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Abstract We consider an extension of the classic division problem with claims, di-
vision problems with multiple references. We show that the theory of cooperative
games is able to provide a single-valued allocation rule for this class of problems.
Moreover, this rule can be related with the Talmud rule for the classic division prob-
lem, as in Aumann and Maschler (J. Econ. Theory 36, 195–213, 1985). Finally, we
establish the consistency and other basic properties of the rule.

Keywords Division problems · Multiple references · Cooperative games · Talmud
rule
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1 Introduction

Aumann and Maschler (1985) proposed their well-known rule to divide an amount
E ∈ R++ (the estate) of an infinitely divisible resource among a group of agents, N ,
having claims, ci ∈ R+, on it, whose sum exceeds the estate. The rule assigns the
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amount Ti(c,E) to each agent i ∈ N ,

Ti(c,E) =
{

min{ ci

2 , λ} if E ≤ ∑
i∈N

ci

2 ,

ci − min{ ci

2 , λ} otherwise,

where c = (ci)i∈N is the vector of claims and, in each case, λ ∈ R+ is chosen so as
to achieve efficiency (

∑
i∈N Ti(c,E) = E).

This proposal rationalizes the recommendations made in the Talmud1 for the con-
tested garment and the marriage contract problems. Henceforth, the rule T was
called the Talmud rule.

They also showed that the prenucleolus of a coalitional game associated with a
claims problem, proposed by O’Neill (1982),2 provides the division generated by the
Talmud rule. A direct proof of this result is given in Benoît (1997).

The model can be reformulated to accommodate surplus sharing situations in
which E >

∑
i∈N ci . In this new setting, where the amount to divide is not neces-

sarily below
∑

i∈N ci , the vector containing the characteristics of the agents, c, will
be called the vector of references.

The Talmud rule can be extended to this model by dividing equally the differences
from the sum of the components of the vector of references when E >

∑
i∈N ci as

T̄i (c,E) =

⎧⎪⎨
⎪⎩

min{ ci

2 , λ} if E ≤ ∑
i∈N

ci

2 ,

ci − min{ ci

2 , λ} if
∑

i∈N
ci

2 < E ≤ ∑
i∈N ci ,

ci + E−∑
i∈N ci

n
otherwise.

The rule T̄ still coincides with the prenucleolus of the corresponding coalitional game
(see Serrano 1995).

In this paper we generalize this setting by considering an extension of the clas-
sic division problem to situations in which the characteristic of each agent is multi-
dimensional, and therefore, several vectors of references have to be taken into account
in the division. This kind of problems have been called in the literature multi-issue
allocation situations and were introduced by Calleja et al. (2005). We will call these
problems division problems with multiple references.3

In division problems with multiple references, two approaches are possible: In
one of these approaches the budget is first allocated to the issues corresponding to
each vector of references, and, in a second step, the amount assigned to each issue
is divided among the agents; it is followed in Lorenzo-Freire et al. (2007, 2009),
Moreno-Ternero (2009), Bergantiños and Lorenzo-Freire (2008), and Bergantiños
et al. (2010). Another approach consists of directly providing a rule that assign an

1The Talmud is the collection of writings that constitute the basis for Jewish Law.
2The bankruptcy game proposed by O’Neill for the problem (c,E) is (N,v(c,E)), where for each S ⊆ N ,
v(c,E)(S) = (E − c(N \ S))+ = max{E − c(N \ S),0}, where c(N \ S) = ∑

i∈N\S ci .
3This general terminology of “references” or “characteristics” is used in Ju et al. (2007) in order to sub-
sume into their model, by choosing the meaning of variables appropriately, a number of existing and new
allocations problems such as cost sharing, social choice with transferable utilities, income redistribution,
bankruptcy with multiple types of assets. We borrow this terminology from them.



A consistent talmudic rule for division problems 663

amount to each agent by taking into account simultaneously all the references. This
is the approach followed in Calleja et al. (2005), González-Alcón et al. (2007), Ju et
al. (2007), and also in the present paper.

Situations which can be represented by this model are, for instance, when Univer-
sity budgets are divided among different departments by taking into account differ-
ent indicators such as number of students, research activity, teaching, etc. Once the
quantity is assigned to the department, no constraint is imposed on what the final des-
tination of the money should be. Other examples are: when the European Union dis-
tributes a budget between the members, by taking into account several characteristics
of the countries, such as, total population, level of development, or total extension, or
when the liquidation value of a bankrupt firm is divided among its creditors, and the
different claims of each creditor are categorized by the type of assets.

The different references can also represent the assessments of rights or needs of
the agents made by various experts, as in a situation in which funds are to be allocated
to various research groups whose needs are assessed by different external evaluators.

This framework is also appropriate to address division problems where there is
uncertainty about the references. For instance, if some creditors have to receive some
assets from a firm at a future date, and the firm goes bankrupt before fulfilling its
obligations, then, in order to divide the liquidation value of the firm, different future
economic scenarios might be considered. The uncertainty about the claims of the
creditors is included in the model by considering the values of the assets in different
scenarios as references to allocate the estate.

Previous work on this model, Ju et al. (2007), considers a general framework with
multi-dimensional characteristics and provides an axiomatic characterization of divi-
sion rules which are non-manipulable by transfers among agents. The contributions
of Pulido et al. (2002, 2008), can also be seen as particular cases of the model we are
investigating, where only two vectors of references exist and one of them dominates
the other.

The main objectives of this paper are to explore (i) whether the theory of coop-
eratives games is able to provide an allocation rule for the division problem with
multiple references, and (ii) whether the rule can be related with the Talmud rule for
the classic problem, as in Aumann and Maschler (1985).

For a division problem with multiple references, not only one, but several coali-
tional games can be associated with the problem by means of the procedure pro-
posed by O’Neill (1982). In Hinojosa et al. (2005) this class of games is studied in
a multi-scenario framework and a generalized prenucleolus, which unfortunately is
not single-valued, is defined.

