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Abstract

Two communities work in parallel in model-based
diagnosis: FDI and DX. In this work an integration
of the FDI and the DX communities is proposed.
Only relevant information for the identification of
the minimal diagnosis is used. In the first step, the
system is divided into clusters of components, and
each cluster is separated into nodes. The minimal
and necessary set of contexts is then obtained for
each cluster. These two steps automatically reduce
the computational complexity since only the essen-
tial contexts are generated. In the last step, a sig-
nature matrix and a set of rules are used in order to
obtain the minimal diagnosis. The evaluation of the
signature matrix is on-line, the rest of the process is
totally off-line.

1 Introduction
Diagnosis allows us to determine why a correctly designed
system does not work as expected. Diagnosis is based on a set
of integrated sensors which obtain a set of observations. The
aim of diagnosis is to detect and identify the reason for any
unexpected behaviour, and to isolate the parts which fail in a
system. The behaviour of components is stored by using con-
straints. Inputs and outputs of components are represented as
variables of the component constraints. These variables can
be observable and non-observable depending on the sensors
allocation of the sensors.

Two communities work in parallel, although separately, in
model-based diagnosis: FDI (from Automatic Control) and
DX (from Artificial Intelligence). Nevertheless, the integra-
tion of FDI with DX theories has been shown in recent work
[Cordier et al., 2000],[Ceballos et al., 2004]. In the DX com-
munity, [Reiter, 1987], [de Kleer et al., 1992] presented the
diagnosis formalization. A general theory was proposed to
explain the discrepancies between the observed and the cor-
rect behaviour by using a logical-based diagnosis process. In
the FDI community, [Staroswiecki and Declerk, 1989] and
[Cassar and Staroswiecki, 1997] presented the formalization
of structural analysis, the process to obtain the ARRs (Ana-
lytical Redundancy Relation) of the system.

In this work an integration of FDI theories with the DX
community is proposed, in order to improve the minimal di-

agnosis determination. This integration has three phases. The
structural pre-treatment in the first phase and the reduction
of the model in the second phase enables the improvement
of the computational complexity. The minimal diagnosis is
obtained by applying an observational model to a signature
matrix together with a set of precompiled rules. The evalua-
tion of the signature matrix is on-line, however the rest of the
process is totally off-line.

Our paper has been organized as follows. First, definitions
and notations are established in order to clarify concepts. Sec-
tion 3 shows two examples of the validation of this approach.
Section 4 describes the advantages of the structural pretreat-
ment. After that, in section 5, the process for the definition
of the context network is explained. Section 6 describes the
determination of the minimal diagnosis. Finally, conclusions
are drawn and future work is outlined.

2 Definitions and notation
In order to clarify the diagnosis process some definitions must
be established.

Definition 2.1 System Model: A finite set of polyno-
mial equality constraints (P) which determine the system be-
haviour. This is done by means of the relations between non-
observable (Vi) and observable variables (sensors) of the sys-
tem (Oj).

Definition 2.2 Observational Model: A tuple of values for
the observable variables.

Definition 2.3 Context: A collection of components of the
system, and their associated constraints. The number of pos-
sible contexts is 2nComp - 1, where nComp is the number of
components of the system.

Definition 2.4 Context Network: A graph formed by all
the contexts of the system in accordance with to the way pro-
posed by ATMS[de Kleer, 1986]. The context network has a
natural structure of a directed graph for set inclusion.

Definition 2.5 Diagnosis Problem: A tuple formed by a
system model and an observational model. The solution of
this problem is a set of possible failed components.

3 Examples
The following examples are used in order to explain our
methodology.
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Figure 1: The example of heat exchangers

• A system of heat exchangers: As proposed in [Guernez,
1997], this system consists of six heat exchangers which
distribute three flows fi that come at different tempera-
tures ti, in accordance with the sensor allocations. There
are different subsystems, each one formed by two ex-
changers: {E1, E2}, {E3, E4} and {E5, E6}. Each one
of the six exchangers and each one of the eight nodes of
the system are considered as components. The observ-
able variables (flows and temperatures) are represented
by shaded circles in Figure 1. The normal behaviour
of the system can be described by means of polynomial
constraints based on three different kinds of balances:

∑
i fi = 0: mass balance at each node∑

i fi·ti=0: thermal balance at each node∑
in fi·ti-

∑
out fj ·tj = 0: enthalpic balance for each

heat exchanger

• A polybox system: This polybox system is derived from
the standard problem used in the diagnosis community
[de Kleer et al., 1992]. The system consists of fifteen
components: nine multipliers, and six adders. The ob-
servable variables are represented by shaded circles in
Figure 2.

