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Abstract 

This paper presents a model for  the selection of 
opfimal assembly sequences f o r  a producf in multi- 
robot sysfems. The objecfive of fhe plan is the 
minimizafion of the fotal assembly time (makespan). To 
meef this objective, fhe model takes into account the 
assembly times and resources for each task, fhe limes 
needed to change fools in the robots, and the delays 
due fo fhe fransporfafion of intermediate subassemblies 
behveen dflerenf workstations. The model can be used 
in different stages of fhe process planning. The paper 
includes MO algorifhmic approaches for  solving fhe 
scheduling problem: a genefic algorifhm infended for  
the earlier stages, and an A* algorifhm for  the final 
ones. 

1 Introduction 

Assembly planning is a very important problem in the 
manufacturing of products. It involves the identification, 
selection and sequencing of assembly operations, stated as 
their effects on the pam. The identification of assembly 
operations is done through the analysis of the product 
structure, using interactive planners [l] [2], or 
automatically from a geometric and relational model of 
the assembly [3] and from a CAD model and other non- 
geometric information [4] [5]. The identification of 
assembly operations usually leads to the set of all feasible 
assembly plans. The number of them grows exponentially 
with the number of parts, and depends on other factors, 
such as how the single parts are interconnected in the 
whole assembly, represented in the graph of connections. 
In fact, this problem bas been proved to be NP-complete 
I61. 

The representation of assembly plans is an important 
is-sue within this scope. The use of And/or graphs for 
this purpose [7] has became one of the most standard 
ways of representing all possible assembly plans. The 
result is a representation which is adequate for a goal- 
directed approach. Moreover, this structure is more 
efficient in most cases than other enumerative ones [7] 
PI. 
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Two kinds of appmachcs have been used for searching 
the optimal assembly plan. One, the more qualitativ% uses 
tules in order to eliminate assembly plans that include 
difficult tasks or awkward intermediate subassemblies. A 
more quantitative approach uses an evaluation function that 
computes the merit of assembly plans. Several of these 
proposals can be found in [9] and [IO]. 

The criterion followed in this work is the minimization of 
the total assembly time (makespan) of the plan executed in a 
multi-robot syxtem. To meet this objective, we preseut a 
scheduling-based model which takes into account all 
factors having an effect on the makespan: an estimation of 
the duration of tasks; the resources used for them (robots 
and tools); the times needed for changing tools in the 
robots; and the delays due to the transportation of 
intermediate subassemblies between different workstations. 

This model completes the one presented in [ I  I], and it 
can be used in different stages of the process planning: in 
the first stages, for the design of the assembly and 
manufacturing system, evaluating the times and costs of 
different alternatives, and in the final steps of the 
planning, for determining the adequate assembly 
sequences. In the first case, the space of solutions is 
prohibitive for complete and deterministic algorithms. 
Instead, a genetic algorithm (GA) approach can be used 
for obtaining good solutions, which can help in the 
selection of the configuration of the assembly system. 
Moreover, the solutions obtained by the genetic algorithm 
can be used for discarding some of the alternative 
assembly operations, so that we would obtain a reduced 
set of feasible assembly plans, more suitable for an A* 
algorithm [12] to obtain an optimal solution, as the one 
presented in this paper. 

The rest of the paper is organized as follows: section 2 
describes the assembly sequence planning problem, and 
section 3 the model proposed. The GA and A' algorithm 
approaches are presented in section 4 and 5 respectively. 
Some final remarks are made in the concluding section. 

2 Assembly Sequence Planning 

The process of joining paris together to form a unit is 
known as assembly. An assembly plan is a set of 
assembly tasks with ordering amongst its elements. Each 
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task consists ofjoining a set of sub-assemblies to give rise 
to an ever larger sub-assembly. A sub-assembly is a group 
of parts that can be assembled independently of other 
parts of the product. An assembly sequence is an ordered 
sequence of the assembly tasks satisfying all the ordering 
constraints. Each assembly plan corresponds to one or 
more assembly sequences. 