In this paper we explore a different approach to the division problem with multiple
references. In Sect. 2 we describe the model. In Sect. 3 a single-valued rule for these
problems, the prenucleolus of the coalitional game which assigns to each coalition
the maximum value attained across the various references, is introduced. Section 4 is
devoted to the analysis of the rule. We show that, in the two-agent case, the outcomes
of the rule coincide with those of the extended Talmud rule, T̄ , applied to a division
problem in which the agents claim the minimum of their references. We also show
that, for more than two agents, the same is true if the amount to divide is not greater
than the sum of the minimum claims. The behavior of the rule for the estates which
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are greater than the sum of the minima is also studied. In Sect. 5, we establish the
consistency and other basic properties of the rule. Section 6 is devoted to conclusions,
and the proofs are included in the appendix.

2 The model

Consider a set of potential agents I ⊂ N, and a fixed finite set of issues4 M ⊆ N. Let
N be the set of all non-empty finite subsets of I .

A division problem with multiple references is a pair (C,E) ∈ R
N×M+ × R++,

where N ∈ N . We call matrix C the matrix of references and E is the estate to be
allocated accordingly. By c

j
i we denote an element of matrix C. For each i ∈ N , the

ith row of matrix C, ci ∈ R
M , represents the references of agent i with respect to

the different issues. For each j ∈ M , the column cj ∈ R
N represents the references

of all the agents corresponding to the j th issue. We will also denote C as (ci)i∈N or
as (cj )j∈M . We assume that references are bounded from above, that is to say, there
exists q ∈ R++ such that c

j
i ≤ q for all i ∈ N , j ∈ M .

The class of all division problems with multiple references associated with the set
of agents N and the set of issues M is denoted by DM

N , and the class of all division
problems with multiple references where the set of issues is given by M is denoted
by DM . Notice that DM = ⋃

N∈N DM
N .

A vector x ∈ R
N+ , which satisfies the efficiency requirement,

∑
i∈N xi = E, is

called an allocation of the estate E. Let X(E) ⊆ R
N+ be the set of all the allocations

of the estate E. A division rule over DM
N is a function, R, that associates with each

problem (C,E) ∈ DM
N a unique allocation R(C,E) ∈ X(E). We will also consider

division rules over the class DM , which are functions that associate with each element
of the class, a unique allocation of the estate.

3 The rule

For each division problem with multiple references, (C,E) ∈ DM
N , |M| coalitional

games, (N,v
j

(C,E)), j ∈ M can be defined by the procedure proposed by O’Neill. That

is, for each j ∈ M and for each S ⊆ N , v
j

(C,E)
(S) = (E − cj (N \ S))+ = max{E −

cj (N \ S),0}, where cj (N \ S) = ∑
i∈N\S c

j
i .

Notice that the set of allocations of the estate, X(E), is the set of vectors which
accomplish efficiency in all these games. The proposal for a solution that we will dis-
cuss herein is based upon the differences between what the coalitions obtain with
a certain allocation and their values in the coalitional games defined above. For
each allocation, x ∈ X(E), and each coalition, S ⊆ N , the |M| surplus functions are
e
v

j

(C,E)

(x, S) = v
j

(C,E)(S) − x(S), j ∈ M , where x(S) denotes
∑

i∈S xi . These func-

4We adopt this terminology, although the set M could also represent the set of different future scenarios,
or the set of experts assessing the values that will be taken into account.
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tions measure the dissatisfaction of coalition S at x with respect to all the issues, and
plays a central role in the definition of our allocation rule.

The goal is to select allocations that are better in a lexicographic sense. If a unique
vector of references is considered, a lexicographical order among the allocations can
be defined, and a unique best outcome can be determined, the prenucleolus. For the
case of several vectors of references, we will consider the maximum surplus across
the issues as a measure of the dissatisfaction of coalition S at x, that is,

e(C,E)(x, S) = max
j∈M

{
e
v

j

(C,E)

(x, S)
} = max

j∈M

{
v

j

(C,E)
(S)

} − x(S).

For each x ∈ X(E) an (2N − 2)-dimensional vector, π(C,E)(x), is constructed
with the maximum surplus, e(C,E)(x, S), S ⊂ N , arranged in decreasing order. Vector
π(C,E)(x) is a vector-valued measure of the performance of allocation x with respect
to all the coalitions which takes into account all the issues.

We say that vector π(x) is lexicographically better than vector π(y), π(x) <lex
π(y), if πk(x) < πk(y) for the first component, k, in which vector π(x) and vector
π(y) are different. This binary relation defines a complete order and therefore, a
division rule can be defined in the class DM

N , by selecting, for each (C,E) ∈ DM
N , the

allocation which minimizes lexicographically π(x) from among all the allocations
x ∈ X(E).

Definition 3.1 The multiple-reference talmudic rule, MT , is for each (C,E) ∈ DM
N ,

MT(C,E) = arg lex-minx∈X(E){π(C,E)(x)}, where π(C,E)(x) is a vector whose com-
ponents are the maximum surplus across issues, e(C,E)(x, S), S ⊂ N , arranged in
decreasing order.

Note that for each (C,E) ∈ DM
N , the outcomes provided by the MT rule coincide

with those obtained with the rpenucleolus of the coalitional game (N,vmax
(C,E)), where

vmax
(C,E)(S) = maxj∈M{vj

(C,E)(S)}. This result follows from the fact that e(C,E)(x, S) =
evmax

(C,E)
(x, S) for each x ∈ X(E) and each S ⊂ N .

4 The path of awards of the rule

For each (C,E) ∈ DM
N , denote by c the vector whose components represent the min-

imum value from among the references of each agent, ci = minj∈M{cj
i }, i ∈ N , and

by c(N) the sum c(N) = ∑n
i=1 ci .

In what follows, we will show that for values of the estate below the sum
∑n

i=1 ci ,
the MT rule behaves as the Talmud rule if the vector of minimum references, c, is
considered as the vector of claims. We will also analyze the path of awards of MT for
values of the estate greater than the sum of the minimum references.

4.1 The value of the estate is below the sum of the minimum references

Without loss of generality, assume that N = {1,2, . . . , n} and c1 ≤ c2 ≤ · · · ≤ cn.
The result below establishes that, when the value of the estate does not exceed c(N),
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Fig. 1 Path of awards of MT in
the two-agent case when
E < c(N)

Fig. 2 Path of awards of MT in
the two-agent case

then the MT rule provides the same vector of awards as the Talmud rule for a classic
division problem with claims equal to c. Figure 1 is an illustration for a two-agent
case.

