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Abstract:

With the advancement of new technologies, power systems are increasingly equipped with more
sensors and actuators, heightening the risk of failure. This fact, together with the vulnerability of
solar plants —not only to internal faults but also to the action of the sun, rain, wind, and animals,
among others— gives rise to the need for detecting and identifying faults to deal with them.
Methods that detect and diagnose faults play a crucial role in solar plants, allowing the systems
to cope with them as soon as they occur and before they lead to large-scale problems. This work
proposes using neural networks to detect and distinguish mirror and flow rate faults in a Fresnel
plant. In addition, a defocusing stage is added to access hard-to-isolate faults, increasing the
accuracy of 89.61% to 97.43%. These results contribute to the problem of isolability in thermal
solar plants. The simulations for obtaining the neural networks and the results were conducted
on a model of the Fresnel plant located at the Engineering School of Seville, Spain (ETSI).

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Fresnel, Artificial Intelligence, Fault Detection, Fault Diagnosis, Solar Energy

1. INTRODUCTION

In the second half of the seventies, there was an impulse
to use renewable energy sources due to the oil crisis.
Currently, its use has remained due to the growing en-
vironmental awareness in developed countries (Camacho
et al., 2014; Goswami et al., 2000). Solar energy is the most
important one among renewable energy sources since it is
the most abundant. Another advantage of solar energy is
the possibility of using thermal storage systems to stock
the exceeding thermal energy and respond to short-term
high load demands when it is needed (Islam et al., 2018).

Some applications of solar energy are the production of
electric power or supply of air conditioning. The interest
in the second application is increasing and especially
important in areas exposed to high solar radiation (Kim
and Infante Ferreira, 2008). This work focuses on Fresnel
collectors, a type of solar thermal power system composed
of thin mirror strips that concentrate the incoming solar
irradiance onto a tube placed at the focal line. This tube
contains a heat transfer fluid (HTF) that heats up as
sunlight hits it. Compared to parabolic trough collectors,
these plants possess different advantages, notably lower
cost and more straightforward design. In this work, a
model of a Fresnel collector belonging to a solar cooling
plant of the Engineering School of Seville, Spain (ETSI,
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Escuela Técnica Superior de Ingenierfa) is used (Bermejo
et al., 2010).

Research in Fresnel collector plant technologies and con-
trol is increasing and attracting growing attention. An
example of this is the work carried out by Whitheephanich
et al. (2013), where model predictive control (MPC) is ap-
plied for temperature tracking. Gallego et al. (2020) com-
pares an adaptive MPC strategy to a PID with feedforward
using an unscented Kalman filter as a state estimator.
Concerning the design of these plants, Rungasamy et al.
(2021) reviews the methodologies and mechanisms for op-
tical loss, and Pulido-Iparraguirre et al. (2019) presents an
optically optimized design with geometrical modifications
for obtaining homogeneous thermal power along the year.

As research and technologies evolve, these plants add more
sensors and actuators, and the more components there
are, the more probability of faults occurring. A fault is an
unpermitted deviation of one or more features in a plant
that conduces to undesired behaviors. To acknowledge the
existence of faults and start mitigation or repair actions,
fault detection (FD) techniques arise. Moreover, once a
fault is detected, it is helpful to determine the location
and type of a fault. This process is called fault isolation
(FI). Fault detection and isolation (FDI) is included in the
group of fault detection and diagnosis (FDD) techniques.

FDD techniques are applied in many fields. Specifically,
in the power systems area it is a topic of great interest.
Pillai et al. (2019) studies and compares the different
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fault detection methods for photovoltaic plants. Regarding
wind turbines, Qu et al. (2021) proposes the use of neural
networks with a technique based on improved triplet loss
to detect various types of faults. Freire et al. (2020)
proposes a predictive control strategy combined with FDI
to adjust system control in case of faults in microgrids.

