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Abstract: A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized
as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on
pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed
by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically
reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum
common denominator of cancer, grouping together a wide variety of aberrations that can affect
any of the different metabolic pathways involved in cell physiology. This forms the basis for a new
proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy
dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids,
amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention
possibilities from a metabolic perspective of cancer.

Keywords: tumor ecosystem; tumor reprogramming; tumor microenvironment

1. Introduction

The energy required for life is produced by cellular metabolism. Initiating metabolic
pathways requires the participation of enzymes and mechanisms dependent on specific
gene activation, which are inextricably linked to cellular metabolic and energetic activ-
ity. Metabolic alterations in tumor cells to provide increased energy function, known as
metabolic reprogramming, facilitate proliferation, infiltrative capacity, distant growth, and
treatment resistance, among other tumor activities. This is a crucial hallmark of tumorigen-
esis, underpinning the specific alterations of each tumor change, regardless of the biological
perspective (morphological, biochemical, physical, immunophenotypic, molecular or ge-
netic) adopted [1,2]. The metabolic profile of the tumor determines the biological properties
of tumor cells, immune response, tumor microenvironment configuration, morphologi-
cal and molecular tumor heterogeneity, and many other variables, including treatment
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response and prognosis [3,4]. Considering changes in metabolic pathways, tumor dis-
ease can be understood as a bioenergetic dysfunction, regardless of the organ involved,
clinicopathological staging, histopathologic classification, or mutational/copy number
aberration burden [5,6]. During the last century, energy dysfunction in cancer has been
identified as a key mechanism in pathogenesis, and among relevant fields of study are
nuclear transplantation effects, genetic and epigenetic adaptation of the tissue, biotensegral
mechanisms, and the influence of the Warburg effect. Warburg’s hypothesis concerning
the tendency of tumor cells to increase glucose consumption through fermentation has
experienced a revival, and is now recognized as a common event in tumorigenesis [7].
The use of the glycolytic pathway in malignant transformation for adenosine triphosphate
(ATP) production, regardless of oxygen availability, and its low energy efficiency, clearly
points to tricarboxylic acid cycle (TCA) modification and mitochondrial shape and func-
tion alterations found in many tumors. Among the most compelling evidence for this
phenomenon comes from diagnostic techniques, such as positron emission tomography
(PET) [8], which have been used to describe an increase in metabolic alterations from benign
to malignant tumors according to their clinical aggressiveness, metastasis, and treatment
response [9,10]. Different preventive and therapeutic approaches related to oncological
metabolic reprogramming are also emerging.

Proposals for tumor classification and tumor heterogeneity according to the degree of
metabolic alteration are particularly interesting from a metabolic reprogramming point of
view [11]. Indeed, recent data on hepatocarcinoma [12], prostate [13], and colon cancer [14]
support classifying tumors according to their energy dysfunction degree, independently
of the tumor tissue origin. An important biological consideration in cancer, tumor het-
erogeneity, understood as differing morphological, immunophenotypic, and genotypic
profiles that can occur in different areas of the same tumor, between the primary tumor
and its metastases (spatial and/or temporal intratumoral heterogeneity), and/or between
different tumors (intertumoral heterogeneity), can also be explained by varying degrees
of energy dysfunction [15]. Tumor heterogeneity, which also contributes to determining
tumor classification, is related to tumor cell proliferation and differentiation, tumor mi-
croenvironment modification, treatment response and resistance acquisition, and patient
survival [16–19].

Metabolic reprogramming [5] and new therapeutic approaches aimed at recovering
altered lipogenesis, glutaminolysis, or glycolysis pathways [6] have prompted use of a
metabolic and bioenergetic medicine approach as a powerful new alignment tactic in cancer.
The main objectives of this review are to summarize the metabolic pathways involved in
cancer energy dysfunction, devise a classification proposal based on this, and highlight
avenues of therapeutic intervention from a metabolic perspective of cancer.

2. Evidence of Changes in the Metabolic Pathways of Tumor Energy Dysfunction

Different mechanisms involved in cell biology, such as fat, protein, or carbohydrate
pathways, as well as pH regulation and oxygenation, have been found to be altered in
different tumors.

2.1. Tumors with Transformed Lipid Metabolism Pathways

Lipids are central actors in cancer biology, displaying an essential structural role at the
membrane level, acting as energy fuel and playing a key role as signaling and regulating
molecules of cellular functions [20]. Both tumor cells and non-tumor cells reconfigure their
metabolism substantially and establish specific lipid profiles recognizable as biomarkers
with diagnostic, prognostic, and predictive potential. Table 1 summarizes lipid metabolism-
targeted pathways, upregulated and downregulated biomarkers, tumor types affected,
and therapeutic agents reported. Figure 1 schematizes altered lipid pathways associated
with cancer.
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Table 1. Lipid metabolic alterations in cancer.

