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ABSTRACT
This paper describes a general method to compute the boundary integral equation for common
engineering problems. The proposed procedure consists of a new quadrature rule to evaluate singular
and weakly singular integrals. The methodology is based on the computation of the quadrature weights
by solving an undetermined system of equations in the minimum norm sense. The Bézier–Bernstein
form of a polynomial is also implemented as an approximation basis to represent both geometry and
field variables. Therefore, exact boundary geometry is considered, and arbitrary high-order elements are
allowed. This procedure can be used for any element node distribution and shape function. The validity
of the method is demonstrated by solving a two-and-a-half-dimensional elastodynamic benchmark
problem.
Keywords: boundary integral equation, singular kernels, numerical integration, Bernstein polynomials,
Bézier curve, 2.5D formulation.

1 INTRODUCTION
The Boundary Element Method (BEM) allows solving several engineering problems such
as acoustic scattering, fracture mechanics, soil wave propagation, and heat transfer with
high accuracy and efficiency [1]. The BEM is based on the fundamental solution of a
particular problem that is used as weighting function and allows one to eliminate the domain
discretization. Then, the methodology results in boundary integral equations (BIE) for a point
x∗ located at the arbitrary boundary Γ as follows [2]:

c(x∗)u(x∗) =
∫

Γ

(t(x)G(x, x∗)− u(x)H(x, x∗)) dΓ(x) , (1)

where x∗ is the collocation point, u(x) and t(x) are the field variables, G(x, x∗) andH(x, x∗)
are the fundamental solutions at point x due to a point source located at x∗, and the integral-
free term c(x∗) depends only on the boundary geometry at the collocation point [2]. The
fundamental solution is chosen according to the actual problem. In addition, the boundary
discretization is determined by the fundamental solution.

Eqn (1) allows computing the solution to many problems. The integrals in eqn (1) should
be understood in the sense of the Cauchy Principal Value (CPV). These integrals can be
regular, near-singular, weak-singular, singular, or hypersingular integrals, depending on the
problem studied. Regular integrals are integrated by Gaussian quadrature. In the rest of the
cases, their analytical evaluation depends on the fundamental solution and the shape functions
used to approximate the field variables at the boundary element. Both parameters determine
the difficulty of the procedure.

In previous works, specific developments were done to obtain the CPV of the integrals
involving the corresponding problems. This research describes a general procedure that
allows computing the BIE for common engineering problems using numerical quadratures.
The methodology is based on the computation of the weights of the quadrature rules by
the solution of an underdetermined system of equations in the minimum norm sense as
in Carley [3]. The equations are obtained from the finite part of integral kernels including
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the element shape functions evaluated at the quadrature points to increase the accuracy.
Bernstein polynomials are taken into account to develop this general approach since Lagrange
polynomials can be obtained from a Bernstein base. The proposed method can be used for
any element and shape function. The performance of the quadrature rules is evaluated in the
BEM formulation based on the Bézier–Bernstein space [4], which allows the exact boundary
geometry representation.

The paper is organized as follows. First, the numerical model is presented. The quadrature
rules are discussed, and the accuracy in the computation of integral kernels for different
element families and order is shown. The proposed method is then verified using a benchmark
problem consisting of an elastic cavity in two-and-a-half dimensions (2.5D). Finally, the
conclusion section summarizes the main contributions of this work.

2 NUMERICAL APPROACH
The starting point for the formulation of the BEM is the BIE (eqn (1)). The meaning of these
variables depends on the formulation of the physical problem under study.

The boundary is discretized intoN elements, Γ =
⋃N
j=1 Γj , and the field variables within

an element Γj are approximated from the nodal values ui and ti through the element shape
functions φi(x) of order p. Thus, eqn (1) is rewritten as follows:

c(x∗)u(x∗) =
N∑
j=1

p∑
i=1

[(∫
Γj

φi(x)G(x, x∗) dΓ
)
ti −

(∫
Γj

φi(x)H(x, x∗) dΓ
)
ui
]

. (2)

The behavior of the element integration kernels depends on the radius ||x− x∗|| and leads
to regular, near singular, and singular integrals. The first two types are easily integrated
by ordinary Gauss–Legendre quadrature, using a smoothing transformation to handle near-
singular behavior. However, the singular kernels must be correctly integrated.

