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Abstract
If x∗ is a local minimum solution, then there exists a ball of radius r > 0 such that f (x) ≥
f (x∗) for all x ∈ B(x∗, r). The purpose of the current study is to identify the suitable
B(x∗, r) of the local optimal solution x∗ for a particularmultiobjective optimization problem.
We provide a way to calculate the largest radius of the ball centered at local Pareto solution
in which this solution is optimal. In this process, we present the necessary and sufficient
conditions for achieving a global Pareto optimal solution. The results of this investigation
might be useful to determine stopping criteria in the algorithms development.
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1 Introduction

We consider the following multiobjective optimization problem (MOP):

(MOP) Minimize u(x) = (u1(x), . . . , um(x))
subject to h j (x) � 0, j ∈ J ,

x ∈ Ω,

where Ω ⊆ R
n is an open set, ui and h j are real-valued functions defined on Ω for each

i ∈ I ≡ {1, . . . ,m} and j ∈ J ≡ {1, . . . , p}. Let S denotes the set of feasible solutions
defined by S = {x ∈ Ω | h j (x) � 0, j ∈ J }.

Let R+ be the set of nonnegative real numbers and xT be the transpose of x ∈ R
n . The

inequality among vectors is to be understood in a component-wise sense: if x, y ∈ R
n , then

x < y if and only if xi < yi ; x � y if and only if xi � yi ; and x ≤ y if and only if x � y
and x �= y.

By considering Euclidean distance, let B(x, r) be the open ball and B̄(x, r) be the closed
ball of radius r > 0 centered at x . We denote by ∂B(x, r) the boundary of B(x, r). Similar
to Chankong and Haimes [8], we present two optimality definitions for MOP.

Definition 1 A feasible solution x∗ is said to be a (locally) Pareto optimal solution of MOP,
if there does not exist another solution (x ∈ B(x∗, r), r > 0) x ∈ S such that u(x) ≤ u(x∗).

Definition 2 A feasible solution x∗ is said to be a (locally) weakly Pareto optimal solution
of MOP, if there does not exist another solution (x ∈ B(x∗, r), r > 0) x ∈ S such that
u(x) < u(x∗).

We observe that x ∈ B(x∗, r) is not a restrictive hypothesis, since for an arbitrary layout
neighborhood N (x∗) of x∗, it is possible that B(x∗, r) ⊂ N (x∗).

The literature presents different ways to characterize Pareto optimality conditions (see [8,
21] and references therein). This paper extends the results of the literature by proposing
necessary and sufficient conditions for achieving a global Pareto optimal solution from a
local solution. We calculate the largest radius of the ball centered at a local Pareto solution,
in which this solution is optimal; then we verify the conditions for this solution to be globally
optimal.

This paper is organized as follows: Sect. 2 presents the multiobjective quadratic fractional
optimization problem. Our methodology is introduced in Sect. 3. Section 4 provides some
optimality conditions. Conclusions are given in Sect. 5.

2 Quadratic fractional problem

In this paper, we consider the multiobjective quadratic fractional optimization problem
(MQFP), where for each i ∈ I , ui (x) ≡ fi (x)

gi (x)
in MOP, and fi , gi , are quadratic functions of

n real variables, gi (x) > 0 for all x ∈ Ω .
Fractional optimization problems frequently arise in the decision-making applications,

including portfolio selection, cutting and stock problems, and game theory, in the optimiza-
tion of the ratio performance/cost, or profit/investment, or cost/time, and so on. Convexity
and generalized convexity are used in the literature to achieve optimality conditions andmain
duality theorems for optimal solutions, including the scalar (single-objective) fractional opti-
mization problem (FP) and multiobjective fractional optimization problem (MFP).
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Jagannathan [11] has established optimality conditions by transforming the original prob-
lem FP to an associated non fractional problem. Liang et al. [19] obtained results that relate
the primal-dual pair of FP. Craven [9] has presented several results for FP, and Stancu-
Minasian [28] has provided a book containing various practical and theoretical aspects for
FP. Emam [10] has studied a multiobjective integer quadratic programming problem under
uncertainty. Liang et al. [20] have extended their approach [19] to MFP and examined the
dual problem reported in [22]. Osuna-Gómez et al. [24] have used the parametric approaches
of Jagannathan [11] andBector et al. [6], and two classes of generalized convexity to establish
weak Pareto optimality conditions and the main duality theorems for the differentiable MFP.
Santos et al. [26] have expandedOsuna-Gómez’s results to amore general, non-differentiable
case of MFP.

Wefind few studies that involve quadratic functions at both the numerator and denominator
in the ratio objective function. In most cases, the mixing of linear and quadratic functions is
included. Schaible and Shi [27] and Benson [7] have considered a similar case of the scalar
quadratic fractional optimization problem (QFP). Benson [7] has developed some theoretical
properties and optimality conditions for a QFP consisting of the convex functions, and also
presented an algorithm and its convergence properties. Jiao and Liu [12] have solved a QFP
consisting of the quadratically constrained sum of quadratic ratios problem by using a range
division and compression algorithm for global optimization.

Beato-Moreno et al. [4,5], Arévalo and Zapata [3], Konno and Inori [13], Rhode and
Weber [25], Kornbluth and Steuer [16], and Korhonen and Yu [14,15] have addressed more
similar approaches to MQFP. From an iterative computational test, Beato-Moreno et al. [4,5]
have characterized the Pareto optimal solution forMQFPwith linear and quadratic functions,
and achieved some theoretical results by using the function linearization approach of Bector
et al. [6]. Arévalo and Zapata [3], Konno and Inori [13], and Rhode and Weber [25] have
analyzed the portfolio selection problem. Kornbluth and Steuer [16] have used a suitable
Simplex method for MFP consisting of linear functions. Korhonen and Yu [14,15] have
proposed an iterative computational method based on search directions and weighted sums
for MQFP using linear and quadratic functions.