The work presented by Faure et al. (2016) reviews the
failure modes, effects, and subsystems reliability in solar
thermal systems, and a methodology to analyze the impact
of faults is proposed by Faure et al. (2018). Most recent
applications of FDI to thermal solar energy focus on
the detection stage or on isolation in the whole field
rather than the collectors. Zahra et al. (2020) uses a
fuzzy observer for FD in a solar power field, simplifying
the collectors as a whole faulty subsystem. A similar
simplification is made by Kalogirou et al. (2008), who uses
neural networks to predict temperatures and determine
if a fault is located at the collectors or the pipe that
connects them to the storage system. Correa-Jullian et al.
(2020) predicts data of a solar hot water system using a
neural network to obtain residuals and detect faults, and
the method presented by Jiang et al. (2019) detects and
classifies faults in solar water heaters combining support
vector machines and D-S evidence theory.

The main contribution of this work is the use of a method-
ology to detect and isolate faults in a Fresnel plant using
machine learning combined with a defocus strategy. The
neural network is used to detect faults and classify them
into two main locations, and the defocusing is used to
augment the accuracy of the neural network, dealing with
the difficulty of distinguishing the type of fault on certain
occasions

The paper is organized as follows. Section 2 gives a descrip-
tion of the system, presenting the Fresnel plant used for
making the experiments, the equations for modeling it, and
the controller. Next, section 3 describes the methodology
applied, and the experimental results are presented in
section 4. Finally, sections 5 and 6 extract some discussion
and conclusions from the work.

2. SYSTEM DESCRIPTION

In this section, the solar collector field and its mathe-
matical model are presented. These kinds of systems are
described using two types of models: the concentrated
parameter model and the distributed parameter model.
In this work, the distributed parameter model is used
for simulation purposes, and the concentrated parameter
model is used for obtaining the controller and during
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Fig. 1. General scheme of the Fresnel plant at ETSI.

the fault isolation process. These equations are similar to
those of the parabolic trough plants. The difference lies in
the computation of the shade factor and the geometrical
efficiency.

The solar plant modeled in this work is installed on
the roof of the Engineering School of Seville (ETSI).
It consists of a Fresnel collector field, a phase change
materials (PCM) storage tank, an auxiliary power system,
and a double-effect absorption chiller, as shown in figure
1. The solar field is composed of 11 rows of linear Fresnel
collectors with a total reflective surface of 352 m?, see
figure 2. The sunlight is reflected on a 64 m long metal pipe
containing the heat transfer fluid (HTF). This tube, called
a receiver, is enclosed by a secondary reflector. It consists
of a metal cover with a mirror to reflect the radiation
part that has not impacted directly on the receiver. The
HTF is heat pressurized water that is then delivered to the
water absorption chiller. A more detailed description can
be found in Robledo et al. (2011); Gallego et al. (2019).

Fig. 2. Fresnel collector field at ETSI.
2.1 Distributed Parameter Model

The distributed parameter model is represented by equa-
tions 1 and 2, which describe the energy balances in the
metal and the fluid with spatially distributed variables,
with the subscripts m and f referring to metal and fluid,
respectively, and the notation given by table 1. The faults

are modeled as multiplicators ag,,, and .

oT,,
memAmW = aKoptIKoptnoG+

—H,G(T,, — T,) — LH,(T,, — Ty)

(1)

oT. ot
PfoAfa—tf + Oéququa—; = LH(Tn = Ty)  (2)

The equations are solved by dividing the tube into 64
segments of 1 m long and using an integration time of
0.25 s. The density, specific heat, and heat transmission
coefficient are obtained as the segment temperature and
flow rate functions.

ps = —0.0025T% — 0.203T} + 1003.91 (3)

Cy=516-10""Tf — 7.78 - 107 *T > + 18.73TF  (4)
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Table 1. Parameters and variables description.

Symbol | Description Units
t Time S
A Cross-sectional Area m?
G Collector aperture m
L Pipe length m
Ay Transversal area of the interior pipe m?
1(t) Direct solar irradiance W/m?
q(t) Flow rate /s
Ta(t) Ambient temperature °C
T(t, ) Temperature °C
C(t,T) Specific heat capacity J/(kg °C)
p(t,T) Density kg/m3
H;(t,T) | Thermal loss coeflicient W/(m2 °C)
Kopt Optical efficiency —
no(t) Geometric efficiency —
Hy(t,T) | Metal-fluid heat transmission coefficient | W/(m? °Q)

Hy =q"%(1.34-107*T} — 7.78 - 10 *T}+
+18.73T7 — 2.57 - 10°Ty + 4.11 - 10°)

Hy =9.2782-10"*(Ty - T,) —1.8- 1073 (6)

The computation of the geometric efficiency uses a 2D and
a 3D model of the plant and contains complex trigonomet-
rical functions, as well explained by Robledo et al. (2011).
It is formed by the shade factor and the incidence angle of
the solar beam.

