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A comprehensive WGS-based pipeline for the identification
of new candidate genes in inherited retinal dystrophies
María González-del Pozo 1,2,6, Elena Fernández-Suárez 1,2,6, Nereida Bravo-Gil1,2, Cristina Méndez-Vidal1,2, Marta Martín-Sánchez1,
Enrique Rodríguez-de la Rúa3,4, Manuel Ramos-Jiménez5, María José Morillo-Sánchez3, Salud Borrego1,2✉ and
Guillermo Antiñolo 1,2✉

To enhance the use of Whole Genome Sequencing (WGS) in clinical practice, it is still necessary to standardize data analysis
pipelines. Herein, we aimed to define a WGS-based algorithm for the accurate interpretation of variants in inherited retinal
dystrophies (IRD). This study comprised 429 phenotyped individuals divided into three cohorts. A comparison of 14 pathogenicity
predictors, and the re-definition of its cutoffs, were performed using panel-sequencing curated data from 209 genetically
diagnosed individuals with IRD (training cohort). The optimal tool combinations, previously validated in 50 additional IRD
individuals, were also tested in patients with hereditary cancer (n= 109), and with neurological diseases (n= 47) to evaluate the
translational value of this approach (validation cohort). Then, our workflow was applied for the WGS-data analysis of 14 individuals
from genetically undiagnosed IRD families (discovery cohort). The statistical analysis showed that the optimal filtering combination
included CADDv1.6, MAPP, Grantham, and SIFT tools. Our pipeline allowed the identification of one homozygous variant in the
candidate gene CFAP20 (c.337 C > T; p.Arg113Trp), a conserved ciliary gene, which was abundantly expressed in human retina and
was located in the photoreceptors layer. Although further studies are needed, we propose CFAP20 as a candidate gene for
autosomal recessive retinitis pigmentosa. Moreover, we offer a translational strategy for accurate WGS-data prioritization, which is
essential for the advancement of personalized medicine.
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INTRODUCTION
Inherited retinal dystrophies (IRD) constitute a group of clinically
and genetically heterogeneous, rare Mendelian disorders that lead
to irreversible and progressive visual impairment due to dysfunc-
tion or loss of photoreceptors1. The most common form of IRD is
retinitis pigmentosa (RP, ORPHA:791) defined by the primary
death of rods, which results in night blindness and constriction of
the visual field2. To date, pathogenic variants in 89 genes can
cause RP (RetNet, the Retinal Information Network, https://sph.uth.
edu/retnet/, accessed January 2021), however, an estimated 40%
of cases remain without a genetic diagnosis after testing for the
most prevalent retinal genes, suggesting that the RP in these
patients could be attributed to mutations that were either
undetectable by the current methods, or not routinely analyzed,
such as deep-intronic variants, complex structural variants (mobile
elements insertions, inversions, translocations, etc.), or variants in
yet unidentified disease genes3–6.
In this scenario, identifying novel disease genes or variants is

important to increase the diagnostic rate and to facilitate new
approaches for clinical care of IRD patients. The advances in next-
generation sequencing (NGS) technologies have ushered in a new
era for genetic diagnosis and disease-gene discovery7. Recent
studies have reported the clinical utility of Whole Genome
Sequencing (WGS), especially for rare diseases8,9, and its large
expectations on personalized medicine10, highlighting that the
use of WGS as a first diagnostic strategy could constitute a unique
and powerful analysis. This approach provides a bigger evenness

of coverage and the proportion of transcripts covered in their
entirety compared to targeting sequencing, allowing a superior
detection of structural variants, variants in non-coding regions,
and detection of variants in GC-rich regions11. However, the
clinical translation of this approach is currently limited due to its
still high cost, a large amount of generated raw data, and the lack
of efficient protocols for the WGS-data analysis12,13. Nevertheless,
in recent years, the cost of generating genome information has
shown a rapid decline making it possible a greater application of
WGS as in the clinical research as in some health care systems9,10.
Concerning bioinformatic processing, it is still necessary the
application of advanced filters to categorize variants efficiently10.
In this regard, deleteriousness predictors provide the opportunity
to facilitate variant prioritization in WGS studies. Multiple
prediction algorithms have been developed but it is still unclear
which ones and how they should be applied in human disease
studies to minimize both false-positive and false-negative rates14.
The aim of this work was to design a WGS-based pipeline for

the identification of potentially pathogenic variants in a group of
previously analyzed RP patients without genetic diagnosis. In this
regard, we conducted a comparative study of 14 variant
pathogenicity prediction tools to choose the most reliable cutoff
for variants associated with IRDs. These results enabled us to
optimize the filtering and prioritization of WGS data in order to
rapidly obtain a dataset enriched in likely pathogenic variants. The
application of our workflow allowed us to discover a variant in the
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CFAP20 gene in one family. Here, we propose CFAP20 as a new
likely candidate gene for arRP.

RESULTS
Establishment of the optimal cutoffs
The carefully curated training dataset comprised a total of 942
distinct rare SNVs located in any of the IRD associated genes,
including 247 pathogenic or likely pathogenic variants and 695
benign or likely benign variants (Supplementary Table 1). ROC
curves for each tool were computed using the prediction scores
from the training dataset (Fig. 1A, B). Of note, a subgroup of
99 splicing variants (34 pathogenic/likely pathogenic variants and
65 benign/likely benign variants) was used for the ROC curves of
the splicing predictors.
The specificities of each prediction method were evaluated

according to AUC values. We found that all values were
significantly >0.5 (P-value < 0.0001) indicating that all methods
were suitable to discern between pathogenic and benign variants.
For the training dataset, the predictor with a higher AUC was
CADDv1.6 (AUC= 0.891) (Fig. 1A), whereas for the splicing subset
the predictor with higher AUC was NNS (AUC= 0.971) (Fig. 1B).
Although three different approaches were conducted to

establish the optimal cutoff for each prediction method, the
optimal threshold was defined as the value in which the sensitivity
is 90% for each predictor (Table 1). In order to visually compare
the distribution of the filtered variants using both the cutoff most
widely described in the literature and the cutoff calculated in this
study, dot histograms were represented (Supplementary Fig. 1).