In their previous work, Oliveira et al. [23] have developed sufficient Pareto optimality
conditions and duality results for a legitimateMQFP,where they have avoided the generalized
convexities. Ammar [1,2] has studied the solutions ofMQFP from a fuzzy random technique.
Lachhwani [17,18] has provided a fuzzy goal programming approach for MQFP. Stancu-
Minasian and Stancu [31] have presented a new class of generalized type-I univex functions
and derived the weak, strong and converse duality theorems forMQFP. Stancu-Minasian [29,
30] has listed a complete updated bibliography of fractional programming problems.

The approach taken in this paper is different from previous ones. Without generalized
convexity assumptions on the objective functions, some necessary and sufficient conditions
are given for a local Pareto optimal solution to be a global Pareto optimal solution. The central
aspect of this contribution is to show how to calculate the largest radius of the ball centered at
local Pareto optimal solution where this solution is globally optimal. These conditions might
be useful to determine stopping criteria in the development of algorithms, including those
based on quadratic approximations in more general problems.
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3 Radius of efficiency

If u(x) ≤ u(z), we say that x ∈ S dominates z ∈ S in MOP. The Pareto (or globally
efficient) optimal solution set is denoted by Eff (MOP), and the set of locally Pareto (or
locally efficient) optimal solutions is denoted by Leff (MOP). We introduce the new concept
of radius of efficiency for MOP, and then we extend this concept to MQFP.

3.1 Radius of efficiency for MOP

Definition 3 A feasible solution x∗ ∈ S is said to be λ-efficient or has radius of efficiency λ

in MOP if x∗ ∈ Leff (MOP) and there does not exist another solution x ∈ B(x∗, λ) ∩ S that
dominates x∗.

We note that if x∗ is λ-efficient, then it is β-efficient, for all β < λ. If x∗ is a globally
optimal solution in S, we say that it is ∞-efficient.

If x∗ ∈ Leff (MOP), there exists r > 0 such that x∗ is not dominated in B(x∗, r) ∩ S.
However, our goal is to calculate the largest radius λ∗ > 0 of the ball B(x∗, λ∗) such that
x∗ is not dominated in B(x∗, λ∗) ∩ S. In particular, for λ∗ sufficiently large we obtain a
globally optimal solution in S. Thus, we consider a local Pareto optimal solution on a fixed
and most appropriate ball. The value λ∗ can be useful for solving MOP because if the radius
of efficiency is known, the cost to find a new solution using a suitable search procedure can be
estimated. Auxiliary techniques induced by the radius of efficiency can be used to conclude
if a solution is globally optimal.

3.2 Radius of efficiency for MQFP

If x∗ ∈ Leff (MQFP), then the smallest value λ > 0, such that the inequality f (x∗+λd)
g(x∗+λd)

≤
f (x∗)
g(x∗) is valid for every unitary direction d , provides the maximum radius of efficiency of
x∗. We use the following problem closely associated with MQFP, namely MQFPx∗ , where
ui (x) ≡ fi (x)− fi (x∗)

gi (x∗) gi (x), x
∗ ∈ S, and fi , gi , i ∈ I , are the quadratic functions of MQFP.

Similar to Lemma 1.1 from [24], we consider Pareto optimal solutions to achieve next result.

Theorem 1 x∗ ∈ Leff (MQFP) if and only if x∗ ∈ Leff (MQFPx∗ ). In particular, there exists
r > 0 such that x∗ is locally Pareto optimal solution for MQFP in B(x∗, r) ∩ S if and only
if it is locally Pareto optimal solution for MQFPx∗ in B(x∗, r) ∩ S.

Proof Let x∗ be locally Pareto optimal solution for MQFP in B(x∗, r) ∩ S. Suppose that
x∗ /∈ Leff (MQFPx∗ ), then there exists another solution x ∈ B(x∗, r), satisfying f (x) −
f (x∗)
g(x∗) g(x) ≤ f (x∗) − f (x∗)

g(x∗) g(x
∗) = 0 �⇒ f (x)

g(x) ≤ f (x∗)
g(x∗) , which contradicts that x∗ ∈

Leff (MQFP). Therefore, x∗ ∈ Leff (MQFPx∗ ). Now, let x∗ be the locally Pareto optimal
solution for MQFPx∗ in B(x∗, r) ∩ S. Suppose that x∗ /∈ Leff (MQFP), then there exists
another solution x ∈ B(x∗, r), satisfying f (x)

g(x) ≤ f (x∗)
g(x∗) �⇒ f (x) − f (x∗)

g(x∗) g(x) ≤ 0 =
f (x∗) − f (x∗)

g(x∗) g(x
∗), which contradicts that x∗ ∈ Leff (MQFPx∗ ). Therefore, x∗ ∈ Leff

(MQFP). ��
FromTheorem1,wemust choosewhich ismore appropriate betweenMQFP andMQFPx∗

to calculate the maximum radius of B(x∗, r), and analyze the dominance of a local Pareto
optimal solution in the set of feasible solutions.
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4 Optimality conditions

First, we establish the optimality conditions for the unconstrained problem, and then we
extend the results to the constrained problem with linear constraints.

4.1 Radius of efficiency in the unconstrained case

For each i ∈ I and all x ∈ R
n , we address fi (x) = xT Ai x + aTi x + āi and gi (x) =

xT Bi x+bTi x+b̄i ,where Ai , Bi ∈ R
n×n arematrices, andwe assume that Ai is symmetric; Bi

is symmetric and positive semidefinite; ai , bi ∈ R
n and āi , b̄i ∈ R, with b̄i > −(wi T Biwi +

bTi wi ), where wi is the solution of the system 2Bi x + bi = 0; that is, wi is the solution
where the function xT Bi x+bTi x reaches its minimum and this choice ensures that gi (x) > 0,
∀x ∈ R

n . We do not consider cases where 2Bi x + bi = 0 has no solution.
Let∇u(x) and∇2u(x) be the gradient and the Hessian matrix of the function u : Rn → R

at x , respectively. We denote by UMQFP and UMQFPx∗ the unconstrained MQFP and
MQFPx∗ , respectively. Further, we define some important sets and parameters for this work.