Theorem 4.1 For each (C,E) ∈ DM
N , such that E ≤ c(N), and each i ∈ N ,

MT i (C,E) = Ti(c,E) =
{

min{ ci

2 , λ} if E ≤ c(N)

2 ,

ci − min{ ci

2 , λ} if c(N)

2 < E ≤ c(N),

where λ ∈ R+ is such that satisfies
∑

i∈N MT i (C,E) = E.

4.2 The value of the estate is above the sum of the minimum references

We first show that, in the two-agent case, when applying the MT rule, the difference
E − c(N) is allocated equally between the agents (see Fig. 2). As a consequence, for
the two-agent case, the outcomes obtained with this rule coincide with those obtained
with the classic Talmud rule with claims c.
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Theorem 4.2 For each (C,E) ∈ DM
N with |N | = 2 and each i ∈ N ,

MT i (C,E) =

⎧⎪⎪⎨
⎪⎪⎩

min{ ci

2 , λ} if E ≤ c(N)

2 ,

ci − min{ ci

2 , λ} if c(N)

2 < E ≤ c(N),

ci + E−c(N)

|N | if c(N) < E,

where λ ∈ R+ is such that satisfies
∑

i∈N MT i (C,E) = E.

Unfortunately, the result in Theorem 4.2 does not hold in the general case, as can
be seen in the following example.

Example 4.3 Consider a division problem with three agents, N = {1,2,3} and two
references, c1 = (3,7,10)t and c2 = (15,9,2)t .

When E ≤ c(N) = 12, the path of awards of MT (blue path) coincides with the
path of awards of the Talmud rule with the reference c = (3,7,2). When E ≥ 12 =
c(N) the path of awards of MT is piecewise linear with four different slopes depend-
ing on the value of the estate. The following table shows how the MT rule allocates
any additional unit of estate in the different intervals.

Allocation of an additional unit of estate

Agent 1 Agent 2 Agent 3

12 = c(N) < E ≤ 16 0.25 0.25 0.5

16 < E ≤ 28 0.5 0 0.5

28 < E ≤ 32 0.25 0.25 0.5

32 < E < +∞ 1
3

1
3

1
3

In Fig. 3 we show the path of awards of the MT rule for this three-agent division
problem, divided in two parts. The path when the amount to divide is not greater than
the sum of the minimum references is shown on the left-hand side. On the right-hand
side, the path for quantities greater than this sum is represented. In this second case,
the coordinate axes are translated to the point c = (3,7,2).

The following result establishes that, in general, when |N | ≥ 3 and E > c(N), the
path of awards of MT is piecewise linear with the last piece of the path parallel to the
line x1 = x2 = · · · = xn. That is, for each matrix of references, a value of the estate
exists from which any additional amount is allocated equally to the agents.

Theorem 4.4 MT has a continuous, piecewise linear path of awards. Moreover,
there exists E(C) ∈ R++ such that, for each i ∈ N , and any A > 0, MT i (C,E(C) +
A) = MT i (C,E(C)) + A

n
.

The proof of this result shows the hints to construct a procedure to obtain the al-
locations in any particular problem. We describe below an algorithm to compute the
allocation provided by the MT rule in a general problem (C,E). This algorithm has
been used to obtain the path of awards of MT in Example 4.3. As in the proof of Theo-
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Fig. 3 Path of awards of MT in a three-agent example

rem 4.4, each estate E ≥ c(N) will be denoted by Ex , where x = MT(C,Ex); E∗ =
max{c(N),maxi∈N minj∈M cj (N \ {i})}; Fx = {i ∈ N | e(x, {i}) ≥ e(x, {j}) ∀j ∈
N}; αx is an n-dimensional vector, satisfying

∑n
i=1 αx

i = 1, which represent the pro-
portion of any infinitesimal increment of the state Ex which is assigned to each agent
according to the rule MT ; and Ax is the maximum possible increase of the state Ex

for which any two coalitions with the same dissatisfaction level at x, maintain the
same level of dissatisfaction.

Algorithm
IF E ≤ c(N)

x = T (c,E)

ELSE
i ← 0
xi ← c

Exi ← c(N)

Fxi ← Fc

Compute E∗
WHILE Exi < E∗ or Fxi �= N

DO
Compute αxi , Axi , y = xi + Axi αxi and Ey = Exi + Axi

IF E ≤ Ey

x = xi + (E − Exi )αxi

ELSE
i ← i + 1
xi ← y

Exi ← Ey

END IF
END WHILE
x = xi + (E − Exi )αxi

END IF
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5 Properties

Anonymity and neutrality are two basic properties that are satisfied by the MT rule
on the class of problems with multiple references DM

N .
Let ΠN denote the set of permutations of the set of agents N . Let π ∈ ΠN , for

x ∈ R
N , denote xπ ≡ (xπ(i))i∈N . For C ∈ R

N×M , denote by Cπ the matrix whose
kth row is cπ(k) for k ∈ N . Anonymity states that the names of the agents are not
relevant.

Anonymity: For each (C,E) ∈ DM
N and each π ∈ ΠN , if x = R(C,E), then xπ =

R(Cπ,E).

Let ΠM denote the set of permutations of the set of issues M . For C ∈ R
N×M ,

denote by Cσ the matrix whose j th column is cσ(j) for all j ∈ M . Neutrality is a
symmetry property with respect to the references. It states that the names of issues
do not matter.

Neutrality: For each (C,E) ∈ DM
N and each σ ∈ ΠM , R(C,E) = R(Cσ ,E).

Finally, the property below refers to division rules in the class where a fixed set
of issues is considered, but the number of agents may vary. Denote by CN ′ the sub-
matrix of C whose rows are the rows in C corresponding to the agents in N ′ (analo-
gously xN ′ ).

Consistency: Given a finite set of issues, M ⊂ N, for each N ∈ N , each (C,E) ∈ DM
N ,

and each N ′ ⊂ N , if x = R(C,E), then xN ′ = R(CN ′ , x(N ′)).

Proposition 5.1 MT satisfies anonymity, neutrality and consistency.

