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Abstract: Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent oxidative enzymes capa-
ble of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3 at the alpha
position, therefore transforming linear and cyclic ketones into esters and lactones. These enzymes
are dependent on nicotinamides (NAD(P)H) for the flavin reduction and subsequent reaction with
molecular oxygen. BVMOs can be included in cascade reactions, coupled to other redox enzymes,
such as alcohol dehydrogenases (ADHs) or ene-reductases (EREDs), so that the direct conversion of
alcohols or α,β-unsaturated carbonylic compounds to the corresponding esters can be achieved. In
the present review, the different synthetic methodologies that have been performed by employing
multienzymatic strategies with BVMOs combining whole cells or isolated enzymes, through sequen-
tial or parallel methods, are described, with the aim of highlighting the advantages of performing
multienzymatic systems, and show the recent advances for overcoming the drawbacks of using
BVMOs in these techniques.

Keywords: biocatalysis; whole cells; cascade reactions; redox enzymes; monooxygenases; Baeyer–
Villiger alcohol dehydrogenases; ene-reductases

1. Introduction

The elucidation and rational understanding of the internal organization of the dif-
ferent biocatalytic reactions occurring inside biological cells, in which several enzymatic
reactions proceed in a concatenated manner, is one of the basis of Systems Biology [1]. The
development of this discipline has fostered the design of coupled systems of biocatalytic
reactions, and the number of publications dealing with this topic has increased consid-
erably during the last years [2–11]. In this area, oxidoreductases are enzymes frequently
used in cascade reactions, as usually a pair of these enzymes are simultaneously applied
for the required in situ recycling of the cofactors [12–15]. Inside this type of enzymes,
Baeyer–Villiger monooxygenases (BVMOs) are undoubtedly one of the most attractive
members of this family; these flavin-dependent oxidative enzymes [16–20] are capable
of catalyzing the insertion of an oxygen atom between a carbonylic Csp2 and the Csp3

at the alpha position, therefore transforming linear and cyclic ketones into esters and
lactones [20–27], as schematized in Scheme 1.

BVMOs require nicotinamides (NADPH) for the flavin reduction to FADH2, which
reacts with molecular oxygen to form the reactive peroxyflavin responsible for the substrate
oxidation. As NADPH is an expensive compound and its presence at high concentrations
can inhibit the biocatalyst, it has to be recycled to obtain feasible biocatalytic procedures.
In the last years, more than 100 BVMOs have been cloned and overexpressed. In many
cases, the natural role of those BVMOs is not identified, while in others they seem to take
part in the synthesis of secondary metabolites. Most of the BVMOs, the so-called type
I BVMOs, can be included in the B subclass of flavin dependent monooxygenases [28],
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according to their protein sequence motifs, electron donor and type of oxygenation reaction.
Thus, they are single-component enzymes possessing two α/β Rossmann-like domains
for the FAD and NADPH binding, respectively, and they keep this last one bound during
catalysis, while the substrate binds after the flavin-peroxide is formed [17]. BVMO catalysis
started by NADPH binding and subsequent flavin reduction, after which the NADPH
cofactor adopts a stable position. A stable peroxyflavin is the catalytically active specie,
formed by the reaction of the reduced flavin with molecular oxygen [29]. Type II BVMOs
are part of the class C of flavin dependent monooxygenases, which are two-component
monooxygenases [30], but this type of BVMOs has been scarcely employed in biocatalysis
due the requirement of these two components.
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Most of the BVMOs are present on prokaryotes and some unicellular eukaryotic
organisms such as filamentous fungi. Several bacterial BVMOs have been applied with
biocatalytic purposes; even some fungal BVMOs have also been discovered and character-
ized in the last few years [31]. Both storage and operational stability of these biocatalysts is
interesting for their biotechnological applications. For most of the BVMOs, which presents
a certain stability, lyophilization in presence of different additives is a method of interest
because it simplifies the enzyme transport and storage [32]. Normally, these biocatalysts
perform their activity at mild reaction conditions (aqueous media at neutral pH and room
temperature). In the last few years several examples of thermostable BVMOs (wild type
and mutants), able to catalyze reactions at high temperatures, have been reported [33,34],
with the aim of increasing the applicability of these valuable enzymes [35,36].

Baeyer–Villiger monooxygenases were first discovered in the 1960s, but they have
not been widely applied with biocatalytic purposes for the preparation of high valuable
compounds as esters, lactones and sulfoxides, among others. Advances in genome mining
have allowed scientists to discover several BVMOs active on different types of compounds,
but still nowadays, cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus
NCIMB 9871, discovered more than 40 years ago [37], is the BVMO with the highest
applicability due to its large substrate profile and excellent selectivity. Nevertheless,
CHMO presents some drawbacks as its thermal instability and its low stability to organic
co-solvents [38]. Remarkably, most BVMOs display an excellent behavior when employed
in multi-step cascade reactions coupled to other enzymes. In most of these reactions,
lactones are obtained as final products. These cyclic esters of carboxylic acids, containing
a 1-oxacycloalkan-2-one structure, are a class of secondary metabolites, thus presenting
a wide range of biological activities as anti-inflammatory, antimicrobial or anticancer
compounds [39]. Lactones can be also employed in cosmetics and perfume industry, in
polymer chemistry, as agrochemicals or in food industry as flavoring agents. By this
reason, several methodologies have been performed for their preparation. The use of
biocatalysts for the synthesis of lactones presents some advantages regarding the classical
methods, as only molecular oxygen is required as oxidant while working under mild
(pH and temperature) reaction conditions, being achieved in general high regio- and/or
enantioselectivites. The combination of two or more biocatalysts also allowed avoiding the
isolation and purification of the reaction intermediates, thus increasing the atom economy
of the processes. However, the use of BVMOs in these synthetic procedures can present
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some limitations, as low enzyme expression and stability, the NADPH-dependence, and
substrate and product inhibition.

In this review, we comment on different reported cases in which enzymatic cascades,
including BVMOs, have been applied for synthesizing valuable esters and lactones, aiming
at stressing the applicability of this approach and promoting an increased employ of these
excellent biocatalysts. For practical reasons, we have classified the reported examples
into two main categories, cascades including BVMOs catalyzed by whole cells or by
isolated enzymes.

2. Multi-Step Reactions Including BVMO Activity Catalyzed by Whole Cells

Generally speaking, the use of whole cells makes the cascade easier compared to those
employing isolated biocatalysts, as the recycling of the required cofactors is produced
inside the cell metabolic machinery, so that it is not mandatory to implement an external re-
cycling methodology. The most attractive methodology using whole cells implies the use of
à la carte engineered cells, inside which different enzymatic activities are overexpressed in
order to generate the desired multi-step procedure [40]. This methodology, which has been
sometimes termed as Systems Biocatalysis [41], presents several advantages [40,42–45]: (i)
as already mentioned, the intra-cellular medium provides the natural enzymatic environ-
ment and the cofactors regeneration machinery; (ii) it is relatively easy and economical
to have available cells by cultivation without any additional downstream process; (iii)
enzymes inside cell walls and membranes are somehow protected from extreme reaction
conditions, and (iv) the different enzymes involved in the cascade are co-localized inside
cells, so that their local concentration is increased, therefore reducing the diffusion of
intermediates.