4 Structural pretreatment
The first part of this section shows the way to divide the diag-
nosis problem into independent diagnosis subproblems. The
second part of this section explains the way of grouping the
components into nodes in order to reduce the number of non-
observable variables to be considered in the system.

4.1 Identification of the clusters
The objective of this section is the partition of the system into
independent subsets of components. This partition reduces
the computational complexity of the diagnosis process since
it enables the generation of the diagnosis of the whole system
based on the diagnosis of the subsystems.

Definition 4.1 Cluster of components: A set of components
T is a cluster, if it does not exist a common non-observable
variable of any component of the cluster with any component
outside the cluster, and if for all T’ ⊂ T, T’ is not a cluster of
components.

In a cluster, all common non-observable variables among
the components belong to the same cluster, therefore all the
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Figure 2: The polybox example

connections with components which are outside the cluster
are monitored. A cluster of components is totally monitored,
and for this reason the detection of faults inside the cluster is
possible without information from other components which
do not belong to the cluster. A more detailed explanation
and the cluster detection algorithm appears in previous work
[Ceballos et al., 2004].

The diagnosis space for a system initially consists of
2nComp diagnoses [de Kleer et al., 1992], where nComp is the
number of components of the system. Therefore the computa-
tional complexity for the diagnosis process is always smaller
for an equivalent system divided into clusters, due to the re-
duced number of possible diagnoses.

Example: In the heat exchanger example, five clusters of
components can be obtained [Ceballos et al., 2004]: {N11},
{N13}, {N12, N21, N22, E1, E2}, {N14, N23, N24, E5, E6},
and {E3, E4}. These clusters allow the generation of an inde-
pendent diagnosis process for each cluster, therefore the num-
ber of possible diagnoses is reduced to: (21-1)+(21-1)+(25-
1)+(25-1)+(22-1) = 67. If each constraint of the model is con-
sidered as a component, then it is possible to obtain more
clusters to a total of 9 clusters, as shown in Section 4.3.

4.2 Obtaining relations without non-observable
variables

In the diagnosis process it is necessary to produce new re-
lations without non-observable variables, in order to mon-
itor the system behaviour by using only the observational
model. Our approach uses a function named NewRelations
(NR) which takes a set of constraints and obtains a set of new
constraints without a set of non-observable variables. Exam-
ple: NR({x-a·c, y-b·d, f-x-y}, {x ,y}) = {a·c + b·d - f = 0}.

This function can be implemented using different tech-
niques. The Gröbner Basis algorithm [Buchberger, 1985] is
used here. Gröbner basis theory is the origin of many sym-
bolic algorithms used to manipulate equality polynomials. It
is a combination of Gaussian elimination (for linear systems)
and the Euclidean algorithm (for univariate polynomials over
a field). The Gröbner basis can be used to produce an equiv-
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NodesIdentification(T) return N , S
Ev = List of components associated to the variable v
Ni = List of components of the node i
Si = List of dispensable variables of the node i
// Generate all the possible nodes of components
foreach x ∈ T

Ni = {x}
endforeach

// Detect all the components associated to a variable
foreach Ni ∈ N

foreach vark ⊂ nonObsVar(Ni)
Ek = Ek ∪ {Ni}

endforeach
endforeach
// Merging the nodes of components
while ∃ Ek ∈ E where |Ek| = 2 ∧ Ek = {Ni,Nj} ∧ i<j

Ni = Ni ∪ Nj

N = N \ Nj

Si = Si ∪ Sj ∪ {k}
foreach Eq ∈ E where Nj ∈ Eq

Eq = Eq \ Nj

if ¬ ( Ni ∈ Eq )
Eq = Eq ∪ Ni

endif
endforeach

endwhile

Figure 3: The algorithm to select the nodes of components

alent system which has the same solution as the original, and
without having non-observable variables.

4.3 Obtaining the nodes of each cluster
Main assumption in this paper is to suppose that only one
constraint is associated to each component. If it is necessary
to apply this methodology to components with n constraints
(where n > 1), it is then possible decoupling the component
x into n virtual components xi with one constraint each.