2.2 Concentrated Parameter Model

The concentrated parameter model —or lumped parameter
model- provides a general description of the field and is
used for control and fault isolation purposes. Equation 7
describes the internal energy variation of the fluid.

dT,.,
0775 = aK,, NoKopt ST+

_aqucp(Tout - En) - HlS(Tmean - Ta)

(7)

where C is the thermal capacity, Pep = pmCm, in, out and
mean refer to inlet, outlet and mean values between them,
and the reflective surface S is 352 m?2.

2.3 Flow Control

The controller used in this work is a simple feed-forward
for reference temperature tracking, manipulating the flow
rate of the HTF. The controller is implemented using the
concentrated parameter model as in equation 8 and has a
sample time of 30 s.

noKoptSI - Hl(Tmean - Ta) (8)
Pcp(Tref - En)

q(t) =

3. METHODOLOGY APPLIED

The approach of this work is mainly based on the use of
artificial neural networks to detect and isolate faults in
real-time. The faults that affect a Fresnel collector can
be grouped into two main categories: those related to the
mirrors and their reflectivity and faults in the flow rate.

The first group is associated with corrosion, breakage,
coating, and degradation of the collectors due to dirt or
external elements, while the second group of faults is due
to flowmeter and flow rate errors. Note that the first group
also includes pyrheliometer faults, as I and K., always
act jointly on the system forming a product. This method
does not consider temperature measurement faults, which
can be analyzed independently and are an object of future
inclusion. Although the considered plant only has one
line of reflectors, the methodology is extendable to bigger
plants and can be applied to each line independently, as the
faults are analyzed in the collector area, not considering
the pump. This allows the detection of flow imbalances.

In many cases, it is not easy to distinguish one type of
failure from another as, for example, a temperature drop
could be due to a dirty collector, but also to a misreading
of the flow rate. To solve this problem, we propose a
decoupling stage in which the collectors are defocused,
and the flow rate is decoupled from the reflectivity and
collector efficiency.

8.1 Artificial Neural Networks

An artificial neural network (ANN) is a model that can
approximate every nonlinear function by emulating the
functioning of the human brain. It is composed of neurons
that are generally arranged in layers (McCulloch and Pitts,
1943). Currently, their use is widespread, with applications
in many different fields, from industrial systems to busi-
ness, as well as medicine or art, among others, and is a
growing line of study (Abiodun et al., 2018).

This work uses multilayer perceptrons, a type of feedfor-
ward neural network (Fine, 2006). Each neuron computes
a linear regression problem and has an activation function
that transforms the data. The weights are obtained with
backpropagation (Rumelhart et al., 1986; Lillicrap et al.,
2020) using the partial derivatives of the output error.
In this work, the ANNs are trained using scaled conju-
gate gradient backpropagation, which performs a search
along the conjugate directions giving a faster convergence.
Before training the ANN, a suitable dataset is obtained,
scaled between -1 and 1 and divided into the training set,
the validation set, and the test set. The outputs are labeled
using one-hot encoding.

The inputs to the neural network are selected to be the
same that the concentrated parameter model uses: Tj,,
Tout, dTout/dt, Ty, I, the assumed ¢ and ny.

Neural networks are trained in a trial-and-error process.
The parameters and architecture are selected and the ANN
is trained. The whole process is repeated until obtaining
the desired accuracy. Then, to validate the results, the
confusion matrix, accuracy and F1l-score are obtained.

e Accuracy: hit rate. It takes account of the true pos-
itives (TP) and true negatives (TN) over the sum
of true positives, true negatives, false positives (FP),
and false negatives (FN).

TP+ TN

= 9
TP+TN+FP+FN 9)
e Confusion matrix: it allows the visualization of the
number of instances that were assigned to each class.

Acc
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Real
Positive  Negative
. Positive TP FP
Predicted Negative FN TN

e Fl-score: the harmonic mean of precision and recall.

Pre - Rec

" Pre + Rec
e Precision: the rate of correct TP over all positive-
assigned instances.