2.1. Multi-Step Reactions Including Alcohol Dehydrogenases/BVMO Activity Catalyzed by
Whole Cells

Most of the examples of biocatalytic cascades employing BVMOs have been devel-
oped together with alcohol dehydrogenases (ADHs, EC 1.1.1.x), also called ketoreductases
(KREDs). These enzymes are able to catalyze the reversible reduction of carbonyl com-
pounds into the corresponding alcohols (Scheme 2), in general with high selectivity [46–49].
ADHs require the presence of nicotinamide cofactors for performing their activity, being re-
quired to employ effective regeneration systems if these enzymes are employed as isolated
biocatalysts.
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Initial studies on linear cascades combining ADHs and BVMOs were performed at the
beginning of the 1990s, using whole cells systems for the direct bio-oxidation of alcohols to
the corresponding lactones. Thus, the starting alcohol was oxidized to the corresponding
ketones by the ADH at the expense of NAD(P)+, whereas the obtained ketone was further
oxidized in presence of the BVMO to the desired lactone, employing NAD(P)H which
was converted again into NAD(P)+. A pioneer example is the oxidation of alcohol 1,
shown in Scheme 3, employing fractured cells of Acinetobacter calcoacetitus NCIMB to the
corresponding lactone 3, described in 1991 [50]. At short reaction times, 1 was converted
into ketone 2 in a great extent (80% after 6 h). Longer reaction time led to an increase in the
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lactone production, reaching a maximum value of 40% after 48 h, whereas concentration
of 2 started to decrease after 10 h. A similar pattern was observed in the bio-oxidation
of both endo- and exo-bicyclo [2.2.1]heptan-2-ols. Alcohol concentration decreased as the
ketone became formed and lactone concentration started to increase during the course
of the biocatalytic process. Fractured cells of A. calcoaceticus were also employed in the
bio-oxidation of 6-endo-bicyclo [3.2.0]hept-2-en-6-ol 4 to obtain regioisomeric lactones 5
and 6 with complete conversion after 1 h, as shown in Scheme 3. A 15% of a by-product,
which authors assumed that was exo-4, was observed in the crude mixture.
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The combination of BVMOs and ADHs has been further developed for the preparation
of ε-caprolactone (ECL, 9, Scheme 4). This compound is a valuable material with several
applications in the field of colorants, adhesives and coating materials, as ECL can be easily
polymerized yielding biodegradable thermoplastics and elastomeric polymers [51,52]. By
these reasons, several approaches have been studied for its preparation under sustainable
reaction conditions. BVMOs and ADHs have been employed well as whole cells or well
as isolated enzymes for the synthesis of ECL starting from cyclohexanol 7, in a process in
which this alcohol is oxidized by the ADH to cyclohexanone 8, which is converted into ECL
in presence of the BVMO, with an in situ NAD(P)H cofactor regeneration. When employing
this approach, the stability of the BVMO is critical for the process, as this biocatalyst is
very sensitive to the cyclohexanol and ECL concentration in the reaction medium. For this
reason, several attempts have been made in order to overcome this bottleneck.
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Thus, the bienzymatic system employing whole cells of ADH-BVMO for the prepara-
tion of ECL can be coupled with the lipase-catalyzed hydrolysis of this compound in order
to obtain oligo-caprolactone. This approach was performed for the first time in 2015 [53].
In order to overcome the BVMO deactivation caused by the presence of ECL in the reaction
medium, this product subjected to in situ ring-opening oligomerization catalyzed by CALA
(lipase from Candida antarctica, Scheme 4). The formed oligo-ECLs were easily removed
from the reaction by extraction or precipitation. CALA is able to catalyze the formation
of the polymers even in presence of high amounts of water, not showing any hydrolytic
activity on ECL at high substrate concentrations (1.0 M). After a few hours in presence of
CALA, the lactone was converted into oligomers with a maximum molecular weight of
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1200 g/mol, which can be transformed into high-molecular weight polymer. Recombinant
E. coli cells of Lactobacillus brevis ADH (LbADH) and the stable mutant C376L/M400I of
Acinetobacter calcoaceticus cyclohexanone monooxygenase (AcCHMO), at 100 g wet cells
weight/mL concentration, were combined with lipase CALA (10 mg/mL lyophilized)
in a one-pot process at different concentrations of cyclohexanol. A decrease in the ECL
concentration in these reactions was detected when compared to those in absence of the
lipase, thus indicating the beneficiary effect of the conversion of the ECL into oligo-ECL.
When both the ADH and the BVMO were employed as separate cells, results were better
than expressing both biocatalysts into the same cell-system. LbADH/AcCHMO ratio was
optimized 1:10 in order to achieve the highest conversion. Addition of acetone and glucose
as co-substrates was also positive for a faster regeneration of the endogenous NADPH
in the cell systems. The optimized cascade was performed at preparative scale and, after
48 h, a complete conversion was achieved when starting from 200 mM of 7, yielding a 75%
of oligo-ECL and a 25% of ECL. Higher substrate concentrations, 300 mM and 500 mM,
afforded lower conversions, 74% and 43% respectively.

In a further development of this trienzymatic system, the same authors described the
preparation of methyl-substituted ECL derivatives in a one-pot two-step process [54], as
shown in Scheme 5.
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Scheme 5. Preparation of (S)-4-methylcaprolactone (S)-12 and its oligomers through a biocatalytic procedure employing
whole cells of Lactobacillus kefir ADH and Acinetobacter calcoaceticus CHMO mutant QM.

A diastereomeric mixture of 4-methylcyclohexanol (10) was employed as starting
substrate; under those conditions, AcCHMO was able to convert 4-methylcyclohexanone
11 into the enantiopure lactone (S)-12 with high yield and complete selectivity. Initial
experiments were performed with E. coli cells expressing Lactobacillus kefir ADH (LkADH)
and wild type AcCHMO in 1:10 ratio (100 g wet cells weight/mL), but the conversions at
all concentrations tested (5–20 mM) were low, achieving only a 34% of the enantiopure
lactone as highest value when working at 5 mM. Poor conversion values were caused by
the low conversion in the ADH catalyzed oxidation, due to the inhibition of this biocatalyst
by the ketone 11 formed. In order to improve this process, a faster second oxidation
process, with the aim of the fast removing of 11 from the reaction medium was envisioned.
Thus, a more stable mutant of AcCHMO was employed (C376L/M400I/T415C/A463C, the
so-called AcCHMO QM) and the ratio of the E. coli cells for both biocatalysts was optimized
to 1:1. The supply of pure oxygen to the reaction also resulted in a higher conversion,
close to 90% after 24 h at 25 ◦C. The addition of CALA (10 mg/mL) to the enzymatic
system led to a further decrease in (S)-12 concentration, as it was being hydrolyzed into
the oligo-(S)-lactone.

The production of ECL starting from cyclohexanol employing E. coli cells of ADH and
AcCHMO has been studied by using a computational approach in 2017 [55], applying a
kinetic model for the study this cascade reaction in both batch and fed-batch synthesis. To
this purpose, a fed-batch synthesis was developed in order to circumvent the CHMO inhi-
bition caused by cyclohexanol, which hampered the use of this substrate at concentrations
higher than 60 mM when employed in batch. Thus, 7 was added to the reaction medium at
different ratios, from 14.2 to 19.0 µmol/min; feed rates higher than 17.5 µmol/min led to the
accumulation of 7, therefore reducing the rate formation of ECL due to CHMO inhibition.
The amount of ECL in the reaction medium was reduced by hydrolyzing this compound to
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6-hydroxyhexanoic acid (13, Scheme 6) in a process catalyzed by Candida antarctica lipase
B (CALB). After 6 h, 162 mM of 13 was obtained with a feed rate of 19 µmol/min. The
addition of CALB maintained a low ECL concentration in the reaction medium (lower than
10 mM).
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The production of ECL has been optimized by performing the co-expression of the
BVMO and the ADH in E. coli, employing a DuetTM vector [56], in order to obtain a higher
efficiency for the enzymatic cascade. The pRSFDuet plasmid form Novagen was selected
as dual expression vector, cloning the AcCHMO QM gene into the first multiple cloning
site and the LkADH gene into the second multiple cloning site. With the aim of balancing
the expression levels of the cascade enzymes, the ADH gene was subjected to engineering
of the ribosome binding site (RBS), employing the native RBS sequence as well as two
point mutations. In order to compare the results, both types of enzymes were expressed
separately into E. coli cells, performing the biotransformations with an optimized ratio of
CHMO: ADH cells 5:1 (100 g wet cells weight/mL) and in presence of glucose and acetone
and co-substrates, as higher conversions were obtained than in absence of these compounds.
This result can be explained by the difficult diffusion of the NADPH formed in the E. coli
cells of the LkADH to the AcCHMO QM cells. After 16 h, it was possible to achieve a
90% conversion from 20 mM of cyclohexanol employing wild type RBS, while much lower
conversions were measured with the other two RBS mutations, indicating that a decreased
LkADH expression is required to obtain a similar enzyme ratio for optimal conversion.
When the same process was carried out with the E. coli cells containing the double gene,
a complete conversion was obtained after 16 h for all the three RBS preparations in the
absence of co-substrates. In presence of glucose and acetone, complete conversion was also
observed for the CHMO co-expressed with one of the RBS mutations of the ADH after 16 h,
whereas after 2 h, a 54% conversion was reached. This system was the most efficient for
the co-expression of both biocatalysts, suggesting that the ratios of expressed AcCHMO
QM and LkADH were similar in this system. When higher substrate concentrations were
employed, lower conversion values were achieved, mainly debt to the inhibitory effect of
both 7 and 9 on AcCHMO.

