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Abstract: In this paper, we analyze the problem of determining orbital hypernormal forms—that
is, the simplest analytical expression that can be obtained for a given autonomous system around
an isolated equilibrium point through time-reparametrizations and transformations in the state
variables. We show that the computation of orbital hypernormal forms can be carried out degree by
degree using quasi-homogeneous expansions of the vector field of the system by means of reduced
time-reparametrizations and near-identity transformations, achieving an important reduction in the
computational effort. Moreover, although the orbital hypernormal form procedure is essentially
nonlinear in nature, our results show that orbital hypernormal forms are characterized by means of
linear operators. Some applications are considered: the case of planar vector fields, with emphasis on
a case of the Takens–Bogdanov singularity.

Keywords: orbital normal forms; homological operators; lie symmetries; nilpotent centers

1. Introduction

The theory of normal forms is a basic tool for the study of several problems in dif-
ferential equations: bifurcations, analysis of stability, the center problem, the reversibility
problem, the integrability problem, etc. The basic concepts and different approaches for
this theory can be found, for instance, in [1–7]. The classical theory of normal forms, estab-
lished by Poincaré, is applied to systems with nonzero linear parts and uses near-identity
transformations to eliminate nonessential terms in the local dynamical behavior of the
system. To be precise, let us consider a smooth autonomous system

9x “ Fpxq, with x P Rn, (1)

having an isolated equilibrium point at the origin (i.e., Fp0q “ 0). Usually, the normal form
technique is used to simplify the vector field F degree by degree, through Taylor expansions.

To achieve the quoted simplification, one makes successive near-identity transforma-
tions of the form x “ y` Pkpyq, where Pk is a k-degree polynomial vector field satisfying
the homological equation. In this way, the k-degree term of the Taylor expansion of F is
simplified by eliminating the part belonging to the range of the homological operator. An
important fact is that the homological operator depends on the linearization matrix DFp0q,
and then the structure of the normal form is determined by this matrix.

The classical normal form does not provide, in general, the simplest form, and further
reductions are possible, leading to simpler normal forms.

A way to obtain simpler normal forms (initiated in [8–11]) is based on the structure of
the solutions set of the homological equation. If the kernel of the homological operator is
nontrivial, then the homological equation has infinitely many solutions that depend on
arbitrary parameters, and one could select them in order to obtain additional simplifica-
tions in the higher-order normal form terms. In this context, a difficulty arises because
determining the above-mentioned arbitrary parameters can lead to nonlinear equations.
In [8,12–15], only linear procedures are used in the further simplification procedure, and

Symmetry 2021, 13, 1500. https://doi.org/10.3390/sym13081500 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-5872-7112
https://orcid.org/0000-0002-1125-5194
https://orcid.org/0000-0002-7069-287X
https://doi.org/10.3390/sym13081500
https://doi.org/10.3390/sym13081500
https://doi.org/10.3390/sym13081500
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13081500
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13081500?type=check_update&version=2


Symmetry 2021, 13, 1500 2 of 28

the resulting normal form is called the mth order normal form, Poincaré renormalized form
or unique normal form. In [16], the simplest normal form obtained by linear procedures is
referred to as the pseudo-hypernormal form, in contrast to the simplest normal form, called
the hypernormal form, which a priori involves nonlinear procedures. Moreover, in [14],
it is shown that this simplest normal form under conjugation can be obtained through
linear procedures.

Another means of obtaining further simplifications in the classical normal form refers
to the kind of expansion used for the vector field. Instead of the Taylor series, one can
work in the framework of graduated Lie algebras (see [7,17–19]), where the vector field
is expanded as the sum of quasi-homogeneous terms, as is usually done in the blow-up
techniques for determining the topological type of a singularity (see, e.g., [1,18,20]). The
use of quasi-homogeneous expansions gives rise to a theory, similar to the classical one,
but now the homological equation depends on the lowest-degree quasi-homogeneous term
(called the principal part) of Fpxq, which plays the role of the linear part.

Another possibility of obtaining further simplifications in the classical normal form
is based on the use of transformations not only in the state variables but also in the time
(i.e., one can use equivalence instead of conjugation). This kind of transformation does not
change the orbit’s structure; only the speed along the trajectories can vary.

This idea can be formalized by defining some homological operators that take into
account the effect of time-reparametrizations (see [21]).

The main goal of this paper is to show that the simplest normal form using equivalence
(called the orbital hypernormal form) can be characterized by means of linear procedures,
with reduced time-reparametrizations and near-identity transformations. Although there
are many works devoted to the analysis of hypernormal forms, they are restricted to cases
of specific singularities (see [22–27]). Here, we present a general approach, valid for any
singularity, based on Lie transformations and using restricted operators, which means
minimizing the computational effort in the calculation of hypernormal forms.

The orbital hypernormal form is of primary importance in several problems of great
interest in the qualitative theory of dynamical systems. In fact, it is unique (if the comple-
mentary subspaces to the range of the homological operator are fixed) and it determines
the invariants of the vector field. For instance, in the analysis of the center problem for the
nilpotent singularity carried out in Proposition 6, we use an orbital hypernormal form (see
Theorem 5), which shows the invariants that prevent the center conditions.

Moreover, the orbital hypernormal form is the starting point in the study of local
bifurcations in linear degeneracies such as saddle-node-Hopf, Hopf-Hopf and triple-zero
cases (see [28]), as well as their nonlinear degenerate cases (see [29–31]). It is of great
interest in the study of bifurcations in control systems (see [26,32]), in the study of the
orbital reversibility problem, because the orbital hypernormal form uses as evidence the
invariants that prevent this kind of symmetry (see [33–37]), as well as in the study of the
center and integrability problems (see [38–41]).

There are different methods for the effective computation of normal forms. One
method is the straightforward use of the near-identity transformations. Another one,
which appears to be computationally more efficient, is the use of Lie transforms (see,
e.g., [7,10,16,42,43]), where the change in variables is understood as the flow of the au-
tonomous system generated by a vector field called the generator of the change. In the
present work, we use this last approach. All the results presented here must be under-
stood in a formal sense, because we will not address the convergence problem for the
normal forms.

Summarizing, in what follows, we give a rough description of the contents and main
results of this paper. In Section 2, we present the definitions and properties related to
quasi-homogeneous vector fields, with special emphasis on the Lie formalism, where our
analysis lies.

In Section 3, we present the basic ideas of the classical orbital normal form theory
and define the concept of the orbital hypernormal form. The main result of this section is
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Theorem 2, which states that the computation of orbital normal forms can be carried out
taking reduced time-reparametrizations and generators, which is of primary interest in the
applications, because a drastic reduction in the computational effort is achieved.

In Section 4, we present a procedure to obtain an orbital hypernormal form for a
given vector field. Although this procedure is essentially nonlinear, we show that the
simplest normal form is characterized by means of a suitable linear homological operator
(see Theorem 3).

In Section 5, we show that orbital normal forms agree with orbital hypernormal forms
(i.e., no further simplifications are possible) if the kernel of the orbital homological operator is
trivial. Finally, in Section 6, we give some results to compute orbital hypernormal forms in the
case of planar systems, which are applied to the analysis of a Takens–Bogdanov singularity.

2. Basic Definitions and Technical Tools

Recall that a function f of n variables is quasi-homogeneous of type t “ pt1, . . . , tnq P Nn

and degree k if f pεt1 x1, . . . , εtn xnq “ εk f px1, . . . , xnq. The vector space of quasi-homogeneous
functions of type t and degree k will be denoted by Pt

k.
A vector field F “ pF1, . . . , Fnq

T is said to be quasi-homogeneous of type t and degree
k if Fj P P

t
k`tj

for j “ 1, . . . , n. We will denote by Qt
k the vector space of quasi-homogeneous

vector fields of type t and degree k.
If we denote E “ diag

`

εt1 , . . . , εtn
˘

, then:

f P Pt
k ô f pExq “ εk f pxq, and F P Qt

k ô FpExq “ εkEFpxq.

Expanding the vector field of system (1) as the sum of quasi-homogeneous terms of
type t, we can write the above system as

9x “ Fpxq “ Frpxq ` Fr`1pxq ` ¨ ¨ ¨ , (2)

where Fk P Qt
k for all k. The lowest-degree quasi-homogeneous term Fr ‰ 0 (where

r P Z) is the principal part of the vector field F with respect to the type t. Taking the
type t “ p1, . . . , 1q, Taylor expansions of vector fields are used. Instead, a subtle selection
of the type t will help us in the normalization procedure because, by using adequate
quasi-homogeneous terms, we manage monomials with different homogeneous degrees
but the same quasi-homogeneous degree. In particular, the homological operator is not
only based on the linear part of the vector field, as in the classical normal form theory, and
we could take advantage of the nonlinear terms of the vector field F, which allows further
simplifications in the classical normal form, following the former idea of Takens [10].

There are two basic tools in the characterization of the transformed vector field by
formal equivalence. The first one is the Lie product, defined by

rF, Gspxq “ DFpxqGpxq ´DGpxqFpxq,

where F, G are smooth vector fields. Its is well-known that it is a bilinear and anti-
symmetric operation on the space Qt

k.
The second tool arises when we perform a time-reparametrization depending on the

state variables dt
dT “ 1` µpxq, where µp0q “ 0. In this case, the transformed vector field is

the original one multiplied by 1` µ.
To take into account the effect of both time-reparametrization and transformations

in the state variables, it is enough to combine the above tools. In this respect, it is easy to
show that

rµF, Gs “ p∇µ ¨GqF` µ rF, Gs, (3)

for any smooth scalar function µ and vector fields F, G. Moreover, from the above equality,
it can be easily shown that

rµF, Fs “ p∇µ ¨ FqF, (4)
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and
p∇µ ¨GqF “ rµF, Gs ` rµG, Fs ´ p∇µ ¨ FqG. (5)

Throughout this paper, we will use quasi-homogeneous expansions truncated to
some quasi-homogeneous degree. Given a vector field G “ Gr `Gr`1 ` ¨ ¨ ¨ expanded in
quasi-homogeneous terms, we define its quasi-homogeneous k-jet by

J kpGq “ Gr `Gr`1 ` ¨ ¨ ¨ `Gk.

Sometimes, we need to pick-up the k-degree quasi-homogeneous term of a vector field.
As we have already done, we use subscripts to denote its projection on the space of quasi-
homogeneous vector fields. For instance, rF, Gsk denotes the k-degree quasi-homogeneous
term of the Lie product.

There are a number of properties related to the use of quasi-homogeneous expansions,
which are proven, e.g., in [17]. Namely, we have that µkFl P Qt

k`l , rFl , Gjs P Qt
l`j and

∇µk ¨ Fl P P
t
k`l for any µk P P

t
k, Fl P Qt

l , Gj P Qt
j.