Definition 4 Let d ∈ R
n be a fixed and unitary direction, and x∗ ∈ R

n . Let

pi (x) = xT
(
Ai − fi (x∗)

gi (x∗)
Bi

)
x +

(
aTi − fi (x∗)

gi (x∗)
bTi

)
x, i ∈ I , (1)

be a quadratic function, and

I0 =
{
i ∈ I |

[
dT∇2 pi (x

∗)d, ∇ pi (x
∗)T d

]T ≥ [0, 0]T
}

,

I+ = {i ∈ I | dT∇2 pi (x
∗)d > 0 and ∇ pi (x

∗)T d < 0},
I− = {i ∈ I | dT∇2 pi (x

∗)d < 0 and ∇ pi (x
∗)T d > 0},

λd− = max
i∈I−

{−2∇ pi (x∗)T d
dT∇2 pi (x∗)d

}
, λd+ =

{
min
i∈I+

{−2∇ pi (x∗)T d
dT ∇2 pi (x∗)d

}
, if I+ �= ∅

+∞, if I+ = ∅,

Λd− = [λd−,∞), Λd+ =
{

(0, λd+], if I+ �= ∅
(0, λd+), if I+ = ∅,

Λd = Λd− ∩ Λd+.

Each function pi defined in (1) is an objective function of MQFPx∗ without the constant
term āi − fi (x∗)

gi (x∗) b̄i , thus pi (x∗) = −[āi − fi (x∗)
gi (x∗) b̄i ], i ∈ I . Taylor expansion around zero of

the function ri (λ) = pi (x∗ + λd), i ∈ I , λ ∈ R, λ � 0, is the quadratic function ri (λ) =
pi (x∗) + λ∇ pi (x∗)T d + λ2

2 d
T∇2 pi (x∗)d , where pi (x∗), ∇ pi (x∗)T d and 1

2d
T∇2 pi (x∗)d

are the constant, linear and quadratic terms, respectively.
For a fixed and unitary direction d , the set I+ includes the index i ∈ I whose function ri

decreases in value around λ = 0 but is convex; i.e., dT∇2 pi (x∗)d > 0. The set I− includes
the index i ∈ I whose function ri increases in value around λ = 0 but is concave, i.e.,
dT∇2 pi (x∗)d < 0 (see Fig. 5); and the set I0 includes the index i ∈ I whose function ri
does not decrease around λ = 0 (see Fig. 6).

Figures 6, 7 and 10 illustrate the positive roots λd− and λd+ of the equation ri (λ)− pi (x∗) =
0. For the same direction d , the sets Λd−, Λd+ and Λd are intervals of R+\{0}. λd− is the left
extreme of Λd−, and λd+ is the right extreme of Λd+. If λd− � λd+ they are the end points of
Λd , and if λd− > λd+ we have Λd = ∅ (see Fig. 8). Note that if I+ = ∅ it is appropriate to
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choose λd+ = +∞, because if I− �= ∅ we have Λd = [λd−,∞) ∩ (0,∞) = [λd−,∞) �= ∅
(see Fig. 9).

Corollary 2 Let d ∈ ∂B(0, 1). If Λd �= ∅, then pi (x) � pi (x∗) for all x = x∗ +λd, λ ∈ Λd ,
and i ∈ I+ ∪ I−.

Proof By considering the Taylor expansion around zero of the functions r̄i (λ) = fi (x∗ +λd)

and r̃i (λ) = gi (x∗ + λd), λ ∈ Λd , i ∈ I+ ∪ I−,

r̄i (λ) = fi (x
∗) + λ∇ fi (x

∗)T d + λ2dT Aid,

r̃i (λ) = gi (x
∗) + λ∇gi (x

∗)T d + λ2dT Bid,

we obtain

fi (x∗ + λd)

gi (x∗ + λd)
� fi (x∗)

gi (x∗)
⇐⇒ λdT

(
λAi − λ

fi (x∗)
gi (x∗)

Bi

)
d

�
(

λ
fi (x∗)
gi (x∗)

∇gi (x
∗) − λ∇ fi (x

∗)
)T

d.

By using pi (x) from Eq. (1), we have

λdT
(

λAi − λ
fi (x∗)
gi (x∗)

Bi

)
d �

(
λ
fi (x∗)
gi (x∗)

∇gi (x
∗) − λ∇ fi (x

∗)
)T

d

⇐⇒ λ

(
∇ pi (x

∗)T d + λ

2
dT∇2 pi (x

∗)d
)

� 0, (2)

where 1
2∇2 pi (x∗) = Ai − fi (x∗)

gi (x∗) Bi and ∇ pi (x∗) = ∇ fi (x∗) − fi (x∗)
gi (x∗)∇gi (x∗). Therefore,

from (2)

pi (x
∗ + λd) − pi (x

∗) = λ

(
∇ pi (x

∗)T d + λ

2
dT∇2 pi (x

∗)d
)

� 0

⇐⇒ ri (λ) = pi (x
∗ + λd) � pi (x

∗).

��
Figures 5, 9 and 10 illustrate the conclusion of Corollary 2.

Condition 1 Let d ∈ ∂B(0, 1), and suppose that I0 = ∅, I+ �= ∅ and I− �= ∅. If λd− = λd+ =
−2∇ pi (x∗)T d
dT ∇2 pi (x∗)d , for all i ∈ I+ ∪ I−, then we define Λd := ∅.

Condition 2 Let x∗ ∈ Leff (UMQFPx∗ ) and d ∈ ∂B(0, 1). Then it does not simultaneously
occur ∇ pi (x∗)T d = dT∇2 pi (x∗)d = 0 for all i ∈ I .

By imposing Conditions 1 and 2, we eliminate some rare cases that might occur with
respect to the size of sets I0, I+ and I−. For instance, if |I+| = |I−| = 1 and λd− = λd+ it
is more suitable to use Λd = ∅ instead of using Λd = {λd−}. Note that these conditions are
useless for weakly Pareto optimal solutions.