Very recently, the conversion of cyclohexanol to ECL by combining LkADH with
two stable mutants of CHMO has been studied in order to obtain a suitable process at
200 mM scale. Different parameters that affect the process were analyzed and optimized
in order to achieve the most productive process for the preparation of the final lactone [57].
The reaction was carried out in a stirred-tank reactor with maintained temperature and
pH, bubbling a mixture of oxygen with synthetic air and pumping cyclohexanol at a
constant rate proportional to the whole cell cascade activity. As both 7 and 8 present
a high vapor pressure, they can be stripped out of the system by the off gas. The key
component of the complete system, as previously stated, is CHMO, due to its low stability
and the requirement of a proper oxygen supply. This last parameter was optimized by
performing a bubble aeration technique. BVMO stability was improved by assessing two
CHMO mutants; thus, AcCHMO QM showed a 40% higher long-term stability, whereas
AcCHMO M15, containing eight mutations, has a higher oxidative stability combined with
an improved thermostability. These two variants were compared employing E. coli cells
co-expressing ADH and the CHMO at pH 7.5 and 30 ◦C, with 200 mM cyclohexanol fed at
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4.5 mM/h. When using AcCHMO QM, the formation of ECL achieved a value of 45 mM
after 13 h, but at longer reaction times this concentration decreased to 39 mM, probably
debt to the ECL autohydrolysis to yield 13. The same experiment was performed with
AcCHMO M15, reaching a maximum concentration of ECL after 18 h (79 mM). Longer
reactions times resulted in substrate accumulation in the reactor with no further formation
of the desired product. AcCHMO M15 showed longer activity, but it was not possible
to achieve complete conversion. The stability of both CHMO mutants under the process
conditions was analyzed; when employing AcCHMO QM, the biocatalyst retained its
complete activity for one hour and it decreased to 85% after 8 h. After this reaction time,
there was an important drop in the biocatalyst activity. On the other hand, AcCHMO M15
maintained its activity (98% of the initial one) even after 18 h. Thus, when working with
AcCHMO QM, fresh cells were added after 8 h, whereas no extra addition was required
for AcCHMO M15. Further experiments showed that an increase in the cells loading in
the reactor led to a decrease in the volumetric mass transfer, thus resulting in a lower
efficiency. The complete optimization of the biocatalytic process allowed scientists to
achieve conversions higher than 98% for both CHMO mutants, being possible to obtain a
higher final product concentration (21.1 g/L), space time yield (1.1 g/L h) and isolated ECL
amount (9.1 g) employing AcCHMO M15, due to its higher operational stability. These
values represent a 100% increase regarding the non-optimized processes, indicating the
development of a more efficient process for the preparation of ECL.

Fusion proteins have been initially employed to enhance the soluble expression of
proteins or to improve the enzyme purification, but in the last years some examples have
appeared in which these systems have been used with synthetic purposes [58]. In 2015, the
preparation of an enzyme fusion formed by the ADH from Micrococcus luteus NCTC2665
and the BVMO from Pseudomonas putida KT2440 (3.0 g dry cells/L), able to catalyze the
double oxidation of long-chain unsaturated secondary alcohols (14a–c) to the correspond-
ing esters (16a–c) through the corresponding ketones 15a–c, was reported [59], as shown in
Scheme 7. These products can be hydrolyzed into valuableω-hydroxycarboxylic acids and
n-alkanoic acids, valuable compounds. The design of the fusion enzyme showed the high-
est expression level when using a glycine-rich linker, formed by 12 aminoacids, between
the two biocatalysts. When the bio-oxidations were carried out with the fused biocatalyst
expressed in E. coli, higher conversions were achieved for all the substrates when compared
with the independent ADH and BVMO expressed in E. coli. Thus, esters 16a–c can be
recovered with conversions higher than 75%, with activities higher than 22 µmol/g dry
cells min. This positive effect of the fusion enzyme in the cascade activity can be debt to a
higher functional expression of the BVMO and/or to a better mass transport efficiency, due
to the presence of both active centers at close positions.
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2.2. Multi-Step Reactions Including ERED/BVMO Activity Catalyzed by Whole Cells

Ene-reductases (EREDs) from the old yellow enzyme (OYE) family are flavin-dependent
enzymes that catalyze the chemo- and stereo-selective asymmetric reduction of electroni-
cally activated carbon–carbon double bonds [25,27,60–62], as depicted in Scheme 8.
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Several examples can be found in literature illustrating the use of whole cells-catalyzed
cascades coupling BVMO and ERED activities. For instance, Silva et al. [63] reported the
preparation of ECL 9 starting from either cyclohexenone 17, cyclohexanone 8 or cyclohex-
anol 7, using whole cells of Brazilian Geotrichum candidum CCT 1205 (Scheme 9).
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When using cyclohexanone 8 as substrate, these authors reported quantitative yields
of the desired ε-caprolactone 9 after only 5 h, using a higher amount (3.0 g versus 1.0 g)
of whole cells (otherwise, the cascade accumulated 7 and 8). Using 7 or 8 as substrates,
the reaction was even faster (4 h) than using only 10 g of cells. These results are better
than those previously reported by Mihovilovic et al. [64], leading to 52% of 9 in 48 h,
using BVMO expressed in E. coli. Recently, Silva et al. [65] have shown that it is possible
to immobilize the whole cells from Geotrichum candidum CCT 1205 in modified silica (n
SiO2–Cl, SiO2–NH2 and SiO2–SH supports), without altering their catalytic performance
and also allowing the stabilization and reuse of the cells.

Although the previous example illustrates the use of non-engineered cells, it is be-
coming more usual the use of genetically modified cells. Hence, Liu and Li described an
enantioselective reduction−oxidation−hydrolysis cascade catalyzed by engineered whole
cells for the synthesis of (R)-2-alkyl-δ-lactones 22–23 (useful flavor and fragrance materials)
starting from the corresponding 2-alkylidenecyclopentanones 18–19 (Scheme 10) [66].
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BVMO activity.

In this example, the cascade catalysis was started with 50 mL of cell suspension of
Acinetobacter sp. RS1 in Tris buffer (cell density 12 g cdw/L) containing 40 mg of alkylidene
ketones 18 or 19 and 20 mg/mL glucose. After 3 h of reaction to allow the ERED-mediated
accumulation of alkyl ketones 20 and 21 (R-configuration), 150 mL of Tris buffer containing
engineered cells of E. coli (CHMO−GDH) (10 g cdw/L) was added to start the Baeyer–
Villiger oxidation. After simultaneous oxidation and hydrolysis for 1.5 h, extraction with
ethyl acetate and purification by flash chromatography, compounds (R)-22 (56% yield, 98%
ee) or (R)-23 (41% yield, 97% ee) could be obtained. The presence of a hydrolytic activity
inside Acinetobacter sp. RS1 cells was responsible for the hydrolysis of the intermediate
(S)-22 or (S)-23 leading to δ-hydroxyacids 24 or 25, obtained with low enantioselectivity
(E = 8–11).