Targeted Pathway Biomarkers Tumor Types Affected Reported Therapeutic
Agents

Cancer-associated
adipose tissue

Extracellular lipid
uptake

Tumor [21–23]:
CD36 increase
FABP4 increase

LPL increase
Adipocyte [21,24]:

ATGL increase
HSL increase

Breast adenocarcinoma [21]
Leukemia [21]

Multiple myeloma [21]
Prostate adenocarcinoma [21]
Ovarian adenocarcinoma [21]
Gastric adenocarcinoma [22]

Pancreatic adenocarcinoma [22]
Small cell lung cancer [22]

Squamous cell carcinoma [22]

3-Bromopyruvate [21]
CD36 inhibitors [22]

Fatty acid synthesis

FASN [25,26]
SREBP1 [27,28]

LXR [29]
SCD-1 [29]

Breast adenocarcinoma [25]
Colon adenocarcinoma [28,30]

Pancreatic adenocarcinoma [26,31]
Ovarian carcinoma [28]

Prostate adenocarcinoma [27]

TVB-3136 [25]
TVB-2640 [25]
IPI-9119 [27]

Cerulenin [28]
Orlistat [28,32,33]

C93 [28]
Proton pump inhibitors

[26,34]

Fatty acid oxidation CPT1 [35]
IDH2 [36]

Glioblastoma [36]
Acute myeloid leukemia [35] Etomoxir [35,36]

Prostaglandin E2

COX-2 [37,38]
mPGES-1 [37]

ID1 [38]
ARC [37]
EP4 [39]

Glioblastoma [38]
Acute myeloid leukemia [37]

Colorectal adenocarcinoma [39]

Prostaglandine receptors
inhibitors [37,39,40]

Omega-3 PUFA [37,41,42]
Nonsteroidal

anti-inflammatory drugs [39]

Bioactive sphingolipids

S1P increase [43]
Ceramide decrease [43]
Neutral ceramidase [43]
Acid ceramidase [44,45]

Sphk1 [44,46–48]
S1PR1 [49]
S1PR3 [49]

Colorectal adenocarcinoma [43,50]
Prostate adenocarcinoma [44,51]
Breast adenocarcinoma [44,46]

Head and neck squamous
carcinoma [44]

Ovarian adenocarcinoma [44]
Uterus adenocarcinoma [44]
Acute myeloid leukemia [52]

Glioblastoma [53]

C6 urea-ceramide [43]
Dietary sphingomyelin

[44,54,55]
LCL385 [44]

Fingolimod (FTY720) [44]
L-t-C6-Pyr-Cer [44]

LCL204 [52]
Ceranib-b2 [49]

Although tumor cells usually biosynthesize fatty acids through fatty acid synthase
(FASN) [56] rather than acquiring them from the diet, in adipocyte-rich tissues, such as
bone marrow, tumor cells rely on exogenous lipids to regulate cellular energetics and adapt
to harsh metabolic conditions of the metastatic niche [21]. FASN has been described as
increased in cancer patients [57] and correlated with clinical behavior and aggressiveness
in different tumors, such as ovarian, breast [25], prostate [27], pancreas, and colon [30].
Recent studies have focused on the synergistic effect of different compounds seeking
both anticatabolic and antianabolic action [32]. FASN inhibitors, such as cerulenin and
orlistat, induce apoptosis and delay tumor growth [33], and an analogous effect can
be obtained from natural sources, such as green tea and soybeans. Finally, it has been
reported that proton pump inhibitors can inhibit FASN and extend survival in breast cancer
patients [26,34]; however, precaution must be taken concerning its continued use in the
population, since an increased risk of pancreatic cancer has also been associated with
its use [31]. Omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) act as signaling
molecules for immune processes in numerous inflammatory diseases and in solid and
hematological tumors [37,41]. Furthermore, recent studies have recognized the important
role of PUFAs in tumor response to immunotherapy [29].
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The schema is based on data from the literature review. Certain cellular and microenvironmental tumor alterations can 
also be attributed to other metabolic alterations not mentioned in this review. DC: Dendritic cells; ETC: Electron Transport 
Chain; FAO: Fatty Acid Oxidation; FAS: Fatty Acid Synthesis; GSH: Glutathione; HDAC: Histone Deacetylase; HK2: 
Hexokinase 2; MDSC: Myeloid-Derived Suppressor Cell; PEG2: Prostaglandin E2; PKM2: Pyruvate Kinase M2; ROS: 
Reactive Oxygen Spices; SOD: Super Oxide Dismutase; TAM: Tumor Associated Macrophages; TCA: Tricarboxylic Acid 
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Figure 1. Summary of alterations of metabolic pathways in tumor cells and subsequent changes in cellular processes
and the tumor microenvironment. The diagram shows a selection of the tumor metabolic alterations in lipids, proteins,
and carbohydrates described in the text. Some subsequent regulations caused by metabolic modifications within the
cell are highlighted, such as changes in molecular pathways, transcription factors, and biomolecules and in the tumor
microenvironment caused by immune cells, blood vessels, and changes in pH. The yellow circle, red square, and blue
triangle indicate that the change is promoted by metabolic alteration in lipids, proteins, and carbohydrates, respectively.
The schema is based on data from the literature review. Certain cellular and microenvironmental tumor alterations can also
be attributed to other metabolic alterations not mentioned in this review. DC: Dendritic cells; ETC: Electron Transport Chain;
FAO: Fatty Acid Oxidation; FAS: Fatty Acid Synthesis; GSH: Glutathione; HDAC: Histone Deacetylase; HK2: Hexokinase 2;
MDSC: Myeloid-Derived Suppressor Cell; PEG2: Prostaglandin E2; PKM2: Pyruvate Kinase M2; ROS: Reactive Oxygen
Spices; SOD: Super Oxide Dismutase; TAM: Tumor Associated Macrophages; TCA: Tricarboxylic Acid Cycle; Teff: T effector
cells; Treg: T regulatory cells.

