: ROT operators optimize
assembly plans that have been generated, and RP
operators obtain new assembly plans.

75 J I
0 5 W O I a x x , l s o a , 2 a m "

EKdudiaE

Figure 3: Results from the GA.

5 The A* Algorithm Approach

Another algorithm, based on the A* search (121, has
been developed to solve the problem stated in section 3.
The algorithm has two well-differentiated parts: one of
them considers the sequential execution of assembly tasks
imposed by the precedence constraints defined in the
And/or graph, i.e. in the high part of the And/or graph.
The other solves the parallel execution of assembly tasks
(the representation through the And/or graph allows a
natural study of this stage). This is actually the most
complex section, because the execution of tasks on one side
of the global assembly is not independent of the rest, and
can influence the execution of tasks in the other part of as-
sembly.

The sequential part of the algorithm is used whilehe
tasks considered involves only a non-trivial sub-assembly
below the corresponding And node. When an assembly
task takes two non-trivial sub-assemblies, the parallel part
of the algorithm is used for obtaining the solution from the
node in the search tree. In that moment, the algorithm
generates all the assembly trees from that And node. Each
of them is used for obtaining an optimal order for the tasks
included in them, through a separate A* algorithm. The
global algorithm orders all these trees using an estimation
of the time needed for the execution of its tasks, so that not
all the trees must been completely solved, because of the
pruning of the search.

In the search tree of the algorithm, a node represents a
state corresponding to the execution of the set of tasks that
have been included into the solution in the previous steps.
The order of including tasks specifies the order of
execution of them. So, a task will not be included until all
its predecessor tasks in the And01 graph have been
included. This strategy allows to verify the precedence
constraints of the problem. The state of a node n can he
obtained also through the set of tasks can&n) that can be
included in the next expansion step, denoted cundiddes.
For each candidate task 0 we take the earliest start time,
esr(O), if it were introduced in the next step. The
description of the state of n is completed with the time
corresponding to the last used of each robot R due to the
tasks that have been included, /artTime(n, R), and the last
tool used in each robot, /asfToo/(n, R).

The objective function,An), is given by the time needed
for the execution of the tasks included in n, g(n), plus an
estimation of the time needed to complete a solution, Kn).
Function s(n) can be defined as:

Some different heuristic functions can be defined for
h(n). In order to maintain the admissibility of the A*
algorithm, h(n) must be an optimistic estimation of the
remaining time for an optimal solution from n. In order to
calculate properly the objective function f from g and h,
two different types of slack have been defined, one for the
candidate tasks, e(n, 0) = s(n) - esr(n, 0). and another
one for the robots, e(n, R) = g(n) - /artTime(n, R).

5.1 Heuristic Functions

For the sequential part of the algorithm, h(n) can be
defined as:

h(n)= min (hs(0,))
9mn*l"l

nfOr(n) denoting the non trivial Or node below the last
task introduced inn, and

106

where dur(0) is the duration of task 0 and Or,(O) and
Or,(O) are the Or nodes corresponding to the initial sub-
assemblies involved in task 0.

Notice that only the precedence constraints have been
used in the definition of h(n) for the sequential part of the
algorithm. For the parallel part, the constraints due to the
use of resources can be taken into account, because of the
separation of the assembly trees, so that for each sub-
problem all tasks are defined, i.e. there is no alternative
tasks, and then the amount of uses for the different
resources are known.

Two basic heuristic functions can be defined for the
parallel part of the A* algorithm, considering separately
the two types of constraints: the precedence of tasks, and
the use of resources.

5.1.1 The heuristic function h,: precedence of
task

It corresponds to an estimation of the time remaining if
the interdependencies between different branches in the
tree are not taken into account. It is looked at only in
depth. It can be defined with following equations:

(7)

In the above expressions, R(0) and r(0) are the robot
and tool necessary for the execution of task 0. t(0, R, 7) is
the added delay, due to the fact that the tool Tis being used
by robot R in task 0 and successors, because of the neces-
sary tool changes. The equation (7) defines t (0, R, 4 when
R#R(O). In the case R=R(O), t(0, R, 7) is defined as
4 d R , VO), 7) (that could be zero if T=nO)). Finally,
tA0,O’) is the delay considering the possible
transportation of the intermediate subassembly generated
between the execution of 0 and 0‘, and that of the possible
change of tools.

Notice that h,(O) does not depend on the expansion
nodes, so that it can be calculated for each task prior to
using the A’ algorithm for the assembly trees.

5.1.2 The heuristic function hl: use of resources

It corresponds to an estimation of the time needed if
only the remaining usage times of the tools in each robot
are taken into account, further supposing the number of

tool changes to be at a minimum. It can be defined as
follows:

where h2(n, R,) is the minimum time of use of robot R,
without considering the task precedence constraints. If
each tool is associated with only one robot, the calculation
of hz(n, R) is equivalent to the traveling salesman
problem, when considering the tools not yet used and an
initial node corresponding to the last-used tool in the
robot R

with h2(J, T) the remaining time of usage of tool T by
task 0 and its successors. The term X(n,A,(R)) refers
to the time needed for the tool changes. In the usual case
that tool-changing times do not depend on the type of
tool, it can be calculated easily. Without any precedence
information, an in order to maintain the admissibility of
tbe heuristic, it must be supposed that the remaining tools
will be installed only once.