The different enantiomers of carvolactones (7-methyl-4-(prop-1-en-2-yl)oxepan-2-
ones) are gaining importance as monomers for the preparation of polymeric thermoplastic
elastomers (shape-memory polymers) and pressure-sensitive adhesive components [67–69].
These carvolactones can be obtained starting from biogenic carvones after a C=C reduction
and a Baeyer–Villiger oxidation. To this purpose, Iqbal et al. [70] have reported the
concurrent redox cascade to transform (-) carvone and (+)-carvone [(R) and (S)-26] into the
correspondent lactones, as depicted in Scheme 11.



Catalysts 2021, 11, 605 10 of 25
Catalysts 2021, 11, x FOR PEER REVIEW 10 of 25 
 

 
Scheme 11. Preparation of carvolactone stereoisomers 28 and 29 by a concurrent redox cascade. 

Crude cell extracts (5.0 mg in 200 μL) from E. coli BL21 (DE3) containing the corre-
sponding EREDs or BVMOs were used. Initially, each biotransformation step was carried 
out independently, starting with bioreductions of enantiomerically pure carvones (R) or 
(S)-26 and subsequent bio-oxidation with different BVMOs to furnish different stereoiso-
mers of carvolactones 28 and 29. Finally, the reduction-oxidation steps were performed in 
a concurrent one-pot cascade. Both for the individual steps and the cascade, NADP+, glu-
cose -6-phosphate and glucose -6-phosphate dehydrogenase were used for cofactor recy-
cling. The EREDs that expressed E. coli BL21 (DE3) were SYE-4 (from Shewanella oneidensis 
[71]), OPR1 and OPR3 (12-oxophytodienoate reductase from Lycopersicon esculentum, to-
mato [72]), YqjM (from Bacillus subtilis [73]) and the variant W116I (replacement of tryp-
tophan-116 by isoleucine in the OYE from Saccharomyces pastorianus [74]). On the other 
hand, the BVMOs were either cyclohexanone monooxygenases (CHMOs: AcCHMO [75], 
CHMOBrevi1 from Brevibacterium sp. [76] or cyclopentanone monooxygenases (CPMOs-
type enzymes: CHMOBrevi2 from Brevibacterium sp. [76] and CPMOComa from Comamonas 
sp. [77]). Regarding the reaction stereochemistry of the bioreduction, as depicted in 
Scheme 5, when starting from (-)-carvone (R)-26 all the EREDs catalyzed the trans C=C 
bioreduction to afford (+)-trans-dihydrocarvone (2R,5R)-27. Opposite, if (+)-carvone (S)-
26 was the initial substrate, most of the EREDs catalyzed the cis C=C bioreduction to afford 
(+)-cis-dihydrocarvone (2R,5S)-27, while the trans bioreduction, leading to (-)-trans-dihy-
drocarvone (2S,5S)-27, was observed only when employing W116I. Analyzing the regi-
oselectivity of the BVMOs, depending on the absolute configuration of 27, some of the 
enzymes were leading to the “normal” lactones 28 (classical migration of the Criegge in-
termediate leading to the oxygen insertion in the most substituted alpha carbon [78]) or 
the “abnormal” ones 29, in good yields and enantiopurity. 

In another example, Oberleitner et al. [79] reported the preparation of carvolactone 
(4S,7R)-28 starting from (R)-limonene ((R)-30) directly extracted from orange peel by 
means of a biocatalytic cascade shown in Scheme 12. 
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Crude cell extracts (5.0 mg in 200 µL) from E. coli BL21 (DE3) containing the corre-
sponding EREDs or BVMOs were used. Initially, each biotransformation step was carried
out independently, starting with bioreductions of enantiomerically pure carvones (R) or
(S)-26 and subsequent bio-oxidation with different BVMOs to furnish different stereoiso-
mers of carvolactones 28 and 29. Finally, the reduction-oxidation steps were performed in a
concurrent one-pot cascade. Both for the individual steps and the cascade, NADP+, glucose
-6-phosphate and glucose -6-phosphate dehydrogenase were used for cofactor recycling.
The EREDs that expressed E. coli BL21 (DE3) were SYE-4 (from Shewanella oneidensis [71]),
OPR1 and OPR3 (12-oxophytodienoate reductase from Lycopersicon esculentum, tomato [72]),
YqjM (from Bacillus subtilis [73]) and the variant W116I (replacement of tryptophan-116
by isoleucine in the OYE from Saccharomyces pastorianus [74]). On the other hand, the BV-
MOs were either cyclohexanone monooxygenases (CHMOs: AcCHMO [75], CHMOBrevi1
from Brevibacterium sp. [76] or cyclopentanone monooxygenases (CPMOs-type enzymes:
CHMOBrevi2 from Brevibacterium sp. [76] and CPMOComa from Comamonas sp. [77]). Regard-
ing the reaction stereochemistry of the bioreduction, as depicted in Scheme 5, when starting
from (-)-carvone (R)-26 all the EREDs catalyzed the trans C=C bioreduction to afford (+)-
trans-dihydrocarvone (2R,5R)-27. Opposite, if (+)-carvone (S)-26 was the initial substrate,
most of the EREDs catalyzed the cis C=C bioreduction to afford (+)-cis-dihydrocarvone
(2R,5S)-27, while the trans bioreduction, leading to (-)-trans-dihydrocarvone (2S,5S)-27,
was observed only when employing W116I. Analyzing the regioselectivity of the BVMOs,
depending on the absolute configuration of 27, some of the enzymes were leading to the
“normal” lactones 28 (classical migration of the Criegge intermediate leading to the oxygen
insertion in the most substituted alpha carbon [78]) or the “abnormal” ones 29, in good
yields and enantiopurity.

In another example, Oberleitner et al. [79] reported the preparation of carvolactone
(4S,7R)-28 starting from (R)-limonene ((R)-30) directly extracted from orange peel by means
of a biocatalytic cascade shown in Scheme 12.



Catalysts 2021, 11, 605 11 of 25
Catalysts 2021, 11, x FOR PEER REVIEW 11 of 25 
 

 
Scheme 12. Preparation of carvolactone (4S,7R)-28, using a whole cells-catalyzed cascade involving a BVMO. 

To this purpose, two different types of cells were used: (i) an engineered Pseudomona 
putida S12 expressing cumene dioxygenase (CumDO) and (ii) E.coli BL21 (DE3) cells pos-
sessing different oxidative activities. These last ones were previously reported as being 
capable of catalyzing the conversion from carveol (1R,5S)-31 into (4S,7R)-28 [80], as they 
contain the expression of an alcohol dehydrogenase (RR-ADH from Rhodococcus ruber), an 
ERED (XenB from Pseudomonas sp.) and a BVMO (AcCHMO). Through the mixed culture 
approach, combining the two bacterial strains (different concentrations tested) in one pot, 
47% of (4S,7R)-28 was produced after 20 h. They used a sequential approach, where hy-
droxylation of (R)-30 by CumDO was performed first, and E. coli BL21(DE3) resting cells 
were added to the reaction vessel after 10 h, observing full conversion to (4S,7R)-28 in 20 
h. Then, these authors explored the direct use of waste product orange peel (biomass load-
ing of about 3% (w/v), obtaining 3.2 mg of (4S,7R)-28 per g orange peel. Anyhow, by low-
ering the orange peel amount to 1.5% (w/v) and using the mixed-culture sequential com-
bination, it was possible to furnish 6.3 mg of carvolactone per g orange peel (29% of 
(4S,7R)-28 from (R)-30 over four biocatalytic steps, 73% per step), only relying on orange 
peel as the substrate reservoir in aqueous buffer without any additives. 

Recently, Avalos et al. [81] have described a similar process, using engineered E. coli 
cells, already designed to follow the Mentha spicata route leading to (-)-carvone (R)-26, in 
which the addition of a ERED and a BVMO (10 μM) activity finally furnished (4R,7R)-28, 
also known as (+)-dihydrocarvide (+)-DHCD, as shown in Scheme 13. 