Optimization and validation of the discovery pipeline
As the estimated FP rates, with the exceptions of CADD and the
splicing tools, were not acceptable in most cases (≥35%) (Table 1),
a combinatorial analysis was carried out. For this purpose, we
applied our cutoff values to filter the training dataset and
calculated the TP and FP rates in each of the 109 combinatorial
models (Supplementary Table 2). Thirty-six of the predictor
combinations met the criteria (TP ≥ 85%, FP ≤ 35%, and Missing
values ≤ 30%), including 11 non-splicing and 25 splicing tool
combinations. Models passing quality filters were graphically
assessed by bubble plots (Fig. 1C, D). Considering the balance
between FP and TP rates, the optimal combination of splicing
tools was “SpliceAI+ NNS”, which presented the lowest FP rate
(3.08%) with a still elevated TP rate (94.18%). On the other hand,
four of non-splicing predictors: “CADDv1.6”, “CADDv1.6+MAPP”,
“CADDv1.6+MAPP+ Grantham”, and “CADDv1.6+MAPP+
Grantham+ SIFT” were initially proposed as the most suitable
options.
To finally determine the most enriched approach in likely causal

variants, the IRD validation dataset was submitted to the four
combinations of the non-splicing tools. This dataset comprised a
total of 5085 distinct variants in known IRD genes, including 49
pathogenic causal mutations. Taking into account the ratio of
causal and non-causal variants prioritized in each model (Fig. 2A),
the “CADDv1.6+MAPP+ Grantham+SIFT” combination showed
to be the most accurate option with enrichment of causal variants
of 28.57%.
The application of the discovery pipeline (Fig. 3) in the IRD

validation dataset allowed us to validate the 89.80% (44 out of 49)
of the causal variants. The remaining 10.20% (5 out of 49) were
filtered out by CADDv1.6 cutoff and consisted of two in-frame
variants, two splicing variants in non-canonical positions, and one
missense variant (Fig. 2B). Additionally, the discovery pipeline was
applied in the dataset from the hereditary cancer cohort and
neurological diseases cohort to evaluate its efficacy in these
diseases. Regarding the hereditary cancer cohort, the 97.83% (90
out of 92) of the causal variants were validated (Fig. 2C). In the

neurological diseases cohort, our algorithm allowed us to recover
the 95.65% (44 out of 46) of the causal variants (Fig. 2D). The
nature of the variants that integrate each validation dataset can
influence the validation ratios, being the highest for the hereditary
cancer dataset, which is composed of 70, 66% of loss-of-function
variants (stop gain, frameshift, and canonical splicing), in contrast
to the 44.9% of loss-of-function variants of the IRD cohort.
Furthermore, the highest ratio of causal and non-causal variants
was obtained applying the same combination of tools (“CADDv1.6
+MAPP+ Grantham+SIFT”).

Application of the discovery pipeline
The discovery dataset encompassed more than twelve million of
SNVs, of which 7,724,071 variants passed the recurrence and
multiallelic variants filters. The application of the frequency
filtering revealed 523,478 variants, of which 1524 variants passed
“CADDv1.6+MAPP+ Grantham+SIFT” filter (Fig. 4A).
The pedigree filtering applied below is exclusive of each family,

so the number of variants pending to be manually evaluated
varies according to the initially assumed mode of inheritance and
the genotype/phenotype of the sequenced individuals as a first
approach (Table 2). In simplex families, variants consistent with
autosomal recessive, autosomal dominant, and X-linked traits
have been considered. In consanguineous families, variants that
were homozygous in affected patients but not in their unaffected
relatives were first prioritized, followed by the compound
heterozygous variants.
This approach resulted in the identification of 45 rare SNVs

prioritized in the seven RP families of the discovery cohort (~6
variants per family), all of them were absent in homozygous status
in unrelated controls (0 homozygous in gnomAD database).
According to ACMG15 criteria, these variants were classified as
pathogenic (n= 6), likely pathogenic (n= 1), variants of uncertain
significance (n= 33), and likely benign variants (n= 5), which
were located in 42 different genes (Table 2). Eleven out of these
genes have been previously associated to a human phenotype
according to OMIM database (accessed in November 2021)
(Supplementary Table 3). Of note, the RPGR orf15 region was
manually inspected in the 14 patients of the discovery cohort due
to its difficulty to sequence. We tested the coverage of this region,
resulting in a mean coverage of 10.53x in men and 20.87x in
women within the most complex interval (chrX:38144794-
38146346; GRCh37) (Supplementary Fig. 2). Non-causal variants
were detected here.
The number of variants remaining after the application of each

filtering step in family A is depicted in Fig. 4. The pedigree filter
further reduced the number of candidate pathogenic variants to
160, including ClinVar pathogenic variants and variants passing
“SpliceAI+NNS” thresholds.
As family A was consanguineous, two homozygous variants

were firstly prioritized, one in the CFAP20 gene (c.337 C > T; p.
Arg113Trp), and the other in the FAHD2A gene (c.328 T > C; p.
Cys110Arg); none of which have been previously associated with a
human phenotype in OMIM database. It should be noted that,
when the threshold values previously described in the literature
were used (Supplementary Table 4), the number of variants in
each step was greater, being up to 90% more for manual curation
(from 2 to 20) (Fig. 4B).
During the manual prioritization, CFAP20 was selected for

further analysis, since it is a ciliary gene16–18 that interacts with a
known RP gene (RPGeNet19). Besides, the function and mutational
data reported in the literature20,21 stronger supported the
prioritization of CFAP20 over FAHD2A, which was discarded based
on its poor functional and mutational bibliographic support, its
lack of interaction with other known RP genes, and the milder
effect of the variant according to the ACMG15 criteria (Table 2).
Sanger sequencing confirmed segregation of the CFAP20 variant
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with the RP in the five members of Family A (Fig. 5A). Remarkably,
up to now, this variant has been detected only in heterozygous
state in 5 out of 165,392 unrelated controls (MAF= 0.0000121)
from different public allele frequency databases such as gnomAD,
EVS, Bravo, 1000 g, and CSVS22, which collects genomic data from
Spanish-local population. Moreover, we investigated how toler-
ated were variants in the CFAP20 gene in the base of the gnomAD
constraint metric LOEUF. The statistical performance denoted
outstanding discrimination by the LOUEF score, reflected in the
high AUC value obtained (AUC= 0.932) in the ROC curve analysis.

The LOUEF score for the CFAP20 gene is 1.008 which is under our
established cutoff (≤1.455) (Supplementary Fig. 3).
The manual prioritization in the rest of the families (Families

B–G) is resulting in a number of prioritized variants and genes
(Table 2). However, further expression, localization, segregation,
and interaction studies are needed to evaluate the role of these
variants in the etiopathogenesis of the RP in these families.
Regarding the SVs analysis, after applying the pedigree and

manual filters, no variants consistent with the disease were
identified in the discovery cohort.

Fig. 1 The ROC curves and combinatorial analysis results for different pathogenicity prediction tools. a ROC curve for the non-splicing
predictors using the training dataset. b ROC curve for the splicing predictors using a subset of the training dataset containing only splicing
variants. Higher AUC score indicates better performance. c, d Bubble plots represent the TP rate versus the FP rate for each of the different
combinations of the prediction tools. Only the combinations of non-splicing predictors (c) and the splicing predictors (d) meeting the quality
criteria (TP ≥ 85%, FP ≤ 35%, and Missing values ≤ 30%) were represented. In case of non-splicing predictors, the bubble size is proportional to
the percentage of missing values. AUC area under the curve, FP false positive, ROC receiver operating characteristic curve, TP true positive.
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Protein structural analysis, expression assays, localization
studies, and mutational screening of CFAP20
To evaluate evolutionary conserved positions in CFAP20, we
performed the alignment of 11 CFAP20 orthologous sequences
using Jalview. The strong evolutionary conservation of the CFAP20
protein and the complete physicochemical conservation of the
mutated residue Arg113 is shown in Fig. 5B.
Furthermore, three-dimensional modeling for CFAP20 using