F1=2 (10)

TP
Pre= —— 11
T TP+ FP (11)
e Recall: the rate of correct TP over all positives.
TP
S — 12
Ree=mp 7N (12)

3.2 Defocusing

The defocusing mechanism consists of modifying the angle
of incidence of the solar rays on the mirrors reducing
the efficiency. It is used in commercial plants to prevent
the HTF temperature from being too high, improving
performance and protecting plant components (Alhaj and
Al-Ghamdi, 2018; Sanchez et al., 2020).

This work proposes to use a defocusing strategy to isolate
faults. As this entails an energy waste during the time the
analysis is performed, it will only be used when the output
of the neural network is not clear—that is, when the output
values corresponding to the two types of failure are very
similar.

When the collector is defocused, the faults in its efficiency
stop affecting the system, so it is possible to isolate the
faults. An estimate of the flow rate multiplicator is used
as a residual, obtained from the concentrated parameter
model. Whenever this value differs from 1 in a band of
5% above and below, it is considered that a fault has been
detected.

R 1
a, = .
a chp (Tout - Tm)
dT,

(CTM + HZS(Tmean - Ta))

4. EXPERIMENTAL RESULTS

This section shows the results obtained when simulating
the system under different conditions. First, some simu-
lations were carried out to create the dataset for training
the neural network, and then, different simulations were
performed to validate its behavior in execution time.

The neural networks were trained using a dataset con-
taining 1799514 instances obtained from simulations with
different types of faults. Constant irradiances from 700 W/
m? to 1000 W/m?2, constant inlet temperatures between
85 2C and 160 °C, and constant temperature references
from 4 °C to 20 °C above the inlet temperature were used.
Multiplicative faults between 0.1 and 0.9 for the collectors
and additive negative and positive faults between +5 m3/
h and +0.5 m3/h were added. The faults were considered
to occur before the start of each day. The dataset was

divided into training (70%), validation (15%), and test
(15%) subsets.

Different neural networks were trained. Table 2 shows the
accuracies obtained with each one of the subsets. The
column “Neurons” indicates the number of nodes in each
hidden layer of the ANN. The selected ANN is the one
with 200 neurons in the first hidden layer, 100 neurons
in the second one, and 50 neurons in the third one, as it
obtained the best results under the data from the dataset.
All trained neural networks showed an excellent ability to
maintain accuracy among the three subsets.

Table 2. Accuracies of the neural networks in
the dataset.

Neurons Acc train (%) | Acc valid. (%) | Acc test (%)
49 83.9 83.9 83.8
49-21 91.1 90.9 91.1
49-21-9 87.0 87.1 86.9
100-50 91.8 91.8 91.7
100-50-20 92.4 92.4 92.3
200-100 93.0 92.9 93.0
200-100-50 94.3 94.2 94.2
400-200 91.5 91.5 91.4

At the output of the neural networks, a low-pass filter with
a time constant of 1 hour is added. It prevents false alarms
due to variations in the plant. The alarms are activated
when some neural network output corresponding to a fault
is higher than 75%. For the mode with the defocusing
strategy, the alarms are directly activated if the sum of
the outputs not corresponding to the predicted class is
lower than 10%. Otherwise, the output will be considered
unclear, and the defocusing stage will begin. An alarm will
be given when the residual value exceeds 5%.

To validate the behavior of the neural network, one-day
simulations were performed with different values of tem-
peratures and faults. The faults appear at different times
during the simulation. The irradiance profiles correspond
to days with low dynamics, and their highest points vary
between around 700 W/m? and 1000 W/m?. Table 3 con-
tains the confusion matrix without applying the defocusing
step, and the confusion matrix of the simulations with the
defocusing stage is shown in table 4. Table 5 gathers and
compares the Fl-scores and accuracies of each mode.

Real
Faultless Kopt q
+ | Faultless 324 0 0
g Kopt 0 280 57
& q 0 11 267
Table 3. Confusion matrix for the normal
mode.
Real
Faultless Kopt q
+ | Faultless 324 0 0
g Kopt 0 304 4
£ q 0 20 320
Table 4. Confusion matrix for the mode with
defocusing.