 
Scheme 13. Preparation of (+)-DHCD, using engineered whole-cells-catalyzed cascade. 

The initial step into the M. spicata biosynthesis of (-)-carvone (R)-26 is the hydroxyla-
tion of (S)-limonene (S)-30 to furnish carveol (1S,5R)-31 catalyzed by limonene-6-hydrox-
ylase (L6H, a P450 enzyme) coupled to SmCPR, a cytochrome P450 reductase from Salvia 
miltiorrhiza. Based on this system, authors constructed the rest of the enzymatic system by 
adding genes from ADH (RR-ADH was the best option), ERED (PETNR, pentaerythriol 
tetranitrate reductase from Enterobacter cloacae PB2 [82,83]) and BVMO (CHMO3M, a triple 
mutant from Rhodococcus sp. Phi1 CHMO [84]). Under optimal conditions, the complete 
biosynthesis of (+)-DHCD from glucose in E. coli was reported at 6.6 mg/L. 

3. Multi-Step Reactions Including BVMO Activity Catalyzed by Isolated Enzymes 
3.1. Linear ADHs/BVMOs Cascades 

The initial experiments in which multienzymatic processes involving ADHs and 
BVMOs were described [50] were also carried out by using isolated enzymes, combining 
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To this purpose, two different types of cells were used: (i) an engineered Pseudomona
putida S12 expressing cumene dioxygenase (CumDO) and (ii) E. coli BL21 (DE3) cells
possessing different oxidative activities. These last ones were previously reported as being
capable of catalyzing the conversion from carveol (1R,5S)-31 into (4S,7R)-28 [80], as they
contain the expression of an alcohol dehydrogenase (RR-ADH from Rhodococcus ruber), an
ERED (XenB from Pseudomonas sp.) and a BVMO (AcCHMO). Through the mixed culture
approach, combining the two bacterial strains (different concentrations tested) in one
pot, 47% of (4S,7R)-28 was produced after 20 h. They used a sequential approach, where
hydroxylation of (R)-30 by CumDO was performed first, and E. coli BL21(DE3) resting
cells were added to the reaction vessel after 10 h, observing full conversion to (4S,7R)-28 in
20 h. Then, these authors explored the direct use of waste product orange peel (biomass
loading of about 3% (w/v), obtaining 3.2 mg of (4S,7R)-28 per g orange peel. Anyhow, by
lowering the orange peel amount to 1.5% (w/v) and using the mixed-culture sequential
combination, it was possible to furnish 6.3 mg of carvolactone per g orange peel (29% of
(4S,7R)-28 from (R)-30 over four biocatalytic steps, 73% per step), only relying on orange
peel as the substrate reservoir in aqueous buffer without any additives.

Recently, Avalos et al. [81] have described a similar process, using engineered E. coli
cells, already designed to follow the Mentha spicata route leading to (-)-carvone (R)-26, in
which the addition of a ERED and a BVMO (10 µM) activity finally furnished (4R,7R)-28,
also known as (+)-dihydrocarvide (+)-DHCD, as shown in Scheme 13.
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The initial step into the M. spicata biosynthesis of (-)-carvone (R)-26 is the hydrox-
ylation of (S)-limonene (S)-30 to furnish carveol (1S,5R)-31 catalyzed by limonene-6-
hydroxylase (L6H, a P450 enzyme) coupled to SmCPR, a cytochrome P450 reductase
from Salvia miltiorrhiza. Based on this system, authors constructed the rest of the enzy-
matic system by adding genes from ADH (RR-ADH was the best option), ERED (PETNR,
pentaerythriol tetranitrate reductase from Enterobacter cloacae PB2 [82,83]) and BVMO
(CHMO3M, a triple mutant from Rhodococcus sp. Phi1 CHMO [84]). Under optimal con-
ditions, the complete biosynthesis of (+)-DHCD from glucose in E. coli was reported at
6.6 mg/L.
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3. Multi-Step Reactions Including BVMO Activity Catalyzed by Isolated Enzymes
3.1. Linear ADHs/BVMOs Cascades

The initial experiments in which multienzymatic processes involving ADHs and
BVMOs were described [50] were also carried out by using isolated enzymes, combining
purified Thermoanaerobium brockii ADH (TBADH) with purified CHMO form Acinetobacter
sp. NCIMB 9871 (40 units) in the presence of a catalytic amount of NADPH, which was
recycled by both enzymes. As depicted in Scheme 14, oxidation of endo-32 afforded a
regioisomeric mixture of lactones 33 and 34 with 79% conversion (67% yield) after 5.5 h.
Lactone 33 was the major product in the mixture, being recovered with low optical purity
(>95% purity, 11% ee). Same conditions were applied to the biotransformation of endo-
bicyclo[3.2.0]hept-2-en-6-ol 4 leading to a 41% of a mixture of lactones 5:6 in 2:1 ratio after
8.5 h; (1S,5R)-5 was recovered with 86%% ee. The same approach was performed three years
later in the oxidation of racemic norbornenol 32 to the corresponding lactone 33 [85] as
solely product. Starting alcohol was non-selectively oxidized to norbornanone by TBADH,
which was oxidized to 33 in presence of Acinetobacter calcoaceticus NCIMB 9871 with a 67%
global yield and 11% ee. Only 3.5 mol% of NADPH cofactor was required to ensure the
complete conversion of the starting alcohol. The same authors described the formation
of two regioisomeric lactones (5 and 6) in the bio-oxidation of alcohol endo-4 in presence
of horse liver alcohol dehydrogenase (HLADH) and Pseudomonas putida monooxygenase
MO1. HLADH catalyzed the non-selective oxidation of the alcohol to the ketone, which
was selectively oxidized to a mixture of (3aR,6aS)-5 (58% yield, 79% ee) and (3aS,6aR)-6
(42% yield, 97% ee) by MO1 using in this system NADH as coenzyme.
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bicyclic lactones.

The preparation of ECL combining isolated ADHs and BVMOs have also been widely
studied. One of the first examples used a chimeric polyol dehydrogenase (PDH), formed
by introducing a substrate recognition loop from the Rhodobacter sphaeroides PDH into
the thermostable PDH from Deinococcus goethermalis [86]. When the resulting PDH was
tested together with AcCHMO, conversions around 80% were obtained when working at
cyclohexanol concentrations of 5–10 mM. As previously shown, higher substrate concen-
trations led to lower BVMO activities, resulting this enzyme critical for the development
of a valuable procedure. When the process was carried out at a preparative scale, a 55%
yield of ECL with complete purity was obtained after 2 h, employing 40 units of AcCHMO
and 3.6 units of PDH. Authors sustained that this low yield was caused by the volatility
of cyclohexanol. In order to increase the BVMO stability, both CHMO and PDH were
co-immobilized onto RelizymeTM HA403 using glutaraldehyde as linker. A CHMO: PDH
ratio 10:1 led to the highest activity of the biocatalytic system, but still CHMO showed
a low stability in this preparation. Only a 34% conversion was achieved after 5.5 h. The
immobilized biocatalyst was reused for several cycles, being measured a residual activity of
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10% after the first cycle. This loss was debt to the instability of the CHMO, as the addition
of fresh BVMO after each cycle reduced the loss in activity observed.

In 2013, Gröger et al. also described a linear cascade for the synthesis of ECL starting
from cyclohexanol [87]. For the oxidation of cyclohexanol to cyclohexanone, a crude extract
of LkADH was employed, whereas a commercial preparation of AcCHMO (Enzymicals
AG; 0.153 U/mg) catalyzed the ketone oxidation. When starting from 20 mM cyclohexanol,
it was possible to obtain ECL with an excellent conversion (97%) after 24 h. Increasing
substrate concentration up to 60 mM also led to excellent conversion values, whereas higher
values led to high drop for product obtained. Further studies on these results showed
a significant inhibition on the BVMO at high ECL concentrations, as well as a negative
impact on this enzyme of both cyclohexanol and cyclohexanone.