Lemma 1 Let x∗ ∈ Leff (UMQFP). Then x dominates x∗ if and only if there exists d ∈
∂B(0, 1) such that I0 = ∅, I− �= ∅ and Λd �= ∅, where λ∗ ∈ Λd and x = x∗ + λ∗d.

123



Journal of Global Optimization (2019) 74:233–253 239

Proof (⇒) See Appendix A. (⇐) Suppose that I0 = ∅, I− �= ∅ and Λd �= ∅ in the direction
d . If I+ = ∅ then there exists λ∗ ∈ Λd (see Fig. 9), in which x = x∗+λ∗d and p(x) ≤ p(x∗)
have a solution. If I+ �= ∅ then either there exists a λ∗ ∈ Λd , in which x = x∗ + λ∗d and
p(x) ≤ p(x∗)have a solution, orλd− < λd+ (seeFig. 10) and there existsλ∗ ∈ Λd = [λd−, λd+],
in which x = x∗ + λ∗d and p(x) ≤ p(x∗) have a solution. Thus, x dominates x∗. ��
Theorem 3 Let x∗ ∈ Leff (UMQFP). Then x∗ ∈ Eff (UMQFP) if and only if for all d ∈
∂B(0, 1), I0 �= ∅ or Λd = ∅ whenever I+ �= ∅.
Proof (⇒) Suppose there exists d ∈ ∂B(0, 1) where I+ �= ∅, I0 = ∅ and Λd �= ∅. As x∗ ∈
Leff (UMQFP), from Theorem 1, x∗ ∈ Leff (UMQFPx∗ ) and I− �= ∅ in this direction. By
Lemma 1, there exist λ∗ ∈ Λd and x = x∗ + λ∗d such that p(x) ≤ p(x∗) has a solution. By
Eq. (1), f (x)

g(x) ≤ f (x∗)
g(x∗) has a solution. Which contradicts that x∗ ∈ Eff (UMQFP). Therefore,

for all d ∈ ∂B(0, 1), I0 �= ∅ or Λd = ∅ whenever I+ �= ∅.
(⇐) By Theorem 1, x∗ ∈ Leff (UMQFPx∗ ). Suppose that I0 �= ∅ for an arbitrary

d ∈ ∂B(0, 1). Then, by definition, there exists i ∈ I for which dT∇2 pi (x∗)d > 0 and
∇ pi (x∗)T d � 0, or dT∇2 pi (x∗)d � 0 and ∇ pi (x∗)T d > 0, and then ri (λ) grows indefi-
nitely for λ > 0, and p(x) ≤ p(x∗) does not have a solution for each x = x∗ + λd near to
x∗ (see Fig. 11). Therefore, x = x∗ + λd does not dominate x∗.

Now, suppose that I+ �= ∅ and I0 = ∅, and Λd = ∅ in the direction d , then I− �= ∅. By
Lemma 1, if I0 = ∅, I+ �= ∅, I− �= ∅ and Λd = ∅, p(x∗ + λd) ≤ p(x∗) does not have a
solution for λ > 0 (see Fig. 8). Therefore, x = x∗ + λd does not dominate x∗. We conclude
that if d ∈ ∂B(0, 1) and I0 �= ∅, x∗ is non-dominated; or whenever I+ �= ∅ and Λd = ∅, we
again have x∗ non-dominated. Thus x∗ ∈ Eff (UMQFP). ��

We do not require any kind of generalized convexity to obtain the optimality conditions
of Theorem 3. In the results that follow, we define D = {d ∈ ∂B(0, 1) | Λd �= ∅}.
Corollary 4 Let x∗ ∈ Leff (UMQFP) and β = inf

d∈D
{
λd−

}
. Then there does not exist another

solution x ∈ B(x∗, β) such that f (x)
g(x) ≤ f (x∗)

g(x∗) .

Proof It follows immediately from Theorem 3, if d ∈ D, then there exists λ > 0 in Λd such
that another solution x ∈ R

n dominates x∗ in this direction. However, the first solution x that
dominates x∗ along the direction d is x = x∗ + λd−d . By checking all directions in the set
D, we conclude that the first solution x which dominates x∗ is x = x∗ +βd . Therefore x∗ is
β-efficient and there does not exist another solution x ∈ B(x∗, β) such that f (x)

g(x) ≤ f (x∗)
g(x∗) . ��

Figure 10 illustrates a direction d ∈ D. There, we observe that I0 = ∅, I+ = {2, 3},
I− = {1, 4}, Λd �= ∅, and if x = x∗ + λd−d , p(x) ≤ p(x∗) has a solution. It is possible to
rewrite Corollary 4 replacing the set D with the set D′ = {d ∈ ∂Bn(0, 1) | I0 = ∅} (see the
charts in Figs. 8 and 10).

Next, we present a desirable result which gives a lower bound for the radius of efficiency
of a local Pareto optimality solution.

Corollary 5 Let x∗ ∈ Leff (UMQFP) and F(d) = max
i∈I−

{
2∇ pi (x∗)T d

}
. Suppose there exists

ρ ∈ R, such that for all d ∈ ∂B(0, 1), F(d) � ρ. Then there does not exist another solution

x ∈ B(x∗, ρ
−γ

) such that f (x)
g(x) ≤ f (x∗)

g(x∗) , where γ < 0, γ = min
i∈I {γi } and γi is the smallest

negative eigenvalue of the matrix ∇2 pi (x∗), i ∈ I .
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Proof By Theorem 3 and the value of β in Corollary 4, if we search a solution x = x∗ + λd
that dominates x∗, we have to find a value λ > 0 that satisfies

λ � β = inf
d∈D

{
max
i∈I−

{−2∇ pi (x∗)T d
dT∇2 pi (x∗)d

}}
.