Other cellular energy production inhibitors from fatty acid oxidation (FAO) pathways
have shown experimental clinical efficacy in solid tumors and leukemia [35,36]. In healthy
tissue, the change from anabolism to catabolism to halt proliferation implies decreased
glycolysis and higher fatty acid oxidation, as regulated by the Randle cycle. Some tumors
require a simultaneous increase in mitochondrial fatty acid oxidation and glycolysis to
support anabolism and proliferation, thus escaping the competitive nature of the Randle
cycle [58]. Mitochondrial metabolic reprogramming blockade has been used therapeutically
to selectively arrest tumor growth [58,59].

Prostaglandins derived from arachidonic acid possess oncogenic functions. Their
synthesis enzymes are overexpressed in different tumors and offer a new therapeutic
target for tumors that show alterations in this metabolic pathway [38,39]. Inflammatory
mediators, such as prostaglandin E2, are not only implicated in tumor aggressiveness
and tumor microenvironment changes, but also unify the pathophysiology of many other
different diseases, such as neurodegenerative, metabolic, and autoimmune disorders [40].
In fact, inflammatory mediators alter mechanisms common to all these, such as apoptosis
escape, growth factor receptor activation, angiogenesis induction, and immune regulation.

The critical functions of bioactive sphingolipids are present in most biological re-
sponses, cell signaling, and normal and pathological metabolism [60], including those
seen in cancer [44]. They have been reported to promote malignant transformation and
tumor progression in tumor energetic dysfunction [22]. Sphingomyelin can be converted
by sphingomyelinase to ceramide and from this to sphingosine-1-phosphate (S1P) [61]. All
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derivatives have been considered to participate in tumor progression, being differently
regulated in multiple solid carcinomas [46], especially digestive and prostate ones [43,51]
and leukemia [52]. Approaches for ceramidase inhibition have been developed from these
observations, obtaining results, such as cancer cell apoptosis, tumor growth delay [45],
decreased tumor angiogenesis [49], increased sensitization to chemotherapeutic agents [50],
and resistance treatments [62]. Similarly, dietary supplementation with sphingomyelin
experimentally reduces intestinal tumor development [54,55]. Moreover, a novel S1P re-
ceptor modulator, fingolimod, has clinical applications in autoimmune, inflammatory, and
tumor diseases [47]. Studying its action at the microenvironment level, with a focus on
the extracellular matrix, angiogenesis and macrophage infiltration in multiple sclerosis,
ulcerative colitis, and colon cancer [48], is of particular interest from an essential energy
dysfunction standpoint.

It is known that lipid metabolic abnormalities in cancer, such as increased fatty acid
oxidation and de novo lipid synthesis, provide resistance to chemotherapy, radiotherapy,
and other survival advantages for tumor cells through their multiple effects on the tumor
microenvironment [23]. There is thus significant potential for therapeutic intervention
and modulation based on altered metabolic pathways and lipid signaling when present in
tumors and their microenvironments, as has been described in breast and bone cancer and
other tumors [22].

2.2. Tumors with Altered Amino Acid Metabolism

Several tumors metabolize amino acids: to meet their own demands, to adjust the
tumor microenvironment structure and function, or to generate resistance to conventional
chemotherapy treatments. Recently, amino acid depletion therapies targeting amino acid
uptake and catabolism have been employed, using heterologous enzymes or recombinant
or modified human enzymes [63]. These therapies have little effect on normal cells due
to their lower amino acid demand but exert intense action on tumor cells with high
proliferative and biosynthetic demand for key amino acids. A summary of the protein
metabolism targeted pathways, upregulated and downregulated biomarkers, tumor types
affected, and reported therapeutic agents can be seen in Table 2. Figure 1 schematizes
alterations of amino acid pathways associated with cancer.

Table 2. Protein metabolic alterations in cancer.

Targeted Pathway Biomarkers Tumor Type Affected Reported Therapeutic
Agents

Serine
Glycine

PHGDH [64,65]
PSAT1 [65,66]
PSPH [67,68]

SLC1A4(ASCT-1) [67]
SLC1A5(ASCT-2) [67,69]

SHMT1 [67]
SHMT2 [64,67]
NFR2 [70–75]

Melanoma [68]
Breast adenocarcinoma [67,74,76]
Acute myeloid leukemia [75,76]

Mesothelioma [64]
Lung adenocarcinoma [67]

Non-small cell lung cancer [65]
Lymphomas [76]

Colorectal adenocarcinoma [66]

Methotrexate [76,77]
Pemetrexed [76]