5.1.3 Combination of heuristics

The heuristic functions hl and h? present two different
effects in calculating h(n). The estimation made from the
first one is due to the most unfavorable candidate task. In
the other hand, hz shows an additive effect, because of the
uses of robots by all candidate tasks. Therefore, a new
heuristic function can be defined from the combination of
both, taking the most realistic estimation, max(h,(n),
hz(n)).

5.2 Results from the A* Algorithm

The use of A* algorithms presents some problems. The
most important is the storage space that could be
occupied. In order to improve this issue, the algorithm
was adapted so that it uses a depth-first search
periodically for finding a new solution whose value could
be used for pruning the search tree. Another improvement
was done about detecting symmetries, so that redundant
nodes are avoided in the expansion.

The algorithm was used to solve the same 10 problems
than those referred in section 4.3. Table 1 shows how many
times the optimal solution was found by a depth-first
movement (N-Pr), how many times the algorithm did not
find the optimal solution in 30 seconds, when the available
memory was exhausted (N-F), and the e m r rate. It can be
observed that in most cases the algorithm found the optimal
solution quickly, but in some cases, the high consumption of
memory makes it very inefficient. It is easy to conclude that,
for larger problems, there will be a lower chance of running
efficiently.

107

Time (ms) % Heuristic N-PI N-F Error

h, 19429 30590 180 4 6 0,990
h, 1422 6420 0 5 0 0.000

Ave Max Min

max(&,h2) 4291 30050 0 4 1 0;248

Table 1: Results from the A* algorithm

6 Conclusions

A model for the selection of optimal assembly
sequences for a product in a generic multi-robot system
has been presented. The objective of the plan is the
minimization of the total assembly time. To meet this
objective, the model takes into account, in addition to the
assembly times and resources for each task, the times
needed to change tools in the robots, and the delays due to
the transportation of intermediate sub-assemblies between
different workstations.

Two algorithmic approaches have been used to solve
the resultant scheduling problem. GAs are used to find a
sub-optimal solution, but they have not problem of
memory. The A* approach allows finding an optimal
solution in a more efficient way, but limited to the use of
memory. So, the first approach can be used in the earlier
stages of the planning, when designing the manufacturing
system. The A' algorithm can be used in the final stages,
when the space of solutions have been reduced after
discarding most of uninteresting altematives.

References

[I] A. Boujault. Contribution a une Approche
Mithodologique de Assembloge Automotisd:
Elaboration Automatique des Siquences Ophatoires.
Thk #&at, Uni-versitb de Franche-Comtb,
Besanson, France, 1984.

[2] T.L. De Fado and D.E. Whitney. Simplified
Generation of All Mechanical Assembly Sequences.
IEEE Journal of Robotics and Automation, Vol. 3,
No. 6, 1987, pp. 640-658. Also, Corrections, Vol. 4,
No. 6, pp. 705-708.

[3] L.S. Homem de Mello and A.C. Sanderson. A
Correct and Complete Algorithm for the Generation
of Mechanical Assembly Sequences. IEEE
Transactions on Robotics and Automation. Vol. 7,
No. 2, 1991, pp. 228-240.

[4] T. L. Calton. Advancing design-for-assembly. The
next generation in assembly planning. Proceedings of
the 1999 IEEE lnternntional Qmposium on Assembly
and TaskPlanning, pp. 57-62, Porto, Portugal.

[5] B. Romney, C. Godard, M. Goldwasser, G.
Ramkumar. An Efficient System for Geometric
Assembly Sequence Generation and Evaluation.

Proceedings 1995 ASME International Computers in
Engineering Conference, pp. 699-712.

[6] R.H. Wilson, L. Kavraki, T. Lozano-P&ez and J.C.
Latombe. Two-Handed Assembly Sequencing.
International Journal of Robotic Research. Vo1.14,
1995, pp. 335-350.

[7] L.S. Homem de Mello and A.C. Sanderson. And/or
Graph Representation of Assembly Plans. IEEE
Transactions on Robotics ond Automation. Vol. 6,
No. 2, 1990, pp. 188-199.

[8] J. Wolter. A Combinatorial Analysis od Enumerative
Data Structures for Assembly Planning. Journal of
Design and Manufocturing. Vol 2, No. 2, June 1992,
pp. 93-104.

[9] M.H. Goldwasser and R. Motwani. Complexity
measures for assembly sequences. Internotional
Joumal of Computational Geometry and
Applications, 9:371-418, 1999.

[lO]L.S. Homem de Mello and S. Lee (eds.) Computer-
Aided Mechanical Assembly Planning. Kluwer
Academic Publishers, 1991.

[IlIC. Del Valle and E.F. Camacho. Automatic
Assembly Task Assignment for a Multirobot
Environment. Control Engineering Practice, Vol. 4,
No. 7, 1996, pp. 915-921.

[12] J. Pearl. Heuristics: Intelligent Search Strategks for
Computer Problem Solving. Addison-Wesley, 1984.

[13]T. Starkweather, S. McDaniel, K. Mathias, D.
Whitley, C. Whitley. A Comparison of genetic
sequencing operators. In R.K. Belew and L.B.
Booker, eds. Proceedings of the Forth International
Conference on Genetic Algorithms, ICGA-91, pp. 69-
76. Morgan Kanfmann, 1991.

[14]G. Syswerda. Schedule optimization using genetic
algorithms. In L. Davis, ed. The Handbook of Genetic
Algorithms, pp. 332-349. Van Nostram Reinhold,
1990.

108