PyMOL Molecular Graphics System showed that Arg113, a
positively charged amino acid, interacts with three other amino
acids through hydrogen bonding (Fig. 5C). Specifically, Arg113
forms one hydrogen bond with Ser110 and Thr111, and two with
Thr120. In silico mutagenesis at position 113 to tryptophan, a non-
polar aromatic amino acid, predicted loss of two hydrogen
bonding interaction points, (Ser110, and Thr111).
In addition, the protein-protein interaction studies revealed a

network, comprised of 25 CFAP20-connected proteins, some of
which are involved in ciliary function or forming part of the
spliceosome (Fig. 6A). Remarkably, CFAP20 interacts with disease-
causing proteins including: (i) ARL2BP, associated with RP, (ii)
TBC1D32 and FOXJ1, related with ciliopathies, and (iii) LRRK2 and
DICER1, involved in retinal degeneration in animal models.
In order to study the expression of CFAP20 in different human

tissues, we used real-time PCR and ready-to-use cDNA from retina,
brain, placenta, kidney, and skeletal muscle. As a result, we found
that the expression level of CFAP20 mRNA was the highest in adult
retina, followed by kidney and placenta (Fig. 6B).
The tissue distribution of human CFAP20 was also investigated

by immunohistochemistry using human retina sections from
unaffected individuals. Specific immunolabeling using the CFAP20

antibodies was observed, from the stronger to the weaker
staining, in the inner segment of the photoreceptor cells, the
outer plexiform layer, the nucleus of the cells of the inner nuclear
layer, and in the ganglion cells layer (Fig. 6C).
Amplicon NGS sequencing of all coding exons and its intronic

flanking regions of CFAP20 revealed no variants consistent with
the disease among the 264 additional IRD unsolved cases
analyzed.

Clinical findings in the family A
The family A proband, a 43-year-old female, is the first child of
first-degree cousin parents with two other unaffected siblings. The
patient displayed progressive night blindness with photophobia
since age 17 and impaired color vision, poor visual acuity (left eye,
20/100; right eye, 20/63), and concentric narrowing of visual field,
at diagnosis. The recent fundoscopic study, and the fundus
autofluorescence imaging, were consistent with a clinical diag-
nosis of typical RP characterized by bone spicule pigmentation,
narrowed retinal vessels, loss of the retinal pigment epithelium,
and atrophic patches in macula (Fig. 7 A and B). OCT imaging
revealed generalized atrophy of the photoreceptor cells layer but
relatively preserved in central macula (Fig. 7C). Full-field electro-
retinography (ERG) revealed completely bilateral extinguished
scotopic and photopic responses (Fig. 7D). The abolished ERG
responses, the RPE degeneration, and the diminished visual acuity
(best-corrected visual acuity of 0.2 in both eyes) indicated an
advanced disease. Additional findings included posterior capsular
opacification. The patient did not display systemic symptoms
consistent with a syndromic phenotype. Other unrelated pathol-
ogies present in the index patient were subclinical hypothyroidism
and beta-thalassemia.

DISCUSSION
To date, targeted sequencing, such as gene-panel sequencing and
WES, are the NGS approaches more frequently used in the clinical
setting. However, the recent advances in WGS have enabled wider
use of this technology, even leading to its gradual incorporation in
some health systems9. Currently, we consider that the cost-benefit
balance regarding data quality, analytical efforts, and diagnostic
rate indicates that panel-based sequencing is still the most
efficient first NGS strategy for the detection of disease-causative
genetic variants in IRD, at least in the context of the diagnostic
routine of public hospitals23. However, around 40% of cases
remain unsolved after this application, which would be eligible for
larger-scale techniques as WGS. Thus, these extended strategies
would be applied only as a second step and would not replace
panel sequencing. Nevertheless, WGS is starting to emerge as an
efficient first-level test24, thanks to its ability to screen for both
deep-intronic regions and variants in novel genes, and its greater
uniformity of coverage allows better detection of structural
variants. Before proceeding to the identification of variants in
novel genes, it may be helpful to discard the presence of any
pathogenic allele types in genes already involved in the disease,
only in this way, the level of uncertainty associated with the
causality of a variant in a new candidate gene would be reduced.
However, one of the most important barrier to implementing WGS
in the clinical practice is data management and storage25. The lack
of systematized protocols to filter and prioritize causative variants
in WGS data, prompted us to develop an effective approach to be
used as a standardized workflow for the identification of disease-
relevant variants in novel candidate genes for IRD.
Deleteriousness prediction methods are instrumental for variant

effect interpretation helping to prioritize large amounts of data
generated by sequencing projects. This study provides a
comprehensive analysis of which predictor tool, or combination
of them, is best suited for discovery applications, as well as which

Table 1. Relevant statistical data and the optimal cutoffs for the 14
prediction tools tested in this study.

Prediction tools AUC Optimal cutoff % FP % Missing value

Splicing tools

Alamut® Batch v1.11

SPiCE 0.968 ≥0.993 6.15 0.00

SSF 0.950 ≥12.360 7.69 0.11

MaxEnt 0.962 ≥53.580 10.77 0.74

NNS 0.971 ≥62.730 7.69 0.32

Ensembl Variant Effect Predictor

SpliceAI 0.968 ≥0.405 7.02 9.09

Non-splicing tools

Alamut® Batch v1.11

PhastCons 0.676 ≥0.097 69.96 8.28

PhyloP 0.744 ≥0.449 58.07 8.81

SIFT 0.724 ≤0.175 68.90 44.48

MAPP 0.672 ≤0.098 68.37 54.78a

Grantham 0.638 ≥28.000 88.04 44.48

Bystro genomics

PhastCons-
100way

0.687 ≥0.125 62.39 8.49

PhyloP-100way 0.729 ≥0.475 60.68 8.49

CADDv1.3 0.859 ≥21.950 33.91 8.49

Ensembl Variant Effect Predictor

CADDv1.6 0.891 ≥22.250 31.37 0.00

The optimal cutoff and the %FP have been calculated for a Sensitivity
of 90%.
AUC area under the curve, FP false positive.
aMAPP will not calculate scores if the gap weigh of a column is >50%.
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are the most reliable cutoffs regardless of those reported in the
literature. In this regard, although CADDv1.6 prediction showed the
highest performance, probably because it is an ensembled method
that provides scores for all types of variants26, the filtered FP rate
was still very elevated. The combination of this method with the
predictors MAPP, Grantham, and SIFT enabled us to further reduce
the number of neutral variants. Additionally, the use of our
customized cutoffs, instead of the published thresholds, allowed us
to significantly reduce the number of variants on the common VCF
file, resulting in an increased effectiveness by reducing the number
of variants for manual filtering. Of note, although this pipeline
could be used for the analysis of both, WES and panel data, it is
specially designed for WGS data, since not all annotation tools
work well with large sequencing experiments27.
Our results demonstrated the importance of integrating

different prediction tools in a standardized pipeline and applying
filters validated and optimized using local carefully curated
datasets. In fact, previous work highlighted the need for a
detailed catalog of local variability since there are relevant

differences in allelic frequencies of both polymorphic and
pathogenic variants between populations28. For this reason,
working with local datasets is crucial for an accurate establishment
of the clinical significance of candidate variants. Although other
authors26,29 have performed multiple comparisons among pre-
diction methods, the input data was taken from public databases
which may not be properly curated or be deficient in local data,
leading to the misclassification of variants and limiting the
accuracy of the resulting performance estimations26,29. In addition,
unlike other studies in which variants with high MAF composed
the neutral dataset29,30, our group of benign variants was
previously filtered by MAF letting us test how well a predictor
performs when the benign variants have the same allele
frequency that known pathogenic variants. This fact approaches
our study to a real filtering scenario being able to establish a more
precise fixed threshold. The favorable results obtained using
heterogeneous validation cohorts demonstrated that our opti-
mized pipeline could be applied to the analysis of NGS data from
individuals with other genetic disorders, not only for IRDs patients.