2.1 Quadrature rules

The fundamental solution to common engineering problems (such as elastostatic, acoustic,
elastodynamic, heat transfer, among others) includes weakly singular and singular terms of
the form log |x∗ − x| and 1/(x∗ − x). Moreover, the series expansion of the fundamental
solution includes some of these terms for null radius. Although the logarithmic singularity
can be integrated by quadratures such as those proposed in Monegato and Scuderi [5], the
other type must be interpreted as the CPV. Hypersingular kernels are not considered in this
work. Kolm and Rokhlin [6] and Carley [3] proposed quadrature rules based on integrals of
Legendre polynomials of order n.

The design of the new quadrature rules considers the integral of the element shape
function instead of the Legendre polynomials. We use the Lagrange interpolant of arbitrary
order p as the element shape function. The proposed method is valid for any element
node distribution, such as equidistant nodes, Legendre–Gauss–Lobatto (LGL) integration
points used in the spectral formulations [7], or simpler distributions such as the family
of Chebyshev points [4]. The generality of the proposed method is achieved because the
Lagrange interpolant can be derived from the Bernstein basis as:

φi(t) =
n∑
k=0

cikB
n
k (t), (3)
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where cik are control points and Bnk (t) is the Bernstein basis of degree n defined over the
interval t ∈ [0, 1] as:

Bnk (t) =
(
n

k

)
tk(1− t)n−k, k = 0, . . . , n. (4)

The Lagrange interpolant derived from the Bernstein basis must fulfill the following
condition at the element nodes tj :

φi(tj) =
n∑
k=0

cikB
n
k (tj) = δij , j = 0, . . . , n. (5)

This condition is commonly expressed as a linear system of equations through the Bernstein–
Vandermonde matrix Aij = Bni (tj) as:

Bn0 (t0) Bn1 (t0) . . . Bnk (t0) . . . Bnn(t0)

Bn0 (t1) Bn1 (t1) . . . Bnk (t1) . . . Bnn(t1)

. . .

Bn0 (tj) Bn1 (tj) . . . Bnk (tj) . . . Bnn(tj)

. . .

Bn0 (tn) Bn1 (tn) . . . Bnk (tn) . . . Bnn(tn)





ci0

ci1

. . .

cik

. . .

cin


=



0

0

. . .

1

. . .

0


. (6)

Thus, the element shape function φi is defined by the control points obtained from the solution
of eqn (6).

The definition of the shape function on Bernstein basis allows the design of the quadrature
rules for singular integrals in eqn (2) as:∫ 1

−1

φi(ξ)G(ξ, x∗)
dΓ
dξ

dξ =
∫ 1

0

φi(t)G(t, x∗)
dΓ
dξ

dξ

dt
dt

=
∫ 1

0

(
n∑
k=0

cikB
n
k (t)

)
G(t, x∗)

dΓ
dξ

dξ

dt
dt

=
n∑
k=0

cik

(∫ 1

0

Bnk (t)G(t, x∗)
dΓ
dξ

dξ

dt
dt

)
,

(7)

where t = (ξ + 1)/2.
The quadrature rules should be able to compute integrals accounting the terms of the

fundamental solutions or its series expansion:∫ 1

−1

Bnk (ξ) dξ =
∫ 1

0

Bnk (t)
dξ

dt
dt, (8)∫ 1

−1

Bnk (ξ) log |ξ∗ − ξ| dξ =
∫ 1

0

Bnk (t) log |ξ∗ − 2t+ 1|dξ
dt
dt, (9)

PV
∫ 1

−1

Bnk (ξ)
ξ∗ − ξ

dξ = PV
∫ 1

0

Bnk (t)
ξ∗ − 2t+ 1

dξ

dt
dt, k = 0, . . . , n, (10)
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where ξ∗ is the element natural coordinate of the collocation point x∗, and PV makes
reference to Cauchy principal value.

The quadrature rule of order M approximates the integral of f(ξ, ξ∗) as:

∫ 1

−1

f(ξ, ξ∗) dξ =
∫ 1

0

f(t, ξ∗)
dξ

dt
dξ '

M∑
m=0

f(tm, ξ∗)
dξ

dt
wm, (11)

where f(tm, ξ∗) represents the integral kernels in eqns (8)–(10) evaluated at the integration
point tm, and wm are the quadrature weights.

Eqns (8)–(10) and eqn (11), evaluated as an equality, allow to define a system of 3(n+ 1)
equations with M + 1 unknowns that represent the weights of the quadrature rule. The
number of equations is given by the three types of integrals and the n+ 1 polynomials. Each
equation is related to the integrals defined in eqns (8)–(10) for the Bernstein polynomial
Bnk (t). Thus, the following system of equations is obtained:



ψ0(t0, ξ∗) ψ0(t1, ξ∗) . . . ψ0(tm, ξ∗) . . . ψ0(tM , ξ∗)

ψ1(t0, ξ∗) ψ1(t1, ξ∗) . . . ψ1(tm, ξ∗) . . . ψ1(tM , ξ∗)

. . .

