





# PEPAdb: putting FAIR principles into practice

1Romero García, Galo – 1Garrido Cordero, José Ángel – 1,2Odriozola Lloret, Carlos P.

- 1 University of Seville Department of Prehistory and Archaeology
- 2 University of Lisbon UNIARQ







### Funding

#### **Projects and contracts**

-Networks and Rare Rocks in the Iberian Peninsula and the Mediterranean (6th-2nd Millennium BC)

Principal Investigator: Carlos Patricio Odriozola Lloret

Type of project: State Plan 2013-2016 Excellence - R&D Projects

Reference: HAR2017-83474-P

Start date: 01-01-2018

End date: 31-12-2021

-Research and development of new technologies for the discourse of power: imitating amber ornaments in recent prehistoric Iberia

Principal Investigator: Carlos Patricio Odriozola Lloret

Type of project: PAIDI - R&D Projects

Reference: P20\_01080

Start date: 05-10-2021

End date: 31-12-2022

-Scholarship under the program aid for university teacher training (FPU) provided by the Ministry of Universities

Coordinator: Carlos Patricio Odriozola Lloret

Reference: FPU20/05028

Start date: 01-12-2021

End date: 30-11-2025







#### 1. Introduction

- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

- -Today, we refer to any information, "of or relating to the relative position of things on the earth's surface" as geospatial data (McCoy, 2017).
- -Archaeology → Spatial Data → Open Data
- -According to Directive (EU) 2019/1024: "Open data as a concept is generally understood to denote data in an open format that can be freely used, re-used and shared by anyone for any purpose".







#### 1. Introduction

- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

- -PEPAdb origins dates to 2010 → projects lead by Víctor Hurtado Pérez: <u>P06-HUM-02159</u> and <u>MAT2005-00790</u>.
- -PEPAdb own funding dates to 2012 → projects lead by Carlos P. Odriozola Lloret: <u>HAR2012-34620</u>, <u>HAR2017-83474-P</u> and <u>P20\_01080</u>.
- -<u>P20 01080</u> principal aim → comply with Directive (EU) 2019/1024 and FAIR policy







- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

PEPAdb contains personal adornment records referred to late Prehistory. The actual geographical coverage of PEPAdb is restricted to the *Iberian Peninsula*.







- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

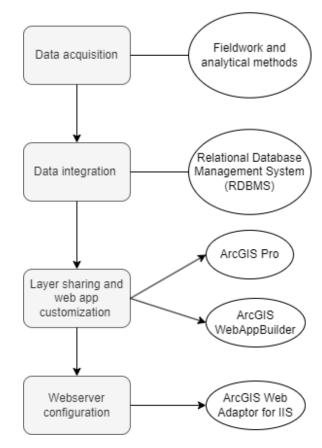



Figure 1: Research workflow.







- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

#### -Data acquisition

The dataset is composed by:

- 1) Molecular level analysis of geological samples and artifacts including FTIR
- 2) Elemental composition analysis of geological samples and artifacts by means of energy dispersive x-ray fluorescence analysis (XRF)
- 3) Agent Based Models (ABM): a) mineral classification and artifacts provenance
- 4) Chronological model for the production and distribution of the different minerals consumed as personal adornment

| Description of Data                                                      | Data Type               | Format               |
|--------------------------------------------------------------------------|-------------------------|----------------------|
| Geological survey data                                                   | Spatial                 | WMS, WFS, JSON, csv, |
| and artifacts' location                                                  |                         | KMZ, JSON            |
| Artifacts and geological samples molecular level, and elemental analysis | Experimental            | CSV                  |
| Artifacts' mineralogy                                                    | Experimental<br>Modeled | csv, JSON, .py       |
| Artifacts' origin                                                        | Modeled                 | csv, JSON, .py       |
| Space time patterns                                                      | Spatial                 | WMS, WFS, JSON, csv, |
|                                                                          |                         | KMZ, JSON            |
| ABM                                                                      | Modeled                 | csv, JSON, .py       |

Figure 2: Type and format of the data produced by PEPAdb.







#### -Data integration in a RDBMS

- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

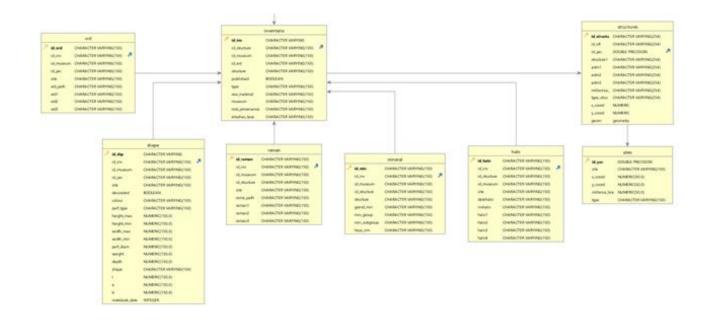



Figure 3: PEPAdb data model (produced with DBVisualizer).