An And/or graph is a representation of the set of all 
assembly plans for a product. The Or nodes correspond to 
sub-assemblies, the top node corresponds to the whole 
assembly, and the leaf nodes correspond to the individual 
parts. Each And node corresponds to the assembly task 
joining the subassemblies of its two final nodes producing 
the sub-assembly of its initial node. In the And/or graph 
representation of assembly plans, an And/or path whose 
top node is the And/or graph top node and whose leaf 
nodes are the And/or graph leaf nodes is associated to an 
assembly plan, and is referred to as an assembly tree. An 
important advantage of this representation, used in this 
work, is that the And/or graph shows bow different 
assembly tasks can be executed in parallel. Figure 1 shows 
an example of this representation. And nodes arc 
represented as hyperarcs. 

Figure 1 : Andor graph of product ABCDE 

task, and the help of a computer-aided system is 
necessary. The nodes corresponding to tasks which are 
not realizable as the adequate tools are not available are 
eliminated from the And/or graph. 

Another factor taken into account is the time necessary 
for changing the tools in the robots, which is of the same 
order as the execution time of the assembly tasks and 
therefore cannot be disregarded as in Parts manufacturing. 
A<,, ( R , T , y )  denotes the time needed for installing the 
tool T in the robot R if the tool T was previously 
installed. Notice that any change of configuration in the 
robots can be modeled in this way. 

Another question is the transportation of parts and 
subassemblies, that could affect the total assembly time. 
The proposed model supposes a well-dimensioned 
system, with a perfect planning when executing the 
assembly plan, so that, when a part would be required in a 
mbot for executing an assembly operation, it will be 
present there. The same cannot be guaranteed for an 
intermediate subassembly, because it could be built in a 
robot and required immediately in another one to form 
another subassembly. A- (SA,R,R') denotes the time 
needed for transporting the subassembly SA fmm robot R 
to robot R'. 

The model considers only one combination 
duration-robot-tool for an assembly task. However, it can 
be extended easily when there are various ways for 
assembling a subassembly from the same components. It 
is enough to suppose that they corresponds to different 
assembly tasks, that is, we would add some altemative 
And nodes into the Andor  graph for the product. 

In order to an easier reasoning, we will suppose that 
the precedence constraints are in the opposite direction, so 
that we will refer to a task preceding another one if the 
first one appears higher in the And/or graph. This is as if 
we think about the opposite problem, that of the 
disassembly. To get the c o d  solution of the problem, 
we must only reverse the sequence given by the 
algorithms. 

With this model, the choice is not limited to the 
assembly plan, but also it can he specify when each task is 

This work is about the selection of the best assembly 
plan, that is, one ofthe ~ ~ d / &  treeS ofthe graph. 
Most of approaches used up to now make this selection in 
a planning phase in which neither the assembly system, 
nor how the assembly tasks within it will be materialized, 
is taken into account. 

to be caked out in order to minimize the makespan (some 
tasks which could Potentially be caked  Out in Parallel 
have to be 

The results derived from this model can be used in 
different Stages Of the whole planning process, from the 
design of the product and of the manufacturing system, to 
the final execution of the assembly plan. 

because need K " I O n  

3 The Scheduling-Based Model 
4 The GA Approach _ _  

This work takes into account the physical realization of 
the assembly. It is assumed that the assembly tasks Genetic Algorithms (GAS) have been used to solve a 
corresponding to the And/or graph have been evaluated large variety of combinatorial optimization problems with 
separately, in the sense of estimating the resources some success [I31 [141. The nature of the Assembly 
necessary for their realization (robots, tools, fixtur a...) as Sequence Planning problem entails a great difficulty in 
well as their approximate duration times. For an And/or applying GAS a sequence of tasks forms a correct solution 
graph with a large number of nodes this is not an easy if all of them belong to an assembly plan, i.e. an assembly 
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tree of the And/or graph, and they are ordered according to 
the precedence constraints imposed by the plan. An 
assembly task is defined by the subassemblies used to form 
a greater subassembly, and by the resulting assembly. 
Thus, the presence of a task in a solution is strongly 
conditioned by the presence of tasks related to these 
subassemblies. 