ψk(t0, ξ∗) ψk(t1, ξ∗) . . . ψk(tm, ξ∗) . . . ψk(tM , ξ∗)

. . .

ψn(t0, ξ∗) ψn(t1, ξ∗) . . . ψn(tm, ξ∗) . . . ψn(tM , ξ∗)





w0

w1

. . .

wm

. . .

wM


=



m0

m1

. . .

mk

. . .

mn


,

(12)
where,

ψk(tm, ξ∗) =


Bnk (tm)

dξ

dt

Bnk (tm) log |ξ∗ − 2tm + 1|dξ
dt

Bnk (tm)
ξ∗ − 2tm + 1

dξ

dt

 , (13)

mk =



∫ 1

0
Bnk (t)

dξ

dt
dt∫ 1

0
Bnk (t) log |ξ∗ − 2t+ 1|dξ

dt
dt

PV
∫ 1

0

Bnk (t)
ξ∗ − 2t+ 1

dξ

dt
dt


. (14)

The generalized moments mi are obtained from the Brandaõ approach to the finite-part
integrals [8] according to Carley [3].

In the case of an undetermined system of equations, the integration weights are obtained
as the solution of eqn (12) in the minimum norm least-squares sense. The Jacobian dξ/dt in
eqn (11) can be included in the integration weights to use the integration points ξm defined
in [−1, 1] instead of tm at [0, 1].
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2.1.1 Numerical verification
The quadrature rule is verified by the integration of the following integrals:

I1 =
∫ 1

−1

φi(ξ) dξ, (15)

I2 =
∫ 1

−1

φi(ξ) log |ξ∗ − ξ| dξ, (16)

I3 = PV
∫ 1

−1

φi(ξ)
ξ∗ − ξ

dξ. (17)

The exact value of these integrals can be computed from eqn (7) using the moments in
eqn (14).

Fig. 1 shows the L2 scaled error ε2 in the computation of integral in eqns (15)–(17)
for different element order and node distributions: (i) Chebyshev points of the first kind;
(ii) Chebyshev points of the second kind; (iii) LGL integration points; and (iv) equidistant
nodes [4]. The accuracy of the proposed quadrature rules is analyzed for different numbers of
integration points M according to the shape function order p. The integration error increases
with the order of the element p, and is slightly affected by the number of integration points
for M ≥ 4(p+ 1). The quadrature rule did not give accurate results for M = 2(p+ 1). A
quadrature rule of order 4(p+ 1) is adequate to solve the singular integrals in common
engineering problems considered in this paper.

2.2 The BEM formulation in the Bézier–Bernstein space

In this work, the BEM formulation in the Bézier–Bernstein space [4], [9] is used to show the
performance of the proposed quadrature rules. It is based on the application of polynomials
in Bernstein form for the definition of Bézier curves rn(t):

rn(t) =
n∑
k=0

bkBnk (t), (18)

where bk are the control points used to approximate the geometry and n is the degree of
the curve. An efficient curve computation is achieved using the polar form (or blossom) of a
Bézier curve rn(t) [10], which defines a multi-affine transformation satisfying:

bk = R(0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

), (19)

where R(t1, . . . , tn) is computed as:

R(t1, . . . , tn) =
∑
I∩J=∅

I∪J={1,2,...,n}

∏
i∈I

(1− ti)
∏
j∈J

tjb|J|, (20)

Thus, a polynomial in Bernstein form can be formulated in the polar form, substituting
eqn (19) into eqn (18) as follows:

rn(t) =
n∑
k=0

R(0, . . . , 0︸ ︷︷ ︸
n−k

, 1, . . . , 1︸ ︷︷ ︸
k

)Bnk (t) = R(t, . . . , t). (21)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: L2 scaled error ε2 in the computation of integrals (a, d, g, j) I1, (b, e, h, k) I2, and
(c, f, i) I3 using (a–c) M = 2(p+ 1), (d–f) M = 3(p+ 1), (g–i) M = 4(p+ 1)
and (j–l) M = 8(p+ 1) integration points.