3. Orbital Normal and Hypernormal Forms

As mentioned before, in this paper, we address the problem of determining the
simplest expression to which the n-dimensional system (1) can be reduced by time-
reparametrizations and near-identity transformations in state variables. Firstly, we recall
the basic ideas of the Orbital Normal Form Theory.

3.1. Orbital Normal Forms

The classical orbital normal form for system (1) is obtained by splitting the vector
field in quasi-homogeneous terms as in (2), and then the simplification procedure, which is
performed degree by degree, depends on the principal part Fr.

For each k ě 1, the simplifications in the pr` kq-degree quasi-homogeneous term of
system (2) are obtained in two steps. Firstly, we reparametrize the time by dt

dT “ 1` µkpxq,
with µk P P

t
k. Then, system (2) becomes

dx
dT “ x1 “ Frpxq ` ¨ ¨ ¨ ` Fr`k´1pxq ` pFr`kpxq ` µkpxq Frpxqq ` ¨ ¨ ¨ .

Secondly, we use a near-identity transformation x “ y` Pkpyq. It is immediate to
show that again the transformed system y1 “ Gpyq agrees with the original one up to
degree r` k´ 1, i.e., J r`k´1pGq “ J r`k´1pFq, and the pr` kq-degree is:

Gr`k “ Fr`k ` µk Fr ` rFr, Pks “ Fr`k ´LkpPk, µkq,

where we have introduced the homological operator:

Lk : Qt
k ˆPt

k ÝÑ Qt
r`k

pPk, µkq Ñ LkpPk, µkq “ ´rFr, Pks ´ µk Fr. (6)

As this operator is linear, its range, RangepLkq, is a vector subspace and we can define
a co-range (a complementary subspace to the range) of Lk in Qt

k, which we denote by
CorpLkq; that is,

Qt
k “ RangepLkq ‘CorpLkq.

Then, to simplify the pr` kq-degree quasi-homogeneous term, it is enough to write
Fr`k “ Frr`k` Fcr`k where Frr`k P RangepLkq and Fcr`k P CorpLkq. By selecting pPk, µkq satis-
fying the homological equation LkpPk, µkq “ Frr`k, we can eliminate the part of Fr`k belong-
ing to the range of the linear operator Lk. In other words, we achieve
Gr`k “ Fr`k ´ Frr`k “ Fcr`k, and we can state that this term has been reduced to orbital
normal form. The classical orbital normal form theorem arises when we perform formally
this procedure for the value k “ 1, later for k “ 2, and so on.
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Theorem 1. System (2) can be formally reduced to orbital normal form by a sequence of time-
reparametrizations and near-identity transformations.

3.2. Orbital Hypernormal Forms

The orbital hypernormal form for system (1) is obtained by performing a general
time-reparametrization and near-identity transformation, and selecting them to achieve
a transformed system that is as simplified as possible. We will see that, in this case,
the simplification procedure not only depends on the principal part Fr, but also on the
higher-order quasi-homogeneous terms.

Hence, the hypernormal form procedure consists of two steps. Firstly, we reparametrize
the time by dt

dT “ 1` µpxq, with µp0q “ 0. Then, system (1) is transformed into

dx
dT “ x1 “ p1` µpxqqFpxq.

Next, we use a near-identity transformation and look for the simplest expression that
can be obtained. We will introduce the following notation: the transformed of the vector
field F of system (1) by a near-identity transformation Φ is denoted by Φ ˚ F, that is,

Φ ˚ Fpyq :“
”

DΦ
´

Φ´1pyq
¯ı´1

F
´

Φ´1pyq
¯

.

The orbital normal form procedure tries to simplify, as much as possible, the analytical
expression of system (1) using both a nonlinear time-reparametrization dt

dT “ 1` µpxq and
a near-identity transformation Φ. In other words, the goal is to find µ and Φ such that
Φ ˚ pp1` µqFq is as simple as possible.

It is well-known that any near-identity transformation can be understood as the time-1
flow of some autonomous system (see [44]). Namely, any change in variables y “ Φpxq can
be written as Φpxq “ upx, 1q, where u is the solution of the initial value problem:

Bupx, εq

Bε
“ Upupx, εqq, upx, 0q “ x.

The vector field U is called a generator of the change.
Throughout this article, we will often use generators instead of the change in variables

itself. In this case, the transformed vector field is denoted by U ˚˚ F :“ Φ ˚ F and it can be
expressed in terms of nested Lie products (see [7,16,44] and references therein) as

U ˚˚ F “ F` rF, Us ` 1
2! rrF, Us, Us ` 1

3! rrrF, Us, Us, Us ` ¨ ¨ ¨ . (7)

In this context, the orbital normal form procedure consists of determining µ, U such
that U ˚˚ pp1` µqFq is as simple as possible.

It is straightforward to show that we can express the transformed vector field in terms
of the time-reparametrization µ and the generator Upxq associated with Φ as

U ˚˚ pp1` µqFq “ p1` µqF` rp1` µqF, Us ` 1
2! rrp1` µqF, Us, Us (8)

` 1
3! rrrp1` µqF, Us, Us, Us ` ¨ ¨ ¨

“ F` µF` rF, Us ` rµF, Us ` 1
2! rrF, Us, Us ` 1

2! rrµF, Us, Us

` 1
3! rrrF, Us, Us, Us ` 1

3! rrrµF, Us, Us, Us ` ¨ ¨ ¨ .

From now on, we assume formal expansions for the time-reparametrization and the
generator U in quasi-homogeneous terms; that is,

U “
ÿ

kě1

Uk P
À

kě1Qt
k, µ “

ÿ

kě1

µk P
À

kě1P
t
k.
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Let us introduce the Lie derivative along the principal part Fr of the vector field F:

`k´r : Pt
k´r ÝÑ Pt

k
µk´r ÝÑ ∇µk´r ¨ Fr.

(9)

This is a linear operator, and then we can define a complement to the range of this
operator in Pt

k, which we denote by

pPt
k “ Corp`k´rq.

This means that
Pt

k “ Rangep`k´rq ‘
pPt

k.

On the other hand, we denote by pQt
k a complementary subspace to Kerp`k´rqFr in Qt

k;
that is,

Qt
k “ Kerp`k´rqFr ‘ pQt

k.

Our first main result states that the computation of orbital hypernormal forms can
be achieved taking a reduced time-reparametrization where pµ P

À

kě1
pPt

k and a reduced
generator pU P

À

kě1
pQt

k.

Theorem 2. Let us consider the vector field F given in (2), U P
À

kě1Qt
k and µ P

À

kě1P
t
k. Then,

there exist pU P
À

kě1
pQt

k and pµ P
À

kě1
pPt

k such that

U ˚˚ pp1` µqFq “ pU ˚˚ pp1` pµqFq.

The proof of the above theorem is presented in Appendix A. Theorem 2 is of primary
interest in the applications, because it allows a drastic reduction in the computational effort
in the orbital normal form procedure.

For instance, in the analysis of the Hopf normal form, if we take the unit type t “ p1, 1q,
then the principal part is F0 “ p´y, xqT P Qt

0, and we have

Cor
`

`2j´1
˘

“ Ker
`

`2j´1
˘

“ t0u,

Cor
`

`2j
˘

“ Ker
`

`2j
˘

“ span
!

px2 ` y2qj
)

, for all j ě 1.

Then, the dimension of the subspace pPt
k is 0 (if k is odd) or 1 (if k is even), whereas the

subspace Pt
k has dimension k` 1. On the other hand, if k is even, pQt

k has dimension 2k` 1,
whereas the dimension of Qt

k is 2k` 2 (if k is odd, both spaces have the same dimension).
Theorem 2 is also useful in determining the structure of orbital normal forms, because

this can be done with reduced generators and reduced time-reparametrizations. In particu-
lar, we can restrict the domain of definition of the homological operator given in (6) in the
orbital normal form procedure.

Proposition 1. Let us consider k P N. Then,

RangepLkq “ Range
´

Lk|
pQt

kˆ
pPt

k

¯

.

Proof. It is enough to prove that RangepLkq Ď Range
´

Lk|
pQt

kˆ
pPt

k

¯

, because the converse

inclusion is trivial.
Let us consider Uk P Qt

k and µk P P
t
k. Then,

LkpUk, µkq “ ´rFr, Uks ´ µk Fr.
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As Pt
k “ Rangep`k´rq ‘

pPt
k, we can write µk “ ∇ηk´r ¨ Fr ` pµk for some ηk´r P Pt

k´r
and pµk P

pPt
k. Then, using (4), we obtain:

rFr, Uks ` µkFr “ rFr, Uks ` p∇ηk´r ¨ FrqFr ` pµkFr “ rFr, Uk ´ ηk´rFrs ` pµkFr.

As Qt
k “ Kerp`k´rqFr ‘ pQt

k, we can write Uk ´ ηk´rFr “ δk´rFr ` pUk, for some
δk´r P Kerp`k´rq, pUk P

pQt
k. As δk´r P Kerp`k´rq, we have rFr, δk´rFrs “ 0 (see (4)), and then

rFr, Uks ` µkFr “ rFr, δk´rFrs `
”

Fr, pUk

ı

` pµkFr “
”

Fr, pUk

ı

` pµkFr,

which implies that LkpUk, µkq “ Lk

´

pUk, pµk

¯

.

4. Orbital Hypernormal Form Procedure

The orbital hypernormal form procedure consists of determining a generator
U P

À

kě1Qt
k and a time-reparametrization with µ P

À

kě1P
t
k that lead system (2) to its sim-

plest expression. Recall that, from Theorem 2, we can take a reduced generator pU P
À

kě1
pQt

k
and a reduced time-reparametrization with pµ P

À

kě1
pPt

k.
The procedure to reduce system (2) to its simplest expression is essentially nonlinear

in nature (see (8)). Once this has been done (if it is actually possible), we can state that the
system has been reduced to orbital hypernormal form.

The aim of this section is to show that the orbital hypernormal form procedure is
feasible and that, in fact, it is essentially linear and can be carried out recursively.

To this end, it is convenient to write the vector field of system (2) as Fp0q :“ F. Its
quasi-homogeneous expansion is

Fp0q “
8
ÿ

j“0

Fp0qr`j “ Fp0qr ` Fp0qr`1 ` Fp0qr`2 ` ¨ ¨ ¨ , (10)

where Fp0qr`j P Q
t
r`j, for all j ě 0.

In the following subsections, we show how we can simplify as much as possible the
quasi-homogeneous terms degree by degree.