Fig. 2 Validation of the discovery pipeline in three different inherited diseases. a Histograms shows the enrichment in causal variants that
are recovered after applying the four best combinations of non-splicing computational tools. These data have been obtained using the IRD
patient validation sub-cohort. b–d, Sector diagram represents the different percentages of variants validated and not validated from the IRD
sub-cohort b, from the hereditary cancer sub-cohort c, and from the neurological diseases sub-cohort d.
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Hence, the implemented translational strategy allows an accurate
prioritization and assessment of NGS data in the clinical setting,
which is essential to establish personalized medicine.
Remarkably, the application of our pipeline to the discovery

cohort allowed the identification of one homozygous variant
(c.337 C > T; p.Arg113Trp) in the candidate gene CFAP20 as the
most likely cause of non-syndromic RP in one of the families.
Previous studies, involving unicellular16,31, and multicellular

organisms18, showed that Bug22 (ortholog name of the cilia and
flagella associated protein 20, CFAP20) plays a critical role in cilia
and flagella formation and morphogenesis. Bug22 depletion
causes defects in ciliary and flagellar morphology and motility in
Paramecium16, Chlamydomonas17, and Drosophila18 (Supplemen-
tary Table 5). Of note, knockdown experiments in Zebrafish17

revealed a phenotype consistent with ciliary dysfunction32

including a curved body axis, short somite length, and defective

Fig. 3 Discovery pipeline for WGS-data analysis. The discovery pipeline consisted of the use of different variant tools (in italic) for the
application of several filters (in bold) aiming at the identification of potentially pathogenic variants, and the reduction of the number of
neutral variants pending to be assessed. Two different branches, one for the prioritization of SNVs and indels, and another one for SVs,
converged into a single file for manual curation. Variants passing filters were then segregated in the family and functional studies were
performed when necessary. A reanalysis of the data should be conducted if no candidate variants were identified. The boxes in pink color
relate to the analysis of the SNVs and indels variants, whereas the boxes in green color correspond to the analysis of SVs. The boxes in blue
color are common steps for both analyses. The version used for each annotation tool were: Alamut® Batch v1.11, Slivar v0.2.7, VEP release 104,
AnnnotSV 2.2 online, ERDS v1.1. The Ø symbol means without quantitative prediction outcomes. The REFCN: CN refers to the copy number of
the variants present in the reference vs. the patient’s genomes, being 2:0 for homozygous deletions; 2:1 for heterozygous deletions, 2:3 for
heterozygous duplications, 2:4 for homozygous duplications 1:2 for hemizygous duplications, and 1:0 for hemizygous deletions. CN copy
number in the patient’s genome, Hem hemizygous, Het heterozygous, Hom homozygous, LP likely pathogenic, MEIs mobile elements
insertions, P pathogenic, REFCN copy number in the reference genome.
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heart-looping orientation. In addition, CFAP20 has also been
detected in the primary cilium-derived photosensory rod outer
segments of mouse retina33. These results implied that CFAP20
may be also important for assembly or stability of cilia in
vertebrates17. Moreover, depletion of CFAP20 in human hTERT-
RPE1 cells resulted in the appearance of longer cilia, and reduced
axonemal polyglutamylation18, demonstrating the implication of
CFAP20 in the regulation of post-translational modifications of the
ciliary axoneme in human cells. The fact that almost one-quarter
of known photoreceptor degeneration genes are associated with
ciliary structure or function33,34, along with the high evolutionary
conservation of CFAP20, and its low LOEUF score (below our
cutoff), support the prioritization CFAP20 as a candidate gene for
autosomal recessive IRD.
Sequencing of more than one individual per family and the

application of the recurrence filter has allowed us to refine the
number of likely causative homozygous variants, which in
consanguineous individuals would be expected to be higher.
Our patient, born to consanguineous parents, harbored a
homozygous rare missense variant in CFAP20 (c.337 C > T; p.
Arg113Trp), and received a clinical diagnosis consistent with non-
syndromic RP. Recently, a conference report described another
family with three affected individuals with clinical manifestations
partially resembling the phenotype observed in our proband,
including RP with an onset in adolescence21. These patients
harbored two heterozygous CFAP20 variants, one missense, and
one canonical splicing variant, segregating in the family21. In
addition, the three siblings had a history of learning disabilities in
school and motor coordination difficulties, suggesting the implica-
tion of CFAP20 in a syndromic form of RP. As occurs with mutations
in ~30 ciliary genes35, the manifestation of extra-ocular features can
vary from patient to patient36,37, depending on the severity of the
mutations36,37, the genetic background38, the presence of genetic
modifiers39 or tissue-specific alternative splicing40, among other
factors. Interestingly, depending on the mutation, the same ciliary
gene can cause syndromic or non-syndromic retinopathies, thus
emphasizing the highly refined specialization of the photoreceptor
neurosensory cilia, and raising the possibility of photoreceptor-
specific molecular mechanisms41.
Further, we observed high CFAP20 gene expression in the retina

compared to other tissues, and localization in the inner segment
of photoreceptor cells, suggesting that CFAP20 could have a role
in the human retina. Moreover, the molecular modeling of CFAP20

revealed that the p.Arg113 residue may be involved in some
interactions with important biological roles. In fact, p.Arg113 was
predicted to interact with p.Thr111, one of the seven consensus
positions in species that have cilia or centrioles, suggesting a
relevant role of this specific residue in the development and
function of the cilia or centrioles16. These data suggest that the
CFAP20 variant, p.Arg113Trp, could affect protein folding and
interaction with the consensus residue p.Thr111.
PPI network analysis of CFAP20 significantly contributed to our

understanding of potential relationships between CFAP20 inter-
actors and retinal disease mechanisms. One of the top-ranked
interactors of CFAP20 was ARL2BP, a known autosomal recessive
RP gene42 required for the formation of ciliary doublets of the
photoreceptors and for the morphogenesis of its outer segment43.
We also found other ciliopathy associated partners of CFAP20,
namely, TBC1D32, mutated in patients with oro-facio-digital
syndrome type IX44,45; FOXJ1, implicated in primary ciliary
dyskinesia 4346; LRRK2, a Parkinson disease 8 gene, involved in
retinal degeneration by a gain-of-function mechanism in Droso-
phila46,47; and DICER1, which deficit induces retinal pigmented
epithelium degeneration in a mouse model of age-related macular
degeneration48. The establishment of a robust interaction network
led us to hypothesize that the variant identified in our family
might alter some of the interactions with other crucial proteins
involved in the etiology of retinal degeneration. However, further
functional studies that deepen our understanding of these
interactions and their role in disease are needed to test this
hypothesis.
Clinically, genotype and phenotype correlations are only now

starting to emerge for CFAP20, which demands the comprehen-
sive screening of larger patient cohorts to better understand
disease pathogenesis in new cases with candidate CFAP20
variants. Nevertheless, if confirmed, CFAP20-associated disease
would be clinically variable, ranging from isolated to syndromic RP
with a spectrum of neurological defects. The identification and
characterization of additional cases will contribute to a better
understanding of the factors influencing the variable expressivity
of clinical features possibly associated with mutations in this novel
candidate gene.
In conclusion, the arrival of the WGS techniques into the clinical

practice has aroused great expectations about its potential for
identifying the genetic bases of diseases. In this scenario, the
development of a translational pipeline for the analysis of WGS