The first issue in applying GAS is the chromosomal 
encoding. A natural way of representing a solution is 
through a sequence of tasks, compatible in order with the 
constraints imposed by the And/or graph (ordering and 
assembly plans). So, not all the tasks sequences form a 
legal solution. Figure 2 shows how a chromosome is 
decoded to produce a schedule. A schedule builder 
transforms the chromosome into a legal assembly schedule, 
taking into account the precedence constraints and the 
shared resources to be used (machines and twls). This 
translation is made directly because of the simplicity of that 
representation. The result could be visualized as a Gantt 
chart, and it allows the fitness function (the makespan) to 
be calculated. Note that, depending on the assignation of 
resources to tasks and their durations, different 
chromosomes could be mapped into an only schedule. It 
will happen when tasks do not share the same resources 
and could be executed in parallel. 

MZ 

Figure 2: The ScheduleBuilder. 

Two families of genetic operators have been defined 
for searching the whole solution space. The first includes 
operators that search locally for new sequences in a 
predetermined assembly plan, that of parent 
chromosomes. These operators, referred to below as Re- 
Ordering Tasks operators, are similar to those used for 
other sequencing problems in the literature [I31 [14], but 
obviously result to be insufficient to find the optimum. 
The otber family of operators is intended to search for 
sequences in other assembly plans, and are referred to as 
Re-Planning operators. This is basically made by 
introducing a new task in a solution, and substituting 
certain tasks for others in order to maintain the soundness 
of the chromosomes. 

4.1 Reordering Tasks (ROT) Operators 

This kind of operator is intended to search for new 
sequences in a predetermined assembly plan. Because of 
the improbability of two sequences of the same assembly 
plan coinciding in a population, they are implemented as 
mutation operators. They operate in a chromosome by 
selecting a random task in the sequence and attempting to 
move it to another random position. Their predecessor or 
successor tasks might be also involved in the movement, 
so that they may keep in their positions or move with the 
selected task. Those possibilities give us four different 
genetic operators. The transposition of tasks is performed 
so that the resultant individual is legal. 

4.2 Re-Planning Tasks (RP) Operators 

This kind of operator is intended to search for 
sequences in other assembly plans. The resultant 
individuals will contain new assembly tasks, coming from 
another individual present in the population (crossover 
operators) or generated randomly (mutation operators). 
Some other new tasks are required in order to complete a 
correct chromosome, so that they substitute some others. 

The sequences generated by these genetic operators 
will maintain the position of tasks they had in the parents, 
and the new task will fill the blanks, at some compatible 
order with the precedence constraints. 

RP Crossover (RPC) operators take two-individuals 
(parents) and generate two children, trying to merge genetic 
information from the two parents. Because of the nature of 
Assembly Planning there will be little chance of conshucting 
a new solution from significant parts of any two solutions. 
The generation of children is made by selecting one task in 
one of the parents, so that their successor tasks in that 
parent are also selected. The remaining tasks in the new 
individual will be selected from the other parent, whenever 
possible, or randomly, in order to complete a legal .. - 
chromosome. 

RP Mutation (RP-M) takes an individual and modifies 
it by changing a random sub-tree of the assembly plan for 
another, selected randomly and according to the 
constraints imposed by the And/or graph. The positions 
ofthe new tasks in the sequence will be the same that held 
the substituted tasks. 

4.3 Results from the GA 

A hypothetical product has been used in order to 
evaluate the genetic operators described in the previous 
section. That product is formed by 30 parts, and the 
number of connections among them is the minimum. The 
product includes in its And/or graph various alternative 
tasks for each Or node, and contains 396 Or nodes and 
764 And nodes. There are about IO2' possible individuals. 

The values corresponding to the higher part of figure 3 
represent the average of 50 trials. The lower part 
represents the best result in all trials. Moreover, all values 
represent the average of 10 different distributions of 
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durations and shared resources among the tasks. They 
show the best solution found until the number of 
evaluations indicated. The graphics include also the value 
of the optimum solution (OPT) and the performance of a 
random algorithm (RND). 