4.1. Orbital Hypernormal Form of Degree r` 1

The first step in the orbital hypernormal form procedure consists of simplifying
the pr ` 1q-th degree quasi-homogeneous term Fp0qr`1, by means of a generator pU1 P

pQt
1

and a time-reparametrization with pµ1 P pPt
1. In this way, the vector field of system (2) is

transformed into Fp1q :“ pU1 ˚˚

´

p1` pµ1qFp0q
¯

. Its quasi-homogeneous expansion is

Fp1q “ Fp0qr `

8
ÿ

j“1

Fp1qr`j “ Fp0qr ` Fp1qr`1 ` Fp1qr`2 ` ¨ ¨ ¨ ,

where Fp1qr`j P Qt
r`j, for all j ě 1. In particular, the pr` 1q-th degree quasi-homogeneous

term is given by
Fp1qr`1 “

´

pU1 ˚˚

´

p1` pµ1qFp0q
¯¯

r`1
.

This fact allows us to introduce the following operator:

NLp1q : pQt
1 ˆ

pPt
1 ÝÑ Qt

r`1
´

pU1, pµ1

¯

Ñ Fp0qr`1 ´
´´

pU1

¯

˚˚

´

p1` pµ1qFp0q
¯¯

r`1
.
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We observe that we can write Fp1qr`1 as

Fp1qr`1 “ Fp0qr`1 ´NLp1q
´

pU1, pµ1

¯

.

We have denoted the above operator by NL to indicate that the operator could be
nonlinear (in fact, this happens in the cases that we will present in the following subsections
corresponding to higher-degree orbital hypernormal forms). However, in the current case,
the quoted operator is linear. Namely, from (8), we have that the pr` 1q-th degree quasi-
homogeneous term of Fp1q is

Fp1qr`1 “ Fp0qr`1 `
”

Fp0qr , pU1

ı

` pµ1Fp0qr ,

and then NLp1q ” Lp1q, where

Lp1q : pQt
1 ˆ

pPt
1 ÝÑ Qt

r`1
´

pV1, pν1

¯

Ñ ´

”

Fp0qr , pV1

ı

´ pν1Fp0qr

is the homological operator (compare this linear operator with the one defined in (6)).
To reduce pr` 1q-th degree quasi-homogeneous term to orbital hypernormal form, we

follow the basic idea of the normal form theory. Namely, we consider a complementary
subspace Cor

´

Lp1q
¯

to the range of the operator Lp1q in Qt
r`1, i.e.,

Qt
r`1 “ Range

´

Lp1q
¯

‘Cor
´

Lp1q
¯

.

Then, by splitting Fp0qr`1 “ Fp0q,rr`1 `Fp0q,cr`1 , where Fp0q,rr`1 P Range
´

Lp1q
¯

, Fp0q,cr`1 P Cor
´

Lp1q
¯

,

and selecting
´

pU1, pµ1

¯

P pQt
1 ˆ

pP1 such that Lp1q
´

pU1, pµ1

¯

“ Fp0q,rr`1 , we obtain

Fp1q “ Fp0qr ` Fp0q,cr`1 `

8
ÿ

j“2

Fp1qr`j “ Fp0qr ` Fp0q,cr`1 ` Fp1qr`2 ` Fp1qr`3 ` ¨ ¨ ¨ .

Roughly speaking, the orbital hypernormal form procedure at degree r` 1 eliminates
in Fp0qr`1 the part belonging to Range

´

Lp1q
¯

and then we achieve Fp1qr`1 “ Fp0q,cr`1 P Cor
´

Lp1q
¯

.

Finally, we observe that the operator NLp1q ” Lp1q depends on Fp0qr and we can make
explicit this dependence (when necessary) by writing Lp1q “ Lp1q!

Fp0qr

).

4.2. Orbital Hypernormal Form of Degree r` 2

The second step of the orbital hypernormal form procedure consists of simplifying
the pr ` 2q-th degree quasi-homogeneous term Fp1qr`2 of the vector field Fp1q. It is done
by means of a generator pU “ pU1 ` pU2 P pQt

1 ‘
pQt

2 and a time-reparametrization with
pµ “ pµ1 ` pµ2 P pPt

1 ‘
pPt

2.
Since we do not want to modify the pr` 1q-th degree term (which has already been

simplified in the first step), we choose
´

pU1, pµ1

¯

P Ker
´

NLp1q
¯

. In this way, the vector field

Fp1q is transformed into

Fp2q “ Fp0qr ` Fp1qr`1 `

8
ÿ

j“2

Fp2qr`j “ Fp0qr ` Fp1qr`1 ` Fp2qr`2 ` Fp2qr`3 ` ¨ ¨ ¨ ,
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where Fp1qr`1 P Cor
´

Lp1q
¯

and Fp2qr`j P Q
t
r`j, for all j ě 2. In particular, the pr` 2q-th degree

quasi-homogeneous term is given by

Fp2qr`2 “
´

pU ˚˚

´

p1` pµqFp1q
¯¯

r`2
.

As in the previous case, we define the nonlinear operator

NLp2q : Ker
´

NLp1q
¯

‘

´

pQt
2 ˆ

pPt
2

¯

ÝÑ Qt
r`2

´

pU, pµ
¯

“

´

pU1, pµ1

¯

`

´

pU2, pµ2

¯

Ñ Fp1qr`2 ´
´

pU ˚˚

´

p1` pµqFp1q
¯¯

r`2
.

The orbital hypernormal form at degree r` 2 is obtained by selecting
´

pU, pµ
¯

adequately

in order to eliminate the part of Fp1qr`2 belonging to Range
´

NLp2q
¯

. Unfortunately, this is not
a feasible task because the above operator is nonlinear. Namely, from (8), we obtain

NLp2q
´

pU, pµ
¯

“ ´pµ1Fp1qr`1 ´ pµ2Fp0qr ´

”

Fp1qr`1, pU1

ı

´

”

pµ1Fp0qr , pU1

ı

´

”

Fp0qr , pU2

ı

´ 1
2!

””

Fp0qr , pU1

ı

, pU1

ı

,

and we can see that pU1 appears "quadratically" in the last term of the above expression.
Therefore, we can define neither complementary subspaces to the range of NLp2q nor the
orbital hypernormal form of degree r ` 2 in a straightforward way. To overcome this
difficulty, we notice that

”

Fp0qr , pU1

ı

“ ´pµ1Fp0qr because
´

pU1, pµ1

¯

P Ker
´

Lp1q
¯

. Using (3),
we obtain

””

Fp0qr , pU1

ı

, pU1

ı

“ ´

”

pµ1Fp0qr , pU1

ı

“ ´

´

∇pµ1 ¨ pU1

¯

Fp0qr ´ pµ1

”

Fp0qr , pU1

ı

“ ´

´

∇pµ1 ¨ pU1 ´ pµ2
1

¯

Fp0qr .

Hence, we have

NLp2q
´

pU, pµ
¯

“ 1
2!

´

∇pµ1 ¨ pU1 ´ pµ2
1

¯

Fp0qr ´

”

Fp1qr`1, pU1

ı

´

”

Fp0qr , pU2

ı

´ pµ1Fp1qr`1 ´ pµ2Fp0qr

“ ´

”

Fp0qr , pU2

ı

´

´

pµ2 ´
1
2∇pµ1 ¨ pU1 `

1
2 pµ

2
1

¯

Fp0qr ´

”

Fp1qr`1, pU1

ı

´ pµ1Fp1qr`1.

As Pt
2 “ Rangep`2´rq ‘ pPt

2, we can write
´

pµ2 ´
1
2∇pµ1 ¨ pU1 `

1
2 pµ

2
1

¯

“ `2´rpη2´rq ` pν2 “ ∇η2´r ¨ F
p0q
r ` pν2,

for some η2´r P P
t
2´r, pν2 P pPt

2. Observe that η2´r and pν2 depend nonlinearly on pµ1 and pU1.
Now, using (4), we can write

NLp2q
´

pU, pµ
¯

“ ´

”

Fp0qr , pU2

ı

´

´

∇η2´rFp0qr

¯

Fp0qr ´ pν2Fp0qr ´

”

Fp1qr`1, pU1

ı

´ pµ1Fp1qr`1

“ ´

”

Fp0qr , pU2 ´ η2´rFp0qr

ı

´ pν2Fp0qr ´

”

Fp1qr`1, pU1

ı

´ pµ1Fp1qr`1.

As Qt
2 “ Kerp`2´rqF

p0q
r ‘ pQt

2, we can write

pU2 ´ η2´rFp0qr “ δ2´rFp0qr ` pV2,

for some δ2´r P Kerp`2´rq, pV2 P pQt
2. Therefore,

NLp2q
´

pU, pµ
¯

“ ´

”

Fp0qr , δ2´rFp0qr

ı

´

”

Fp0qr , pV2

ı

´ pν2Fp0qr ´

”

Fp1qr`1, pU1

ı

´ pµ1Fp1qr`1.
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As δ2´r P Kerp`2´rq, using (4), we obtain
”

Fp0qr , δ2´rFp0qr

ı

“ ´

´

∇δ2´rFp0qr

¯

Fp0qr “ 0,
which leads to the following expression:

NLp2q
´

pU, pµ
¯

“ ´

”

Fp0qr , pV2

ı

´ pν2Fp0qr ´

”

Fp1qr`1, pU1

ı

´ pµ1Fp1qr`1.

This fact allows us to define the following linear (homological) operator:

Lp2q : Ker
´

Lp1q
¯

‘

´

pQt
2 ˆ

pPt
2

¯

ÝÑ Qt
r`2

´

pV, pν
¯

“

´

pV1 ` pV2, pν1 ` pν2

¯

Ñ ´

”

Fp0qr , pV2

ı

´ pν2Fp0qr ´

”

Fp1qr`1, pV1

ı

´ pν1Fp1qr`1.

Observe that we have

NLp2q
´

pU1 ` pU2, pµ1 ` pµ2

¯

“ Lp2q
´

pV1 ` pV2, pν1 ` pν2

¯

,

where pV1 “ pU1, pν1 “ pµ1 and pV2, pν2 have been obtained previously. This means that

Range
´

NLp2q
¯

Ď Range
´

Lp2q
¯

.

In fact, in Theorem 3, we will show that Range
´

NLp2q
¯

“ Range
´

Lp2q
¯

. Thus,

although NLp2q is a nonlinear operator, its range is a subspace of Qt
r`2 because it agrees

with the range of a linear operator. Hence, we can use the basic ideas of the normal form
theory to simplify the pr ` 2q-order quasi-homogeneous term. Namely, we consider a
complement Cor

´

Lp2q
¯

to Range
´

Lp2q
¯

in Qt
r`2, i.e.,

Qt
r`2 “ Range

´

Lp2q
¯

‘Cor
´

Lp2q
¯

.

Then, we split Fp1qr`2 “ Fp1q,rr`2 ` Fp1q,cr`2 , with Fp1q,rr`2 P Range
´

Lp2q
¯

, Fp1q,cr`2 P Cor
´

Lp2q
¯

,

and we select
´

pU, pµ
¯

P Ker
´

NLp1q
¯

‘

´

pQt
2 ˆ

pPt
2

¯

such that

NLp2q
´

pU, pµ
¯

“ Fp1q,rr`2 .