The Bézier–Bernstein space is used to describe the exact element geometry as Γj(x) =
rjn(t). Therefore, the integrals of the elements in eqn (2) are rewritten on the univariate basis
t ∈ [0, 1] as [4], [11]: ∫

Γj

f(x, ξ) dΓ =
∫ 1

0

f(x(t), ξ)
∣∣∣∣drjn(t)

dt

∣∣∣∣ dt, (22)
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where f(x, ξ) represents the integration kernel. Furthermore, eqn (22) can be transformed
into the integration interval [−1, 1] to employ the proposed quadrature rules.

The BEM formulation in the Bézier–Bernstein space employs the Lagrange interpolant
relative to the Bernstein basis for the field variable approximation to an element [12]. The
field approximation given by the shape function interpolates n+ 1 nodal values through
the element shape functions φi of order n, for i = 0, . . . , n (eqn (3)). Then, the field
approximation becomes:

u(t) =
p∑
i=0

φi(t)ui =
p∑
i=0

{
n∑
k=0

cikB
n
k (t)

}
ui =

p∑
i=0

Ri(t, . . . , t)ui, (23)

where the evaluation of the element shape function φi(t) also benefits from the computational
advantages of using the polar form Ri(t1, . . . , tn) according to eqn (20). Once the geometry
and the field approximation given by eqns (21) and (23) are introduced in eqn (2), the
boundary integrals are computed using a standard Gauss–Legendre quadrature with p+ 1
integration points whenever the collocation point is sufficiently distant from the integration
element. Otherwise, the solution of singular or weakly singular integrals is numerically
computed using the proposed quadrature rules when the collocation point belongs to the
integration element or using a smoothing transformation [4], [5].

3 BENCHMARK PROBLEM
In this section, we analyze the performance of the proposed method by applying it to an
elastodynamic boundary value problem, consisting of an infinite length cylindrical cavity
with radius 1 m in a full space [13]. This problem can be solved using a two-and-a-half-
dimensional approach as the geometry is invariant in the longitudinal direction z.

The full space is characterized by the shear wave velocity Cs = 150 m/s, dilatational
wave velocity Cp = 300 m/s, density ρ = 1,800 kg/m3, and a material damping ratio βs =
βp = 0.05 in both deviatoric and volumetric deformation.

The cavity is subjected to a longitudinally harmonic internal pressure p̃(κz, ω) = 1 with
wavelength λz = 2π/kz and frequency ω. This load produces a harmonic longitudinal radial
displacement that is axisymmetric around the z axis, with the same wavelength as the load.

In this work, the circular shape was approximated by cubic Bézier curves. Four patches
were used to define the boundary geometry with the control polygon represented in Fig. 2.
The patches were discretized into a number of boundary elements ensuring κsh = 3 and a
nodal density per wavelength dλ = 2πp/κsh = 12, where κs = ω/Cs and p is the order of
the elements.

The Green’s functions in an elastic unbounded medium are obtained in 2.5D from the
derivation of two potentials for the irrotational and equivoluminal parts of the displacement
vector [14], that are given in terms of the Hankel functions of the second kind H(2)

0 (kr),
where k is either the wavenumber related to dilatational or shear waves and r is the distance
from the source to the observation point. The Hankel function has a logarithmic singularity
given by its series expansion at zero:

− ι(2 log(kr) + ιπ + 2γ − 2 log(2))
π

+O2 (kr) , (24)

where γ is the Euler–Mascheroni constant and the Greek letter ι represents the imaginary
unit. This singularity is easily integrated by the proposed quadrature.
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Figure 2: Cavity geometry using four cubic Bézier curves. Control points and their related
control polygons are represented by grey circles and grey lines.

Fig. 3 shows the radial displacements at a distance 10 m from the cavity centre. The
problem solution was computed for a frequency range from 1 to 100 Hz and a dimensionless
wavenumber κ̄z = κzCs/ω = 1. The obtained results are in good agreement with the
analytical and numerical solutions given in François et al. [13] and Forrest and Hunt
[15], [16].
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Figure 3: (a) Real; and (b) Imaginary parts of the radial displacement at a distance 10 m from
the center of the cavity. Comparison of computed results (red line) and reference
solutions (black line) [13], [15], [16].

4 CONCLUSIONS
This paper has proposed a new quadrature rule to assess singular kernels in the BIE. The
quadrature rule is valid for common engineering problems that exhibit weakly singular
and singular behaviors (acoustics, elastostatic, elastodynamic, heat transfer). The proposed
method allowed for the accurate integration of kernels of arbitrary order and node
distributions. The generality of the method is achieved because the element shape functions
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can be derived from the Bernstein basis. The proposed procedure has been verified by the
solution of a 2.5D elastodynamic problem.
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