6 Conclusions

We have addressed the extension of the classic division problem with claims to situa-
tions in which the agents involved are characterized by several parameters instead of
by a single one.

For this class of problems we show that the theory of cooperative games is able to
provide an allocation rule related to the classic Talmud rule, as is the case for single-
dimensional problems. It is shown that for two-agents problems, the rule introduced
generates the same results as the extended Talmud rule applied to a classic division
problem obtained with the minimal reference of each agent. We also show that, for
more than two agents, the same is true if the amount to divide is not greater than the
sum of the components of the vector of minimal references. However, in the general
case this result does not hold. Finally, we provide results about the behavior of the
rule and its properties for the general case.

Acknowledgements This research has been partially financed by the Spanish Ministry of Science and
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Appendix

Proof Theorem 4.1 The proof is based on the proof provided by Benoît (1997) to
show that the Talmud rule coincides with the prenucleolus of the corresponding bank-
ruptcy game. In what follows, we will denote T (c,E) by x̄. We are going to show
that x̄ coincides with the outcome provided by the prenucleolus of the coalitional
game (N,vmax

(C,E)) and therefore x̄ is the allocation obtained from the rule MT , that is,
MT(C,E) = x̄. Our proof is based on several claims.

Claim 1 For each i, l ∈ N , such that i > l, x̄i ≥ x̄l and ci − x̄i ≥ cl − x̄l .

Proof If i > l, then ci ≥ cl , and since the awards provided by the Talmud rule, and the
losses with respect to the claims obtained with the Talmud rule are order preserving,
the result follows. �

In what follows, we will denote vmax instead of vmax
(C,E) and e(x,S) instead of

evmax
(C,E)

(x, S) to simplify presentation.

Claim 2 The surplus of coalition S ⊆ N at x ∈ X(E) in the coalitional game
(N,vmax) is:

e(x,S) =
{

x(N \ S) − minj∈M cj (N \ S) if E − minj∈M cj (N \ S) ≥ 0,

−x(S) if E − minj∈M cj (N \ S) ≤ 0.

Proof

e(x,S) = vmax(S) − x(S) = max
j∈M

vj (S) − x(S)

= max
j∈M

(
E − cj (N \ S)

)
+ − x(S)

=
(
E − min

j∈M
cj (N \ S)

)
+ − (

E − x(N \ S)
)

=
{

x(N \ S) − minj∈M cj (N \ S) if E − minj∈M cj (N \ S) ≥ 0,

−x(S) if E − minj∈M cj (N \ S) ≤ 0. �

Consider the following two cases:

Case (a) E ≤ c(N)

2 .

In this case, there exists k ∈ N , 0 ≤ k ≤ n − 1, such that

k∑
i=1

ci

2
+ (n − k)

ck

2
≤ E ≤

k∑
i=1

ci

2
+ (n − k)

ck+1

2
,

where, when k = 0, c0 = 0 and
∑0

i=1
ci

2 = 0.
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Claim 3 For each l ∈ N , l ≤ n − 1, and each x ∈ X(E), e(x, {l}) = −xl . Moreover,
if k ≤ n − 2, then e(x, {n}) = −xn.

Proof E − minj∈M{cj (N \ {l})} ≤ E − c(N \ {l}), since the sum of the minima is
always less than or equal to the minimum of the sum. Therefore, since in this case,
E ≤ c(N)

2 , then E − minj∈M cj (N \ {l}) ≤ E − c(N \ {l}) ≤ c(N)

2 − c(N \ {l}) holds,
and this difference can be written as follows:

c(N)

2
− c

(
N \ {l}) =

n−2∑
i=1

(
ci

2
− ci

)
+

(
cn−1

2
+ cn

2
− cn

)
+ (cl − cn−1) ≤ 0.

Hence, by Claim 2, e(x, {l}) = −xl . Moreover, if k ≤ n − 2, then E ≤ ∑n−2
i=1

ci

2 +
2

cn−1
2 and therefore E −minj∈M cj (N \ {n}) ≤ E − c(N \ {n}) ≤ ∑n−2

i=1
ci

2 +2
cn−1

2 −
c(N \ {n}) = ∑n−2

i=1 (
ci

2 − ci) ≤ 0. Thus, by Claim 2 again, e(x, {n}) = −xn. �

Claim 4 For each l ∈ N , l ≤ k, and each x ∈ X(E), it follows that e(x,N \ {l}) =
xl − cl .

Proof Since E ≥ ∑k
i=1

ci

2 +(n−k)
ck

2 , then E−minj∈M cj (N \(N \{l})) = E−cl ≥∑k
i=1

ci

2 +(n−k)
ck

2 −cl ≥ ∑k
i=1

ci

2 +(n−k)
ck

2 −ck ≥ ∑k−1
i=1

ci

2 +(n−k−1)
ck

2 ≥ 0.
Then by Claim 2, it follows that e(x,N \ {l}) = xl − cl . �

Let x ∈ X(E), x �= x̄, and let l, 1 ≤ l ≤ n − 1 be the lowest index in which x and
x̄ differ.

Claim 5 For each coalition S ⊆ N such that e(x̄, S) > −x̄l , e(x̄, S) = e(x,S).

Proof If vmax(S) = 0, then, by Claim 2, e(x̄, S) = −x̄(S) and, therefore, −x̄l <

e(x̄, S) = −x̄(S) ≤ −x̄i for all i ∈ S. Thus, by Claim 1, i < l. This means that
e(x̄, S) = e(x,S), since the first component for which x and x̄ differ is component l.