NCT-503 [77]
Serine/glycine deprivation

[68,78]
Sulfonamide sulfonic ester

scaffolds [69]

Glutamine
Glutamate

xCT [79]
SLC7A5/SLC3A2 [79]

GLS1/2 [80–82]
SLC1A5(ASCT-2) [69,80]

KRAS-driven cancer cells [79,81,82]

Glutamine deprivation [79]
Aminooxyacetate (AOA)

[79]
CB-839 [80]
BPTES [80]

Sulfasalazine [80]
V-9302 [80]

Compound-968 [83]
Sulfonamide sulfonic ester

scaffolds [69]

Asparagine ASNS [68,84,85]
SLC1A5(ASCT-2) [69,86,87]

Acute lymphoblastic leukemia
[68,84]

Adenylated sulfoximine 1
[84]

Asparaginase [68]
Sulfonamide sulfonic ester

scaffolds [69]
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Serine and glycine have been found to support oncogenic stimulus in a group of
tumors [67,68]. Their role is critical in one-carbon (1C) metabolism [71], a vital network
for different oncogenic mediators. The 1C units are produced inside the mitochondria
and exported to the cytoplasm, where they are used to produce glycine and NADPH [76].
One-carbon metabolism is mediated by the folate cofactor, which regulates purines and
thymidine synthesis, amino acid homeostasis (glycine, serine, and methionine), epige-
netic modulation, redox protection, and many other physiological processes. Since these
amino acids and their synthesis enzymes are highly present in different tumors, specific
strategies have been proposed to block their synthesis, especially for serine [77]. Several
lung cancer types activate an NRF2-dependent transcriptional program that regulates
serine and glycine metabolism, especially in the initiating stage [70], and is related to
clinical aggressiveness [65]. Additionally, NRF2-positive regulation is also associated with
chemotherapy and radiotherapy resistance [72]. Furthermore, highly proliferating cells
(tumor and antitumor immune cells) depend on serine since it participates in the anabolism
of multiple substances through the 1C metabolism. Therefore, serine metabolism unifies
different diseases under a common pathophysiological pathway, providing new preventive
and therapeutic approaches. Other protein pathway changes occur in digestive system [66],
breast [74], hematological [75], and other tumors, which is of special interest in potential
specific metabolic treatments [69].

Glutamine metabolism regulation has emerged as a potential antitumor therapeutic
approach [79,80] due to its key role in glutathione formation and TCA activity. The viability
and energy resources of several tumor types have been shown to be dependent on this
pathway, so drugs able to influence this pathway seem promising specific treatments in
a wide group of tumors [83]. Inhibitors of glutaminase (GLS), the enzyme that converts
glutamine to glutamate, and glutamine transport inhibitors are one focus of research.
Pharmacological inhibition of GLS alone or in combination with immune checkpoint
blockade represents an effective therapeutic strategy for cancers involving alterations in
the SWI/SNF complex, which occurs in more than 60% of clear cell ovarian carcinoma,
which otherwise has no effective treatment [81]. GLS knockdown, exposure to the GLS
inhibitors, or deprivation of glutamine resulted in robust induction of reactive oxygen
species in GLS-expressing ovarian cancer cells in one study, and treatment with GLS
inhibitor could effectively treat chemoresistant ovarian cancers, especially those with high
GLS expression [82].

Asparagine is also involved in malignant transformation and tumor progression [87].
It is converted by asparaginase enzyme to aspartic acid, which is related to treatment resis-
tance in acute lymphoblastic leukemia [84], while asparagine synthetase (ASNS), which
catalyzes the reverse conversion, may also be a therapeutic target [86]. A significant propor-
tion of lung and colon cancer tumors possess mutated KRAS, which regulates asparagine
biosynthesis and alters sensitivity to L-asparaginase. KRAS mutation causes a marked
decrease in aspartate levels and increases asparagine levels in which ASNS expression is
upregulated and induced by the KRAS-activated signaling pathway. KRAS-mutant cancer
cells could become adaptive to glutamine depletion through asparagine biosynthesis by
ASNS; pronounced growth suppression was observed upon ASNS knockdown, indicating
that ASNS might be a novel therapeutic target against tumors with mutated KRAS [85].

2.3. Tumors with Carbohydrate Pathway Modifications

Given their energy impact, carbohydrate pathways are the most shared metabolic
alterations in tumors [88]. A summary of the carbohydrate metabolism targeted pathways,
upregulated and downregulated biomarkers, tumors affected, and reported therapeutic
agents can be seen in Table 3. Figure 1 depicts the carbohydrate pathway alterations
associated with cancer.

Otto Warburg’s abovementioned discovery of high rates of aerobic glycolysis in cancer
cells suggested structural and/or functional impairment of the oxidative phosphorylation
process (OXPHOS). Interestingly, different morphological tumors, such as oral squamous
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cell carcinoma [89], lung [90], breast [91], pancreatic carcinomas [92], and hepatocarci-
noma [93], show various alterations in carbohydrate metabolic pathways. In normal cells, a
high glycolysis rate is linked to a reduction in OXPHOS, known as the Crabtree effect [94].
Unless tumor cells become hypoxic, they maintain high glycolysis and OXPHOS rates
to meet the high energy demand of anabolic processes. However, these main pathways
are interconnected with other pathways that also require glucose, including the pentose
phosphate pathway, which produces pentose phosphates for ribonucleotide and NADPH
synthesis; the hexosamine pathway, for glycosylation of proteins; glycogenesis, which
generates glycogen for glucose storage; the serine biosynthesis pathway, which gener-
ates amino acids; and 1C metabolism, which generates NADPH, purine and glutathione
biosynthesis, and methylation [88].