In this way, we reduce the vector field of system (2) to orbital hypernormal form up to
degree r` 2

Fp2q “ Fp0qr ` Fp1qr`1 ` Fp1q,cr`2 `

8
ÿ

j“3

Fp2qr`j “ Fp0qr ` Fp1qr`1 ` Fp1q,cr`2 ` Fp2qr`3 ` Fp2qr`4 ` ¨ ¨ ¨ .

Roughly speaking, the orbital hypernormal form procedure at degree r` 2 does not
change the quasi-homogeneous term of degree r` 1 and eliminates in Fp1qr`2 the part belong-

ing to Range
´

Lp2q
¯

. Then, we achieve Fp1qr`1 P Cor
´

Lp1q
¯

and Fp2qr`2 “ Fp1q,cr`2 P Cor
´

Lp2q
¯

.

We finally observe that the operator Lp2q depends on Fp0qr , Fp1qr`1 and we can make

explicit this dependence (when necessary) by writing Lp2q “ Lp2q!

Fp0qr ,Fp1qr`1

).

4.3. Orbital Hypernormal Form of Degree r` N

Let us assume that the vector field of system (2) has been reduced to the following
orbital hypernormal form of degree r` N ´ 1:

FpN´1q “ Fp0qr ` Fp1qr`1 ` ¨ ¨ ¨ ` FpN´1q
r`N´1 `

ÿ

jěN

FpN´1q
r`j ,
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where Fp1qr`1 P Cor
´

Lp1q
¯

, Fp2qr`2 P Cor
´

Lp2q
¯

, . . . , FpN´1q
r`N´1 P Cor

´

LpN´1q
¯

and FpN´1q
r`j P

Qt
r`j, for all j ě N.

Now, we describe the procedure of simplifying the pr` Nq-th degree quasi-homoge-
neous term FpN´1q

r`N´1 of the vector field FpN´1q.
We use a generator pU “ pU1 ` pU2 ` ¨ ¨ ¨ ` pUN P

ÀN
j“1

pQt
j and a time-reparametrization

with pµ “ pµ1 ` pµ2 ` ¨ ¨ ¨ ` pµN P
ÀN

j“1
pPt

j. The vector field FpN´1q is transformed into

FpNq “ pU ˚˚

´

p1` pµqFpN´1q
¯

.
Since we do not want to modify the quasi-homogeneous terms having degree less

than pr` N ´ 1q (which have already been simplified in the previous steps), we choose
´

pU1 ` ¨ ¨ ¨ ` pUN´1, pµ1 ` ¨ ¨ ¨ ` pµN´1

¯

P Ker
´

NLpN´1q
¯

.

In this way, FpNq agrees with FpN´1q up to degree r` N ´ 1; that is,

FpNq “ Fp0qr ` Fp1qr`1 ` ¨ ¨ ¨ ` FpN´1q
r`N´1 `

8
ÿ

j“N

FpNqr`j .

Moreover, the pr` Nq-th quasi-homogeneous term of FpNq is

FpNqr`N “
´

pU ˚˚

´

p1` pµqFpN´1q
¯¯

r`N
.

This suggests that the following nonlinear operator can be defined:

NLpNq : Ker
´

NLpN´1q
¯

‘

´

pQt
N ˆ

pPt
N

¯

ÝÑ Qt
r`N

´

pU, pµ
¯

“

´

řN´1
j“1

pUj,
řN´1

j“1 pµj

¯

`

´

pUN , pµN

¯

Ñ FpN´1q
r`N ´

´

pU ˚˚

´

p1` pµqFpN´1q
¯¯

r`N
.

The simplification in the r` N degree quasi-homogeneous term is obtained by select-
ing

´

pU, pµ
¯

adequately in order to eliminate the part of FpN´1q
r`N belonging to Range

´

NLpNq
¯

.
Unfortunately, this is not a feasible task because this is a nonlinear operator. Moreover,
as we cannot define complementary subspaces to the range of NLpNq, we cannot define a
pr` Nq-order orbital hypernormal form.

To overcome this difficulty, we define the following linear (homological) operator:

LpNq : Ker
´

LpN´1q
¯

‘

´

pQt
N ˆ

pPt
N

¯

ÝÑ Qt
r`N

´

pV, pν
¯

“

´

řN´1
j“1

pVj,
řN´1

j“1 pνj

¯

`

´

pVN , pνN

¯

Ñ ´

N´1
ÿ

j“0

´”

FpN´1q
r`j , pVN´j

ı

` pνN´jF
pN´1q
r`j

¯

.

In Appendix B, we prove the following result.

Theorem 3. Range
´

NLpNq
¯

“ Range
´

LpNq
¯

.

The above theorem states that Range
´

NLpNq
¯

is a subspace of Qt
r`N , because it agrees

with the range of the linear operator LpNq. Hence, we can use again the basic ideas of the
normal form theory to simplify the pr` Nq-order quasi-homogeneous term. Namely, we
consider a complement Cor

´

LpNq
¯

to Range
´

LpNq
¯

in Qt
r`N , i.e.,

Qt
r`N “ Range

´

LpNq
¯

‘Cor
´

LpNq
¯

.
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By splitting FpN´1q
r`N “ FpN´1q,r

r`N ` FpN´1q,c
r`N , with FpN´1q,r

r`N P Range
´

LpNq
¯

,

FpN´1q,c
r`N P Cor

´

LpNq
¯

, and selecting
´

pU, pµ
¯

P Ker
´

NLpN´1q
¯

‘

´

pQt
N ˆ

pPt
N

¯

such that

NLpNq
´

pU, pµ
¯

“ Fp1q,rr`N ,

we achieve FpNqr`N “ FpN´1q
r`N ´NLpNq

´

pU, pµ
¯

“ FpN´1q,c
r`N P Cor

´

LpNq
¯

.

In this way, the vector field FpN´1q is transformed into

FpNq “ Fp0qr ` Fp1qr`1 ` ¨ ¨ ¨ ` FpN´1q
r`N´1 ` FpNqr`N `

8
ÿ

j“r`N`1

FpNqr`j ,

where FpNqr`N P Cor
´

LpNq
¯

.

We notice that the operator LpNq depends on Fp0qr , Fp1qr`1, . . . , FpN´1q
r`N´1 and we make

explicit this dependence by writing LpNq “ LpNq!

Fp0qr ,Fp1qr`1,...,FpN´1q
r`N´1

).

In summary, a pr` Nq-order orbital hypernormal form for system (2) is

FpNq “ Fp0qr ` Fp1qr`1 ` ¨ ¨ ¨ ` FpN´1q
r`N´1 ` FpNqr`N ` ¨ ¨ ¨ ,

where Fpkqr`k P Cor
´

Lpkq
¯

, a complementary subspace to Range
´

Lpkq
¯

in Qt
r`k, for each

k “ 1, . . . , N. In this case, Lpkq “ Lpkq
!

Fp0qr ,Fp1qr`1,...,Fpk´1q
r`k´1

)

.

4.4. Formal Orbital Hypernormal Form

Let us consider system (2). If the normalization procedure is carried out as described
before, first for degree r` 1, later for degree r` 2, and so on, we obtain a formal orbital
hypernormal form for system (2) that corresponds to N “ 8.

Definition 1. A vector field Fp8q “
ř

jě0 Fpjqr`j, where Fpjqr`j P Qt
r`j for j ě 0, is an orbital

hypernormal form for system (2) if

FpNqr`N P Cor
´

LpNq
¯

, for all N P N,

where Cor
´

LpNq
¯

is a complementary subspace to Range
´

LpNq
¯

in Qt
r`N . In this case, LpNq “

LpNq
!

Fp0qr ,Fp1qr`1,...,FpN´1q
r`N´1

)

.

We remark that, if vector field Fp8q “
ř

jě0 Fpjqr`j is an orbital hypernormal form

for system (2), then we have that Fp1qr`1 P Cor
´

Lp1q
!

Fp0qr

)

¯

, Fp2qr`2 P Cor
´

Lp2q
!

Fp0qr ,Fp1qr`1

)

¯

,

Fp3qr`3 P Cor
´

Lp3q
!

Fp0qr ,Fp1qr`1,Fp2qr`2

)

¯

, and so on.

On the contrary, the vector field Fp8q “
ř

jě0 Fpjqr`j is not an orbital hypernormal form
for system (2) provided one of the following conditions holds:

• Fp1qr`1 R Cor
´

Lp1q
!

Fp0qr

)

¯

, or

• Fp1qr`1 P Cor
´

Lp1q
!

Fp0qr

)

¯

but Fp2qr`2 R Cor
´

Lp2q
!

Fp0qr ,Fp1qr`1

)

¯

, or

• Fp1qr`1 P Cor
´

Lp1q
!

Fp0qr

)

¯

and Fp2qr`2 P Cor
´

Lp2q
!

Fp0qr ,Fp1qr`1

)

¯

, but

Fp3qr`3 R Cor
´

Lp3q
!

Fp0qr ,Fp1qr`1,Fp2qr`2

)

¯

, etc.

We notice that the orbital hypernormal form procedure provides the simplest analyti-
cal expression degree by degree (i.e., no further simplifications are possible).
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5. Orbital Normal Forms vs. Orbital Hypernormal Forms

Obviously, orbital hypernormal forms are simpler than orbital normal forms. Nev-
ertheless, in some situations, classical orbital normal forms agree with orbital hypernor-
mal forms.

The next theorem provides a condition that warrants that the above-mentioned fact occurs.

Theorem 4. Let us consider the homological operator Lk defined in (6) and assume that
KerpLkq “ tp0, 0qu, for all k P N. Then, classical orbital normal forms agree with orbital hy-
pernormal forms.

The proof of the above theorem is a consequence of Theorem 3 and the following result.

Proposition 2. Let us assume that KerpLkq “ tp0, 0qu, for all k P N. Then,

Ker
´

LpNq
¯

“ tp0, 0qu, and Range
´

LpNq
¯

“ RangepLNq, for all N P N.

Proof. We use induction on N.
The result for N “ 1 is trivial because RangepL1q “ Range

´

Lp1q
¯

and we assume
KerpL1q “ tp0, 0qu.

Let us assume that the statement is true for N ´ 1, where N ą 1. By the induction
hypothesis, we have Ker

´

LpN´1q
¯

“ tp0, 0qu. Therefore, using Proposition 1, we obtain

Range
´

LpNq
¯

“ LpNq
´

Ker
´

LpN´1q
¯

‘

´

pQt
N ˆ

pPt
N

¯¯

“ LpNq
´

tp0, 0qu ‘
´

pQt
N ˆ

pPt
N

¯¯

“ LN

´

pQt
N ˆ

pPt
N

¯

“ RangepLNq.