From the symmetric and diagonalizable matrix ∇2 pi (x∗), i ∈ I−, we obtain 0 >

dT∇2 pi (x∗)d ≥ γi , where γi is the smallest negative eigenvalue of the matrix ∇2 pi (x∗),
thus

λ � β = inf
d∈D

{
max
i∈I−

{−2∇ pi (x∗)T d
dT ∇2 pi (x∗)d

}}

� inf
d∈D

{
max
i∈I−

{−2∇ pi (x∗)T d
γi

}}

� inf
d∈D

{
max
i∈I−

{−2∇ pi (x∗)T d
γ

}}
= inf

d∈D
F(d)
−γ

,

where γ = min
i∈I {γi }. Since F(d) � ρ, β � ρ

−γ
. If Λd = ∅ for all d ∈ ∂B(0, 1), then x∗ is

∞-efficient; but if there exists d such that Λd �= ∅, then x∗ is β-efficient. As ∞ > β � ρ
−γ

,
the theorem holds. ��

Because i ∈ I−, the changeover from the first to the second inequality of the Corollary 5
demonstration is valid, and it also provides ρ > 0. Therefore ρ

−γ
> 0. In order to limit the

search space, we present another beneficial result which gives an upper bound for the radius
of efficiency of a local Pareto optimality solution. Let ‖ · ‖ be the Euclidean norm.

Theorem 6 Let x∗ ∈ Leff (UMQFP) and M = min
i∈I+

{‖2∇ pi (x∗)‖
α

}
. Suppose that for some

d ∈ D and for all i ∈ I+ �= ∅, dT∇2 pi (x∗)d � α > 0. If there does not exist another

solution x ∈ B(x∗, M) such that f (x)
g(x) ≤ f (x∗)

g(x∗) , then x∗ ∈ Eff (UMQFP).

Proof Lemma 1 and Corollary 4 provide that if there exists a solution x that dominates x∗
in the direction d , then I− �= ∅ and λd− � ‖x − x∗‖ � λd+. Let P = supd∈D{λd+}. By the
hypotheses and ‖x − x∗‖ � P , we also obtain

P = sup
d∈D

{
min
i∈I+

{−2∇ pi (x∗)T d
dT ∇2 pi (x∗)d

}}

� sup
d∈D

{
min
i∈I+

{−2∇ pi (x∗)T d
α

}}

� min
i∈I+

{‖2∇ pi (x∗)‖
α

}
= M .

Therefore, if there does not exist a solution that dominates x∗ in B(x∗, M), then there does
not exist another solution in Rn with this property, and x∗ ∈ Eff (UMQFP). ��

Because i ∈ I+, the changeover from the first to the second inequality of the Theorem 6
demonstration is valid. It only has usefulness if M < ∞. Our results can be use to determine
whether a locally Pareto optimal solution is dominated by some point within a limited subset
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x2

x1

x∗

x

B(x∗, ρ
−γ )

B(x∗, β)

B(x∗, P )

B(x∗, M)

Fig. 1 Some interesting spherical regions of the solution x∗ ∈ Leff (UMQFP)

of Rn . Note that Corollary 4 provides the maximum radius β = inf
d∈D

{
λd−

}
of B(x∗, β)

where x∗ is not dominated. Corollary 5 provides a lower bound for β, i.e., a new B(x∗, ρ
−γ

).
On the other hand, Theorem 6 provides two balls centered at x∗, one of them with radius

P = supd∈D{λd+}, and another with radius M = min
i∈I+

{‖2∇ pi (x∗)‖
α

}
(upper bound of P).

Therefore, we have four balls such that B(x∗, ρ
−γ

) ⊆ B(x∗, β) ⊆ B(x∗, P) ⊆ B(x∗, M).
The lower and upper bounds are more attractive computationally to calculate. A suit-

able search can be made in the subset B̄(x∗, P)\B(x∗, β), or alternatively in the subset
B̄(x∗, M)\B(x∗, ρ

−γ
).

Figure 1 illustrates a particular case in R
2. It shows four spheres centered at the solution

x∗: in dashed lines and nearer to the center is the radius of B(x∗, ρ
−γ

); in continuous lines
and near the center is the radius of B(x∗, β) and B(x∗, P), respectively; the closed subset
B̄(x∗, P)\B(x∗, β) is the shaded area; finally, the radius of the biggest ball B(x∗, M) is
represented by the outer dashed lines. If there exists a solution x that dominates x∗, it must
belong to subset B̄(x∗, P)\B(x∗, β).

Auxiliary computational methods can be designed to further reduce the size of subset
B̄(x∗, P)\B(x∗, β). It is enough to observe that x ∈ B̄(x∗, P)\B(x∗, β) if and only if there
exists a unitary direction d such that λd− � λ � λd+ and x = x∗ + λd . Therefore, all those
directions participating in subset B̄(x∗, P)\B(x∗, β), but with Λd = ∅, can be excluded.
Figure 2 illustrates this possibility,where there exist two shaded subsets of B̄(x∗, P)\B(x∗, β),
each containing a possible solution x . The shaded subsets represent only the directions d such
that λd− � λ � λd+.
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x2

x1

x∗

x

x

B(x∗, ρ
−γ )

B(x∗, β)

B(x∗, P )

B(x∗, M)

Fig. 2 Search space of x that dominates x∗ ∈ Leff (UMQFP)

4.2 Radius of efficiency in the constrained case

We extend the results achieved in Sect. 4.1 for the constrained case MQFP. Let S be the
set of feasible solutions and diam(S) = sup{‖x − y‖ : x, y ∈ S}. The radius of efficiency
diam(S) is equivalent to the radius of efficiency ∞ in the UMQFP. If x∗ is λ-efficient, then
it is β-efficient, for all β < λ � diam(S). If x∗ is a globally Pareto optimal solution in S, we
say that it is diam(S)-efficient.

As a first contributed work we consider MQFP with the set of feasible solutions S defined
as S = {x ∈ R

n | Cx � b, C ∈ R
p×n, b ∈ R

p}. This choice makes it easy to calculate
the distance from a solution x∗ ∈ S to a boundary S, which is indispensable in the calculus
of radius of efficiency. However, we believe that the results extend for the more general
constraint sets than linear inequalities.