#### -Layer sharing and webapp customization

- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References



Figure 3: ArcGIS Pro logo.

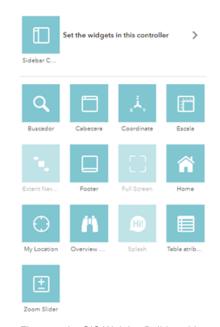



Figure 4: ArcGIS WebAppBuilder widgets.







#### -Webserver configuration

- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

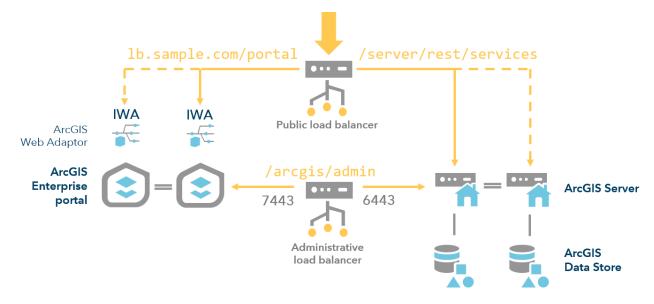



Figure 5: Configuration process of a highly available portal







- 1. Introduction
- Case study: mapping personal adornment in the SW of the
  Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

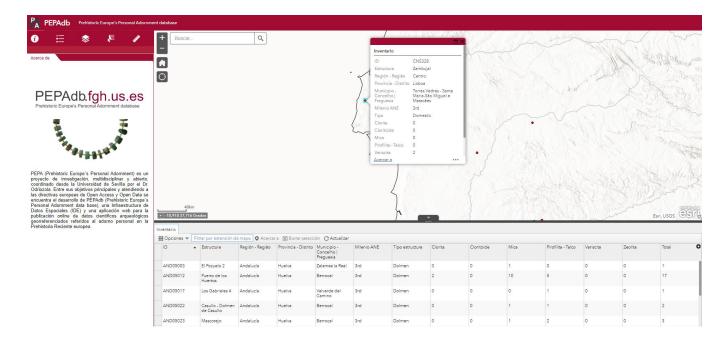



Figure 6: PEPAdb visualization in Google Chrome web browser.

https://pepadb.fgh.us.es/inventario\_mineral







- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

#### -Next steps

We would like to integrate...

- 1) Query widget
- 2) Graphical popup's
- 3) Machine learning predictive function

- 1. Introduction
- 2. Case study: mapping personal adornment in the SW of the Iberian Peninsula
- 3. Methodology
- 4. Description of PEPAdb web application
- 5. Next steps
- 6. Concluding remarks
- 7. References

#### -Concluding remarks

Archaeological web applications for late Prehistory information management are completely necessary in the transfer of knowledge. These tools give more visibility to results developed by researchers (Saavedra-Duarte et al 2017). Data automation is a major challenge considering that PEPAdb has thousands of records related to prehistoric materials. This is why it is necessary to establish a workflow capable of overcoming some of the limitations associated with the massive amount of data.







### References

- -de le Beaujardiere, J. (2006) OpenGIS® Web Map Server Implementation Specification. Wayland MA: Open Geospatial Consortium, p. 85. Available at: https://www.ogc.org/docs/is.
- -McKeague, P. et al. (2019) 'Mapping Our Heritage: Towards a Sustainable Future for Digital Spatial Information and Technologies in European Archaeological Heritage Management', *Journal of Computer Applications in Archaeology*, 2(1), pp. 89–104. Available at: <a href="https://doi.org/10.5334/jcaa.23">https://doi.org/10.5334/jcaa.23</a>
- -Robinson, E., Nicholson, C. and Kelly, R.L. (2019) 'The Importance of Spatial Data to Open-Access National Archaeological Databases and the Development of Paleodemography Research', Advances in Archaeological Practice, 7(4), pp. 395–408. Available at: <a href="https://doi.org/10.1017/aap.2019.29">https://doi.org/10.1017/aap.2019.29</a>.
- -Zhang, C. and Li, W. (2005) 'The Roles of Web Feature and Web Map Services in Real-time Geospatial Data Sharing for Time-critical Applications', Cartography and Geographic Information Science, 32(4), pp. 269–283. Available at: https://doi.org/10.1559/152304005775194728.







## Thanks