On the other hand, if
´

pV, pν
¯

“

´

pV1 ` ¨ ¨ ¨ ` pVN´1, pν1 ` ¨ ¨ ¨ ` pνN´1

¯

`

´

pVN , pνN

¯

P Ker
´

LpNq
¯

,

then
´

pV1 ` ¨ ¨ ¨ ` pVN´1, pν1 ` ¨ ¨ ¨ ` pνN´1

¯

P Ker
´

LpN´1q
¯

“ tp0, 0qu.

Hence, LpNq
´

pV, pν
¯

“ LN

´

pVN , pνN

¯

“ 0, i.e., ppVN , pνNq P KerpLNq “ tp0, 0qu.

Therefore,
´

pV, pν
¯

“ p0, 0q. In summary,

Ker
´

LpNq
¯

“ tp0, 0qu,

i.e., the statement is also true for N.

6. Orbital Hypernormal Forms for Planar Systems

The analysis of normal forms for planar systems and related questions (center prob-
lem, integrability, etc.) has been considered in [45]. In this study, a splitting of quasi-
homogeneous planar vector fields is of great interest. Namely, let us denote the symplectic
2ˆ 2 canonical matrix by

J “
ˆ

0 ´1
1 0

˙

.

The Hamiltonian vector field defined by a Hamiltonian hpxq, where x “ px, yq P R2, is
denoted by Xh “ J∇h. Then, any quasi-homogeneous planar vector field Fk P Qt

k can be
univocally written as the sum of a radial vector field and a Hamiltonian vector field:

Fk “
1

r`|t|dkD0 `
1

r`|t|Xhk
, (11)
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where dk “ divpFkq P Pt
k is the divergence of Fk, D0 “ pt1x, t2yqT P Qt

0 is a radial quasi-
homogeneous vector field and hk “ D0 ^ Fk P P

t
k`|t|. Recall that the wedge product of two

planar vector fields F, G is defined as F^G “ FT JG.
There are two properties that we use in our study of the planar case: the first is Euler’s

Theorem, which states that ∇µk ¨D0 “ k µk for each µk P P
t
k, and also that rFk, D0s “ kFk,

for any Fk P Qt
k.

According to (11), we can write the principal part Fr of (2) as

Fr “ Xhr`|t|
` drD0, where hr`|t| P P

t
r`|t|, dr P P

t
r.

Let us denote by rPt
k`|t| a complementary subspace to hr`|t|P

t
k´r in Pt

k`|t|; that is,

Pt
k`|t| “ hr`|t|P

t
k´r ‘

rPt
k`|t|.

Let also define the linear operator

r`k`|t| : rPt
k`|t| ÝÑ

rPt
r`k`|t|

rµk`|t| P
rPt

k`|t| ÝÑ
r`k`|t|

´

rµk`|t|

¯

“ Proj
rPt

r`k`|t|

´

∇rµk`|t| ¨
´

Fr ´
k`|t|

r`k`|t|drD0

¯¯

.

The following result follows from [46] (Theorem 3.18).

Proposition 3. Let us assume that Ker
´

r`k`|t|

¯

“ t0u. Then,

CorpLkq “ X
Cor

´

r`k`|t|

¯ ‘ pPt
r`k D0

is a complementary subspace to the range of Lk. Moreover,

KerpLkq “ tpηkD0,´rηkq : ηk P Kerp`k´rqu.

From Proposition 3, we deduce

Corollary 1. Let us assume that Kerp`kq “ Ker
´

r`k`|t|

¯

“ t0u, for all k P N. Then, orbital
normal forms agree with orbital hypernormal forms.

We remark that the hypothesis Kerp`kq “ t0u, for all k P N, holds if, and only if, Fr is
not polynomially integrable.

A Takens–Bogdanov Singularity

Our goal here is to obtain an orbital hypernormal form for higher-order perturbations
of a non-integrable quasi-homogeneous Takens–Bogdanov singularity, which has been
analyzed in [46].

According to Propositions 2.5 and 2.13 of the quoted paper, there exists r P N0 such
that the system can be written as

9x “ Fpxq “ Frpxq ` Fr`1pxq ` ¨ ¨ ¨ , (12)

and Fk P Qt
k, for k ě r, being t “ p1, r` 1q. The principal part is

Frpx, yq “
ˆ

y` dxr`1

σpr` 1qx2r`1 ` pr` 1qdxry

˙

P Qt
r, (13)

where σ “ ˘1. As we assume that Fr is not integrable, then we have d ‰ 0 if σ “ ´1, or
d R QX r´1, 1s if σ “ `1.
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Notice that, for r “ 0, the principal part (13) is a vector field associated with a linear
system with nonzero trace, and then we deal with a linear focus, node or saddle with
nonzero divergence.

Our orbital hypernormal form analysis starts by characterizing the kernel and a
complement to the range of the Lie derivative operator (9) associated with the principal
part (13).

Proposition 4. Let us consider k P N, k ą r, and denote by k1 and k2, respectively, the quotient
and the rest of the division pk´ rq ˜ pr` 1q; that is,

k´ r “ k1pr` 1q ` k2, with k1, k2 P N, 0 ď k2 ď r.

Then,
(a) Kerp`k´rq “ t0u.

(b) If k2 “ 0, then the complementary subspace to Rangep`k´rq is the trivial subspace pPt
k “ t0u.

If k2 ą 0, then a complementary subspace to Rangep`k´rq is pPt
k “ span

!

xk
)

.

Proof. As Fr is not polynomially integrable, then Kerp`k´rq “ t0u, and then item (a) holds.
To prove item (b), we first introduce adequate bases for the spaces Pt

k´r and Pt
k. We

deal with the cases k2 “ 0 and k2 ą 0 separately.
If k2 “ 0, a basis of Pt

k´r is Bk´r “
!

xipr`1qyk1´i : i “ 0, . . . , k1

)

and a basis of

Pt
k is Bk “

!

xipr`1q`ryk1´i : i “ 0, . . . , k1

)

. As dim
´

Pt
k´r

¯

“ k1 ` 1 “ dim
`

Pt
k

˘

and

Kerp`k´rq “ t0u, we deduce that `k´r is onto and then pPt
k “ t0u.

If k2 ą 0, a basis of Pt
k´r is Bk´r “

!

xk2`ipr`1qyk1´i : i “ 0, . . . , k1

)

and a basis of Pt
k is

Bk “
!

xk2´1`ipr`1qyk1`1´i : i “ 0, . . . , k1 ` 1
)

. In this case, we have dim
´

Pt
k´r

¯

“ k1 ` 1

and dim
`

Pt
k

˘

“ k1 ` 2. Hence, dim
´

pPt
k

¯

“ 1. Next, we determine the matrix of the linear
operator `k´r with respect to the bases Bk´r and Bk given before. After some computations,
it is easily obtained that

`k´r

´

xk2`ipr`1qyk1´i
¯

“ pk2 ` ipr` 1qq xk2´1`ipr`1qyk1`1´i ` pk´ rqd xk2`r`ipr`1qyk1´i

`σpr` 1qpk1 ´ iq xk2´1`pi`2qpr`1qyk1´1´i.

Then, the matrix of the linear operator `k´r, associated with the bases given for Pt
k´r

and Pt
k, is a banded matrix whose non-zero entries are confined to the main diagonal, and

to the first and second subdiagonals:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

α0
β0 α1

γ0 β1
. . .

γ1
. . . . . .
. . . . . . αk1

γk1´1 βk1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where

αi “ k2 ` ipr` 1q ‰ 0, for i “ 0, . . . , k1,

βi “ pk´ rqd, for i “ 0, . . . , k1,

γi “ σpr` 1qpk1 ´ iq, for i “ 0, . . . , k1 ´ 1.
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It is a simple matter to show that a complement to the column space of the above matrix
is generated by the vector p0, . . . , 0, 1qT . Therefore, pPt

k “ span
!

xk
)

is a complementary
subspace to Rangep`k´rq.

Proposition 5. Let us consider k P N, k ą r, and assume that σ “ ´1, or σ “ `1 and
|d| ‰ 1` 2pr`1q

k´r . Then,

Ker
´

r`k`2

¯

“ Cor
´

r`k`2

¯

“ t0u.

Proof. Let us consider the following bases for the subspaces rPt
k`2, rPt

r`k`2:

rPt
k`2 “ span

!

xk`2, xk´r`1y
)

, rPt
r`k`2 “ span

!

xr`k`2, xk`1y
)

,

and an arbitrary element rµk`2 “ a0xk`2 ` a1xk´r`1y P rPt
k`2. Using that

y2 “ σx2r`2 ´ 2hr`|t|, it is a straightforward computation to show that

r`k`2prµk`2q “ Proj
rPt

r`k`2

´´

dpk´rqpk`2q
r`k`2 a0 ` σpk` 2qa1

¯

xr`k`2

`

´

pk` 2qa0 `
dpk´rqpk`2q

r`k`2 a1

¯

xk`1y´ 2pk´ r` 1qa1xk´rhr`|t|

¯

.

Then, the matrix associated with the linear transformation r`k`2 is

pk` 2q

˜

d k´r
r`k`2 σ

1 d k´r
r`k`2

¸

.

To obtain the result, it is enough to observe that the above matrix is nonsingular if
σ “ ´1 or if σ “ `1 and |d| ‰ 1` 2pr`1q

k´r .

The next theorem presents an orbital hypernormal form for system (12).

Theorem 5. Let us consider system (12), where Fr is given in (13). Let us assume that d P R and
also that

• σ “ ´1 and d ‰ 0, or

• σ “ `1, d R QX r´1, 1s and |d| ‰ 1` 2pr`1q
k´r , for all k P N, k ą r.

Then, an orbital hypernormal form is

9x “ Frpxq `
8
ÿ

j“r`1
jır mod pr`1q

cjxjD0, (14)

where D0 “ px, pr` 1qyqT P Qt
0.

Proof. It is enough to apply Propositions 3–5.

We notice that, if r “ 0, then the linearization of system (12) is non-resonant, and
the above theorem agrees with the Poincaré Theorem, which states that it is analytically
linearizable (see [2]).

The orbital hypernormal form (14) also provides interesting dynamical information for
system (12). The next result characterizes the centers of system (12) by means of the orbital
hypernormal form (14), which evidences the invariants of the vector field that prevent the
center conditions.
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Proposition 6. The origin for system (12) is a center if, and only if, σ “ ´1, and the orbital
hypernormal form (14) is Rx-reversible (i.e., invariant to px, y, tq Ñ p´x, y,´tq).

Proof. The monodromy problem for system (12) has been considered in [47,48], where it is
shown that the quoted system is monodromic if, and only if, σ “ ´1.