The next two results extend naturally the existing relation between the associated problems
MQFP and MQFPx∗ shown in Sect. 4.1. Now we admit the existence of a particular ball of
fixed radius for the solution x∗ where it is not dominated, and we calculate this radius using
our approach. In addition, we observe that the same fixed ball applies to both problems.

Theorem 7 Let x∗ ∈ Leff (MQFP). x∗ is λ-efficient for MQFP if and only if x∗ is λ-efficient
for MQFPx∗ .

Proof To calculate the radius of efficiency of the solution x∗ ∈ Leff (MQFPx∗ ), we must
determine if there exist λ > 0 and a feasible unitary direction d such that x∗ + λd ∈
S dominates x∗. In other words, we must find a pair (λ̄, d̄) which solves the following
inequalities

fi (x
∗ + λd) − fi (x∗)

gi (x∗)
gi (x

∗ + λd) � fi (x
∗) − fi (x∗)

gi (x∗)
gi (x

∗) = 0, for all i ∈ I .
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This implies to solve Inequalities (2). Similarly, to calculate the radius of efficiency of the
solution x∗ ∈Leff (MQFP),wemust find a pair (λ̃, d̃)which solves the following inequalities

fi (x∗ + λd)

gi (x∗ + λd)
� fi (x∗)

gi (x∗)
⇐⇒ λ

(
∇ pi (x

∗)T d + λ

2
dT∇2 pi (x

∗)d
)

� 0, for all i ∈ I .

This again implies the resolution of the Inequalities (2). Hence, if there exists a pair (λ̄, d̄) for
the solution x∗ ∈ Leff (MQFPx∗ ), and a pair (λ̃, d̃) for the same solution x∗ ∈ Leff (MQFP),
we obtain (λ̄, d̄) = (λ̃, d̃), and x∗ is λ-efficient for both problems, with λ = λ̄ = λ̃. ��
Corollary 8 x∗ ∈ Eff (MQFP) if and only if x∗ ∈ Eff (MQFPx∗ ).

Proof We replace the pair (λ, d) with the pair (∞, d) in Theorem 7. ��
Let K (x∗) = { j ∈ J | C j x∗ = b j } be the active constraints set at the solution x∗ ∈

S, where C j is the j th row of the matrix C . Let T̃ (x∗) = {y ∈ R
n | C j y � 0, ∀ j ∈

K (x∗), ‖y‖ = 1} be the tangent cone to S at the solution x∗ ∈ S. T (x∗) = T̃ (x∗)∩∂B(0, 1)
is said to be the feasible directions set at the solution x∗.

Definition 5 Let x∗ ∈ S, for each d ∈ T (x∗) such that x∗ + λd
d ∈ S, we say that the real
number λd
 ∈ (0,+∞) is the bounding for the radius of efficiency of x∗ in the direction d .
Analogously, to the Sect. 4.1, we define

λd
 = min
j∈J , C j d>0

{
b j − C j x∗

C jd

}
,

λd− = max
i∈I−

{−2∇ pi (x∗)T d
dT∇2 pi (x∗)d

}
, λd+ =

⎧⎪⎪⎨
⎪⎪⎩
min

{
min
i∈I+

{−2∇ pi (x∗)T d
dT ∇2 pi (x∗)d

}
, λd


}
, if I+ �= ∅

inf
{+∞, λd


}
, if I+ = ∅,

Λd− = [λd−,∞), Λd+ =
{

(0, λd+], if I+ �= ∅
(0, λd+), if I+ = ∅,

Λd = Λd− ∩ Λd+,

where pi , i ∈ I , is the same function and I0, I+ and I− are the same sets defined in Sect. 4.1.

By including the limit λd
 to the radius of efficiency in direction d , Figs. 12, 13, 14 and 15
illustrate some examples to the sets and parameters in Definition 5. In Fig. 14, where there
exists λ > 0, λd− � λ � λd+ < λd
 , such that x∗ + λd dominates x∗, the interval Λd is
nonempty, and p(x) ≤ p(x∗) has solution. Also, in Fig. 15, if we move λd
 towards the right
of the λ-axis until λd− � λd
 , then λd+ becomes λd
 , that is, we have λd− � λd+ := λd
 and we
obtain Λd �= ∅.
Theorem 9 Let x∗ ∈ Leff (MQFP). Then x∗ ∈ Eff (MQFP) if and only if for all d ∈ T (x∗),
I0 �= ∅ or Λd = ∅.
Proof (⇒) Identical to Theorem 3, by now considering the directions in T (x∗) and the fact
of S to be limited or not in those directions. (⇐) See Appendix A. ��

We observe that if I0 = ∅, I+ = ∅ and only I− �= ∅ in a direction d ∈ T (x∗), it is
possible to obtain Λd = ∅. However, in the unconstrained case always Λd �= ∅ (see Fig. 9).
Figure 15 illustrates the constrained case, where λd
 < λd−, in which λd+ becomes λd
 ; that is,

λd+ := λd
 < λd−, soΛd = ∅. Since λd+ = inf
{+∞, λd


}
, if for all j ∈ I−,

−2∇ p j (x∗)T d
dT ∇2 p j (x∗)d � λd
 ,
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we return to the unconstrained case, because we would have λd− � λd+ := λd
 and Λd �= ∅.
That is, there exists λ ∈ Λd such that x∗ + λd ∈ S dominates x∗ (see Fig. 15, and move λd

towards the right of the λ-axis until λd− � λd
 ).

Next results are extensions of Corollaries 4 and 5, and Theorem 6; we omit its proofs
due to the similarity with the unconstrained case. To simplify the presentation, we define
D̂ = {

d ∈ T (x∗) | Λd �= ∅}
.

Corollary 10 Let x∗ ∈ Leff (MQFP) and β = inf
d∈D̂

{
λd−

}
. Then there does not exist another

solution x ∈ B(x∗, β) ∩ S such that f (x)
g(x) ≤ f (x∗)

g(x∗) .