Fig. 4 Variants filtering and prioritization scheme using the optimal cutoffs vs. the literature cutoffs. a Number of SNVs remaining after
applying the optimized cutoffs. b Number of SNVs remaining after applying the general cutoffs described in the literature. As the starting
point for the application of the first filters, a unique multi-sample file containing the WGS data from 14 individuals (discovery cohort) was
used. To rescue those likely pathogenic SNVs that could have been filtered out by applying the general filtering, both ClinVar and “SpliceAI
+NNS” filtering steps were applied independently after the recurrence filtering. In this case, the number of SNVs exclusive of family A has
been broken down into two boxes. The upper box shows the total number of variants exclusive of family A after removing redundant variants.
The lower box refers only to the number of homozygous variants.
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Table 2. Variants prioritized using the WGS pipeline in the RP families of the discovery cohort.

Family n, Seq. Indiv. Inh. Cons. %Q30 Cov. Gene cDNA Protein Index GT ACMG

Family A AR Yes 85.35 34.85x CFAP20 NM_013242.3:c.337 C > T p.Arg113Trp Hom VUS/LP

n= 2, Index & 1 unaff. FAHD2A NM_016044.3:c.328 T > C p.Cys110Arg Hom VUS

IGHMBP2a NM_002180.3:c.1130 G > A p.Cys377Tyr Het VUS/LP

IGHMBP2a NM_002180.3:c.1422 C > A p.Asp474Glu Het VUS/LP

Family B S No 84.25 33x ANKS1B NM_001352186.1:c.2740 G > T p.Asp914Tyr Het VUS/LP

n= 2, Index & 1 unaff ASB1 NM_001040445.3:c.67 T > G p.Trp23Gly Het VUS/LP

ATP2A1a NM_173201.4:c.1015 G > A p.Val339Ile Het VUS/LP

CD163L1 NM_001297650.1:c.1262 G > A p.Gly421Glu Het VUS

COL24A1 NM_152890.7:c.3673 G > A p.Gly1225Arg Het VUS/LP

FAM86B2 NM_001137610.2:c.347 C > G p.Ser116Ter Het VUS/B

FCER2 NM_001220500.2:c.316+ 70 G > T p.? Het VUS

FOXC1a NM_001453.3:c.-429C > G p.? Het VUS/LP

MAP2K7 NM_001297555.1:c.808 C > T p.Arg270Trp Het VUS/LP

MS4A4A NM_148975.3:c.331-1365 C > G p.? Het VUS

NKX2-8 NM_014360.4:c.716 G > A p.Trp239Ter Het LP

NLRP6 NM_138329.2:c.1874T > C p.Leu625Pro Het VUS/LP

NPIPA1 NM_006985.4:c.514 A > T p.Lys172Ter Het VUS/P

POGLUT1a NM_152305.3:c.699 T > G p.Asp233Glu Het P

SCIN NM_001112706.3:c.1286 A > G p.Tyr429Cys Het VUS/LP

SLC34A2a NM_006424.3:c.1565 C > G p.Ser522Cys Het VUS

TLCD5 NM_001198670.2:c.740 C > G p.Ala247Gly Het VUS

TRIB3 NM_001301201.1:c.349 A > G p.Thr117Ala Het VUS/LP

TSHZ1a NM_001308210.2:c.40+ 6343 T > A p.? Het VUS

XPCa NM_004628.5:c.1599 G > C p.Glu533Asp Het VUS/LP

Family C S No 84.8 34.5x ATN1a NM_001007026.2:c.3001 G > A p.Glu1001Lys Het VUS/LP

n= 2, Index & 1 unaff. CHD6 NM_032221.5:c.3497 A > G p.Gln1166Arg Het VUS

GPATCH11 NM_174931.4:c.100 C > T p.Arg34Ter Hom P

NTNG1 NM_001113226.3:c.712 C > T p.Arg238Cys Het VUS/LP

ODF1 NM_024410.4:c.643 T > A p.Cys215Ser Hom VUS

OR5AC2 NM_054106.1:c.128 G > A p.Gly43Asp Het VUS

PAK5 NM_020341.4:c.-12+ 22185 C > T p.? Hom LB

PWP2 NM_005049.3:c.1318 C > T p.Arg440Ter Het P

SDHAa NM_004168.4:c.1552-2472 C > T p.? Het VUS/B

SLCO2A1a NM_005630.3:c.582 T > A p.Tyr194Ter Het P

TRIML1 NM_178556.5:c.409 G > T p.Glu137Ter Het VUS/LP

WNK1a NM_213655.4:c.3867+ 438 A > G p.? Het VUS/B

Family D AR Yes 86.15 35.3x MAP4K3 NM_003618.4:c.598 G > T p.Val200Leu Hom LB

n= 2, Index & 1 unaff. PKD2L1 NM_016112.3:c.649 C > T p.Arg217Trp Het LB

PKD2L1 NM_016112.3:c.235+ 1 G > A r.spl Het VUS

Family E AR No 88.2 35.6x TAS1R1 NM_138697.4:c.269 C > T p.Thr90Met Het LB

n= 1, Index TAS1R1 NM_138697.4:c.2070del p.Gln690
HisfsTer6

Het LB

Family F n= 2, Index & 1 aff. AR Yes 86.8 35.2x PCDHA1 NM_018900.4:c.1049 T > G p.Leu350Arg Hom VUS/LP

Family G AD No 85.1 35.7x C9orf24 NM_032596.4:c.703-174 G > T p.? Het VUS

n= 3, Index, 1 aff & 1 unaff. CREB3 NM_006368.5:c.825 C > A p.Tyr275Ter Het P

IPPK NM_022755.6:c.1111 C > T p.Gln371Ter Het P

The columns % Q30 and Cov. reflect the average quality values of the sequenced individuals of the same family.
AD autosomal dominant, aff affected, AR autosomal recessive, Cons consanguinity, Cov coverage, GT genotype, Hem hemizygous, Het heterozygous, Hom
homozygous, Inh Inheritance, LB likely benign, LP likely pathogenic, n number of sequenced individuals, P pathogenic, S simplex, Seq. Indiv. sequenced
individuals, Unaff unaffected.
aGene associated with an OMIM phenotype (Further details in Supplementary Table 3).
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data in the clinical setting, based on the reliable use of
computational prediction tools, becomes a priority. The use of
statistically proven filtering criteria using in-house curated patient
genetic data, reinforced the huge diagnostic and discovery
capacity of WGS. Our study suggests that the combination of
several prediction tools and the use of customized cutoff values
improve enormously WGS-data management. Herein, the applica-
tion of our pipeline has allowed us to identify, in one family, a
homozygous variant in CFAP20, a potential candidate gene for
autosomal recessive RP. Therefore, our study could contribute to
expand the mutational landscape of ciliary genes associated to
human diseases, reinforcing the importance of this complex
organelle as a key player in photoreceptor degeneration.