The sufficient condition is trivial, because if σ “ ´1 and the orbital hypernormal
form (14) is Rx-reversible, then the equilibrium at the origin of system (14) is monodromic
and reversible and, consequently, it is a center.

Let us prove the necessary condition. If we assume that the origin of system (12) is a
center, then it is monodromic and σ must be equal to´1. Moreover, the origin of the orbital
hypernormal form (14) is also a center.

Let us prove by reductio ad absurdum that the orbital hypernormal form (14) is
Rx-reversible. Let us suppose on the contrary that system (14) is not Rx-reversible. Then,
there exists j even such that cj ‰ 0 and we denote by j “ 2k the lowest index satisfying
c2k ‰ 0. Let us also denote by H the vector field associated with the orbital hypernormal
form (14); that is,

H “ Fr `

8
ÿ

j“r`1
jır mod pr`1q

cjxjD0,

and define

G “ J 2k´1pHq “ Fr `

2k´1
ÿ

j“r`1
jır mod pr`1q

cjxjD0.

Notice that the vector field G has a center at the origin because it is monodromic and
reversible. On the other hand, after some computations, we obtain

H^G “

¨

˚

˚

˝

G`

8
ÿ

j“2k
jır mod pr`1q

cjxjD0

˛

‹

‹

‚

^G “

8
ÿ

j“2k
jır mod pr`1q

cjxjD0 ^G

“

8
ÿ

j“2k
jır mod pr`1q

cjxjD0 ^

¨

˚

˚

˝

Fr `

2k´1
ÿ

j“r`1
jır mod pr`1q

cjxjD0

˛

‹

‹

‚

“

8
ÿ

j“2k
jır mod pr`1q

cjxjD0 ^ Fr

“ c2kx2kD0 ^ Fr ` ¨ ¨ ¨ “ ´pr` 1qc2kx2k
´

x2r`2 ` y2
¯

` ¨ ¨ ¨ ,

where the dots denote higher-order quasi-homogeneous terms. As c2k ‰ 0, we deduce
that H^G is a negative semidefinite function that is nonzero almost everywhere in the
neighborhood of the origin. Hence, the origin of H is a focus (stable if c2k ą 0 or unstable if
c2k ă 0), but this is a contradiction because the origin of the orbital hypernormal form (14)
is a center.

As a consequence of the above proposition, we obtain (by using a different approach)
the following result of [49].

Corollary 2. The origin for system (12) is a center if, and only if, σ “ ´1, and it is formally
orbital reversible.
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Appendix A. Proof of Theorem 2

Let us consider system (2), a near-identity transformation of the state variables asso-
ciated with a generator U P

À

kě1Qt
k and a time-reparametrization dt

dT “ 1` µpxq, with
µ P

À

kě1P
t
k. Theorem 2 states that

U ˚˚ pp1` µqFq “ pU ˚˚ pp1` pµqFq, (A1)

for some pU P
À

kě1
pQt

k and pµ P
À

kě1
pPt

k. This means that instead of performing on
system (2) an arbitrary orbital transformation, we can also do so with a reduced or-
bital transformation (with the time-reparametrization pµ P

À

kě1
pPt

k and the generator
pU P

À

kě1
pQt

k).
The expression for the transformed vector field U ˚˚ F by means of the generator U is

presented in (7). To write this formula in a compact form, we introduce the following operators:

T p0qU pFq :“ F, and T plqU pFq :“ T pl´1q
U

´

rF, Us
¯

, for l ě 1.

As T plqU pFq “

l times
hkkikkj

r ¨ ¨ ¨ rF, U s, ¨ ¨ ¨ , U s, then formula (7) can be written as

U ˚˚ F “
8
ÿ

l“0

1
l!
T plqU pFq.

Using the above notation, the expression (8) corresponding to the transformed vector
field of F by a generator U and a time-reparametrization dt

dT “ 1` µpxq reads as

U ˚˚ pp1` µqFq “

8
ÿ

l“0

1
l!T

plq
U

´

p1` µqF
¯

“ F` rF, Us ` µF`
8
ÿ

l“1

1
pl`1q!T

plq
U

´

rF, Us ` pl ` 1qµF
¯

. (A2)

The proof of Theorem 2 requires the following technical result, which states that the
near-identity transformations associated with generators that are multiple of the principal
part Fr can be avoided in the orbital normal form procedure, since the simplifications
obtained through them can also be obtained through time-reparametrizations.

Lemma A1. Let us consider the vector field F of system (2). Let also consider αk´r P P
t
k´r (where

k ě r) and µ P
À

jě1P
t
j. Then, there exists qµ “

ř

jě1 qµj P
À

jě1P
t
j, such that

pαk´rFq ˚˚
´

p1` µqF
¯

“ p1` qµqF.

Moreover, qµ and µ agree up to quasi-homogeneous degree k´ 1, i.e., J k´1pqµq “ J k´1pµq, and
qµk “ µk ´∇αk´r ¨ Fr.

Proof. Firstly, we will show using induction that, for each l P N, there exists
qµplq P

À

jělkP
t
j satisfying:

T plqαk´rF

´

p1` µqF
¯

“ qµplqF, (A3)

where qµ
p1q
k “ ´∇αk´r ¨ Fr.
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Let us prove (A3) for l “ 1. Namely, applying successively (3) and (4), we obtain

Tαk´rF

´

p1` µqF
¯

“

”

p1` µqF, αk´rF
ı

“

´

αk´rp∇µ ¨ Fq ´ p1` µqp∇αk´r ¨ Fq
¯

F,

and it is enough to take qµp1q :“ αk´rp∇µ ¨ Fq ´ p1 ` µqp∇αk´r ¨ Fq. Equating quasi-

homogeneous terms, we obtain qµ
p1q
i “ 0 for i “ 1, . . . , k´ 1, and qµ

p1q
k “ ´∇αk´r ¨ Fr.

Next, we assume that (A3) holds for l ´ 1. From (3), we obtain:

T plqαk´rF

´

p1` µqF
¯

“

”

T pl´1q
αk´rF

´

p1` µqF
¯

, αk´rF
ı

“

”

qµpl´1qF, αk´rF
ı

“ qµplqF,

where qµplq :“ αk´r

´

∇qµpl´1q ¨ F
¯

´ qµpl´1qp∇αk´r ¨ Fq. As qµpl´1q P
À

jěpl´1qkP
t
j, it is easy to

show that qµplq P
À

jělkP
t
j. This proves the equality (A3).

Using this equality, we complete the proof as follows:

pαk´rFq ˚˚
´

p1` µqF
¯

“
ř8

l“0
1
l!T

plq
αk´rF

´

p1` µqF
¯

“ p1` µqF`
ř8

l“0
1
l! qµ
plqF

“

´

1` µ`
ř8

l“1
1
l! qµ
plq
¯

F “ p1` qµqF,

where we have introduced qµ :“ µ`
ř

lě1
1
l! qµ
plq.

Let us now prove Theorem 2.

Proof of Theorem 2. Let us define

κ “ min
!

k P N : ProjKerp`k´rqFr
pUkq ‰ 0, or ProjRangep`k´rq

pµkq ‰ 0
)

.

If κ “ 8, then U P
À

jě1
pQt

j and µ P
À

jě1
pPt

j, and the result holds trivially taking
pU “ U, pµ “ µ.

Let us assume κ ă 8. From the definition of κ, we obtain that Uk P
pQk and µk P

pPt
k,

for k “ 1, . . . , κ´ 1.
We make the following ansatz for pU and pµ:

pU “ pU1 ` ¨ ¨ ¨ ` pUκ´1 ` pUκ ` pUκ`1 ` ¨ ¨ ¨ ,
pµ “ pµ1 ` ¨ ¨ ¨ ` pµκ´1 ` pµκ ` pµκ`1 ` ¨ ¨ ¨ ,

where pUj “ Uj P
pQt

j, µj “ pµj P pPt
j, for j “ 1, . . . , κ ´ 1; and we will determine pUj P

pQt
j,

pµj P pPt
j, for j ě κ, such that equality (A1) holds degree by degree.

Firstly, we show how pUκ and pµκ are obtained by dealing with the κ-degree quasi-
homogeneous term. Higher-degree terms of pU and pµ can be obtained by repeating the
reasoning, and then the proof is completed.

As Qt
κ “ Kerp`κ´rqFr ‘ pQt

κ , we can write Uκ “ Up1qκ ` Up2qκ , with Up1qκ “ ρκ´rFr P

Kerp`κ´rqFr (for some ρκ´r P Kerp`κ´rq) and Up2qκ P pQt
κ .

As Pt
κ “ Rangep`κ´rq ‘ pPt

κ , we have µκ “ µ
p1q
κ ` µ

p2q
κ , where µ

p1q
κ “ ∇ηκ´r ¨ Fr P

Rangep`κ´rq (for some ηκ´r P P
t
κ´r) and µ

p2q
κ P pPt

κ .
Let us denote by Φ and Ψ the near-identity transformations associated with the

generators U and ακ´rF, respectively, where we have introduced ακ´r “ ρκ´r ` ηκ´r. If we
consider a generator pU of the transformation Φ ˝Ψ´1, then

U ˚˚

´

p1` µqF
¯

“

´

Φ ˝Ψ´1 ˝Ψ
¯

˚

´

p1` µqF
¯

“

´

Φ ˝Ψ´1
¯

˚

´

Ψ ˚ pp1` µqFq
¯

“ pU ˚˚

´

pακ´rFq ˚˚
´

p1` µqF
¯¯

.
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From Lemma A1, there exists qµ P
À

jě1P
t
j such that

pU ˚˚

´

pακ´rFq ˚˚
´

p1` µqF
¯¯

“ pU ˚˚

´

p1` qµqF
¯

,

where qµ and µ agree up to quasi-homogeneous degree κ´ 1. Moreover,

qµκ “ µκ ´∇ακ´r ¨ Fr “ µκ ´∇ρκ´r ¨ Fr ´∇ηκ´r ¨ Fr “ µ
p1q
κ ` µ

p2q
κ ´∇ηκ´r ¨ Fr “ µ

p2q
κ P pPt

κ .

On the other hand, a generator of the transformation Ψ´1 is ´ακ´rFr ` ¨ ¨ ¨ , where the
dots denote higher-order quasi-homogeneous terms. Using Lemma 2.8 of [35], we obtain
that J κ´1ppUq “ J κ´1pUq, and

pUκ “ Uκ ´ ακ´rFr “ Up1qκ `Up2qκ ´ ρκ´rFr ´ ηκ´rFr “ Up2qκ ´ ηκ´rFr P pQt
κ .

Appendix B. Proof of Theorem 3

Theorem 3 states that Range
´

NLpNq
¯

“ Range
´

LpNq
¯

. This theorem is a consequence
of Propositions A1 and A2 below. Their proofs require some technical results.