In 2017, the two redox enzymes involved in the biotransformation of cyclohexanol to
ECL were fused into a self-sufficient bifunctional catalyst [88]. The BVMO that was used
was the cyclohexanone monooxygenase form Thermocrispum municipale (TmCHMO) [89],
whereas three NADPH-dependent alcohol dehydrogenases were tested: TBADH, ADH
from Pyrococccus furiosus and the ADHMi from Mesotoga infera. Fusion catalysts (5–20 µM)
were prepared in both orientations, with the TmCHMO either at the C- or at the N-terminus
of the ADH. From the six fusion catalysts prepared, Tb-Tm, which contains TBADH at the
N-terminus and TmCHMO at the C-terminus, showed the highest thermostability and was
tested with synthetic purposes. When starting from 10 mM of cyclohexanol, a complete
conversion was observed after 24 h at 37 ◦C. The use of cyclohexanol concentrations higher
than 100 mM did not afford any conversion, due to the inhibition of TmCHMO by this
substrate. In order to overcome this drawback, the starting alcohol was pumped into the
reaction medium, achieving a 64% conversion after 24 h. Subsequently, with the aim of
analyzing the effect of ECL inhibition, CALA (Candida antarctica lipase A, 10 mg/mL) was
added in the reaction medium to hydrolyze the lactone product into oligo-caprolactone
(see Scheme 4). In these conditions, conversion was increased up to 81%. During this
reaction, a pH decrease was observed due to the hydrolytic process, and by this reason,
authors employed a phosphate buffer pH 8.0 of high concentration. After all of these
modifications, conversion higher than 99% was obtained when starting from 200 mM of
cyclohexanol, in a process with a turnover number (TON) of 13,333. Further experiments
showed that TmCHMO was the slowest enzyme of the fusion protein, being the oxidation
of the cyclohexanone to ECL the rate-limiting step. The fusion protein seemed to have
a better performance than both individual biocatalysts. This result can be attributed to
several factors, as the lower stability of the non-fused TmCHMO, higher activity of the
BVMO or the localization of both enzymes at closer positions in the fused biocatalyst.

In order to optimize the preparation of ECL through the cascade involving ADHs and
BVMOs, a solvent engineering study has been developed by carrying out the oxidation of
cyclohexanol to ECL combining isolated Lactobacillus kefir ADH (LkADH) and AcCHMO
(3.82 units per 5 mL of reaction) [90]. Different hydrophobic organic solvents, including
ethyl acetate, methyl tert-butyl ether, toluene, methylcyclohexane, n-heptane and isooctane
were tested in this process at 10% v/v. With most of the solvents, lower conversions were
obtained, but in presence of isooctane, complete conversion was achieved after 23 h, the
same result to the one obtained in buffer alone. The time course of the reaction when
employing 40 mM of starting material revealed that the process was faster in presence of
10% v/v of the organic co-solvent, as higher conversions were measured after 1, 2, 3 and 4 h,
a result that is maintained at higher substrate concentration (80 mM). The physical state of
the BVMO was also tested in the reactions with 10% v/v of isooctane. When employing cell
free extracts of AcCHMO, a slightly lower reaction course was obtained when compared
with the purified enzyme, whereas the use of the whole cells of the BVMO only led to a 7%
conversion after 23 h.

The preparation of lactones through a multicatalytic process in which a BVMO is
involved has been developed starting from cycloalkanes [91]. In a three-step procedure,
shown in Scheme 15, the alkane was oxidized to the cyclic alcohol in a reaction catalyzed
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by a cytochrome P450 monooxygenase (CYP450, 6.3 µM). These biocatalysts are able to
perform a wide set of oxyfunctionalizations, in general with high regio- and enantioselec-
tivity, which makes them useful enzymes in organic synthesis [92,93]. In the third step, the
alcohol led to the corresponding lactone by described bienzymatic system ADH-BVMO.
As this process is not redox balanced, the biocatalysts were employed as cell-free extracts,
which contains endogenous NAD(P)H required for cofactor regeneration, together with
glycerol and glucose and co-substrates.
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Initial experiments were carried out with cycloheptane 35, at a high concentration
(165 mM), in order to have a second phase at the reaction medium. The best conditions were
found employing the CYP102A1 mutant of cytochrome P450 BM3, a NADH-dependent
CYP450 able to convert 35 into cycloheptanol 36, together with Thermoanaerobacter ethanoli-
cus ADH (TeSADH) which converts 36 into ketone 37 and AcCHMO, NADPH-dependent
enzymes, recovering 0.41 g/L of final lactone 38. The NADH required for CYP102A1 activ-
ity was recycled by the E. coli extract, whereas the ADH and the BVMO, using 0.75 g wet
cells weight, were the responsible for the NADPH regeneration. In order to prepare a redox
balance cascade, formate dehydrogenase (FDH), a NADH dependent enzyme, was added
to the reaction system, allowing an increase in the production of oxocan-2-one 38 (1.4 g/L).
Addition of external NADH and NADPH also led to a higher formation of 38. Finally, the
use of higher biocatalyst concentration by employing highly concentrated cells suspensions
in the formation of the cell free extracts allowed a high productivity at reaction times of
12 h (2.9 g/L), whereas longer times led to a deactivation of both CYP450 and CHMO. The
optimized cascade was also applied to the formation of ECL (n = 1) and caprylolactone
(oxonan-2-one, n = 3), with productivities lower for these compounds (around 0.6 g/L).

A multienzymatic system for the conversion of cyclohexanol into aminohexanoic acid
(42, Scheme 16), the monomer of nylon-6, was developed by combining one mutant of
AcCHMO with different biocatalysts [94].
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The complete system was based in two different modules. In the first one, which
was well described in the present paper (see Schemes 4, 6 and 8), ADH from Lactobacillus
brevis (LbADH, 0.2 units) was combined with the C376L M400I mutant of AcCHMO
(0.2 units) with recycling of NADPH in order to generate ECL with excellent conversion
(98%), even at high cyclohexanol concentration (96% conversion at 200 mM). When this
process was carried out at preparative scale, a 75% yield was achieved. The second module
comprises the transformation of ECL into 6-aminohexanoic acid and initially was studied as
a combination of a lactonase (from Rhodococcus sp.), to open the ECL into compound 13, an
ADH from E. coli for the oxidation of 13, an alanine dehydrogenase (AlaDH) from Bacillus
subtilis and different transaminases for the amination reaction to obtain 42. When this
system was applied, the formation of compound 13 occurred with excellent conversion, but
a very low amount of final amine was recovered. This result was caused by the carboxylic
acid moiety of 6-hydroxyhexanoic acid, which inhibited the ADH-catalyzed oxidation. In
order to overcome this drawback, a novel synthetic route was analyzed, thus converting
ECL into a methyl ester 39 employing methanol as nucleophile for the opening of the
lactone. In this way, the carboxylic acid 13 was not presented in the reaction medium,
allowing the reaction to occur with higher conversions. Different esterases were tested
for this purpose, obtaining the best results with the horse liver esterase (HLE). When the
treatment of ECL 9 was carried out in buffer containing 10% v/v of methanol as co-solvent
in presence of this biocatalyst, it was observed the formation of double amount of the
methyl ester 39 until all the ECL was consumed, before starting with a slow hydrolysis of
the methyl ester to the carboxylic acid. Once obtained, this compound was oxidized by an
ADH (prim-ADH from Bacillus stearothermophilus) to aldehyde 40, which was subsequently
aminated by aω-transaminase (ω-TA) in presence of an alanine dehydrogenase (AlaDH)
into compound 41. This reaction requires L-alanine as amine donor, which generates
pyruvate, that is recycled by AlaDH, consuming ammonia and the NADH generated in
the ADH oxidation, thus regenerating this cofactor. The final step is the esterase-catalyzed
hydrolysis of the aminoester 41 to furnish 6-aminehexanoic acid 42. When the complete
system was tested, it was observed that the presence of methanol in the medium was a
problem for the AcCHMO stability. Thus, this solvent concentration was lowered down to
2% v/v, being possible to obtain after 24 h a 24% of 6-aminohexanoic acid, with a 35% of
starting cyclohexanol, 30% 6-hydroxyhexanoic acid and a 10% of cyclohexanone.
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3.2. Parallel ADHs/BVMOs Cascades

Apart from linear cascades, in which one reaction is conducted before the start of the
subsequent reaction, parallel or tandem cascades, with both reactions occurring simultane-
ously, have been developed combining ADHs and BVMOs.