If, on the other hand, vmax(S) > 0, then, by Claim 2, e(x̄, S) = x̄(N \ S) −
minj∈M cj (N \ S) and therefore the following chain of inequalities holds:

−cn

2
≤ −cn−1

2
≤ · · · ≤ −cl+1

2
≤ −cl

2
≤ −x̄l < e(x̄, S)

= x̄(N \ S) − min
j∈M

cj (N \ S) ≤ c(N \ S)

2
− c(N \ S) = −c(N \ S)

2
≤ −ci

2
,

where the last inequality holds for all i which does not belong to S. Thus, by Claim 1,
i < l. This means that e(x̄, S) = e(x,S), since the first component for which x and x̄

differ is component l. �

Claim 6 There exists S ⊆ N such that e(x̄, S) = −x̄l and e(x,S) > −x̄l .
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Proof Suppose first that l ≤ k. If xl < x̄l , then, by Claim 3, e(x, {l}) = −xl > −x̄l =
e(x̄, {l}). If, on the other hand, xl > x̄l , then, by Claim 4, e(x,N \ {l}) = xl − cl >

x̄l − cl = −cl

2 = −x̄l = e(x̄,N \ {l}).
Suppose now that l ≥ k+1. On the one hand, since k ≤ l−1 ≤ n−2, and by taking

into account the result in Claim 3, e(x, {i}) = −xi , for all i ∈ N and all x ∈ X(E),
and on the other hand, since x̄ is the outcome provided by the Talmud rule, x̄i = x̄l ,
for all i ≥ l.

If xl < x̄l , then e(x, {l}) = −xl > −x̄l = e(x̄, {l}). Otherwise, since xl > x̄l , xi =
x̄i for each i < l and x(N) = x̄(N), then there exists l∗ > l such that xl∗ < x̄l∗ and
therefore e(x, {l∗}) = −xl∗ > −x̄l∗ = −x̄l = e(x̄, {l∗}). �

Claims 5 and 6 permit us to conclude the proof in Case (a).

Case (b) c(N)

2 ≤ E ≤ c(N).

In this case, there exists k ∈ N , n − 1 ≥ k ≥ 0, such that

n∑
i=1

ci −
(

k∑
i=1

ci

2
+ (n − k)

ck+1

2

)
≤ E ≤

n∑
i=1

ci −
(

k∑
i=1

ci

2
+ (n − k)

ck

2

)
,

where, when k = 0, c0 = 0 and
∑0

i=1
ci

2 = 0.

Claim 7 For each l ∈ N , l ≤ k, and each x ∈ X(E), e(x, {l}) = −xl .

Proof E − minj∈M cj (N \ {l}) ≤ E − c(N \ {l}), since the sum of the minima is
always less than or equal to the minimum of the sum. Thus, since in this case E ≤
c(N) − (

∑k
i=1

ci

2 + (n − k)
ck

2 ), then E − minj∈M cj (N \ {l}) ≤ E − c(N \ {l}) ≤
−(

∑k
i=1

ci

2 + (n − k)
ck

2 ) + cl ≤ −(
∑k

i=1
ci

2 + (n − k)
ck

2 ) + cl

2 + ck

2 = −(
∑k

i=1
ci

2 −
cl

2 + (n − k − 1)
ck

2 ) ≤ 0. Then, by Claim 2, e(x, {l}) = −xl . �

Claim 8 For each l ∈ N , l ≤ n − 1, and each x ∈ X(E), e(x,N \ {l}) = xl − cl .

Proof Since E ≥ c(N) − (
∑k

i=1
ci

2 + (n − k)
ck+1

2 ), then E − minj∈M cj (N \ (N \
{l})) = E − cl ≥ c(N) − (

∑k
i=1

ci

2 + (n − k)
ck+1

2 ) − cl = ∑k
i=1

ci

2 + ∑n−2
i=k+1(ci −

ck+1
2 )+ (cn−1 − cl)+ (cn − ck+1) ≥ 0. Therefore, by Claim 2, it follows that e(x,N \

{l}) = xl − cl . �

Consider x ∈ X(E), x �= x̄, and let l, 1 ≤ l ≤ n − 1, be the lowest index in which
x and x̄ differ.

Claim 9 For each coalition S ⊆ N such that e(x̄, S) > x̄l − cl , e(x̄, S) = e(x,S).

Proof If vmax(S) = 0, then, by Claim 2, e(x̄, S) = −x̄(S) and therefore, x̄l − cl <

e(x̄, S) = −x̄(S) ≤ −x̄i ≤ x̄i − ci for all i ∈ S (the last inequality holds because
in Case 2 the losses of each agent from the minimum references are always less or
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equal than the allocation they obtain, that is, for each i ∈ N , x̄i ≥ ci − x̄i ). Thus, by
Claim 1, i > l. This means that e(x̄, S) = e(x,S) because x and x̄ does not differ
until component l.

If, on the other hand, vmax(S) > 0, then, by Claim 2, x̄l − cl < e(x̄, S) =
x(N \ S) − minj∈M cj (N \ S) ≤ x(N \ S) − c(N \ S) ≤ x̄i − ci for all i /∈ S. Thus,
by Claim 1, if i ≥ l, then i ∈ S. This means that e(x̄, S) = e(x,S) since the first
component for which x and x̄ differ is component l. �

Claim 10 There exists S ⊆ N such that e(x̄, S) = x̄l − cl and e(x,S) > x̄l − cl .

Proof First, suppose that l ≤ k. If xl < x̄l , then, by Claim 7, e(x, {l}) = −xl > −x̄l =
− cl

2 = cl

2 − cl = x̄l − cl = e(x̄, {l}). If, on the other hand, xl > x̄l , then, by Claim 8,
e(x,N \ {l}) = xl − cl > x̄l − cl = e(x̄,N \ {l}).

Suppose now that l ≥ k + 1. Then, since x̄ is the outcome provided by the Talmud
rule, x̄i − ci = x̄l − cl , for all i ≥ l.

If xl > x̄l , then e(x,N \ {l}) = xl − cl > x̄l − cl = e(x̄,N \ {l}). Otherwise, since
xl < x̄l , xi = x̄i for each i < l and x(N) = x̄(N), then there exists l∗ > l such that
xl∗ > x̄l∗ and therefore e(x,N \ {l∗}) = xl∗ − cl∗ > x̄l∗ − cl∗ = x̄l − cl = e(x̄,N \
{l∗}). �

Claims 9 and 10 permit us to conclude the proof in Case (b). Therefore, x̄ coincides
with the prenucleolus of (N,vmax) and, as a consequence, x̄ = MT(C,E). �

Proof Theorem 4.2 In the two-agent case, N = {1,2}, for each i ∈ N , vmax({i}) =
maxj∈M vj ({i}) = maxj∈M(E − c

j
N\{i})+ = (E − cN\{i})+, that is, (N,vmax) coin-

cides with the game (N,v(c,E)) and the prenucleolus of this game is MT(C,E) (see
Serrano 1995). �

Proof Theorem 4.4 Since the outcomes provided by MT coincide with those obtained
from the prenucleolus of the coalitional game (N,vmax), the path of awards of MT is
continuous.