Our approach provide the minimal set of constraints to de-
tect all the possible diagnoses of a system. The introduction
of new definitions is necessary in order to efficiently generate
these set of constraints:

Definition 4.2 Dispensable variable: A non-observable
variable vi is dispensable if there exist only two components
xi and xj which include this variable in their related con-
straints. In the polybox example the variable x04 and the
variable x08 are dispensable variables.

Definition 4.3 Node of components: A single component
could be a node of components if none of its non-observable
variables is a dispensable variable. Two components, or, a
component and a node of components, belong to the same
node of components if they have a common dispensable vari-
able.

Lemma 1. Let N be a node of components. Let C be a
context. If C ∩ N �= ∅ ∧ ¬(N ⊂ C), then, by using only
the components of the set C - {C∩N} is possible to generate
constraints without non-observable variables.

Proof. In order to generate constraints without non-
observable variables by using the set of components S = N
∩ C, it is necessary to eliminate the dispensable variables of

Table 1: Improvements obtained using structural pretreat-
ment in the proposed examples

Examples: Clusters: Nodes: Vars.: Ctxs.:
Heat E. 9 14 26 → 0 214-1 → 14
Polybox 1 5 12 → 2 215-1 → 31

the set S. If the set S does not have all the components of N,
then there exists v, a dispensable variable, which cannot be
eliminated, since it only appears in one component of the set
S. Therefore, by using the components of the set N ∩ C, it is
not possible to generate constraints without non-observable
variables.

Corollary 1. The contexts are built by using nodes of com-
ponents instead of components, since it is impossible to gen-
erate constraints without non-observable variables by using a
subset of a node of components.

The following algorithm obtains the set of nodes of a clus-
ter T.

Algorithm: Figure 3 shows the algorithm NodesIdentifi-
cation(T) which takes T, the set of components of a cluster,
and returns N, the list of nodes, and S the list of the dispens-
able variables of each node. The algorithm begins by cre-
ating n nodes, where n is the number of components of the
cluster. All these nodes have one component. Each list Ek

stores all the nodes which have a constraint which includes
the non-observable variable k. The auxiliary function nonOb-
sVar returns the set of non-observable variables of a set of
components.

The dispensable variables are detected when a list Ek (as-
sociated with the variable k) includes only two nodes. In this
case, the two nodes, Ni and Nj , are merged into the node Ni.
The lists Si and Sj are merged (they are the set of dispensable
variables of the new node), and obviously, variable k must be
included in set Si. After this step it is necessary to update all
the elements of the list Eq , in order to guarantee that node Ni

and not Nj appears in all the elements of list E.
Our approach obtains the nodes of each cluster of the sys-

tem. A new set of constraints without the dispensable vari-
ables is obtained by applying the NewRelations function to
the set of constraints of each node. If the node of components
have no dispensable variables it is not necessary to apply the
NewRelations function.

Example: Table 1 shows the results obtained in the two
proposed examples. The column Nodes shows the addition
of all the nodes included in the clusters of the system. The
column Vars shows the initial number of non-observable vari-
ables, and the final number of non-observable variables that
are not dispensable variables. The column Ctxs shows the to-
tal number of possible contexts of the system, and the final
number of possible contexts by using the nodes of compo-
nents. In the heat exchanger example 9 clusters are obtained
(if each constraint of the model is considered as a compo-
nent). The non-observable variables are reduced from 26 to 0,
as it appears in Table 1, because all the variables are dispens-
able. Table 2 shows the list of nodes of the polybox example,
and the constraint obtained in each node by eliminating the
dispensable variables.
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5 Determination of the context network

In DX community the diagnosis is obtained by detecting con-
flicts. Many methodologies tries to use structural description
of the system, those methods are known as compilation meth-
ods. In [Pulido and González, 2004] the Possible Conflicts
(PCs) concept is proposed as a compilation technique. Each
PC represent a subsystem within system description contain-
ing minimal analytical redundancy and being capable to be-
come a conflict. Computing Analytical Redundancy Rela-
tions (ARRs)[Staroswiecki and Declerk, 1989] is the compi-
lation technique of FDI methodology.

Our approach provide the minimal set of contexts which
include an over-determined system of constraints that can de-
tect a conflict in a cluster. The minimality issue was not guar-
anteed in the original ARR approach, but its guaranteed in
our approach. In [Pulido and González, 2004] approach the
PCs are obtained directly by using components, but our ap-
proach use nodes instead of components, therefore the size
of the problem is reduced from 2c, where c is the number of
components, to 2n, where n is the number of nodes.