METHODS
Subjects and previous NGS studies
The research was conducted in accordance with the tenets of the
Declaration of Helsinki (Edinburgh, 2000)49, and all experimental protocols
were approved by the Institutional Review Board of the University

Hospitals Virgen del Rocio and Virgen Macarena (Spain). Written informed
consent was obtained from all participants. The genomic DNA of all
subjects was isolated from peripheral blood using standard procedures. All
affected individuals underwent a thorough ophthalmic evaluation as
described elsewhere50.
This study involved 429 individuals grouped in three different cohorts:

the training cohort (n= 209), the validation cohort (n= 206), and the
discovery cohort (n= 14) (Fig. 8). The training cohort comprised 209 IRD
patients selected among those who received a genetic diagnosis at the
Department of Maternofetal Medicine, Genetics and Reproduction of the
University Hospital Virgen del Rocio of Seville in the period from 2016 to
2019 using different NGS targeted approaches51–53, among others. The
accurate genetic characterization of these patients enabled this group to
design and define the prioritization pipeline.
The validation cohort was composed of 206 additional, unrelated

patients who also underwent targeted sequencing at our department
(unpublished data). This cohort was composed of three sub-cohorts of
affected patients from IRD (n= 50), hereditary cancer (n= 109), and
neurological diseases (n= 47). The sub-cohort of IRD patients including 33
patients with a genetic diagnosis and 17 patients without a genetic
diagnosis to conduct a blind trial, allowing an unbiased evaluation of the
parameters proposed with the training dataset. In order to assess if our

Fig. 5 Segregation studies and in silico pathogenicity assessment of the candidate variants identified in CFAP20. a Pedigree of family A
with the segregation analysis of CFAP20 mutation (NM_013242; [M]= c.337 C > T; p.Arg113Trp). Whole-genome sequenced individuals are
marked with an asterisk. Below, the genotypes of each individual are displayed (left panel). Electropherogram depiction of family A individuals
confirming the co-segregation of the variant with the disease (right panel). b Visualization of the T-Coffee alignment of 11 CFAP20 orthologs
using the Jalview program. The conservation annotation histogram (below) shows conservation of the physicochemical properties: an asterisk
‘*’ indicates absolutely conserved residues (score 11), a plus symbol ‘+’marks columns where physicochemical properties are conserved (score
10); less conserved positions are shown in darker colors with decreasing score. Quality of the alignment based on BLOSUM62, and an
alignment consensus row are also shown. Positions are colored white to blue according to increasing sequence identity (BLOSUM62
punctuation). c Three-dimensional modeling showing a cartoon view of human CFAP20 protein. The mutated residue (pink) is in a β-strand
secondary structure, depicted as an arrow (left panel). A detailed view of wild-type Arg113 vs mutant Trp113 and its interacting amino acids
(Ser110, Thr111, and Thr120) (right panel). Hydrogen bonds are shown as blue dashed lines with the donor-acceptor distances depicted in Å.
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pipeline could be applied to the analysis of other inherited diseases, the
hereditary cancer cohort and the neurological diseases cohort, comprising
genetically diagnosed individuals, were employed.
The discovery cohort involved 14 individuals, of which nine were

affected and five were unaffected members, belonging to seven unsolved
IRD families (Families A–G). WGS was conducted in all the individuals of the
discovery cohort, and a comprehensive analysis of the 274 genes
previously associated with IRD (RetNet), including coding and non-
coding regions, was performed as previously described54, but no causal
variants were detected in any of these genes. The discovery cohort was
employed for the application of the validated workflow in order to achieve
their genetic diagnosis and the identification of new disease genes.
Interestingly, to facilitate the filtering and prioritization of variants in novel
genes, the unaffected individuals of the rest of the families were used as
pseudo-controls of the family in the study.
Additionally, 264 unsolved IRD individuals from our cohort were

collected in order to conduct the mutational screening of the novel
candidate genes.

The genomic data of the individuals belonging to the three cohorts were
combined using the VCF sort tool55 and the VCF combine tool56. The multi-
sample VCF files comprised the study datasets (Fig. 8) enabling the
application of the pipeline in a more efficient way.

Curation of the training dataset
The training dataset composed of SNVs affecting IRD genes was first
filtered by MAF ( ≤ 0.01) and by the number of homozygous individuals in
GnomAD (0, 1). The resulting variants were then classified according to
ACMG15, using VarSome57 v10.1 as a support, and their clinical association
in multiple databases (ClinVar, LOVD, HGMD professional, and the
literature review). This categorization allowed us to differentiate two
groups of variants: (i) Pathogenic and likely pathogenic; and (ii) Benign and
likely benign.
The statistical analysis of the splicing predictors was conducted using a

subgroup of variants affecting intronic positions ±10 and the first/last
codon of the exons. This subgroup was similarly classified as: (i) Pathogenic

Fig. 6 Analysis of CFAP20 interaction network, and expression profiles. a Protein-protein interaction (PPI) network analysis of
CFAP20 showing common interactions between BioGRID (3.5) and IntAct databases. The PPI map was drawn using Cytoscape v3.8.023.
Different colors were employed to mark the interactors with a role in the etiopathogenesis of IRDs and other related disorders, using
information from different functional databases (OMIM, Uniprot, etc). Each line represents a PPI identified by a different detection method
including validated two hybrid, socioaffinity inference, or coimmunoprecipitation. b Relative expression levels of CFAP20 in commercial cDNA
derived from five different human tissues. Depicted is the relative amount of mRNA in retina tissue vs. the other tissues, normalized to the
expression of the housekeeping gene GAPDH. All the samples were executed in triplicates. Error bars show SD. c Immunohistochemical
analysis of CFAP20, using rabbit polyclonal anti-GTL3 antibody (ab225952; alias symbol of CFAP20), on paraffin-embedded sections of human
eye of unaffected donors. Magnification: 40x (left) and 60x (right). Scale bars: 50 µm (left) and 20 µm (right). Immunostaining of the tissue
sections showed strong positive staining (brown) of CFAP20 in the inner segment of the photoreceptors, followed by the outer plexiform
layer, the nucleus of the cells of the inner nuclear layer, and the nucleus of the ganglion cells (arrows). GCL ganglion cell layer, INL inner
nuclear layer, IPL inner plexiform layer, IS inner segment, ONL outer nuclear layer, OPL outer plexiform layer, OS outer segment.
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Fig. 7 Ophthalmic characterization of the right (OD) and left (OS) eye of the 43-year-old female with RP from the family A. a Color fundus
photographs showing widespread bone spicule pigmentation, arteriolar narrowing, and atrophic patches in the fovea. b Fundus
autofluorescence imaging showing hypoautofluorescent lesions in the macula corresponding to retinal pigment epithelium atrophy. c Optical
coherence tomography of the right (OD) and left (OS) eyes showing generalized atrophy of the photoreceptor cells layer. d Full-field
electroretinogram of both eyes showing extinguished scotopic (dark-adapted) and photopic (light-adapted) responses bilaterally.