Table 3. Carbohydrate metabolic alterations in cancer.

Targeted
Pathway Biomarkers Tumors Affected Reported Therapeutic Agents

Glucose
uptake GLUT1 [88–92]

Hepatocellular carcinoma [93]
Renal cell carcinoma [88]

Oral squamous cell carcinoma [89]
Non-small cell lung cancer [90]

Breast adenocarcinoma [91]
Pancreatic adenocarcinoma [92]

Neoadjuvant chemoradiotherapy
[92]

Trastuzumab [100]
Fasting [101]

Fasting mimicking diet [101,102]
Calorie restriction [103]

Glycolysis
and TCA

HK1 [95]
HK2 [9,93,96–99,104–106]

PFKFB3 [88]
PFK1 [88]

PKM2 [107–109]
IDH1 [110]
PDK [111]

Laryngeal squamous cell carcinoma [9]
Cervical squamous cell carcinoma [98]

Hepatocellular carcinoma [96,105]
Endometrial cancer [110]

Breast adenocarcinoma [97,112]
Epithelial ovarian cancer [99,111]
Non-small cell lung cancer [106]

Colon adenocarcinoma [107]
Chronic myeloid leukemia [109]

Metformin [110]
2-Deoxyglucose [109]

3-Bromopyruvate [105]
Increased frataxin [112]

Dichloroacetate [111]
Resveratrol [104]
Sinomenine [106]

Cyclosporine A [108]
Overexpression of miR-122 [107]
Overexpression of miR-202 [109]

Lactate
produc-

tion/extraction

LDHA [88,100]
MCT1 [88]
MCT4 [88]

Breast adenocarcinoma [100]
Metformin [113]

Trastuzumab [100]
Oxamate [100]

The extent of carbohydrate metabolic alteration can determine the tissue injury type,
and whether it corresponds to benign or malignant proliferative reactive injury, such as
overexpression of hexokinase 1 (HK1) in colorectal carcinoma, which appears as an inde-
pendent prognostic factor [95]. Interestingly, hexokinase 2 (HK2), which is required for
anaerobic glycolysis, is frequently overexpressed in several malignant cells. HK2 expres-
sion increases progressively from glottis polypus to papilloma or laryngeal squamous cell
carcinoma as the clinical aggressiveness of the tumor increases [9]. HK2 overexpression is
also correlated with prognosis in tumors of the digestive system, including stomach, liver,
pancreas, colon, and rectum [96], and breast cancer metastasis [97]. Moreover, HK2 has
been confirmed as an independent prognostic indicator in advanced cervical squamous
cell carcinoma, and its expression has been correlated with the degree of radiation resis-
tance [98]. Likewise, it has been documented that higher HK2 expression correlates with
cisplatin chemoresistance in ovarian cancer [99].

2.4. Dysregulated pH as a Hallmark of Cancer

Since low pH is characteristic of malignant tumors and relates to tumor treatment
resistance, antacids, such as proton pump inhibitors, have been proposed to improve
chemotherapy results [34]. Nevertheless, this is an emerging field with heterogeneous
results, which urges caution [114]. Several studies have been conducted on the regulation of
membrane transporters, electrolyte exchangers, enzymes, water trafficking, modifications
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of membrane structure, transcription factor deviation, metabolic changes, and many other
effects of lactate accumulation due to tumor metabolic alteration [115]. Further studies
in this field will enhance our understanding of common pathophysiological mechanisms
shared by different diseases, such as metabolic disorders and malignant tumors [116].

2.5. Tumors with Hypoxic Adaptation

Solid tumors present low oxygenation levels, which results in proliferative stimulus,
extensive tumor infiltration, and metabolic reprogramming, mediated by hypoxia-inducible
factors (HIFs) [117]. HIF-1α controls the expression of numerous genes encoding metabolic
enzymes, which play key roles in cellular metabolism adaptation to low oxygen ten-
sion [118]. An interesting mechanism is the positive feedback loop between HIF-1α and
the nicotinamide phosphoribosyltransferase (NAMPT), which is the first and rate-limiting
enzyme of the route that recycles the nicotinamide adenine dinucleotide (NAD) [119].
NAMPT can be found intracellularly (iNAMPT), where it initiates the synthesis of the
NAD, necessary to maintain metabolic processes, such as glycolytic flux and lactate pro-
duction. Furthermore, NAMPT can also be found extracellularly (eNAMPT), where it has
cytokine-like functions (through Toll-like receptor 4), promoting the differentiation of TAMs
and MDSCs [119,120]. Under hypoxic conditions, upregulation of iNAMPT/eNAMPT
promotes metabolic reprograming and an immunosuppressive microenvironment, and
several data show that this alteration can play a central role in the phenotypic plasticity
of melanomas [119,120]. In addition, HIF-1α also mediates the serine synthesis pathway
and 1C mitochondrial metabolism to increase production of mitochondrial antioxidants
(NADPH and glutathione), which opens up interesting possibilities for therapeutic in-
tervention in the microenvironment and tumor resistance [1,121]. Additionally, hypoxia
promotes treatment resistance and tumor progression, altering glucose and amino acid
absorption, glycolytic flow, lactate production, glutamine metabolism, modifying the
TCA cycle and OXPHOS process, and fatty acid synthesis, and generating high levels of
mitochondrial reactive oxygen species (ROS) [122].