A context network, in accordance with the way proposed
by ATMS[de Kleer, 1986], is generated in order to obtain all
the relevant contexts for the diagnosis process. In order to es-
tablish the smallest set of contexts it is necessary to introduce
the following definitions.

Definition 5.1 Structural context: This is a context where
all the nodes are connected, that is, they compose a connected
graph, and all the non-observable variables appear in at least
two constraints. The function to determine which are struc-
tural contexts is named isAStructural and takes a context C
and returns a true value if it is a structural context.

Definition 5.2 Minimal completed context: A structural
context C is completed context if the set of constraints of
the nodes of the context is a over-determined system of con-
straints, and, if it is possible to generate new constraints with-
out non-observable variables by using the set of constraints of
the context. A completed context is minimal if no context C’
⊂ C exists such that C’ is a completed context.

Lemma 2. If C is a minimal completed context then no
context C’ exists, where C ⊂ C’, which can generate relevant
constraints in the diagnosis process.

Proof. Let C be a completed context with n nodes. Let C’
be a context with m nodes such that C ∩ C’ = ∅, and let be D
a context with n + m nodes such that C ∪ C’ = D. Therefore:

a) If C’ is not a completed context, it is impossible to elim-
inate one of the non-observable variables of the context C’,
and hence it is not possible to generate a new constraint with
all the nodes of the context D. It is possible to obtain con-
straints with fewer nodes than n+m nodes of context D, how-
ever these constraints can be obtained in a context with less
nodes, and hence D is not minimal.

b) If C’ is a completed context, then context D can generate
a new constraint with all the nodes of the context. However,
with this new constraint, which uses all the nodes of context
D, it is impossible to distinguish between faults of nodes in-
cluded in C and those included in C’. Hence it is not relevant
in the diagnosis process.

Therefore, in these two possible cases, it is not possible to

Table 2: Nodes for the polybox example
Nodes Components Constraints
N1 M6M8A4A6 h·j + n·o - r + x05
N2 M5 g·i - x05
N3 M1M7A1A5 a·c + k·m - p + x02
N4 M2 b·d - x02
N5 M3M4M9A2A3 q - (f·h + x05)·(x02 + c·e)

generate new relevant constraints for the diagnosis process if
new nodes are added.

Corollary 2. If a context C is a minimal completed context
it is not necessary to process contexts C’ such that C ⊂ C’,
since it is not possible to generate new relevant constraints for
the diagnosis process.

The algorithm which generate the contexts of each cluster
has n - 1 stages, first the context with 2 nodes are obtained,
then the context with 3 nodes, until it reaches the context
with n nodes, where n is the number of nodes. The func-
tion NewRelations is only applied to the contexts which are
structural contexts. When a minimal completed context C is
found, the new constraints without non-observable variables
are stored, and no contexts C’, such that C ⊂ C’, are gen-
erated. These new constraints are named Context Analytical
Redundancy Constraint.

Definition 5.3 Context Analytical Redundancy Constraint
(CARC): A constraint obtained from a minimal completed
context in such a way that only the observed variables are
related.

Example: In order to clarify this section, Tables 2 and 3
shows the results obtained for the polybox example. This sys-
tem includes only one cluster with 15 components. The num-
ber of possible contexts is reduced from 215−1 to 25−1. By
applying the rules and the algorithm proposed in this section,
10 contexts of the possible 31 (25−1) are generated, however
only 6 are minimal completed contexts. These 6 contexts gen-
erate 6 CARCs. Figure 4 shows the context network of the
polybox example. Only the treated contexts are circled. The
minimal completed contexts are circled in bold.

6 Determination of the minimal diagnosis
The last step is the determination of the minimal diagnosis us-
ing the set of CARCs. In order to clarify the methodology, we
suppose that the sensor observations are correct. We propose
using a signature matrix as in FDI, but in order to obtain the
same minimal diagnosis as in DX approach, it is necessary to
apply a set of rules which guarantee the no-exoneration case
in the solution.

Definition 6.1 Fault signature: Given a set of n CARCs,
denoted CARC= { CARC1, CARC2, ..., CARCn}, and a set
of m faults denoted F = {F1,...,Fm}, the signature of a fault Fj

is given by FSj = [s1j ,..., snj]T in which sij = 1 if the context
which generated the CARCi involves the nodes included in
the fault Fj , and sij = 0 otherwise.