M. González-del Pozo et al.

11

Published in partnership with CEGMR, King Abdulaziz University npj Genomic Medicine (2022)    17 



and likely pathogenic; and (ii) Benign and likely benign attending to the
same criteria mentioned above.
Those changes that were not clearly classified in these categories

(Variants of Unknown Significance) were discarded for the statistical
analysis.

Predictive tools tested in this study
To obtain the prediction scores used in the statistical analysis, the training
dataset was annotated using Alamut® Batch v1.11 software (Interactive
Biosoftware), Bystro Genomics27, and Ensembl Variant Effect Predictor
(VEP, web interface release 104)58 (Supplementary Table 4).
Alamut® Batch is based on efficient external prediction tools reporting

update information, of which we used the deleteriousness prediction
scores for Sorting Intolerant From Tolerant59 (SIFT), Grantham60, Phast-
Cons61, PhyloP62, Multivariate Analysis of Protein Polymorphism63 (MAPP),
Splicing Predictions in Consensus Elements64 (SPiCE), Splice Site Finder-
like65 (SSF), MaxEntScan66 (MaxEnt), and NNSplice67 (NNS). Bystro
Genomics provides three prediction methods: PhastCons-100way, Phy-
loP-100way, and CADDv1.3. Since the CADD version provided by Bystro is
only defined for single-nucleotide variants, a more recent version of CADD
(GRCh37-v1.6) was also tested, which was obtained from VEP annotation.
This variant annotator gives also the SpliceAI68 prediction allowing its
assessment. Therefore, two different versions of PhastCons, PhyloP, and
CADD were evaluated independently to assess the most efficient method.
To compare the performance of the quantitative score of these

prediction methods, SIFT and MAPP scores given by Alamut® Batch were
converted, so that a higher score indicates a higher risk of deleteriousness.
Similarly, scores of splicing tools SSF, MaxEnt and NNS were converted into
the percent variation between the scores for the wild-type sequence and
variant sequences. Among the four different delta scores (DS) provided by
SpliceAI, the maximum score was used (Supplementary Table 4).
In addition, motivated by the fact that genes that are crucial for the

function of an organism will be depleted of loss-of-function variants in
natural populations, whereas non-essential genes will tolerate their
accumulation69, we evaluated the tolerance to inactivation of the novel
candidate genes using the constraint metrics from gnomAD. Among them,
the LOEUF Score (“loss-of-function observed/expected upper bound
fraction”) was used for its good performance to improve molecular
diagnosis and advance in the understanding of disease mechanisms70.

Comparison of the predictive tools
To calculate potential cutoff values with a certain degree of sensitivity and
specificity for each of the predictive tools, we conducted receiver
operating characteristic (ROC) curves using the prediction scores of the
training dataset and the ROC curve toolbox of SigmaPlot v14 (Systat
Software, Inc). Resulting data were used to establish the optimal cutoff for
each prediction method by using three different approaches: Youden’s
index71, the cutoff value in which sensitivity is equivalent to specificity72,
and the cutoff value in which sensitivity is 90%.

The area under the ROC curve (AUC) was used to compare the
prediction tools, considering a value <0.5 as the result of chance and
statistical randomness73, and a value close to 1 as a sign of utility of the
predictor. The DeLong et al. method74 was used for the calculation of AUC
since our data type was paired. Sensitivity, specificity, and AUC values were
computed with a confidence level of 95%. Due to the existence of missing
values for the different prediction methods, the pair-wise deletion75 was
computed to compare ROC areas. The distribution of both categories of
variants (pathogenic and benign) along the prediction scores, were also
plotted by dot histograms for each predictor (Supplementary Fig. 1),
representing the literature cutoffs (Supplementary Table 4) and our
selected optimal values (Table 1) as horizontal lines.
Similarly, a ROC curve analysis was conducted to compare the LOEUF

Scores from 207 known autosomal recessive IRD (arIRD) genes (https://sph.
uth.edu/retnet/) with the LOEUF Scores from 374 olfactory receptor genes
as relatively unconstrained genes. Low LOEUF scores indicate strong
selection against predicted loss-of-function (pLoF) variation in a given
gene, while high LOEUF scores suggest a relatively higher tolerance to
inactivation. The LOEUF cutoff in which sensitivity is 90% was obtained
(Supplementary Fig. 3).
In order to ascertain which was the optimal combination of predictors

that allowed preserving a high True-Positive (TP) rate, reducing the False-
Positive (FP) rate, a combinatorial analysis was performed. Based on its
ease of subsequent application, a total of 109 combinations of different
predictors, divided into three groups, were analyzed as shown in
Supplementary Table 2. We conducted bubble plots to visually inspect
the data. To select the most appropriate models, the following ad hoc
criteria were established: TP rate ≥85%, FP rate ≤35%, and missing values
rate ≤30%. If the model met the criteria, we prioritized a lower FP rate.
Finally, the selected combinatorial models were applied in the IRD

validation dataset to determine the most optimal filtering steps for our
discovery pipeline, according to the percentage of recovered causal and
non-causal variants.

Variants filtering, prioritization, and pathogenicity
assessment
The validated combination of predictors was applied to the WGS data from
the discovery cohort as part of our optimized discovery pipeline (Fig. 3).
Briefly, for SNVs and indels, the recurrence filtering, consisting of

removing homozygous variants in the unaffected individuals (pseudo-
controls), and the multiallelic variants filtering were applied using the tool
“Filter tabular” from open source, web-based platform Galaxy76 (VCF 1). On
the one hand, the VCF 1 file was annotated with the population allele
frequency from gnomAD database using the Slivar v0.2.7 software77 and,
then, the frequency filtering (MAF ≤ 0.01) was applied. The resulting VCF
file (VCF 2) was annotated in VEP and filtered by the CADD (CADD
PHRED ≥ 22.25) and SpliceAI (max. SpliceAI DS ≥ 0.405) separately. Variants
passing these filters were used to create a third and fourth VCF files which
were also annotated with Alamut® Batch. Then, MAPP filtering (≤0.098 or
missing), Grantham filtering (≥28 or missing), and SIFT filtering (≤0.175 or
missing) were applied for the VCF 3, and NNS filtering (≥62.73 or missing)
was applied for the VCF 4.
On the other hand, the VCF 1 was intersected with Clinvar VCF (October

2021) to recover variants classified as pathogenic or likely pathogenic in
ClinVar database (ClinVar filtering) regardless of whether they meet the
above-mentioned filtering criteria or not. This set of variants (VCF 5) was
also annotated in Alamut® Batch. All these prioritized variants converged
into a single file enriched in pathogenic SNVs and indels (Fig. 3).
Regarding the structural variants (SVs), the CNVs calling was performed

using the tool Estimation by Read Depth with Single-nucleotide variants
v1.1 (ERDS)78, which generated as output a VCF file containing all called
SVs per individual. Then, we employed the VCF sort tool55 and the VCF
combine tool56 to create a single multi-sample VCF, which was annotated
and ranked using the AnnotSV 2.2 online software79. CNVs prioritization
was done using the subsequent filters: (i) Genotype filtering which
considers only homozygous, heterozygous, and hemizygous deletions and
duplications excluding complex and multi-allelic CNVs; (ii) Recurrence
filtering which limits the co-occurrence of the same CNV in no more than
three individuals of our discovery cohort; (iii) Frequency filtering (MAF ≤
0.01 or absent in gnomAD); and (iv) SiteType filtering consisting of
prioritizing events that include exonic bases. In addition, we used the
Mobile Element Locator Tool (MELT v2.2.2)80 to discover mobile element
insertions (Alu, L1, and SVA elements) in the discovery cohort.