3. Intervention Opportunities from a Metabolic View of Cancer

Developing new therapies based on specific metabolic reprogramming requires study-
ing tumor bioenergetic dysfunction, by enabling rapid and easy detection of specific
biomarkers for each altered metabolic pathway. In this section, we review the therapeu-
tic protocols established for this purpose, which can be complemented with nutritional
approaches and action on macroenvironment factors (exercise, diet, microbiota, or stress).
Tables 1–3 summarize avenues of therapeutic intervention reported from a metabolic tumor
reprogramming perspective.

3.1. Intervention on the Fatty Acid Pathway

Since changes in lipid metabolism in cancer cells affect numerous cellular processes,
including cell growth, proliferation, differentiation, and survival, several enzymes and
regulatory factors involved in these pathways have come to light as targets in tumor
treatment [123].

Although the efficacy of statins as lipid-lowering agents is still under study, their
capacity to reduce cancer death risk and increase cancer patient survival has already been
reported [124]. Their action mechanism at the mitochondrial level involves factors such
as increased tumor cell radiation sensitivity [125]. Statins also contribute to increasing
autophagy, and when combined with metformin have an apoptosis-inducing effect even in
chemoresistant cells [126].

Likewise, the putative beneficial effect of omega-3 dietary supplementation dur-
ing cancer treatment has been accentuated [127]. Some studies suggest that this nutri-
tional complement may reduce inflammation and cytolytic treatment toxicity, and enhance
chemotherapy efficacy. Furthermore, omega-3 supplementation can be used in cancer
cachexia treatment due to its positive role in maintaining patient weight [42].
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3.2. Intervention in the Protein Pathway

Amino acids from the diet are essential for tumor cell proliferation and survival.
Serine intake restriction affects cell proliferation and mitochondrial function [78] as well
as carbohydrate and fatty acid metabolic pathways. The same occurs with glutamine,
a multifunctional amino acid involved in lipid metabolism, energy balance, apoptosis,
and cell proliferation, modifying several proteins that depend on its availability in both
normal [128] and tumor cells [129].

Available data suggest that a low-protein diet could be advantageous for cancer
patients [130]. Dietary restriction of serine and glycine can reduce tumor growth and
increase survival in some carcinoma and lymphoma models [131]. Exogenous amino acid
availability can also be reduced by blocking their transporters [69] as a viable strategy
to reduce tumor growth [132] and therapeutic resistance [133]. Additionally, preclinical
experiments suggest that a short fasting period before radiation and/or a transient caloric
restriction during the treatment course can increase tumor responsiveness [134]. This
mechanism works by promoting accumulation of cellular oxidative injury, hampering DNA
repair, and stimulating tumor cell death. Healthy cells have a more flexible metabolism,
which allows them to activate repair and survival mechanisms. Furthermore, the immune
system responds by stimulating an effective antitumor response, especially in tumors with
high glucose uptake detected by PET [134].

3.3. Intervention in the Carbohydrate Pathway

Metabolic therapies that decrease circulating glucose levels slow the progression of
several tumors. Following on from this, metformin [135] and aerobic glycolysis regulatory
compounds, such as 2-deoxyglucose, oxythiamine, and 6-aminonicotinamide, could be
viewed as novel antitumor metabolic therapies [136].

Metformin is an antidiabetic agent with a powerful epigenetic effect, able to impact
directly on cancer cell proliferation by altering DNA methylation [137], and which has
shown an anticancer effect [110]. Its action mechanism includes decreasing blood glu-
cose levels [138] and glycolytic flux, suppressing HIF-1α expression [139], and interfering
with cancer stem cell functions. Furthermore, it regulates stromal vascularization, facil-
itating metastasis suppression and enhancing chemotherapy’s effect [140], and induces
apoptosis and autophagy. Other therapeutic approaches that inhibit tumor growth are
glucose transport inhibitors, such as phloretin, and mitochondrial oxidative metabolism
stimulators, such as frataxin [141]. Moreover, well-known therapeutic agents, such as ima-
tinib and trastuzumab, also target signaling pathways linked to glucose metabolism [100].
The Warburg effect can be targeted with dichloroacetate, which induces apoptosis only
in cancer cells [111], and arsenic trioxide, which increases mitochondrial glutaminolysis
activity. By detecting specific metabolic alterations present in both the original tumors
and those resistant to conventional treatments, complementary measures can be included
to reduce glucose availability, either with specific glycolysis inhibitors or through nutri-
tional approaches. Increased therapy responses have recently been reported when HK2
was inhibited with 3-bromopyruvate in hepatocarcinoma [142] and breast cancer [143],
with resveratrol or sinomenine in lung cancer [106], with lonidamine in cholangiocarci-
noma [144], and with luteolin in gastric cancer [145].