One of the first examples of parallel cascades with BVMOs was shown in 2010. These
isolated catalysts and ADHs have been employed in a parallel fashion for the simultaneous
preparation of optically active compounds [95]. This methodology, called Parallel Intercon-
nected Kinetic Asymmetric Transformations (PIKAT), allowed minimizing the quantity of
reagents, thus maximizing the redox economy of the system. The PIKAT was performed
by coupling two different asymmetric transformations: (a) via two kinetic resolutions
(Scheme 17) or (b) via a kinetic resolution and a desymmetrization reaction (Scheme 18).
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sulfoxidation of prochiral sulfides in a concurrent fashion.

By the proper selection of both catalysts (an ADH and a BVMO, 2 U) and using a
catalytic amount of NADPH, which acts as the connector between the two transformations,
all possible enantiomers can be obtained in a one-pot process. Phenylacetone monooxyge-
nase (PAMO) from Thermobifida fusca [96] and 4-hydroxyacetophenone monooxygenase
(HAPMO) from Pseudomonas fluorescens ACB [97] were selected as BVMOs, due to their
excellent behavior in the kinetic resolution of racemic ketones [98], whereas two NADPH-
dependent ADHs with opposite selectivity were employed: LbADH and ADH from
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Thermoanaerobacter sp. (ADH-T). Initial experiments were carried out in the interconnected
kinetic resolution of racemic 2-phenylpentan-3-one (43a) and 2-octanol (45a) with BVMOs
and ADHs in presence of a catalytic amount of NADPH (0.2 mM). When using HAPMO
and ADH-T at 20 ◦C and pH 7.5, it was possible to obtain (R)-43a and (S)-44a in a process
with excellent enantioselectivity (E > 200). ADH-T was able to oxidize (S)-45a to ketone
46a, remaining (R)-45a with high enantiomeric excess. When LbADH was used instead of
ADH-T, (S)-45a was recovered in an excellent double kinetic resolution when the PIKAT
was carried out at pH 8.5. PAMO was also tested in this process. When combined with
ADH-T, (R)-43a, (S)-44a and (R)-45a were obtained with conversions around 50% and ex-
cellent enantioselectivities. The pH and the temperature effect were studied in the coupled
system PAMO/LbADH, being observed that the system can work even at 60 ◦C, but the
best results were achieved at pH 8.5 and 30 ◦C. A small amount of hexyl acetate (47a) was
recovered in the reaction medium. This compound was obtained by the PAMO-catalyzed
oxidation of 2-octanone 46a in a secondary reaction. The parallel resolution was extended
to other secondary alcohols such as undecanol (45b) or sulcatol (45c) in combination with
the BVMO-catalyzed resolution of rac-43a. For all the BVMOs and ADHs, excellent results
were obtained in the resolution of racemic 45b and 43a, being observed that PAMO led to
better conversions and enantioselectivities than with HAPMO. (R)-sulcatol was obtained
with low optical purities in the ADH-T-biocatalyzed reactions, as this enzyme was not
able to perform a selective bio-oxidation of the racemic alcohol. When the reactions were
carried out with LbADH, excellent resolutions were achieved. 4-Phenylhexan-3-one (rac-
43b) was resolved in presence of 45a, with excellent selectivity and high optical purities
for all the biocatalysts combinations, thus recovering (R)-43b, (S)-44b and (R)- or (S)-45a
depending on the enzymes employed. In a further development of the PIKAT system,
the kinetic resolution of racemic alcohols catalyzed by isolated ADHs was coupled with
the desymmetrization of different prochiral sulfides employing BVMOs [99], as shown in
Scheme 17.

Thus, racemic 2-octanol was selectively oxidized by both LBADH and ADH-T in a
process coupled with the enantioselective oxidation of sulfides 48a–f catalyzed by PAMO,
its M446G mutant [100] or HAPMO. In order to ensure the best performance for these
biocatalysts, PAMO and its mutant were used at 30 ◦C whereas HAPMO was employed
at 20 ◦C. Aromatic sulfoxides (49a–d) were obtained with moderate to good conversions
and high optical purity, whereas the oxidation of rac-45a led to the (R)- or (S)-alcohol
with high enantiomeric excess and conversions around 50%. Some amount of ester 44a is
formed, due to the BVMO oxidation of ketone 43a. The system was also applied to the
sulfoxidation of a heteroaryl alkyl sulfide (45e), being possible to obtain both enantiomers
of the sulfoxide with high selectivity, whereas (S)-cyclohexyl methyl sulfoxide (49f) was
obtained with excellent optical purity and high conversion in the system catalyzed by
HAPMO and both of the ADHs. The concurrent synthesis of (S)-methyl phenyl sulfoxide
(49a; R = Ph, n = 0) catalyzed by HAPMO was coupled with the kinetic resolution of several
secondary alcohols in presence of LBADH, achieving excellent results in the oxidation
of 2-octanol, 2-undecanol and sulcatol to yield the (S)-enantiomers. When the hydroxyl
moiety was in position 3 of the starting alcohol (3-octanol) or diols were employed, lower
optical purities were measured. Finally, the NADPH cofactor in the reaction medium
was optimized, in order to ensure an effective large-scale application. Studies revealed
that when the cofactor concentration was 5 µM the system performance was optimal in
the concurrent sulfoxidation of thioanisole (48a) and the kinetic resolution of 2-octanol
combining HAPMO and LBADH. Lower concentrations (1 µM) can be used in the double
kinetic resolution of rac-43b and rac-45a catalyzed by PAMO and LBADH, respectively, as
this ketone is a very good substrate for the BVMO.

The production of ε-caprolactone combining isolated BVMOs and ADHs has also been
described through a convergent cascade [101], depicted in Scheme 19. In this approach, two
different substrates were employed, which leads to the final product without the formation
of any intermediate.
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Thus, two equivalents of cyclohexanone 8 were oxidized by a BVMO (0.1–1.0 mg/mL)
to caprolactone 9, whereas the ADH-catalyzed oxidation of one equivalent of 1,6-hexanediol
50 afforded the same lactone, with simultaneous regeneration of the NAD(P)H cofactor,
as shown in Scheme 18. Biocatalysts were employed as crude extracts free of cells. The
initial study for finding the best ADH in this oxidation pointed towards the Thermus sp.
ATN1 ADH (TADH) as a promising candidate for this reaction. Unfortunately, this biocata-
lyst is NADH dependent and no suitable BVMOs with preference for this cofactor were
found for the cascade proposed. Then, different bienzymatic systems were tested, achiev-
ing the highest concentration of final lactone when combining AcCHMO with TeSADH
(0.01–0.1 mg/mL), a NADPH-dependent biocatalyst. Thus, 10 mM of ECL were formed
when starting from 20 mM of cyclohexanone and 10 mM of 1,6-hexanediol. Reactions in
absence of one or two of the catalytic members (cofactor, CHMO and ADH) were carried
out. ECL was obtained in 6 mM concentration after 72 h in absence of TeSADH, indicating
that some endogenous ADH presented in the crude CHMO preparation can present some
activity on 50. A very low concentration of ECL was recovered (2 mM) in absence of
NADPH, maybe owing to the cofactor present in the extracts. No lactone formation was
observed in absence of CHMO. In addition, some ECL hydrolysis was observed in the
reaction conditions. The CHMO-TeSADH system was optimized by increasing the concen-
tration of substrates and biocatalysts. Addition of extra CHMO after 48 h allowed obtaining
complete conversion after 72 h, whereas doubling the starting amount of enzymes led
to the same conversion after 48 h, but with a lower turnover frequency (2.0 vs. 4.8 h−1).
Increasing cyclohexanone concentration to 100 mM led to the same TOF (1.8 h−1) with
only 32% conversion after 72 h. The study of the reaction showed that cyclohexanol was
formed during the process as a by-product, achieving a maximum value after 24 h, and
then decreasing its concentration until it disappearance at 72 h. The convergent cascade
was run at 50 mL scale, starting with 98 mg of ketone (20 mM) and 59 mg of diol (10 mM).
After 18 h, complete cyclohexanone conversion was observed, with 19.7 mM of ECL. This
result can be debt to a better oxygenation in the multimilligram scale. After 24 h, lactone
concentration was 19 mM and 3.7 mM of diol were measured. Reaction work up afforded
150 mg of a mixture containing ECL, poly-ECL and diol at 1:1.5:0.6 ratio.