Fig. 8 Composition of the cohorts and datasets used in the study.
The whole study cohort was composed of 429 subjects including:
268 IRD affected individuals (in blue), 109 hereditary cancer affected
individuals (in orange), 47 neurological diseases affected individuals
(in purple), and five unaffected relatives of IRD families (in green).
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The resulting call sets were annotated using AnnotSV and filtered
according to the quality status and the recurrence between samples.
Remarkably, a single multi-sample file containing the passing filters

variants (SNVs, indels, and SVs) of the 14 individuals, belonging to seven
IRD families, was the starting point for the application of the pedigree
filtering. This filter should be applied considering the specific pedigree of
each family. This step was the first filter specific to the family in the study
and focused on the analysis of only those variants present in the index
patient, taking into account the genotype, and the phenotype, of the
additional sequenced family members. In a first approach, we carry out the
prioritization of variants considering the mode of inheritance initially
assumed and a common genetic cause in all affected individuals of the
same family. However, in those families in which this approach did not
lead to candidate variants, the data analysis was conducted under other
considerations.
Finally, we conducted a manual curation of candidate variants

considering: (i) the number of heterozygous, hemizygous and homozygous
individuals and constraint metrics of gnomAD; (ii) the results of the
application of ACMG classification15 rules; (iii) the clinical significance
recorded in additional variant databases (HGMD professional, LOVD,
ClinGen, DGV81 or DECIPHER82); and (iv) the reported retinal association
regarding gene function, interaction networks (RPGeNet19), expression
databases, animal models, etc.
Candidate variants were segregated by Sanger sequencing (SNVs), PCR

(MEIs) or RT-PCR (CNVs) according to the manufacturer’s protocols
(BigDye® Terminator v3.1 Cycle Sequencing Kit, 3730 DNA Analyzer,
Applied Biosystems, USA; Qiagen Multiplex PCR Master Mix, and RT2 SYBR
Green ROX qPCR Mastermix Qiagen, Hilden, Germany) in additional family
members. The primers used are available in Supplementary Table 6.
Structural, expression, localization, and mutational screening studies were
conducted if needed.
In case no likely candidate variants were detected using this pipeline, a

reanalysis of the data, including the screening of both deep-intronic
regions of novel genes, and complex rearrangements, are being
conducted.

Protein structural analysis
The multiple sequence alignment was generated by Jalview v2.11.1.083

with the T-Coffee alignment algorithm84. Sequences of CFAP20 orthologs
were obtained via UniProt85 and filtered for reviewed (Swiss-Prot),
including A8IU92 (Chlamydomonas reinhardtii), Q9Y6A4 (Homo sapiens),
Q9VKV8 (Drosophila melanogaster), Q6PBJ2 (Danio rerio), A0CDD4
(Paramecium tetraurelia), Q8BTU1 (Mus musculus), Q6B857 (Bos taurus),
Q499T7 (Rattus norvegicus), Q5ZHP3 (Gallus gallus), Q6GL74 (Xenopus
tropicalis) and Q86D25 (Caenorhabditis elegans).
Protein predictive models of human CFAP20 were obtained using

I-Tasser86,87. Among the predicted structures, the model with the highest
C-score was selected. To analyze the impact of mutagenesis on terms of
size and hydrogen bonding, PyMOL Molecular Graphics System, v1.888

was used.
The protein-protein interaction (PPI) network was created by integrating

Biological General Repository for Interaction Datasets (BioGRID v3.5)89 and
IntAct databases90 at EMBL-EBI. To restrict the number of PPIs to those with
higher levels of evidence, we removed the PPIs predicted by spoke
expanded co-complexes. Cytoscape v3.8.091 was used to construct and
visualize the PPI network which included common interaction pairs in both
databases. The function of connected genes was checked in OMIM (https://
omim.org/), Uniprot85, and the literature.

Expression and localization studies in the human retina
The expression of the human CFAP20 gene was evaluated by real-time
qPCR using the RT2 SYBR Green ROX qPCR MasterMix (Qiagen, Hilden,
Germany) in an Applied Biosystems 7500HT instrument (Life Technologies,
CA, USA) with ready-to-use cDNA from five different tissues: retina (QUICK-
Clone™ Clontech Laboratories, Inc., CA, USA), brain, kidney, placenta and
skeletal muscle (Zyagen, CA, USA). The relative expression of CFAP20 in the
mRNA in retina tissue vs. the other tissues was determined using the
comparative Ct (2-ΔΔCt) method92 with GAPDH as endogenous control. All
the samples were executed in triplicates.
Localization studies of human CFAP20 in retina sections were done by

immunohistochemistry. The human retina sections belonged to five
unaffected donors from the University Hospital Virgen del Rocio-Institute
of Biomedicine of Seville Biobank (Andalusian Public Health System

Biobank and ISCIII-Red de Biobancos PT17/0015/0041). For this purpose,
four-micrometer-thick tissue sections from paraffin blocks were baked for
20min at 65 °C. Antigen retrieval was performed with a PT Link instrument
(Agilent, CA, USA), using EDTA buffer (97°C, 20 min). Sections were
immersed in H2O2 aqueous solution (Blocking peroxidase reagent, Agilent,
CA, USA) for 10min to exhaust endogenous peroxidase activity and then
covered with 1% blocking reagent (Roche, Mannheim, Germany) in PBS, to
block nonspecific binding sites. Sections were then incubated with a 1:400
dilution of primary antibody (Abcam, ab225952) for 1 h at room
temperature in a humid chamber. Later, horseradish peroxidase polymer
conjugated secondary antibodies (Visualization reagent, Agilent, CA, USA)
were used for 1 h at room temperature in a humid chamber and 3,3'-
diaminobenzidine was applied for 5 min to develop immunoreactivity.
Slides were counterstained with hematoxylin and mounted in DPX (BDH
Laboratories, Poole, UK). Images of the stained sections were obtained with
an Olympus BX61 microscope and the cellSens Dimension software
(Olympus, PA, USA).

Mutational screening of CFAP20 in additional IRD families
To evaluate the prevalence of CFAP20 variants in additional IRD families of
our cohort, we designed an amplicon NGS-based approach of all coding
exons of CFAP20 and their flanking intronic regions (Supplementary Table
6). For this purpose, 264 additional unsolved IRD patients underwent deep-
amplicon sequencing using a Custom rhAmpSeq library Panel (Integrated
DNA Technologies, Inc., IA, USA) in the Illumina’s MiSeq instrument (2 ×
150bp paired-end). Data analysis was conducted using MiSeq Reporter
software (v2.6) without flag duplicates.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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