A complementary strategy has been proposed for when conventional therapeutic
agents or supplementation are not safe or available, based on carbohydrate intake re-
duction, blood glucose level monitoring, and the application of clinical knowledge and
research from diabetes and other metabolic diseases treatment [146]. Low-carb natural
interventions aimed at avoiding carbotoxicity include ketogenic diets [147] and various
fasting modalities [101]. Recent studies show good tolerance, safety, and beneficial clinical
effects, which make the case for adding these complementary measures to conventional
chemotherapy in comprehensive oncology treatment [103].
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3.4. Chemotherapy and the Fundamental Role of Immunotherapy

Other metabolic pathways are targeted in classic cancer treatments. A frequently
used pyrimidine analog called 5-Fluorouracil, employed particularly in colorectal cancer,
targets nucleotide metabolism derived from the folate cycle [107]. Gemcitabine is used
especially to treat pancreatic cancer: it interferes with cytidine biosynthesis and prevents
deoxynucleotide formation. Other pharmacological agents, such as etoposide, doxorubicin
cisplatin, and cyclosporine A, have shown their efficacy through interaction with nucleic
acid metabolism [108]. It should be noted that resistance to several of these treatments
depends on alteration of metabolic pathways, as occurs with cisplatin in chronic myeloid
leukemia [148].

Metabolic reprogramming of the tumor immune response, given the different metabo-
lites participating in the humoral and cellular immune response, establishes the pro- and
anti-inflammatory balance, determines the activation process of effector T lymphocytes
and other immune cell subpopulations, and is among the main regulatory mechanisms of
immune checkpoints [149]. Immunotherapy is one of the clearest exponents of the relation-
ship between cancer, metabolism, energy dysfunction, and immune response. Given that,
to date, immunotherapy efficacy is limited to a fraction of patients, a deeper understanding
is required of the mechanisms that generate an immunosuppressive tumor microenvi-
ronment, emanating from inappropriate metabolic reprogramming, which dampens T
cell function and affects the antitumor immune response and tumor progression [150].
Immune and tumor cells use similar metabolic reprogramming. Once lymphocytes have
been activated, they begin a metabolic transition from oxidative phosphorylation to aerobic
glycolysis. Immune and tumor cells compete within the tumor microenvironment, and
increased nutrient consumption by tumor cells achieves an immunosuppressive microen-
vironment by hindering T cell metabolism [151]; hence, interest in targeting both tumor
and T cell metabolism exists, which can enhance immunity and improve the success of
immunotherapies [152].

Upregulated programmed death-ligand 1 (PD-L1) and cytotoxic T-lymphocyte sntigen
4 (CTLA-4) alter T cells’ metabolic program, leading to their exhaustion [149]. The role of
PD-L1 in cancer metabolic reprogramming comes from the balance between glycolytic activ-
ity in tumor cells and the available energy for cytotoxic T lymphocytes, which regulate tu-
mor growth [153]. Overexpression in tumor cells of the glycolysis enzyme HK2 suppresses
glucose uptake and interferon gamma (IFN-γ) production in tumor-infiltrating lympho-
cytes (TILs). Anti-PD-L1 treatment regulates glycolysis, increases antitumor immunity, and
avoids the oncogenic effect of PD-L1 by inducing metabolic reprogramming and immune
checkpoint. Glucose is a critical substrate for effector T cells and M1 macrophages, which
both require aerobic glycolysis for their activation and full antitumor effector functions.
Immunometabolism is therefore highlighted as a promising field in energy dysfunction
treatment and tumor macroenvironment reprogramming [151]. Remarkably, immunother-
apy action interconnects metabolic and immune regulation, diet [154], physical exercise,
sleep, microbiota [155], and age [156], making these fundamentals of the macroenvironment
a vital companion in comprehensive treatment of tumor energetic dysfunction.

3.5. Critical Role of the Tumor Microenvironment

A close relationship has been established between inflammation, carcinogenesis, and
cancer therapy, which can trigger major changes in tumor stroma, including alteration of
functional metabolic pathways contributing to cancer progression. An inflamed, acidi-
fied, and hypoxic tumor microenvironment triggers the activation of multiple gene and
metabolic pathways that regulate cell survival, proliferation, and growth [157]. Increas-
ing ROS production in tumors by HIF-1α, cytokines, and growth factors during hypoxic
exposure activates survival pathways through their stromal and immune effect [158].
Metabolism and thus tumor behavior are regulated by metabolite availability in the tumor
microenvironment [159]. As a metabolic niche, the tumor microenvironment is shaped
by intrinsic tumor cell metabolism, interactions between tumor and non-tumor cells, and
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systemic metabolism [2,160]. The metabolic modification produced by lactate accumulation
in the extracellular matrix acts as a resistance mechanism related to OXPHOS mitochon-
drial dysfunction. The relationship between ROS, metabolic reprogramming of cancer and
stromal cells, and the transcription machinery involved in a malignant phenotype [158]
indicates a possibility for new therapeutic management.