For the two-agent case, as a consequence of Theorems 4.1 and 4.2, the result
follows and E(C) = c(N) − c1 (recall that c1 ≤ c2).

Suppose that |N | ≥ 3. In what follows, we denote c(N) by Ec, and each estate
E ≥ Ec will be denoted by Ex , where x = MT(C,Ex). For each Ex′ = Ex + ε

(ε > 0), we write x′ = x + εαx , where αx is an n-dimensional vector which satisfies∑n
i=1 αx

i = 1. For each S ⊆ N , denote by αx
S the sum αx

S = ∑
i∈S αx

i and by αx
−S

the sum αx
−S = ∑

i /∈S αx
i . We also denote mini∈N {αx

i } by m(αx) and by Iαx
the set

Iαx = {i ∈ N | αx
i = m(αx)}.

When the estate increases from Ex to Ex′ = Ex +ε, the dissatisfaction of coalition
S at x, e(x,S) = vmax(S) − x(S), changes to e(x′, S) = e(x,S) + ε∇αx

(S), where
∇αx

(S) can be written as shown in the following claim.
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Claim 1 For each Ex ∈ R+, such that Ec ≤ Ex < Ex′ = Ex + ε,

ε∇αx

(S) = e
(
x′, S

) − e(x,S) =

⎧⎪⎪⎨
⎪⎪⎩

εαx
−S if Ex ≥ minj∈M cj (N \ S),

εαx
−S − B if Ex < minj∈M cj (N \ S) < Ex′

,

−εαx
S if Ex′ ≤ minj∈M cj (N \ S),

where B = minj∈M{cj (N \ S)} − Ex .
Moreover, if Ex ≥ E∗ = max{Ec,maxi∈N minj∈M cj (N \ {i})}, then:

1. For each S ⊂ N , ε∇αx
(S) = εαx

−S .

2. If m(αx) > 0 and i ∈ Iαx
, then ∇αx

({i}) = ∇αx
({j}) for each j ∈ Iαx

and
∇αx

({i}) > ∇αx
(S) for each S ⊂ N , S �= {j}, j ∈ Iαx

.
3. If m(αx) = 0, then ∇αx

({i}) = ∇αx
(S) for each S ⊂ Iαx

, and ∇αx
({i}) > ∇αx

(S)

for each S � Iαx
.

Proof The difference of the dissatisfactions of coalition S at x and at x′ is e(x′, S) −
e(x,S) = (Ex′ − minj∈M cj (N \ S))+ − x′(S) − (Ex − minj∈M cj (N \ S))+ +
x(S). If Ex ≥ minj∈M cj (N \ S), then e(x′, S) − e(x,S) = ε − εαx

S = εαx
−S .

If Ex′ ≤ minj∈M cj (N \ S), then e(x′, S) − e(x,S) = −εαx
S . Finally, if Ex <

minj∈M cj (N \ S) < Ex′
, then e(x′, S) − e(x,S) = Ex + ε − minj∈M cj (N \ S) −

εαx
S = εαx−S − (minj∈M cj (N \ S) − Ex).
Moreover, if Ex ≥ E∗, then

1. for each S ⊂ N , and each i ∈ S, since Ex ≥ minj∈M cj (N \ {i}} ≥
minj∈M cj (N \ S), then ε∇αx

(S) = εαx
−S .

2. for each i ∈ Iαx
, ∇αx

({i}) = αx
−i , since m(αx) > 0, if j /∈ Iαx

, then ∇αx
({i}) =

αx
−i > αx

−j = ∇αx
({j}). Consider S ⊂ N with more than one agent. If i ∈ S, then

∇αx
({i}) = αx

−i > αx
−S = ∇αx

(S). Otherwise, consider j ∈ S. Then, ∇αx
({i}) ≥

∇αx
({j}) > ∇αx

(S).
3. if m(αx) = 0, then, for each i ∈ Iαx

, ∇αx
({i}) = αx

−i = αN = α−S = ∇αx
(S) for

each S ⊂ Iαx
, and ∇αx

({i}) = αx
−i > α−S = ∇αx

(S), for each S � Iαx
. �

For each Ex ≥ Ec, consider the partition of the set of non-empty and proper coali-
tions, P = {S | S ⊂ N}, into groups in which all the coalitions have the same level of
dissatisfaction at x. For l = 1,2, . . . , kx (1 ≤ kx ≤ 2n − 2), define:

S x
l =

{
S ⊂ N | e(x,S) ≥ e(x,T ) for all T ⊆ P \

l−1⋃
k=1

S x
k

}
,

where
⋃0

k=1 S x
k = ∅. All coalitions in S x

1 have the same level of dissatisfaction and
they are the groups with the maximum surplus at x. All the coalitions in S x

2 have the
second maximum surplus at x, and so on. Denote by ex

l , l = 1,2, . . . , kx , the surplus
of each coalition in each level, that is, if S ∈ S x

l , then ex
l = e(x,S) and, for each

l = 1,2, . . . , kx − 1, consider the function, Lx , that assigns to each coalition S ⊂ N

its level of dissatisfaction at x, that is, Lx(S) = l if S ∈ S x
l .
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Fig. 4 Illustration in the case of
three agents

For each Ex ≥ Ec, denote by Ax the maximum increase of the estate, Ex , for
which, if 0 < ε < ε′ < Ax (Ex′ = Ex + ε and Ex′′ = Ex + ε′), then kx′ = kx′′

and for
each l = 1,2, . . . , kx′

, Sx′
l = Sx′′

l .
The following result shows that αx is the same for each ε < Ax .

Claim 2 For each Ex ≥ Ec and each 0 < ε < ε′ < Ax (Ex′ = Ex + ε and Ex′′ =
Ex + ε′), if x′ = x + εαx , then x′′ = x + ε′αx .