Figure 3 shows the operation of the specific genetic 
operators. The high difficulty for merging genetic 
information from two any individuals could explain the 
relatively poor results obtained by RP-C in comparison 
with those expected from typical crossover operators. In 
fact, RP-M obtains slightly better results, maybe because 
it preserves more genetic information in the individuals. 
Moreover, ROT operators improve more quickly at first. 
At last, their performance is conditioned by the assembly 
plans generated in the initial population. A last cutve is 
generated in figure 3. It shows the results obtained by a 
GA with all referred operators working together (ALL). A 
quite improvement can be observed. This reflects the 
combination of the two effects: ROT operators optimize 
assembly plans that have been generated, and RP 
operators obtain new assembly plans. 

75 J I 
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Figure 3: Results from the GA. 

5 The A* Algorithm Approach 

Another algorithm, based on the A* search (121, has 
been developed to solve the problem stated in section 3. 
The algorithm has two well-differentiated parts: one of 
them considers the sequential execution of assembly tasks 
imposed by the precedence constraints defined in the 
And/or graph, i.e. in the high part of the And/or graph. 
The other solves the parallel execution of assembly tasks 
(the representation through the And/or graph allows a 
natural study of this stage). This is actually the most 
complex section, because the execution of tasks on one side 
of the global assembly is not independent of the rest, and 
can influence the execution of tasks in the other part of as- 
sembly. 

The sequential part of the algorithm is used whilehe 
tasks considered involves only a non-trivial sub-assembly 
below the corresponding And node. When an assembly 
task takes two non-trivial sub-assemblies, the parallel part 
of the algorithm is used for obtaining the solution from the 
node in the search tree. In that moment, the algorithm 
generates all the assembly trees from that And node. Each 
of them is used for obtaining an optimal order for the tasks 
included in them, through a separate A* algorithm. The 
global algorithm orders all these trees using an estimation 
of the time needed for the execution of its tasks, so that not 
all the trees must been completely solved, because of the 
pruning of the search. 

In the search tree of the algorithm, a node represents a 
state corresponding to the execution of the set of tasks that 
have been included into the solution in the previous steps. 
The order of including tasks specifies the order of 
execution of them. So, a task will not be included until all 
its predecessor tasks in the And01 graph have been 
included. This strategy allows to verify the precedence 
constraints of the problem. The state of a node n can he 
obtained also through the set of tasks can&n) that can be 
included in the next expansion step, denoted cundiddes. 
For each candidate task 0 we take the earliest start time, 
esr(O), if it were introduced in the next step. The 
description of the state of n is completed with the time 
corresponding to the last used of each robot R due to the 
tasks that have been included, /artTime(n, R), and the last 
tool used in each robot, /asfToo/(n, R). 

The objective function,An), is given by the time needed 
for the execution of the tasks included in n, g(n), plus an 
estimation of the time needed to complete a solution, Kn). 
Function s(n) can be defined as: 

Some different heuristic functions can be defined for 
h(n). In order to maintain the admissibility of the A* 
algorithm, h(n) must be an optimistic estimation of the 
remaining time for an optimal solution from n. In order to 
calculate properly the objective function f from g and h, 
two different types of slack have been defined, one for the 
candidate tasks, e(n, 0) = s(n) - esr(n, 0). and another 
one for the robots, e(n, R) = g(n) - /artTime(n, R). 

5.1 Heuristic Functions 

For the sequential part of the algorithm, h(n) can be 
defined as: 

h(n)= min (hs(0,))  
9mn*l"l  

nfOr(n) denoting the non trivial Or node below the last 
task introduced inn, and 
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where dur(0) is the duration of task 0 and Or,(O) and 
Or,(O) are the Or nodes corresponding to the initial sub- 
assemblies involved in task 0. 

Notice that only the precedence constraints have been 
used in the definition of h(n) for the sequential part of the 
algorithm. For the parallel part, the constraints due to the 
use of resources can be taken into account, because of the 
separation of the assembly trees, so that for each sub- 
problem all tasks are defined, i.e. there is no alternative 
tasks, and then the amount of uses for the different 
resources are known. 

Two basic heuristic functions can be defined for the 
parallel part of the A* algorithm, considering separately 
the two types of constraints: the precedence of tasks, and 
the use of resources. 