3.3. Sequential EREDs/BVMOs Cascades

Issa et al. [102] have recently studied the enzymatic bioreduction of synthetic analogies
of (-)-carvone (R)-13 (Scheme 5) decorated with different substituents at position C3 and/or
C6, and their subsequent transformation into the corresponding carvolactones by means of
BVMOs, as shown in Scheme 20.
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EREDs tested (2–10 µm), were OYE2 and OYE3 [103] from S. cerevisiae and PETNR [82,83],
while CHMO_Ph1 [84] was used for the Baeyer–Villiger oxidation. Data provided by these
authors [102] showed that the configuration of the extra methyl (R1) at C6 did not af-
fect the binding and/or orientation of the substrate in the bioreduction compared to the
parent compound (R)-13. Thus, (6S) stereochemistry of 51a was always leading to (2S)
stereoisomers of 52a, and (6R) isomers of 51a were furnishing (2R) stereoisomers of 51a.
Notably, the stereo-configuration of the methyl at C6 does significantly impact the rate of
conversion; in fact, (6S)-51a was converted more slowly and to a lower yield (15% with
OYE2 in 24 h, 17% with PETNR in 24 h) compared to (6R)-51a (90% with OYE2 in 2 h, 88%
with PETNR at the same time). This reduction in conversion upon transforming the pure
diastereomers (5R,6S)-51a and (5R,6R)-51a was also observed using a mixture of them,
where a more rapid depletion of (5R,6R)-51a and a quick formation of (2R,3R,6R)-52a was
reported. Remarkably, a computational model to understand this stereochemical pattern
was proposed [102].

In a second step, the effect of heteroatom substitution at C6 was explored, using 6-OH
substitution instead of 6-Me (substrates 51b). In this case, (5S,6S)-51b and (5S,6R)-51b were
respectively converted to the corresponding 6-hydroxydihydrocarvones (2S,3S,6R)-52b
and (2R,3S,6R)-52b, by OYE2 with moderate yields (40% and 30% after 24 h) but with very
high diastereomeric excesses (≥99% de) in all cases. On the other hand, PETNR performed
better, affording 66 and 80% yields of (2S,3S,6R)-52b and (2R,3S,6R)-52b, respectively, after
2 h, also with ≥99% de. As with the 6-methyl derivatives, these were poorer substrates for
OYE3 under the same conditions. The corresponding 6-hydroxycarvone diastereoisomers
derived from (+)-carvone (S)-13, (5R,6S)-51b and (5R,6R)-51b, were also poor substrates
for OYE2, affording <10% yields at 2–24 h. A similar behavior was reported with PETNR
on the (5R,6S)-51b (5–10% maximum yield), although this enzyme allowed yields (85–95%)
of (2R,3R,6R)-52b when starting from (5R,6R)-51b, but with much reduced de (<30%).
Finally, synthetic C3-Me-(-)-carvone analogue 51c is a regioisomer substrate of 51a, but
introducing a methyl at the site of enzymatic conjugate reductive attack. Bioreductions
catalyzed by OYE2 and PETNR proceeded with low yields (≤ 10%), although with high
diastereoselectivity (de ≥ 99) for compound (2S,3R,6R)-52c.

After this exhaustive stereochemical study of the EREDs performance, Issa et al. [102]
assessed the BV oxidation with the different diastereomers of 52a and 52b. The (2R,3R,6R)-
52a isomer was completely converted to lactone (3R,6S,7R)-53a (oxygen insertion between
C1–C2), leading to with apparently complete regioselectivity (≥99%), with no traces
of the lactone coming from the oxygen insertion between C1-C6. Remarkably, there
was no reaction at all when starting with (2S,3R,6R)-52a; this indicates a remarkable
diastereoisomer-selectivity, as an inversion of 6-methyl absolute configuration avoids the
enzymatic transformation. Thus, a cascade reaction was carried out at 50 mg scale, as
shown in Scheme 21.
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tones 50c.

The two 3R diastereomers ((2S,3R,5R)-52c and (2R,3R,5R)-52c, about 70–75% of total)
were separated from the two (3S)-isomers, so that it was possible to evaluate valuation
of all four isomers, and of the separate pairs of C3 diastereomers with CHMO_Phi1.
Bioreductions were run at 25 ◦C for 24 h, with the system NADP+/GDH employed as the
hydride donor, leading to a complete conversion of (2S,3R,5R)-52c and (2R,3R,5R)-52c to
their corresponding enantiopure lactones (3S,4R,6S)-53c and (3R,4R,6S)-53c in 98% yield
(Scheme 21). This process was scaled up to 50 mg. However, no lactone formation was
observed from the bio-oxidation of (2R,3S,5R)-52c and (2S,3S,5R)-52c diastereomers.

4. Conclusions

In the last few years, the development of multienzymatic processes has been largely
spread, being possible to design novel biotransformations avoiding the isolation of reaction
intermediates and reducing the consumption of solvents and energy, thus maximizing the
atom economy of the reactions. For this reason, several processes in which two or more
biocatalysts are employed in a sequential or concurrent fashion have been designed. Among
these biocatalysts, Baeyer–Villiger monooxygenases have been demonstrated to be useful
biocatalysts for the synthesis of valuable compounds employing mild and environmentally
friendly conditions. Thus, these enzymes have been employed in multienzymatic reactions
in combination with other oxidoreductases, mainly coupled to enoate reductases or alcohol
dehydrogenases, being described in some examples in which cytochrome P450 are also
involved. EREDs have been generally employed for the hydrogenation of α,β-unsaturated
cycloketones to the corresponding cyclic ketones, which are then oxidized to valuable
lactones.

When combined with alcohol dehydrogenases, most of the synthetic procedures
described balance redox systems in which the nicotinamide co-factor required by both
biocatalysts is recycled through an initial ADH-catalyzed oxidation of an alcohol to a ketone,
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with a subsequent BVMO-catalyzed formation of ester or lactone. Most of these examples
involved the preparation of ε-caprolactone or some of its analogues from cyclohexanols
in a bienzymatic transformation combining the ADH-catalyzed oxidation of the alcohol
with the BVMO-catalyzed oxidation of the ketone with in situ cofactor regeneration. This
model system has been studied by employing both whole-cell and cell-free systems, but,
in all the cases, a critical parameter is the low operational stability of the Baeyer–Villiger
monooxygenase, very sensitive to the substrate and product concentration or to the reaction
conditions. Different approaches have been made to overcome this drawback, including the
application of more stable biocatalysts able to tolerate higher concentrations of substrates
and products, the use of organic co-solvents or the inclusion of a further biocatalytic
step with the aim of diminishing the ECL concentration in the reaction medium, as the
lipase-catalyzed conversion of ECL to oligo-ECL or 6-hydroxyhexanoic acid. After all of
these improvements, the results obtained indicate the requirement of further developments
are still required to ensure the productive biocatalytic synthesis of ECL starting from
cyclohexanol.
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