Proof Suppose that x′′ = MT(C,Ex′′
) = x + ε′βx �= x∗ = x + ε′αx . Let x̄ be x̄ =

x + εβx (see Fig. 4).
Since x′ = MT(C,Ex′

), there exists l∗ ≤ kx′
and T ∈ S x′

l∗ such that, for each l < l∗

and each S ∈ S x′
l , e(x′, S) = e(x̄, S), e(x′, T ) < e(x̄, T ) and e(x̄, S) ≤ e(x̄, T ) for

each S ∈ ⋃kx′
l=l∗ S x′

l .
By using Claim 1, we are going to prove that if e(x′, S) = e(x̄, S) (versus

e(x′, S) < e(x̄, S)), then e(x∗, S) = e(x′′, S) (versus e(x∗, S) < e(x′′, S)):

• If Ex ≥ minj∈M cj (N \ S), then e(x′, S) = e(x,S) + εαx
−S = (<)e(x̄, S) =

e(x,S)+ εβx
−S and therefore, αx

−S = (<)βx
−S . Thus, e(x∗, S) = e(x,S)+ ε′αx

−S =
(<)e(x′′, S) = e(x,S) + ε′βx

−S .

• If Ex < minj∈M cj (N \ S) < Ex′
, then e(x′, S) = e(x,S) + εαx

−S −
(minj∈M cj (N \S)−Ex) = (<)e(x̄, S) = e(x,S)+ εβx

−S − (minj∈M cj (N \S)−
Ex) and αx

−S = (<)βx
−S . Thus, e(x∗, S) = e(x,S)+ε′αx

−S − (minj∈M cj (N \S)−
Ex) = (<)e(x′′, S) = e(x,S) + ε′βx

−S − (minj∈M cj (N \ S) − Ex).

• If Ex′ ≤ minj∈M cj (N \ S) ≤ Ex′′
, then e(x′, S) = e(x,S) − εαx

S = (<) e(x̄, S) =
e(x,S) − εβx

S and αx
S = (>)βx

S or equivalently αx
−S = (<)βx

−S . Therefore,
e(x∗, S) = e(x,S)+ε′αx

−S −(minj∈M cj (N \S)−Ex) = (<)e(x′′, S) = e(x,S)+
ε′βx

−S − (minj∈M cj (N \ S) − Ex).

• If Ex′′ ≤ minj∈M cj (N \ S), then e(x′, S) = e(x,S) − εαx
S = (<)e(x̄, S) =

e(x,S) − εβx
S and −βx

S = (>) − αx
S . Therefore, e(x∗, S) = e(x,S) − ε′αx

S =
(<)e(x′′, S) = e(x,S) − ε′βx

S .

Since 0 < ε < ε′ < Ax , then kx′ = kx′′
and Sx′

l = Sx′′
l for each l = 1,2, . . . , kx′

.
Thus, by taking into account the previous reasoning, we consider the above

l∗ ≤ kx′′
and the above T ∈ S x′′

l∗ , and it follows that, for each l < l∗ and each S ∈ S x′′
l ,

e(x′′, S) = e(x∗, S) and e(x′′, T ) > e(x∗, T ). This contradicts x′′ = MT(C,Ex′′
). �
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Claim 3 If there exists Ex ≥ E∗ such that for each i ∈ N , Lx({i}) = 1, holds, then
αx

i = 1
n

for each i ∈ N . Moreover, for each Ex̄ > Ex , αx̄
i = 1

n
for each i ∈ N .

Proof Suppose there exists ε > 0, ε < Ax , such that αx
i = 1

n
does not hold for all

i ∈ N . Consider x′ = x + εαx and x′′, x′′
i = xi + εβx

i , where βx
i = 1

n
for each i ∈ N .

By Claim 1, S x′′
1 = {{i} | i ∈ N} and therefore {{i} | i ∈ Iαx } ⊆ S x′′

1 . Moreover, since

S x′
1 ⊆ S x

1 , for each S ∈ S x′
1 and each i ∈ Iαx

, it follows that ∇αx
(S) ≥ ∇αx

({i}) =
ε(1 − m(αx)) > ε n−1

n
= ∇βx

({i}). This contradicts the fact that x′ = MT(C,Ex′
)

because ex′
1 > ex′′

1 . Finally, for each Ex̄ > Ex , since S1(E
x̄) = {{i} | i ∈ N}, the above

reasoning can be applied to conclude that αx̄
i = 1

n
for each i ∈ N . �

Claim 4 For each Ex ≥ E∗, if αx
i = 1

n
does not hold for all i ∈ N , then I αx = {{i} |

i ∈ Iαx
, {i} ∈ S x

1 } = ∅.

Proof Suppose there exists ε > 0, ε < Ax , such that I αx �= ∅. Consider x′ = x +εαx .
Firstly, we assume m(αx) ≥ 0. In this case, by Claim 1, I αx ⊆ S x′

1 . Denote by δ the
difference δ = αx

j − m(αx), where αx
j = mink∈N\Iαx αx

k . Consider x′′ = x + εβx ,

where βx
i = αx

i + δ

2|Iαx | , if i ∈ Iαx
and βx

i = αx
i − δ

2(n−|Iαx |) otherwise. Notice that

Iαx = Iβx
. By Claim 1, again, I αx = I βx ⊆ S x′′

1 . This contradicts x′ = MT(C,Ex′
)

since for each i ∈ I αx
, ∇αx

({i}) = ε(1 − αx
i ) > ε(1 − βx

i ) = ∇βx
({i}), and therefore,

ex′
1 > ex′′

1 .
Now assume m(αx) < 0. Let {i} ∈ I αx

, such that αx
i = m(αx) < 0. Then

∇αx
({i}) = ε(1 − αx

i ) > ε and, for each S ∈ S x′
1 ⊆ S x , ∇αx

(S) ≥ ∇αx
({i}) =

ε(1−αx
i ) > ε. This contradicts x′ = MT(C,Ex′

), since, by considering, for instance,

βx
i = 1

n
, for all i ∈ N and x′′ = x + εβx , none of the coalitions in S x′′

1 ⊆ S x suffers
an increment of her dissatisfaction greater than ε. �

Consider xc = MT(C,Ec). By Claim 2, the path of awards of MT is linear from
the estate Ec to the estate Ex1 = Ec +Ac, that is, x = c+αcε = MT(C,Ex), for each
Ex = Ec + ε, ε ≤ Ac. At x1 = c + αcAc the slope of the path of awards may change
to αx1

, and this new slope remains unchanged from estate Ex1
to estate Ex2

(x =
x1 + αx1

ε = MT(C,Ex), for each Ex = Ex1 + ε, ε ≤ Ax1
). At x2 = x1 + αx1

Ax1

the path of awards of MT may change again and so on. Therefore, the path of awards
of MT is piecewise linear.