Corollary 11 Let x∗ ∈ Leff (MQFP) and F(d) = max
i∈I−

{
2∇ pi (x∗)T d

}
. Suppose there exists

ρ ∈ R, such that for all d ∈ T (x∗), F(d) � ρ. Then there does not exist another solution

x ∈ B(x∗, ρ
−γ

)∩ S such that f (x)
g(x) ≤ f (x∗)

g(x∗) , where γ < 0, γ = min
i∈I {γi } and γi is the smallest

negative eigenvalue of the matrix ∇2 pi (x∗), i ∈ I .

Theorem 12 Let x∗ ∈ Leff (MQFP) and M = min

{
min
i∈I+

‖2∇ pi (x∗)‖
α

, diam(S)

}
. Suppose

that for some d ∈ D̂ and for all i ∈ I+ �= ∅, dT∇2 pi (x∗)d � α > 0. If there does not exist
another solution x ∈ B(x∗, M) ∩ S such that f (x)

g(x) ≤ f (x∗)
g(x∗) , then x∗ ∈ Eff (MQFP).

We identify from Corollaries 10, 11 and Theorem 12 four particular subsets related
to solution x∗ ∈ Leff (MQFP) that satisfying (B(x∗, ρ

−γ
) ∩ S) ⊆ (B(x∗, β) ∩ S) ⊆

(B(x∗, P) ∩ S) ⊆ (B(x∗, M) ∩ S), where P = supd∈D̂{λd+}. If we have a suitable com-
putational search method to find x that dominates the solution x∗, it is enough that this
search is made in the subset

(
B̄(x∗, P) ∩ S

) \ (B(x∗, β) ∩ S), or alternatively in the subset(
B̄(x∗, M) ∩ S

) \(B(x∗, ρ
−γ

) ∩ S).

x∗

B(x∗, ρ
−γ )

B(x∗, β)

B(x∗, P )

B(x∗, M)

x2

x1

x
S

Fig. 3 Some interesting spherical regions of the solution x∗ ∈ Leff (MQFP)
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Corollary 13 Let x∗ ∈ Leff (MQFP). Suppose that the hypotheses of Corollaries 10 and 11,
and Theorem 12 are satisfied. If there exists x that dominates x∗ in MQFP, then x ∈(
B̄(x∗, P) ∩ S

) \ (B(x∗, β) ∩ S).

Figure 3 illustrates the search space from Corollary 13. It shows a solution x∗ ∈ Leff
(MQFP) in the boundary of S ⊆ R

2. In dashed lines, two subsets of interest are shown:
B(x∗, ρ

−γ
) ∩ S and B(x∗, M) ∩ S. And in continuous lines, another two ones are shown:

B(x∗, β) ∩ S and B(x∗, P) ∩ S. If there exists x that dominates x∗, it must belong to subset(
B̄(x∗, P) ∩ S

) \ (B(x∗, β) ∩ S).

5 Conclusions

The present study was designed to develop necessary and sufficient conditions for a local
Pareto optimal solution to be a global Pareto optimal solution. We focus our attention on
multiobjective quadratic fractional optimization problems. We identify the spherical regions
of a locally Pareto optimal solution; i.e., we show how to calculate the radius these spherical
regions centered at it. If there exists another point that dominates this solution, it belongs to
spherical regions. In this process, we also establish when the solution is globally optimal.
The achieved results might be useful to determine stopping criteria in the development of
algorithms, and new extensions can be established from these to more general multiobjective
optimization problems.
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Appendix A: Proofs

Proof of Lemma 1 (⇒) If x∗ ∈ Leff (UMQFP) then x∗ ∈ Leff (UMQFPx∗ ), and there exists
r > 0 such that f (x) − f (x∗)

g(x∗) g(x) ≤ 0 does not have a solution for each x ∈ B(x∗, r),
and by Eq. (1), p(x) ≤ p(x∗) does not have a solution for each x ∈ B(x∗, r). Let λ̄ = r ,
then p(x) ≤ p(x∗) does not have a solution for each x ∈ B(x∗, λ̄), and if d ∈ ∂B(0, 1),
p(x) ≤ p(x∗) does not have a solution for each x = x∗ +λd , ‖x − x∗‖ � λ, and λ ∈ (0, λ̄).
Therefore, if x dominates x∗, x /∈ B(x∗, λ̄) and there exists d ∈ ∂B(0, 1) such that x =
x∗ + λ∗d , and λ∗ � λ̄.

Suppose that I0 �= ∅ in the direction d ∈ ∂B(0, 1), there then exists i ∈ I for which
dT∇2 pi (x∗)d > 0 and ∇ pi (x∗)T d � 0 or dT∇2 pi (x∗)d � 0 and ∇ pi (x∗)T d > 0, and
then ri (λ) grows indefinitely for λ > 0 (see Fig. 4). Therefore, I0 has to be empty.

Suppose that I0 = ∅ and I− = ∅, then in the direction d , I+ �= ∅, dT∇2 pi (x∗)d > 0
and ∇ pi (x∗)T d < 0 cannot occur; as well as dT∇2 pi (x∗)d � 0 and ∇ pi (x∗)T d < 0; or
dT∇2 pi (x∗)d < 0 and ∇ pi (x∗)T d � 0 cannot occur (see Fig. 4). By Condition 2, we have
I0 = ∅ and I− �= ∅.
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Now, suppose that I0 = ∅ and I− �= ∅, and Λd = ∅ in the direction d . In this situation,
I+ = ∅ cannot occur; otherwise, we would have λd+ = ∞ and Λd �= ∅. Then, if I0 = ∅,
I+ �= ∅, I− �= ∅ and Λd = ∅, either λd+ < λd−, in which p(x∗ + λd) ≤ p(x∗) does not
have a solution for λ > 0, or λd− = λd+ = −2∇ pi (x∗)T d

dT ∇2 pi (x∗)d , for all i ∈ I+ ∪ I−, in which

p(x∗ + λd) ≤ p(x∗) does not have a solution for λ > 0. We conclude that if x dominates
x∗, then there exists d ∈ ∂B(0, 1) such that I0 = ∅, I− �= ∅ and Λd �= ∅, where λ∗ ∈ Λd

and x = x∗ + λ∗d . ��
Proof of Theorem 9 (⇐) By Theorem 7, x∗ ∈ Leff (MQFPx∗ ). Let an arbitrary d ∈ T (x∗)
and suppose that I0 �= ∅ in the direction d . Then there exists i ∈ I for which ri (λ) grows
indefinitely for λ > 0 and x = x∗ + λd does not dominate x∗ in this direction (see Fig. 11).