Definition 6.2 Signature matrix: All the signatures for the
set of possible faults constituted the signature matrix.

Definition 6.3 Signature of an observation: This is given
by OS=[OS1,...,OSn] where OSi=0 if the CARCi is satisfied,
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Table 3: CARCs obtained in the polybox example
Index Context CARC
1 N1N2 h·j + n·o - r + g·i
2 N3N4 a·c + k·m - p + b·d
3 N1N3N5 q - (f·h - h·j - n·o + r)·(-a·c - k·m

+ p + c·e)
4 N1N4N5 q - (f·h - h·j - n·o + r)·(b·d + c·e)
5 N2N3N5 q - (f·h + g·i)·(-a·c - k·m + p + c·e)
6 N2N4N5 q - (f·h + g·i)·(b·d + c·e)

and OSi=1 otherwise.
Definition 6.4 Diagnosis set: The set of faults whose sig-

natures are consistent with the signature of the observational
model. Our approach supposed that an observation signature
OS is consistent with another signature FSj if OSi = sij ∀ i.

Definition 6.5 Minimal diagnosis: A fault Fj is a minimal
diagnosis if Fk is not a diagnosis ∀ faults Fk ⊂ Fj .

Table 4 shows the signature matrix for the polybox exam-
ple in order to clarify these definitions and the process to
obtain the minimal diagnosis. The signature OK = [0, ...,
0]T represents the no-fault case. The signature matrix is very
similar to the corresponding matrix in the FDI methodology.
However in our approach, the faults involve nodes instead of
components.

In this example it is necessary to expand the number of
columns of the signature matrix in order to obtain the multi-
ple faults. Each fault Fj , which involves n nodes, is obtained
using a fault Fk, which involves n−1 nodes, and a simple fault
Fs which is not involved in Fk. The multiple fault signature
Fj is given by FSj = [s1j ,..., snj]T in which sij = 0 if sik=sis,
and sij = 1 otherwise. The multiple fault signature Fj is not
added to the signature matrix if ∀ sij : sij = 1 → sij = sik, due
to the implication that the new multiple fault is a superset of
a previously obtained fault which involves fewer nodes, and
therefore cannot be part of a minimal diagnosis. The gener-
ation of the signature matrix stops when it is impossible to
generate new signatures of faults which involve n nodes, with
the faults which involve n−1 nodes.

In FDI, the exoneration assumption [Cordier et al., 2000]
is implied, that is, given an observational model, each com-
ponent of the support of a satisfied CARC is considered as
functioning correctly, that is, it is exonerated. In the DX ap-
proach, the exoneration is not considered by default.

In order to obtain the same results as in the DX approach
by using a signature matrix, it is necessary to apply a new
definition of consistency. In the no-exoneration case an ob-
servation signature OS is consistent with another signature
FSj if ∀ OSi = 1 then sij = 1. That is, only the non-satisfied
CARCs are used, and Fj must have the value 1 in each non-
satisfied CARC. When the diagnosis set is obtained by using
the new definition of consistency, we propose the application
of a set of rules in order to detect which of the faults are min-
imal diagnoses, since many faults will be consistent with the
observational model although they are not a minimal diagno-
sis. The following algorithm generates the rules to obtain the
minimal diagnosis.

Algorithm: Let CS(OS,FS) be a function which evaluates

N1 N 2N 3N4 N5

N1 N 2N 3N4 N 1N 2 N3 N5 N 1 N2 N4 N5 N 1 N3 N4N5 N 2 N3 N4N5

N 1N2 N 3 N 1N 2N4 N 1 N3 N5 N1 N 2N5 N 1N 3 N4 N 2 N3 N4 N 2N 3 N5 N 1 N4 N5 N2 N4N5 N 3N4N5

N1 N 2 N1 N 3 N 2N 3 N1 N4 N1 N5 N 2N 4 N 2 N5 N 3 N4 N3 N5 N4 N5

N1 N2 N 3 N4 N5

N1 N 2N 3N4 N5

N1 N 2N 3N4 N 1N 2 N3 N5 N 1 N2 N4 N5 N 1 N3 N4N5 N 2 N3 N4N5
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Figure 4: Context network of the polybox example

whether the signature OS is consistent with signature FS. For
each possible fault Fj in the signature matrix, let MDFj be a
Boolean variable which holds information on whether a fault
Fj is a minimal diagnosis, and let VCFj be a Boolean variable
which holds information on whether a fault Fj is a valid can-
didate for the generation of new faults that could be a minimal
diagnosis. For each possible fault Fj it is initially supposed
that VCFj = true.