Let Q = {x1 = c, x2, x3, . . .} be the set of allocations in the path of awards of MT ,
considered in Claim 2, at which the slope may change, and let x̄ be the first of them
such that Ex̄ ≥ E∗. For each xj ∈ Q, consider Fxj = {i ∈ N | Lxj

({i}) = 1}.
At Ex̄ , if for each i ∈ N , Lx̄({i}) = 1 holds, then, by Claim 3, any increase of the

estate is divided equally among the agents and the result follows (and therefore there
exists E(C), E(C) ≤ Ex̄ ).

Otherwise, when F x̄ = {i ∈ N | Lx̄({i}) = 1} �= N , we are going to prove that the
dissatisfaction of some agents i ∈ N \ F x̄ increases more than the dissatisfaction of
some of the coalitions in S x̄

l , where l < Lx̄({i}).
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Case 1 There exists i, j ∈ N , i �= j , such that αx̄
i �= αx̄

j .

If m(αx̄) ≥ 0, by Claim 4, Iαx̄ ∩ F x̄ = ∅ and by Claim 1, ∇({i}) > ∇(S) for each
i ∈ Iαx̄

and each S ∈ S x̄
1 .

If, on the contrary, m(αx̄) < 0, then there exists S ⊂ N , such that Lx̄(S) ≤ Lx̄({i}),
for all i ∈ Iαx̄

, and αx̄
S ≥ 0, because, in other case, every coalition S ∈ S x̄

1 would in-

crement its dissatisfaction ε(1 − αx̄
S) > 1. This contradicts x′ = MT(C,Ex′

) because
by considering βx

i = 1
n

, for all i ∈ N and x′′ = x + εβx , none of the coalitions in

S x′′
1 ⊆ S x̄ suffers an increment of her dissatisfaction greater than ε. Therefore, for

each i ∈ Iαx̄
and each of the above mentioned S ⊂ N , ∇({i}) > ∇(S).

Case 2 αx̄
i = αx̄

j = 1
n

, for each i, j ∈ N .

In this case, there exists a coalition S ⊂ N , with more than one agent, and
i ∈ N \ F x̄ , such that Lx̄({i}) > Lx̄(S) ≥ 1, since otherwise, for each Ex′ = Ex̄ + ε,
ε < Ax̄ , by considering Gx̄ = {i ∈ N | Lx̄({i}) = 2}, slightly increasing the propor-
tion for agents in F x̄ , appropriately decreasing the proportion for agents in Gx̄ , and
fixing the proportion 1

n
for agents in N \ F x̄ ∪ Gx̄ , we obtain a new allocation x′′,

different from x′ = x̄ + 1
n
ε. This means a contradiction with x′ = MT(C,E). There-

fore, by Claim 1, for the mentioned coalition S ⊂ N , with more than one agent, and
that agent i ∈ N \ F x̄ , ∇({i}) > ∇(S) holds.

Therefore, the level of dissatisfaction of the one-agent coalitions outside F x̄ ap-
proaches strictly the first level. Since the same reasoning described above can be
applied to each xj ∈ Q, xj ≥ x̄, there eventually exists xk ∈ Q such that, for each
i ∈ N , Lxk ({i}) = 1 holds. Therefore, by Claim 3, any increase of the estate from
Exk

is divided equally among the agents. �

Proof Proposition 5.1 It is straightforward to see that MT satisfies anonymity and
neutrality.

We will prove consistency: For N ∈ N , N ′ ⊂ N , M ⊂ N, and (C,E) ∈ DM
N ,

let x = MT(C,E) = P(N,vmax
(C,E)). We will prove that xN ′ = MT(CN ′ , x(N ′)) =

P(N ′, vmax
(CN ′ ,x(N ′))).

Consider the reduction of game (N,vmax
(C,E)), relative to N ′ and x,

rx
N ′

(
vmax
(C,E)

)(
N ′) ≡ vmax

(C,E)(N) − x
(
N \ N ′), and

for each S ⊂ N ′, rx
N ′

(
vmax
(C,E)

)
(S) ≡ max

Q⊆N\N ′
(
vmax
(C,E)(S ∪ Q) − x(Q)

)
.

Since the prenucleolus is consistent with respect to this reduction (Sobolev 1975), it
follows that xN ′ = P(N ′, rx

N ′(vmax
(C,E))).

We are going to prove that vmax
(CN ′ ,x(N ′))(S) = rx

N ′(vmax
(C,E))(S) for all S ⊆ N ′.

It is clear that vmax
(CN ′ ,x(N ′))(N

′) = rx
N ′(vmax

(C,E))(N
′) = x(N ′).
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For each S ⊂ N ′, on the one hand, vmax
(CN ′ ,x(N ′))(S) = maxj∈M{vj

(c
j

N ′ ,x(N ′))
(S)} =

maxj∈M(x(N ′) − cj (N ′ \ S))+, and on the other hand,

rx
N ′

(
vmax
(C,E)

)
(S) = max

Q⊆N\N ′
(
vmax
(C,E)(S ∪ Q) − x(Q)

)

= max
Q⊆N\N ′

(
max
j∈M

(
x(N) − cj

(
N \ (S ∪ Q)

))
+ − x(Q)

)

= max
j∈M

(
max

Q⊆N\N ′
((

x(N) − cj
(
N \ (S ∪ Q)

))
+ − x(Q)

))

= max
j∈M

rx
N ′

(
vj

)
(S) = max

j∈M
v
(c

j

N ′ ,x(N ′))(S)

= max
j∈M

(
x
(
N ′) − cj

(
N ′ \ S

))
+,

and therefore, for each S ⊂ N ′, rx
N ′(vmax

(C,E))(S) = vmax
(CN ′ , x(N ′))(S). �
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