If I0 = ∅ and Λd = ∅, we verify two cases regarding the size of I+. If I+ = ∅, then
only I− �= ∅. Since Λd = ∅ implies that S is limited (λd
 < +∞) in this direction, and
λd+ := λd
 < λd− (see Fig. 15). Therefore, x∗ is not dominated in this direction. If I+ �= ∅ and
x∗ is a locally Pareto optimal solution, then, necessarily, I− �= ∅. We have I0 = ∅, I+ �= ∅,
I− �= ∅, Λd = ∅ and, as λd+ := λd
 whenever λd
 � λd+, we return to the unconstrained case
in Theorem 3 (see Figs. 12 and 13). Thus, x∗ is not dominated in this direction.

We conclude that if d ∈ T (x∗) and I0 �= ∅, we have x∗ non-dominated, or if Λd = ∅, we
again have x∗ non-dominated, and x∗ ∈ Eff (MQFP). ��

Appendix B: Illustrative figures

See Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15.

ri(λ)

λ
λd
+Λd

+

Λd

pi(x∗) Λd
−

λd
−

i ∈ I− i ∈ I0

i ∈ I+

B(0, λ̄)

λ̄

Fig. 4 Neighborhood of the solution x∗ and the behavior of the function ri
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ri(λ)

λ
λd
+Λd

+

Λd

pi(x∗)
Λd

−λd
−

i ∈ I− i ∈ I+

Fig. 5 Graphs of ri (λ) in which the index i belongs to the set I+ or I−

ri(λ)

λ

pi(x∗)

λ̄ = −2∇pi(x
∗)T d

dT ∇2pi(x∗)d

i ∈ I0

i ∈ I−

Fig. 6 Graphs of ri (λ) in which the index i belongs to the set I0 or I−, and λ̄ is a root of the equation
ri (λ) − pi (x

∗) = 0

ri(λ)

λ

pi(x∗)

λ̄ = −2∇pi(x
∗)T d

dT ∇2pi(x∗)d

i ∈ I+

Fig. 7 Graphs of ri (λ) in which the index i belongs to the set I+, and λ̄ is a root of the equation
ri (λ) − pi (x

∗) = 0
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ri(λ)

λ

p4(x∗)

p3(x∗)

λd
+

p2(x∗)

λd
−

p1(x∗)

d /∈ D

Λd = ∅

1, 3 ∈ I+

2, 4 ∈ I−

Fig. 8 The search for x that dominates x∗ ∈ Leff (UMQFPx∗ ) in the search direction d /∈ D, in which I0 = ∅,
I+ = {1, 3}, I− = {2, 4} and Λd = ∅

ri(λ)

λ

p4(x∗)

p3(x∗)

p2(x∗)

λd
−

p1(x∗)

d ∈ D

Λd = ∅

I+ = ∅

1, 2, 3, 4 ∈ I−

Fig. 9 The search for x that dominates x∗ ∈ Leff (UMQFPx∗ ) in the search direction d ∈ D, in which I0 = ∅,
I+ = ∅, I− = {1, 2, 3, 4} and Λd �= ∅
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ri(λ)
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λd
−

p3(x∗)

λd
+

p2(x∗)

p1(x∗)
d ∈ D

Λd = ∅

2, 3 ∈ I+
1, 4 ∈ I−

Fig. 10 The search for x that dominates x∗ ∈ Leff (UMQFPx∗ ) in the search direction d ∈ D, in which
I0 = ∅, I+ = {2, 3}, I− = {1, 4} and Λd �= ∅

ri(λ)

λ

p4(x∗)

p3(x∗)

p2(x∗)

p1(x∗)

d /∈ D

I0 = ∅

1 ∈ I0
3 ∈ I+

2, 4 ∈ I−

Fig. 11 The search for x that dominates x∗ ∈ Leff (UMQFPx∗ ) in the search direction d /∈ D, in which
I0 = {1}, I+ = {3} and I− = {2, 4}
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ri(λ)
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λd
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p1(x∗)

Λd = ∅λd

1, 3 ∈ I+

2, 4 ∈ I−

Fig. 12 The search for x that dominates x∗ ∈ Leff (MQFPx∗ ) in the direction d, in which I0 = ∅, I+ = {1, 3},
I− = {2, 4}, λd+ < λd− � λd



and Λd = ∅

ri(λ)

λ

p4(x∗)

λd
−

p3(x∗)

p2(x∗)

p1(x∗)

Λd = ∅λd

λd
+ ← λd

2, 3 ∈ I+

1, 4 ∈ I−

Fig. 13 The search for x that dominates x∗ ∈ Leff (MQFPx∗ ) in the direction d, in which I0 = ∅, I+ = {2, 3},
I− = {1, 4}, λd



< λd−, λd+ ← λd



and Λd = ∅
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ri(λ)
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λd
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p3(x∗)

λd
+

p2(x∗)

p1(x∗)

Λd = ∅λd

2, 3 ∈ I+1, 4 ∈ I−

Fig. 14 The search for x that dominates x∗ ∈ Leff (MQFPx∗ ) in the direction d, in which I0 = ∅, I+ = {2, 3},
I− = {1, 4}, λd− � λd+ < λd



and Λd �= ∅

ri(λ)
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p3(x∗)

p2(x∗)

λd
−

p1(x∗)

Λd = ∅
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+ ← λd

1, 2, 3, 4 ∈ I−

Fig. 15 The search for x that dominates x∗ ∈ Leff (MQFPx∗ ) in the direction d, in which I0 = ∅, I+ = ∅,
I− = {1, 2, 3, 4}, λd



< λd−, λd+ ← λd



and Λd = ∅
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