The first step is to validate if the OK (no fault case) is a
minimal diagnosis: MDOK = CS(OS,OKS), and, for any sim-
ple fault Fj , the equality VCFj = ¬ MDOK must be satisfied.

If OK is not a minimal diagnosis, the following rules must
be evaluated for all the possible faults (except OK) in the
same sequential order as they appear in the signature matrix.
These rules guarantee the correct detection of the minimal di-
agnosis for an observational model:

• For each fault Fj with the signature FSj , the equality
MDFj = VCFj ∧ CS(OS,FSj) must be satisfied.

• For each fault Fk which involves n + 1 nodes, where n
≥ 0, and which can be obtained using the fault Fj(that
involves n nodes) and a simple fault Fs(which is not in-
volved in Fj) then MDFj ⇒ VCFk = false.

Table 5: A subset of the rules for the polybox example
MDOK = CS(OS,OKS) MDF2 = VCF2 ∧ CS(OS,FS2)

VCF1 = ¬ MDOK ...

... MDF13 = VCF13 ∧ CS(OS,FS13)

VCF5 = ¬ MDOK MDF13 ⇒ VCF123 = false

MDF1 = VCF1 ∧ CS(OS,FS1) MDF13 ⇒ VCF134 = false

MDF1 ⇒ VCF12 = false MDF13 ⇒ VCF135 = false

... MDF14 = VCF14 ∧ CS(OS,FS14)

MDF1 ⇒ VCF14 = false ...

MDF1 ⇒ VCF15 = false MDF245 = VCF245 ∧ CS(OS,FS245)

Example: Table 5 shows a subset of the rules for the poly-
box example. The generation of the rules for the verification
of whether a fault is a minimal diagnosis can be done off-
line, because these rules are the same for all the observational
models. The bottom of Table 4 shows the VC and MD eval-
uation results for the observation signature OS = [0, 0, 1, 1,
1, 1]T . Only the evaluation of the rules must be done on-line.
This part of the process is a simple propagation of Boolean
values.
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Table 4: The signature matrix of the polybox example
CARC OK F1 F2 F3 F4 F5 F12 F13 F14 F15 F23 F24 F25 F34 F35 F45 Fxxx

1 0 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1
2 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 1 1
3 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1
4 0 1 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1
5 0 0 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1
6 0 0 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1

Fxxx ⊂ {F123, F124, F134, F135, F145, F234, F235, F245}

OK F1 F2 F3 F4 F5 F12 F13 F14 F15 F23 F24 F25 F34 F35 F45 Fxxx

VC 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0
MD 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0

VC and MD values for the observation signature OS = [0, 0, 1, 1, 1, 1]T

The evaluation of the signature matrix is very similar to
the FDI methodology. However in our approach, the faults
involve nodes instead of components. Hence, the last step is
the substitution of each node with one of its components. In
the polybox example, fault F3 is equivalent to the faults in
{{M1}, {M7}, {A1}, {A5}}; fault F12 is equivalent to faults
{{M6M5}, {M8M5}, {A4M5}, {A6M5}}; and so on.

The information of all the possible minimal diagnoses is
stored in a matrix and as a set of rules. Therefore, it is only
necessary to calculate this diagnosis once. As happens in FDI
methodology, this work can be done off-line, only the evalu-
ation of the signature matrix is on-line.

7 Conclusions and future work
This paper proposes a new approach to automation of and
improvement in the determination of minimal diagnosis. The
approach is based on FDI and DX theories. The structural
pre-treatment in the first phase and the reduction of the model
in the second phase enable improvement in the computational
complexity. All the possible minimal diagnoses are repre-
sented in a signature matrix. The minimal diagnosis is ob-
tained by using an observational model and a set of precom-
piled rules. Only the evaluation of the signature matrix is
on-line, the rest of the process can be done off-line.

The methodology was applied to two different examples,
and the results were very promising. As future work we sug-
gest extending the methodology to include dynamic systems
and to include more complex and real problems, where the
application of the methodology could be more complicated.
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