5.1.1 The heuristic function h,: precedence of 
task 

It corresponds to an estimation of the time remaining if 
the interdependencies between different branches in the 
tree are not taken into account. It is looked at only in 
depth. It can be defined with following equations: 

(7) 

In the above expressions, R(0) and r(0) are the robot 
and tool necessary for the execution of task 0. t(0, R, 7) is 
the added delay, due to the fact that the tool Tis being used 
by robot R in task 0 and successors, because of the neces- 
sary tool changes. The equation (7) defines t (0, R, 4 when 
R#R(O). In the case R=R(O), t(0, R, 7) is defined as 
4 d R ,  VO), 7)  (that could be zero if T=nO)). Finally, 
tA0,O’) is the delay considering the possible 
transportation of the intermediate subassembly generated 
between the execution of 0 and 0‘, and that of the possible 
change of tools. 

Notice that h,(O) does not depend on the expansion 
nodes, so that it can be calculated for each task prior to 
using the A’ algorithm for the assembly trees. 

5.1.2 The heuristic function hl: use of resources 

It corresponds to an estimation of the time needed if 
only the remaining usage times of the tools in each robot 
are taken into account, further supposing the number of 

tool changes to be at a minimum. It can be defined as 
follows: 

where h2(n, R,) is the minimum time of use of robot R, 
without considering the task precedence constraints. If 
each tool is associated with only one robot, the calculation 
of hz(n, R )  is equivalent to the traveling salesman 
problem, when considering the tools not yet used and an 
initial node corresponding to the last-used tool in the 
robot R 

with h2(J, T )  the remaining time of usage of tool T by 
task 0 and its successors. The term X(n,A,(R)) refers 
to the time needed for the tool changes. In the usual case 
that tool-changing times do not depend on the type of 
tool, it can be calculated easily. Without any precedence 
information, an in order to maintain the admissibility of 
tbe heuristic, it must be supposed that the remaining tools 
will be installed only once. 

5.1.3 Combination of heuristics 

The heuristic functions hl and h? present two different 
effects in calculating h(n). The estimation made from the 
first one is due to the most unfavorable candidate task. In 
the other hand, hz shows an additive effect, because of the 
uses of robots by all candidate tasks. Therefore, a new 
heuristic function can be defined from the combination of 
both, taking the most realistic estimation, max(h,(n), 
hz(n)). 

5.2 Results from the A* Algorithm 

The use of A* algorithms presents some problems. The 
most important is the storage space that could be 
occupied. In order to improve this issue, the algorithm 
was adapted so that it uses a depth-first search 
periodically for finding a new solution whose value could 
be used for pruning the search tree. Another improvement 
was done about detecting symmetries, so that redundant 
nodes are avoided in the expansion. 

The algorithm was used to solve the same 10 problems 
than those referred in section 4.3. Table 1 shows how many 
times the optimal solution was found by a depth-first 
movement (N-Pr), how many times the algorithm did not 
find the optimal solution in 30 seconds, when the available 
memory was exhausted (N-F), and the e m r  rate. It can be 
observed that in most cases the algorithm found the optimal 
solution quickly, but in some cases, the high consumption of 
memory makes it very inefficient. It is easy to conclude that, 
for larger problems, there will be a lower chance of running 
efficiently. 
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Time (ms) % Heuristic N-PI N-F Error 

h, 19429 30590 180 4 6 0,990 
h, 1422 6420 0 5 0 0.000 

Ave Max Min 

max(&,h2) 4291 30050 0 4 1 0;248 

Table 1: Results from the A* algorithm 

6 Conclusions 

A model for the selection of optimal assembly 
sequences for a product in a generic multi-robot system 
has been presented. The objective of the plan is the 
minimization of the total assembly time. To meet this 
objective, the model takes into account, in addition to the 
assembly times and resources for each task, the times 
needed to change tools in the robots, and the delays due to 
the transportation of intermediate sub-assemblies between 
different workstations. 

Two algorithmic approaches have been used to solve 
the resultant scheduling problem. GAs are used to find a 
sub-optimal solution, but they have not problem of 
memory. The A* approach allows finding an optimal 
solution in a more efficient way, but limited to the use of 
memory. So, the first approach can be used in the earlier 
stages of the planning, when designing the manufacturing 
system. The A' algorithm can be used in the final stages, 
when the space of solutions have been reduced after 
discarding most of uninteresting altematives. 
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