The clearly demonstrated plasticity capacity of tumor cells and their microenviron-
ment represents an interesting option in the search for less toxic treatments, including
healthy diet, physical exercise, and other lifestyle elements, such as tumor energy dys-
function modulators [161]. Dietary interventions impact on both cancer metabolism and
immunometabolism [162] and changes in diet can improve cancer immunosurveillance and
enhance the chemo-, radio-, and immunotherapy effect. The effect of these measures on
cancer progression and overall survival [163], long-term survival [164] and recurrence [165],
and their applicability across several life stages [166] makes these basic energy modula-
tors promising complementary approaches to prevent, treat, and follow-up tumor energy
dysfunctions. These measures are also affordable, cheap, and natural [167]. Clinical trials
are needed to test the effectiveness of dietary interventions, such as caloric restriction or
fasting [168] and supplementation with vitamin C [169], vitamin D [170], fermented foods,
or probiotics [171], to regulate energy dysfunction, as well as microenvironment, stroma,
and epigenetic reprogramming [172] in cancer and other diseases.

Therefore, remodeling ecosystem elements affected by energy dysfunction has emerged
as an important therapeutic objective. In fact, the tumor microenvironment contributes
decisively to the morphological, phenotypic, and genetic intratumoral heterogeneity that
affects disease progression and promotes therapeutic failure; this has led to interest in
focusing metabolic reprogramming measures both on tumor cellularity itself and on the
tumor microenvironment.

4. Conclusions

Studies focused on metabolism underline tumor energy dysfunction, and cancers
have shown to be appropriate models to identify the specific mechanism that underlies
the growth, survival, mobility, and aggressiveness of tumor cells. The metabolic frame
of reference considers oncological diseases as a diverse group of dysregulations, like in
neurodegenerative or autoimmune illnesses. Cancer with fatty acid pathway changes
will show different clinical-biological characteristics to others with altered protein or
carbohydrate metabolism, despite all being recognized as oncological diseases regardless
of organ or mutational or copy number aberration burden, depending on the degree of
metabolic and energy dysfunction. Recent studies on hepatocarcinoma [12], prostate [13],
and colon cancer [14] suggest classifying tumors according to their energy dysfunction
degree. The group showing high metabolic activity tends to be associated with better
prognosis, while those that show low metabolic activity have worse prognosis but high
immune response, thus being more receptive to chemotherapy and immunotherapy [152].
The group with intermediate metabolic activity shows clinical behavior falling between the
two previous groups. Patients with poor prognosis and more metabolically altered tumors
with worse behavior, less response to treatment, and great tendency to chemotherapy
resistance emerge as the greatest beneficiaries of tumor energy dysfunction reprogramming.
Therapeutic regulation of the metabolic pathways of fatty acids, glutamine, or glucose
requires previous characterization of genetic or metabolic biomarkers related to metabolic
signatures. Generally, high glucose levels seem to contribute to cancer growth [102], while
fats suppress metastasis [160].

The question arises as to whether alterations in the specific metabolic pathways of a
tumor, organ, and patient occur before or after the genetic changes to which they are linked.
Recent studies based on nuclear transfection experiments [173], epigenetic changes, and
metabolism deviations (e.g., pathways, Warburg effect, pH, and oxygenation) support the
idea that alterations in cellular bioenergetic mechanisms trigger biophysicochemical tissue
changes that we identify as cancer. Beyond the tumor cell itself and its aberrations, the
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tumor microenvironment regulates nutrition, metabolism, and oncometabolic interaction
with the host immune response [174], and factors, such as nutrition, stress, and micro-
biota [175], are all involved in global energy function. Metabolic heterogeneity plays a role
in genetic heterogeneity [176], metastatic capacity of tumor cells [4], stem cells, and deter-
mining metastasis organotropism [177]. High tissue metabolic heterogeneity is frequently
observed in different tumors. Metabolic heterogeneity determines treatment response,
resistance acquisition, and metastasis prevention, making it an important consideration in
cancer therapeutic approaches.

In summary, our current understanding of the different altered metabolic pathways
involved in cancer energy dysfunction allows us to examine this disease from a new and
different prism. It invites a classification of this disease according to the altered metabolic
pathways and degree of bioenergetic dysfunction. The approach opens a new path of
research and knowledge oriented at testing out new therapies based on metabolic repro-
gramming, plasticity, heterogeneity, and the proven possibility of tumor microenvironment
remodeling. It enables study of the effect of already known antitumor drugs and their
synergies with a demonstrated effect beyond cytoxicity, to further explore the promising
field of immunotherapy and systematically include natural metabolic bioregulators, in-
cluding diet, fasting, exercise, and control of microbiota and stress. Above all, through this
approach, we can incorporate new intervention opportunities based on reprogramming of
altered metabolic pathways, which must be studied in depth, beyond the data provided in
this review, and identified with the appropriate biomarkers, to serve as a guide for tumor
microenvironment remodeling of cancer understood as a reversible energetic dysfunction.
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