Lemma A2. Let us consider the vector field F of system (2). Let also consider
U “

řN
j“1 Uj P

ÀN
j“1Qt

j and ν “
řN

j“1 νj P
ÀN

j“1P
t
j, where N P N, such that

J r`N´1
´

rF, Us ` νF
¯

“ 0.

Then, for each µ “
řN

j“1 µj P
ÀN

j“1P
t
j and l ě 0, we have

´

T plqU pµFq
¯

r`k
“

k
ÿ

j“l`1

µ
plq
j Fr`k´j, for all k “ l ` 1, . . . , l ` N ´ 1,

where

µ
p0q
j “ µj, and µ

plq
j “

j´1
ÿ

i“l

´´

∇µ
pl´1q
i ¨Uj´i

¯

´ µ
pl´1q
i νj´i

¯

P Pt
j. (A4)

Observe that µ
plq
j does not depend on k, i.e., µ

plq
j depends univocally on the pj´ lq-jet

of pU, ν, µq.

Proof. We use induction on l.
For l “ 0, the result is trivial because

´

T p0qU pµFq
¯

r`k
“ pµFqr`k “

k
ÿ

j“1

µjFr`k´j “

k
ÿ

j“1

µ
p0q
j Fr`k´j,

where we have introduced µ
p0q
j “ µj.
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Let us consider l ą 0 and assume that the result is true for l ´ 1. Then,

´

T plqU pµFq
¯

r`k
“

k´l
ÿ

j“1

„

´

T pl´1q
U pµFq

¯

r`k´j
, Uj



“

k´l
ÿ

j“1

»

–

k´j
ÿ

i“l

µ
pl´1q
i Fr`k´j´i, Uj

fi

fl

“

k´l
ÿ

j“1

k´j
ÿ

i“l

”

µ
pl´1q
i Fr`k´j´i, Uj

ı

“

k´1
ÿ

i“l

k´i
ÿ

j“1

”

µ
pl´1q
i Fr`k´j´i, Uj

ı

“

k´1
ÿ

i“l

¨

˝

k´i
ÿ

j“1

´

∇µ
pl´1q
i ¨Uj

¯

Fr`k´j´i

˛

‚`

k´1
ÿ

i“l

µ
pl´1q
i

k´i
ÿ

j“1

”

Fr`k´j´i, Uj

ı

“

k´1
ÿ

i“l

¨

˝

k´i
ÿ

j“1

´

∇µ
pl´1q
i ¨Uj

¯

Fr`k´j´i

˛

‚`

k´1
ÿ

i“l

µ
pl´1q
i rF, Usr`k´i.

As
´

rF, Us ` νF
¯

r`k
“ 0 for k “ 1, . . . , N ´ 1, we obtain

rF, Usr`k´i “ ´pνFqr`k´i “ ´

k´i
ÿ

j“1

νjFr`k´j´i, for i “ l, . . . , k´ 1.

Hence,

´

T plqU pµFq
¯

r`k
“

k´1
ÿ

i“l

k´i
ÿ

j“1

´´

∇µ
pl´1q
i ¨Uj

¯

´ µ
pl´1q
i νj

¯

Fr`k´j´i

“

k
ÿ

j“l`1

˜

k´1
ÿ

i“l

´´

∇µ
pl´1q
i ¨Uj´i

¯

´ µ
pl´1q
i νj´i

¯

¸

Fr`k´j,

and the result is also true for l.

Lemma A3. Let us consider the vector field F of system (2). Let also consider
U “

řN
j“1 Uj P

ÀN
j“1Qt

j, µ “
řN

j“1 µj P
ÀN

j“1P
t
j, where N P N, and denote

H “ F´U ˚˚ pp1` µqFq.

Let us assume that ν “
řN

j“1 νj P
ÀN

j“1P
t
j verifies J r`N´1

´

rF, Us ` νF
¯

“ 0. Then,

Hr`k “ ´

´

rF, Us ` νF
¯

r`k
´

k
ÿ

j“1

¨

˝µj ´ νj `

j´1
ÿ

l“1

µ
plq
j

˛

‚Fr`k´j

“ ´

´

rF, Us ` νF
¯

r`k
´ pµ1 ´ ν1qFr`k´1 ´

´

µ2 ´ ν2 ` µ
p1q
2

¯

Fr`1 ` ¨ ¨ ¨ ,

for all k “ 1, . . . , N, where µ
plq
j are given in (A4). As usual, a sum with no terms evaluates to 0.
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Proof. Using (A2), for each k P N, we obtain

Hr`k “ Fr`k ´
´

U ˚˚ pp1` µqFq
¯

r`k

“ ´

´

rF, Us ` µF
¯

r`k
´

k´1
ÿ

l“1

1
pl ` 1q!

´

T plqU

´

rF, Us
¯¯

r`k
´

k´1
ÿ

l“1

1
l!

´

T plqU pµFq
¯

r`k

“ ´

´

rF, Us ` νF
¯

r`k
´

´

pµ´ νqF
¯

r`k

´

k´1
ÿ

l“1

1
pl ` 1q!

´

T plqU

´

rF, Us
¯¯

r`k
´

k´1
ÿ

l“1

1
l!

´

T plqU pµFq
¯

r`k
.

On the other hand, as we assume that J r`N´1
´

rF, Us ` νF
¯

“ 0, then we obtain
rF, Usr`j “ ´pνFqr`j, for j “ 1, . . . , N ´ 1. Therefore, for all l ě 1, we have

´

T plqU

´

rF, Us
¯¯

r`k
“ ´

´

T plqU pνFq
¯

r`k
, for all k “ 1, . . . , N.

Consequently,

Hr`k “ ´

´

rF, Us ` νF
¯

r`k
´

´

pµ´ νqF
¯

r`k

`

k´1
ÿ

l“1

1
pl ` 1q!

´

T plqU pνFq
¯

r`k
´

k´1
ÿ

l“1

1
l!

´

T plqU pµFq
¯

r`k

“ ´

´

rF, Us ` νF
¯

r`k
´

´

pµ´ νqF
¯

r`k
´

k´1
ÿ

l“1

1
pl ` 1q!

´

T plqU

´

ppl ` 1qµ´ νqF
¯¯

r`k
.

From Lemma A2, we obtain:

´

T plqU

´

ppl`1qµ´νqF
pl`1q!

¯¯

r`k
“

k
ÿ

j“l`1

µ
plq
j Fr`k´j,

for any l “ 1, . . . , k, where µ
plq
j depends univocally on the pj´ lq-jet of pU, ν, µq. Hence,

Hr`k “ ´

´

rF, Us ` νF
¯

r`k
´

´

pµ´ νqF
¯

r`k
´

k´1
ÿ

l“1

k
ÿ

j“l`1

µ
plq
j Fr`k´j

“ ´

´

rF, Us ` νF
¯

r`k
´

k
ÿ

j“1

pµj ´ νjqFr`k´j ´

k
ÿ

j“2

j´1
ÿ

l“1

µ
plq
j Fr`k´j

“ ´

´

rF, Us ` νF
¯

r`k
´ pµ1 ´ ν1qFr`k´1 ´

k
ÿ

j“2

¨

˝µj ´ νj `

j´1
ÿ

l“1

µ
plq
j

˛

‚Fr`k´j,

for each k “ 1, . . . , N.

Lemma A4. Let us consider the vector field F of system (2). Let also consider k, j P N with k ă j,
and αk´r P P

t
k´r. Then,

j
ÿ

i“k

´

“

Fr`j´i, αk´rFr`i´k
‰

` p∇αk´r ¨ Fr`i´kqFr`j´i

¯

“ 0.
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Proof. From (3), we obtain

j
ÿ

i“k

´

“

Fr`j´i, αk´rFr`i´k
‰

` p∇αk´r ¨ Fr`i´kqFr`j´i

¯

“

“

j
ÿ

i“k

´

´ p∇αk´r ¨ Fr`j´iqFr`i´k ´ αk´r
“

Fr`i´k, Fr`j´i
‰

` p∇αk´r ¨ Fr`i´kqFr`j´i

¯

“ ´αk´r

j
ÿ

i“k

“

Fr`i´k, Fr`j´i
‰

`

j
ÿ

i“k

´

´ p∇αk´r ¨ Fr`j´iqFr`i´k ` p∇αk´r ¨ Fr`i´kqFr`j´i

¯

.

In the last line, the first sum is zero because the Lie product is anti-symmetric. More-
over, simplifying the second sum by subtracting out the many self-similar terms, it can be
easily proven that it is zero and then the proof is completed.

Lemma A5. Let us consider the vector field F of system (2). Let us also consider V “
řN

j“1 Vj P
ÀN

j“1Qt
j,

ν “
řN

j“1 νj P
ÀN

j“1P
t
j, where N P N. Then, there exist pV “

řN
j“1

pVj P
ÀN

j“1
pQt

j and

pν “
řN

j“1 pνj P
ÀN

j“1
pPt

j, such that

J r`N
´

rF, Vs ` νF
¯

“ J r`N
´

rF, pVs ` pνF
¯

.

Proof. Let us define κpV, νq “ N ` 1 if ProjKerp`j´rqFr

`

Vj
˘

“ 0 and ProjRangep`j´rq

`

νj
˘

“ 0,
for all j “ 1, . . . , N. Otherwise, we define

κpV, νq “ min
!

i P t1, . . . , Nu : ProjKerp`j´rqFr

`

Vj
˘

‰ 0 or ProjRangep`j´rq

`

νj
˘

‰ 0
)

.

If κpV, νq “ N ` 1, then the result holds trivially by taking pV “ V, pν “ ν, because
V P

ÀN
j“1

pQt
j and ν P

ÀN
j“1

pPt
j.

In the case κpV, νq ă N ` 1, we will show that there exist qV “
řN

j“1
qVj P

ÀN
j“1Qt

j and

qν “
řN

j“1 qνj P
ÀN

j“1P
t
j, verifying

κpqV, qνq ą κpV, νq, and J r`N
´”

F, qV
ı

` qνF
¯

“ J r`N
´

rF, Vs ` νF
¯

. (A5)

Once we prove this, the result is obtained by repeating the reasoning on qV, qν and so
on, until we finally reach pV and pν satisfying κppV, pνq “ N ` 1, which, as mentioned before,
implies pV P

ÀN
j“1

pQt
j, pν P

ÀN
j“1

pPt
j, and J r`N

´

rF, Vs ` νF
¯

“ J r`N
´”

F, pV
ı

` pνF
¯

.

Let us denote κ “ κpV, νq. We make the following ansatz for qV and qν:

qV “ qV1 ` ¨ ¨ ¨ ` qVκ´1 ` qVκ ` qVκ`1 ` ¨ ¨ ¨ ,
qν “ qν1 ` ¨ ¨ ¨ ` qνκ´1 ` qνκ ` qνκ`1 ` ¨ ¨ ¨ ,

where qVj “ Vj P
pQt

j , qνj “ νj P pPt
j , for j “ 1, . . . , κ´ 1, and qVj P

pQt
j , qνj P pPt

j , for j ě κ, will be
determined, indicating that (A5) holds.