Figures 3 and 4 show the results obtained after a 0.9 fault
occurs at 14:00 in the efficiency of the collector (10% loss
of efficiency). The output of the neural network is clear
enough to determine the existence of the fault correctly.
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F1-score (%)
Mod A
ode Faultless | Kop¢ fault | g fault ce (%)
Normal 100.0 84.72 84.09 89.61
With defocussing 100.0 96.04 96.24 97.43
Table 5. Accuracies and Fl-scores.
. Temperature evolution
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Fig. 3. Temperatures, irradiance and flow rate evolution
from the first experiment with a fault of 0.9 in the
efficiency of the collector after hour 14:00.

Neural network output
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Fig. 4. Neural network output from the first experiment
with a fault of 0.9 in the efficiency of the collector
after hour 14:00.

Figures 5 and 6 show a case in which the defocusing
strategy was activated. Although it has not been possible
to conduct experiments at the plant because it is currently
not operational, the irradiance profile was obtained from
the sensor in the real plant. In this experiment, there
was a +2.5 m?/h fault at 13:00 in the flow rate, but the
ANN could not provide a clear output. The collector was
defocused, causing a drop in temperature and an increase
in the output of the neural network corresponding to
the efficiency of the collector during several minutes. The
residual estimated a deviation of around 0.4 points in the
multiplicator.

5. DISCUSSION

This section aims to discuss the results obtained from the
work and shown above. The neural network was trained
and tested under different circumstances, obtaining an
accuracy of 89.61%. Afterward, a decoupling stage was
implemented to improve the neural network results by de-
focusing the collector. The accuracy obtained was 97.43%.
From these results, it stands out that it is possible to train
a neural network for detecting faults and distinguishing
between two main locations with high accuracy.

Temperature evolution

O 1001 BW\F
= 90 —Tref—Tuul Tin ] The fault occurs
|_" 80 L L L L L I
11 12 13 14 15 16 17 18
t(h)
Irradiance
_ 1000
= 800
= 6001 | | | | | L |
- 11 12 13 14 15 16 17 18
t(h)
. Flow rate
<101
™
E 5t
L L L L L L I
o
11 12 13 14 15 16 17 18

Fig. 5. Temperatures, irradiance and flow rate evolution
from the second experiment with +2.5 m?®/h fault
after hour 13:00.

Neural network output
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140
. 1.2
7 failure - 1
0.8
Faultless : : - - 0.6
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i(h)

Fig. 6. Neural network output from the second experiment
with +2.5 m3/h fault after hour 13:00.

Results improve significantly with the decoupling strategy.
Although it is costly to implement because it involves
defocusing a collector to obtain residuals that do not
depend on the reflectivity, its application will not be
frequent: the probability of failure is compounded by
the probability that the ANN will struggle to detect
it. Furthermore, the band from which this method is
applied can be modified. Currently, it is applied when the
nonselected class output is over 10%, but this value may be
increased. It is a compromise between the frequency of hits
and the frequency of time desired to defocus. Although the
method is not directly considering the existence of multiple
faults, it is implicitly taken into account since one of two
simultaneous faults will be detected and, as soon as it is
repaired, the other will be alarmed too.

6. CONCLUSIONS

This paper has described a methodology for detecting
faults and isolating them into two classes: faults in the
collectors related to their reflectivity and efficiency and
faults in the flow rate related to errors in the flowmeter. A
neural network is used as a first classifier and, if the output
is not clear, a defocusing stage is added to decouple the
efficiency of the collectors and improve the performance.
The results show an accuracy improvement of almost 8%.
This study provides the foundation for an FDD strategy
in Fresnel solar plants.

In this work, days with low dynamics are considered, with
smooth changes in the irradiance along the day. Future
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research will assess the applicability of the methodology
under extreme conditions, with large clouds passing by.
Furthermore, other issues to address will be to perform a
complete FDD scheme by analyzing the magnitude of the
fault, and to implement fault-tolerant control techniques.

The work was carried out by simulation. For applying the
methodology to a real plant, it will be necessary to reduce
the data size with a deeper analysis of the amount of
data needed and the probability of some of the considered
magnitude of faults. Moreover, commercial plants have
more lines and collect more data per day. For reproducing
this experiment without data reduction, the ETSI Fresnel
plant would require 8 years, Liddell (NREL, 2022a) would
require 2 years and Puerto Errado 2 (NREL, 2022b) would
need 4 months.
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