To define the κ-degree quasi-homogeneous terms qVκ and qνκ , we notice that

´

rF, Vs ` νF
¯

r`κ
“ rFr, Vκs ` νκFr `

κ´1
ÿ

j“1

´”

Fr`κ´j, qVj

ı

` qνiFr`κ´j

¯

.

Using that Qt
κ “ Kerp`κ´rqFr ‘ pQt

κ , we can write Vκ “ δκ´rFr `xWκ , for some δκ´r P

Kerp`κ´rq and xWκ P
pQt

κ .
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Moreover, as pPt
κ “ Rangep`κ´rq ‘ Pt

κ, we can write νκ “ ∇ηκ´r ¨ Fr ` qνκ, for some
ηκ´r P P

t
κ´r and qνκ P

pPt
κ.

Let us denote by sPt
κ´r a complementary subspace to Kerp`κ´rq in Pt

κ´r (i.e.,

Pt
κ´r “

sPt
κ´r ‘Kerp`κ´rq). Then, we can write ηκ´r “ η

p1q
κ´r ` η

p2q
κ´r, where η

p1q
κ´r P Kerp`κ´rq

and η
p2q
κ´r P

sPt
κ´r. As η

p1q
κ´r P Kerp`κ´rq, we have `κ´r

´

ηκ´r

¯

“ `κ´r

´

η
p2q
κ´r

¯

, and consequently,

νκ “ ∇η
p2q
κ´r ¨ Fr ` qνκ.

Let us introduce qVκ “ xWκ ´ η
p2q
κ´rFr. As η

p2q
κ´r P

sPt
κ´r, we have η

p2q
k´rFr P pQt

κ , and

consequently, qVκ P
pQt

κ .
If we denote ακ´r “ η

p2q
κ´r ` δκ´r, then

qVκ “ Vκ ´ ακ´rFr P pQt
κ , and qνκ “ νκ ´∇ακ´r ¨ Fr P pPt

κ .

This implies that κpqV, qνq ą κpV, νq. Moreover, using (4), we obtain

´

rF, Vs ` νF
¯

r`κ
“ rFr, ακ´rFrs `∇ακ´r ¨ Fr `

κ
ÿ

i“1

´”

Fr`κ´i, qVi

ı

` qνiFr`κ´i

¯

“

κ
ÿ

i“1

´”

Fr`κ´i, qVi

ı

` qνiFr`κ´i

¯

“

´”

F, qV
ı

` qνF
¯

r`κ
.

Finally, we select the higher-order quasi-homogeneous terms as

qVj “ Vj ´ ακ´rFr`j´κ , and qνj “ νj ´∇ακ´r ¨ Fr`j´κ , for j “ κ` 1, . . . , N.

To complete the proof, we will show that
´

rF, Vs ` νF
¯

r`j
“

´”

F, qV
ı

` qνF
¯

r`j
for

j “ κ` 1, . . . , N. Namely,

´

rF, Vs ` νF
¯

r`j
“

“

Fr, Vj
‰

` νjFr `

κ´1
ÿ

i“1

´”

Fr`j´i, qVi

ı

` qνiFr`j´i

¯

`

j´1
ÿ

i“κ

´

“

Fr`j´i, Vi
‰

` νiFr`j´i

¯

Using that

j´1
ÿ

i“κ

´

“

Fr`j´i, Vi
‰

` νiFr`j´i

¯

“

j´1
ÿ

i“κ

”

Fr`j´i, qVi ` ακ´rFr`i´κ

ı

`

j´1
ÿ

i“κ

p∇ακ´r ¨ Fr`i´κ ` qνiqFr`j´i

“

j´1
ÿ

i“κ

”

Fr`j´i, qVi

ı

`

j´1
ÿ

i“κ

”

Fr`j´i, ακ´rFr`i´κ

ı

`

j´1
ÿ

i“κ

p∇ακ´r ¨ Fr`i´κqFr`j´i,`
j´1
ÿ

i“κ

qνiFr`j´i,
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we find

´

rF, Vs ` νF
¯

r`j
“

“

Fr, Vj
‰

` νjFr `

j´1
ÿ

i“1

´”

Fr`j´i, qVi

ı

` qνiFr`j´i

¯

`

j´1
ÿ

i“κ

´

“

Fr`j´i, ακ´rFr`i´κ

‰

` p∇ακ´r ¨ Fr`i´κqFr`j´i

¯

.

From Lemma A4, we obtain
j
ÿ

i“κ

´

“

Fr`j´i, ακ´rFr`i´κ

‰

` p∇ακ´r ¨ Fr`i´κqFr`j´i

¯

“ 0,

and then

j´1
ÿ

i“κ

´

“

Fr`j´i, ακ´rFr`i´κ

‰

` p∇ακ´r ¨ Fr`i´κqFr`j´i

¯

“ ´

´

“

Fr`, ακ´rFr`j´κ

‰

`
`

∇ακ´r ¨ Fr`j´κ

˘

Fr

¯

.

Consequently,

prF, Vs ` νFqr`j “
“

Fr, Vj
‰

` νjFr `

j´1
ÿ

i“1

´”

Fr`j´i, qVi

ı

` qνiFr`j´i

¯

´
“

Fr, ακ´rFr`j´κ

‰

´
`

∇ακ´r ¨ Fr`j´κ

˘

Fr

“
“

Fr, Vj ´ ακ´rFr`j´κ

‰

`

´

νj ´
`

∇ακ´r ¨ Fr`j´κ

˘

¯

Fr

`

j´1
ÿ

i“1

´”

Fr`j´i, qVi

ı

` qνiFr`j´i

¯

“

”

Fr, qVj

ı

` qνjFr `

j´1
ÿ

i“1

´”

Fr`j´i, qVi

ı

` qνiFr`j´i

¯

“

´”

F, qV
ı

` qνF
¯

r`j
.

The next propositions show that Range
´

NLpNq
¯

and Range
´

LpNq
¯

agree.

Proposition A1. Range
´

LpNq
¯

Ď Range
´

NLpNq
¯

, for all N P N.

Proof. Let us consider ppV, pνq “
´

řN´1
j“1

pVj,
řN´1

j“1 pνj

¯

`

´

pVN , pνN

¯

belonging to the do-

main of definition of LpNq. Then,
´

řN´1
j“1

pVj,
řN´1

j“1 pνj

¯

P Ker
´

LpN´1q
¯

and, consequently,

J r`N´1
´”

F, pV
ı

` pνF
¯

“ 0.

We first show that that there exist U P
ÀN

j“1Qt
j and µ P

ÀN
j“1P

t
j, such that

LpNq
´

pV, pν
¯

“

´

F´U ˚˚

´

p1` µqF
¯¯

r`N
.

Namely, we take U “ pV and µ “
řN

j“1 µj P
ÀN

j“1P
t
j is defined as follows.

From Lemma A3, we have
´

F´ pV ˚˚ pp1` µqFq
¯

r`N
“ ´

´”

F, pV
ı

` pνF
¯

r`N
´ pµ1 ´ pν1qFr`N´1

´

N´1
ÿ

j“2

¨

˝µj ´ pνj `

j´1
ÿ

l“1

µ
plq
j

˛

‚Fr`N´j.
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Then, we take µ1 “ pν1, and µj “ pνj `
řj´1

l“1 µ
plq
j , for j “ 2, . . . , N. In this way, we obtain

J r`N´1
´

F´ pV ˚˚ pp1` µqFq
¯

“ 0,

and
´

F´ pV ˚˚

´

p1` µqF
¯¯

r`N
“ ´

´”

F, pV
ı

` pνF
¯

r`N
“ LpNq

´

pV, pν
¯

.

To complete the proof, we use Theorem 2, which states that
´

F´U ˚˚

´

p1` µqF
¯¯

r`N
“

´

F´ pU ˚˚

´

p1` pµqF
¯¯

r`N
,

for some pU P
ÀN

k“1
pQt

k, pµ P
ÀN

k“1
pPt

k. Moreover, we have

J r`N´1
´

F´ pU ˚˚

´

p1` pµqF
¯¯

“ J r`N´1
´

F´U ˚˚

´

p1` µqF
¯¯

“ 0.

Hence,
´

pU, pµ
¯

belongs to the domain of definition of NLpNq, and then

NLpNq
´

pU, pµ
¯

“ LpNq
´

pV, pν
¯

.

Proposition A2. Range
´

NLpNq
¯

Ď Range
´

LpNq
¯

, for all N P N.

Proof. Let us consider
´

pU, pµ
¯

“

´

řN´1
j“1

pUj,
řN´1

j“1 pµj

¯

`

´

pUN , pµN

¯

belonging to the do-

main of definition of NLpNq.
We first show that there exist V P

ÀN
j“1Qt

j and ν P
ÀN

j“1P
t
j such that

NLpNq
´

pU, pµ
¯

“ ´

´

rF, Vs ` νF
¯

r`N
.

Namely, we take V “ pU and ν “
řN

j“1 νj P
ÀN

j“1P
t
j is defined as follows.

As NLp1q
´

pU1, pµ1

¯

“ 0, taking ν1 “ pµ1 P P
t
1, we obtain J r`1

´

rF, Vs ` νF
¯

“ 0. Applying
now Lemma A3, we obtain

NLp2q
´

pU1 ` pU2, pµ1 ` pµ2

¯

“ ´

´

rF, Vs ` νF
¯

r`2
´ ppµ1 ´ ν1qFr`1 ´

´

pµ2 ´ ν2 ´ pµ
p1q
1

¯

Fr.

By selecting ν2 “ pµ2 ´ pµ
p1q
1 P Pt

2, we obtain J r`2
´”

F, pU
ı

` νF
¯

“ 0.
It is enough to repeat the reasoning for k “ 2, . . . , N, to determine

ν “
řN

j“1 νj P
ÀN

j“1P
t
j such that J r`N´1

´

rF, Vs ` νF
¯

“ 0, satisfying

NLpNqppU, pµq “ ´
´”

F, pU
ı

` νF
¯

r`N
.

To complete the proof, we use Lemma A5, which states that

J r`N
´”

F, pU
ı

` νF
¯

“ J r`N
´”

F, pV
ı

` pνF
¯

,

for some pV “
řN

j“1
pVj P

ÀN
j“1

pQt
j, pν “

řN
j“1 pνj P

ÀN
j“1

pPt
j. This means that

´

pV, pν
¯

belongs

to the domain of definition of LpNq, and then NLpNq
´

pU, pµ
¯

“ LpNq
´

pV, pν
¯

.
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